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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Untargeted annotation of 74 ACs from 
PCa and non-malignant prostate tissue. 

• Kendrick Mass Defect filtering allows 
straightforward ACs annotation. 

• The ACs datasets allowed classification 
rates >93 % after PLS-DA in rDCV. 

• Hydroxyhexanoylcarnitines were signif-
icantly upregulated in PCa tissue. 

• Oxidative phenomena on short and me-
dium ACs seem correlated to cancer 
metabolism.  

A R T I C L E  I N F O   

Handling Editor: Dr. L. Liang  

Keywords: 
Metabolomics 
Retention time prediction 
PLS-DA 
Repeated double cross validation 
Prostatic neoplasm 
β-oxidation 

A B S T R A C T   

Background: Metabolomics is nowadays considered one the most powerful analytical for the discovery of 
metabolic dysregulations associated with the insurgence of cancer, given the reprogramming of the cell meta-
bolism to meet the bioenergetic and biosynthetic demands of the malignant cell. Notwithstanding, several 
challenges still exist regarding quality control, method standardization, data processing, and compound iden-
tification. Therefore, there is a need for effective and straightforward approaches for the untargeted analysis of 
structurally related classes of compounds, such as acylcarnitines, that have been widely investigated in prostate 
cancer research for their role in energy metabolism and transport and β-oxidation of fatty acids. 
Results: In the present study, an innovative analytical platform was developed for the straightforward albeit 
comprehensive characterization of acylcarnitines based on high-resolution mass spectrometry, Kendrick mass 
defect filtering, and confirmation by prediction of their retention time in reversed-phase chromatography. In 
particular, a customized data processing workflow was set up on Compound Discoverer software to enable the 
Kendrick mass defect filtering, which allowed filtering out more than 90 % of the initial features resulting from 
the processing of 25 tumoral and adjacent non-malignant prostate tissues collected from patients undergoing 
radical prostatectomy. Later, a partial least square–discriminant analysis model validated by repeated double 
cross-validation was built on the dataset of 74 annotated acylcarnitines, with classification rates higher than 93 
% for both groups, and univariate statistical analysis helped elucidate the individual role of the annotated 
metabolites. 
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Significance: Hydroxylation of short- and medium-chain minor acylcarnitines appeared to be a significant vari-
able in describing tissue differences, suggesting the hypothesis that the neoplastic growth is linked to oxidation 
phenomena on selected metabolites and reinforcing the need for effective methods for the annotation of minor 
metabolites.   

1. Introduction 

Prostate cancer (PCa) is currently the second most diagnosed cancer 
worldwide and has the highest incidence in Western and high-income 
countries (https://www.iarc.who.int/). The development of PCa is 
influenced by several demographic factors, including aging, ethnicity, 
lifestyle, and family history [1]. If PCa is detected at early stages, the 
10-year survival rate is more than 99 %; however, up to 40 % of men 
with PCa have no clinical signs, and the 5-year survival rate of highly 
metastatic patients drops to 30 % [2,3]. Currently, the early detection of 
PCa is based on the measure in blood of the prostate-specific antigen 
(PSA) [4], followed by magnetic multiparametric resonance (mMR) and 
targeted prostate biopsy for final diagnosis [5]. Unfortunately, PSA 
measurement has the significant drawback of limited specificity, causing 
incorrect PCa diagnoses that lead to unnecessary biopsies and over-
treatment of indolent PCa [6]. As such, elevated PSA levels can be 
associated with benign conditions [7], including benign prostatic hy-
perplasia (BPH), or prostatitis, and, on the other hand, several PCa pa-
tients show low PSA levels [8]. For these reasons, there is an urgent need 
for alternative biomarkers to improve the detection and treatment of 
PCa. In this context, the omics sciences and, in particular, metabolomics 
have emerged in the latest years as powerful tools [3,9,10]. Given the 
considerable evidence of metabolic dysregulations in the development 
and growth of PCa [11] and differential metabolic activities of cancer 
cells [12], the study of the whole metabolome, i.e., the entire set of 
metabolites in a given biological matrix, has the potential to identify 
novel putative biomarkers [10]. In particular, untargeted metabolomics 
studies by either nuclear magnetic resonance (NMR) or high-resolution 
mass spectrometry (HRMS) coupled to gas- or liquid chromatography 
(LC) are currently the prime approaches in cancer research, allowing 
ideally the simultaneous analysis of the whole metabolome for high-
lighting any up- and downregulations [13]. Numerous studies have been 
conducted in recent years aimed at identifying novel putative bio-
markers for PCa by means of untargeted metabolomics [3,9,10,14–17], 
highlighting several compound classes and metabolic pathways that 
were found to be dysregulated in PCa cells, such as amino acids [18–21], 
polyamines [22–24], tricarboxylic acid cycle metabolites [20,23], 
phospholipids [25], and acylcarnitines (ACs) [26–28]. Although untar-
geted global metabolomics has had a tremendous impact across different 
applications, several challenges still exist regarding quality control 
(QC), method standardization, computational methods for data pro-
cessing, data analysis, and compound identification, which pose a much 
more complex challenge compared to targeted methods [29,30]. 
Untargeted suspect screening approaches, aimed at structurally-related 
classes of compounds, allow much more straightforward analytical 
workflows in terms of sample preparation and LC-HRMS conditions as 
well as for data processing and compound identification [31,32]. ACs 
are a broad structurally related class of metabolites that arise from the 
conjugation of fatty acids (FAs) with L-carnitine and play essential roles 
in energy metabolism, transport of long-chain FA across the mitochon-
drial membranes, and the β-oxidation of FAs [33]. Anti-inflammatory 
and antioxidant properties of carnitine and a stabilizing effect on 
mitochondrial membranes have been reported [34]. According to the 
nature of the acyl group, ACs can be classified into short-, medium-, 
long-, and very-long-chain, as well as saturated/unsaturated, hydroxy, 
dicarboxyl, and branched-chain ACs [35]. Given the large number of 
reported ACs, i.e., 1240 entries on the Human Metabolome Database 
(HMDB [36]), several papers have dealt with the setup of innovative and 
specific methods for a rapid and straightforward analysis of ACs. Feng 

et al. recently proposed a novel strategy for ACs identification in human 
plasma using a data-independent-acquisition-based retention time (RT) 
prediction modeling [37]. In 2019, an isotope labeling strategy followed 
by LC-MS was set up by Li et al. to identify 108 ACs in human urine [38]. 
Moreover, Tang et al. employed an integrated Tmt-PP derivatiza-
tion-based LC-MS method for the absolute quantification of ACs in an 
untargeted fashion using a few analytical standards [39]. In the present 
paper, an untargeted HRMS approach based on Kendrick mass defect 
(KMD) filtering and RT prediction was set up for the identification of 
ACs in human PCa tissue and adjacent non-malignant tissue. KMD al-
lows rapid visualization of compound homologs that differ only for 
specific molecular fragments (e.g., CH2) [40] and has found several 
applications in environmental analyses [41]. The use of KMD filtering 
allowed straightforward data processing and identification without any 
derivatization or extensive sample preparation. Multivariate and uni-
variate statistical tools were finally employed on the extracted data 
matrix for investigating dysregulations in the ACs linked to cancer cell 
metabolism. 

2. Experimental section 

2.1. Chemical and reagents 

MS-grade absolute water, methanol (MeOH), ethanol (EtOH), 
acetonitrile (ACN), isopropanol (iPrOH), and formic acid (HCOOH) 
were purchased from Fisher Scientific (Waltham, MA, USA). Phosphate 
buffer saline (PBS), pH 7.4 was purchased by Sigma now Merck 
(Darmstadt, Germany). Acetyl-L-carnitine hydrochloride, propionyl-L- 
carnitine, oleoyl-L-carnitine, trans-2-tetradecenoyl-L-carnitine, trans-2- 
Hexadecenoyl-L-carnitine, malonyl-L-carnitine lithium salt, adipoyl-L- 
carnitine lithium salt, sebacoyl-L-carnitine, suberoyl-L-carnitine, 3- 
hydroxyisovaleryl-L-carnitine, [(3R)-3-hydroxydecanoyl]-L-carnitine, 
[(3R)-3-hydroxy-cis-tetradec-9-enoyl]-L-carnitine, [(3R)-3-hydrox-
yoctadecanoyl]-L-carnitine, [(3R)-3-hydroxy-cis-octadec-9-enoyl]-L- 
carnitine, acylcarnitines mix 2 (C4, iC4, C5, iC5, C6, C8, C10, C12, C14, 
C18) solution were purchased by Merck. 13C caffeine (internal standard, 
IS) was also purchased by Merck. ACs standard stock solutions were 
prepared at 1 mg mL− 1 in either H2O or MeOH/H2O 50:50 (v/v). The 
ACs working mix solution was prepared by appropriate dilution at 0.1 
μg mL− 1 in H2O/ACN 90:10 (v/v). The IS solution was prepared at 5 μg 
mL− 1 in H2O/ACN 90:10 (v/v). 

2.2. Population and sample collection 

This is an experimental research study in which patients have been 
treated following normal clinical practice and international guidelines. 
The study was developed following the current Good Clinical Practice 
and the principles of the Declaration of Helsinki. The study was 
approved by our Ethic Committee of Sapienza University (Protocol 
0919/2021–6511) and all patients provided informed consent. The 
population was represented by 25 consecutive unselected clinically 
significant PCa patients referred to the Department of Urology, Policli-
nico Umberto I and Sapienza University of Rome, for to RARP proced-
ure. The inclusion criteria were: a histologic diagnosis of prostatic 
adenocarcinoma at biopsy; clinically significant, intermediate, or high- 
risk PCa according to the European Urological Association (EAU) clas-
sification; indication for RARP procedure according to the EAU guide-
lines. In all cases the following exclusion criteria were respected: no 
clinical evidence of metastatic disease; no previous or current surgical, 
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radiotherapeutic, hormone, or chemotherapeutic treatments for PCa; no 
concomitant other neoplastic diseases; no concomitant medical thera-
pies that potentially influenced prostatic metabolism and growth; no 
concomitant inflammatory or metabolic disorders. Clinical and patho-
logical characteristics of the population are summarized in Table 1. 
Immediately after removal of the entire prostate, a sample of non- 
malignant (BPH) prostatic tissue and a sample of neoplastic tissue 
were obtained in each patient. Each tissue sample measured approxi-
mately 5 mm in diameter and 1 g in weight. The site of sampling in the 
prostate was evaluated based on the localization performed on the 
previous mMR and the diagnosis of non-malignant BPH and prostate 
adenocarcinoma tissue was confirmed by pathologic examination in 
each sampling. Final pathologic examination with the definition of PCa 
pathologic staging, ISUP grading, and surgical margins were reported in 
all patients. All 50 tissue samples (1 non-malignant sample and 1 PCa 
sample for each patient) were immediately stored at − 80 ◦C until 
metabolomics analysis. 

2.3. Acylcarnitine extraction 

Tissue samples were thawed at room temperature for 30 min, hashed 
with a scalpel, put in a LoBind tube (Eppendorf, Hamburg, Germany), 
and weighed. Subsequently, 1.5 mL of EtOH/H2O 70:30 (v/v) with 10 
mM PBS was added to each sample, which was sequentially vortexed for 
10 min, sonicated for 5 min, and vortexed again for 10 min at 4 ◦C. The 
extraction mixture was then centrifuged at 14,000×g and 4 ◦C for 5 min. 
The supernatant was transferred to a test tube and the extraction was 
repeated once. The reunited supernatants were then dried out using a 
Speed-Vac SC 250 Express (Thermo 164 Avant, Holbrook, NY, USA). 
Subsequently, 500 μL of H2O/ACN 90:10 (v/v) were added, and the 
extracts were filtered using Acrodisc™ MS syringe filters, 0.2 μm, 13 
mm, wwPTFE (Pall Corporation, Port Washington, NY, USA) after vor-
texing and sonicating for 5 min. For each sample, 145 μL of the extract 
was transferred into an injection vial and 5 μL of the IS solution was 
added. Moreover, 50 μL of each extract was collected and mixed to 

obtain a matrix-matched pooled QC sample. Process blank samples were 
obtained following the described extraction procedure on a solvent 
sample. 

2.4. UHPLC-HRMS and RT regression models 

A Vanquish Binary Pump H system, equipped with a thermostated 
autosampler (4 ◦C) and column compartment (40 ◦C), was interfaced to 
a hybrid quadrupole-Orbitrap Q Exactive mass analyzer (Thermo Fisher 
Scientific, Bremen, Germany) with a heated electrospray ionization 
(HESI) source. The separation was achieved on a reversed-phase (RP) 
Accucore™ C8 column (150 × 2.1 mm I.D., 2.6 μm particle size, Thermo 
Fisher Scientific) using H2O 0.1 % HCOOH (phase A) and ACN/iPrOH 
80:20 (v/v) 0.1 % HCOOH at a constant flow rate of 0.4 mL min− 1. The 
gradient was as follows: 1 % phase B to 40 % phase B in 7 min; 40 % 
phase B to 99 % phase B in 21 min; 99 % phase B for 5 min (washing 
step); 99 % phase B to 1 % phase B in 2 min; 1 % phase B for 7 min (re- 
equilibration step). Samples were analyzed in the positive ion mode 
(ESI+) with the following HESI parameters: spray voltage at 3200 V, 
auxiliary gas heater temperature at 280 ◦C, sheath gas at 50 (arbitrary 
units), auxiliary gas at 25 (arbitrary units), sweep gas at 0 (arbitrary 
units), and S-Lens RF level was 50 (%). Samples and control were run in 
full-scan mode to ensure a sufficient number of points per peak for the 
precise measurement of the peak areas in the range 100–1000 m/z with 
a resolution of 70,000 (full width at half-maximum, FWHM, m/z 200). 
The automatic gain control (AGC) target was set at 1,000,000, with a 
maximum injection time of 50 ms. For the identification-only QC runs, the 
top 5 data-dependent acquisition (DDA) mode was performed at a res-
olution of 17,500 (FWHM, m/z 200), the AGC target at 100,000, 
maximum injection time at 50 ms, isolation window at 2.0 m/z, and 
normalized collision energy at 30. RT linear regression models were 
built by plotting the experimental RT of the 23 standard ACs vs. their 
calculated logP (ClogP, calculated using ChemDraw 14.0). Based on the 
retention behavior of the different ACs subclasses, three linear regres-
sion models were built: non-functionalized (acylated) ACs (R2 =

0.9983), hydroxy ACs (R2 = 0.9969), and dicarboxyl ACs (R2 = 0.9903) 
(Fig. S1). 

2.5. Acylcarnitine untargeted analysis 

Untargeted data acquisition was performed following the recom-
mendations of the metabolomics Quality Assurance and Quality Control 
Consortium (mQACC) [42]. Samples were injected in a randomized 
order and the chromatographic worklist is schematized in Supplemen-
tary Material Table S1. For system suitability testing, the column sta-
bility and performance were tested before and after each analytical 
section using solvent blank samples (H2O/ACN, 90:10, v/v) and working 
mix standard solutions. System conditioning, consisting of ten consec-
utive pooled QC sample injections, preceded the process blank sample 
injection for background subtraction, which allowed to discard of the 
contaminants originating from the extraction solvents, mobile phases, 
and the HPLC-MS system, as well as the compounds subjected to high 
carry-over effects (more than 10 %), which alter peak areas and can 
result in biased statistical analysis. After further system reconditioning 
with ten more QC samples, randomized samples were run in groups of 
five, followed by a QC injection. Raw MS and MS/MS data were acquired 
by Xcalibur software (version 3.1, Thermo Fisher Scientific). 

2.6. Data preprocessing and compound identification 

The.raw data files obtained by the analysis of samples, controls, QCs, 
identification-only QCs, and the process blank were preprocessed using 
Compound Discoverer (Thermo Fisher Scientific) using a homemade 
workflow that was specifically designed for ACs. Feature alignment was 
obtained by the adaptive curve regression model; whenever the adaptive 
curve model failed, the linear model was automatically selected instead. 

Table 1 
Clinical and pathological characteristics of the population in terms of the 
number of cases, age, body mass index (SMI), prostatic volume, total PSA value, 
European Association of Europe (EAU) risk, pathologic stage, pathological In-
ternational Society of Urological Pathology (ISUP) grading, surgical margins, 
and perineural invasion (PNI).  

Parameter Number of cases (%) or mean ± SD (median) and 
range 

Number of cases 25 
Age (years) 63.92 ± 6.82 (64) 44-74 
BMI 22.42 ± 2.90 (21.9) 17.40–29.06 
Prostate volume (mL) 44.52 ± 11.70 (45) 25-68 
PSA total ng mL¡1 25.40 ± 10.92 (25.4) 2.5–40.0 
Tumor max diameter 

(mm) 
12.76 ± 3.64 (11) 10-20 

EAU Risk class 
-Intermediate 11 (44.0) 
-High 14 (56.0) 
Pathologic stage 
-pT2N0 13 (52.0) 
-pT3aN0 10 (40.0) 
-pT3bN0 2 (8.0) 
Pathologic ISUP grading 
− 2 18 (72.0) 
− 3 3 (12.0) 
− 4 2 (8.0) 
− 5 2 (8.0) 
Surgical margins  
- negative 21 (84.0) 
-positive 4 (16.0) 
Perineural invasion (PNI) 
-no 12 (48.0) 
-yes 13 (52.0)  
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Features were aligned and filtered to remove the features whose areas in 
the process blank were at 10 % of the areas in the QCs, as they were 
attributed to either contaminants or carry-over artifacts. The tool 
“calculate mass defect” was enabled to automatically calculate the KMD 
of the extracted features to match the experimental KMD with the 
calculated ones of the ACs classes reported on HMDB: 0.111 (saturated 
ACs), − 0.124 (unsaturated ACs, 1 double bond), − 0.138 (unsaturated 
ACs, 2 double bonds), − 0.151 (unsaturated ACs, 3 double bonds), 
− 0.165 (unsaturated ACs, 4 double bonds), − 0.134 (hydroxyl saturated 
ACs), − 0.147 (hydroxyl unsaturated ACs, 1 double bond), − 0.161 (hy-
droxyl unsaturated ACs, 2 double bonds), and − 0.170 (dicarboxyl ACs). 
Later, features whose calculated KMD was different from the afore-
mentioned ones were filtered out, and the remaining compounds were 
manually annotated based on the MS/MS spectra and RT, with 71 
tentatively identified ACs. Furthermore, features whose areas in the QCs 
had a standard deviation higher than 25 % were also filtered out. QC- 
based normalization of the features was carried out based on the peak 
area variations over the time of the acquisition due to different instru-
mental fluctuations. For each feature, the peak area correction over time 
was performed by building a linear regression of the areas in the QC 
samples over time and eventually correcting each linear regression so 
that the slope is zero. Finally, the areas in each sample and control were 
corrected based on the time of data acquisition. The normalization filter 
resulted in the removal of 12 out of the 74 ACs and the obtention of a 
data matrix that was later employed for statistical analysis. 

2.7. Chemometric strategies for data processing 

All the chemometric calculations were run in MATLAB (R2015b; The 
Mathworks, Natick, MA) through custom routines developed in-house. 

2.7.1. Classification: Partial Least Squares Discriminant Analysis 
Partial Least Squares Discriminant Analysis (PLS-DA) [43] is a 

discriminant classification method that takes advantage of a regression 
approach (PLS) to address classification problems. This method is made 
feasible by the employment of a dummy response matrix Y, which en-
codes the information about the class-belonging of the investigated 
samples [44]. In the context of a two-class problem, such as the one 
examined in this study, where discrimination between cases and con-
trols is achieved, the Y-dummy is a binary vector y of dimensions N × 1 
(with N equal to the number of analyzed samples). The true class of each 
sample is coded either as one for the cases, ycase = 1, or zero for the 
controls by ycontrol = 0 [44]. 

After having suitably coded the response y, a PLS-DA calibration 
model is established by solving Eq. (1): 

y=Xb + e (1) 

This enables the estimation of the vectors of regression coefficients 
and residuals (b and e, respectively). Then, since the predicted response 
is real-valued and not binary as its target values a classification rule is 
essential to assign the samples to one of the investigated classes. In this 
study, this goal is achieved through the approach proposed by Perez 
et al. [45]. 

Eventually, Variance Importance in Projection (VIP) analysis [46] 
was employed to identify the most significant analytes from a classifi-
cation standpoint. This strategy allows associating each variable with an 
index that ranks its contribution to the solution of the problem. 

2.7.2. Validation 
Validation of the model’s predictive ability and the consistency and 

reliability of the identified candidate markers was carried out through a 
Repeated Double Cross-Validation (rDCV) procedure [47]. This involves 
8 cancellation groups in the inner and 10 in the outer loops, with 50 
runs. For each outer loop cancelation group, the optimal model in terms 
of the number of latent variables (LVs) is selected based on the mean 
classification error on the inner loop samples. Moreover, to rule out the 

possibility of chance correlations and overoptimistic results, the classi-
fication figures of merit are compared to their null distributions (and 
corresponding p-values are calculated) non-parametrically estimated by 
permutation tests [48] with 1000 randomizations. 

2.7.3. Univariate statistical analysis 
Metaboanalyst 5.0 was employed for univariate statistical analysis 

on the ACs data matrix [49]. The data matrix was submitted as a text file 
that was prepared according to the furnished by the developers. The 
interquartile range (IQR) was selected for data filtering, whereas the 
autoscaling algorithm was selected for data scaling. A volcano plot 
analysis was performed to evaluate the individual contribution of the 
annotated ACs to discriminate between the two sets of samples. More-
over, a correlation heatmap was obtained to display the correlation 
among selected ACs based on the trends in tumor and adjacent 
non-malignant tissue samples. 

3. Results and discussion 

3.1. Acylcarnitine separation and retention time prediction 

Aiming at setting up a method for the separation of ACs, three main 
goals were set: (i) obtaining the retention and separation of ACs in a 
wide range of polarity, (ii) allowing the discrimination of positional 
isomers (linear vs branched chain ACs), and (iii) obtaining a linear 
regression between the hydrophobicity of ACs and their RT. The sepa-
ration of ACs and their RT prediction has been achieved by RP separa-
tion systems given that the acyl and fatty acyl chains are responsible for 
differentiating the ACs subclasses [37,50]. It is known, in fact, that RP 
separates lipids based on their fatty acyl chains, whereas hydrophilic 
interaction liquid chromatography (HILIC) separates lipids according to 
their polar heads [51]. Preliminary results on an Acquity UPLC® BEH 
Amide HILIC column (100 × 2.1 mm, 1.7 μm I.D., Waters, Milford, MA, 
USA) confirmed the need for RP by showing no separation between 
linear and branched-chain AC 4:0 and 5:0 (Fig. S2). Subsequently, four 
different RP columns with different characteristics were compared: 
fully-porous Luna Omega Polar C18, solid-core Accucore™ C30 and C8, 
and Kinetex® F5. For all columns, the ACs standard mix was separated 
using a linear gradient (details are reported in the Supplementary Ma-
terial). The F5 column allowed the maximum retention of the most polar 
ACs, but, at the same time, showed the poorest baseline separation of the 
isomeric butyryl- and isobutyrylcarnitine (AC 4:0, Fig. S3d) and valeryl- 
and isovaleryl-carnitine (AC 5:0, Fig. S4d). The fully-porous C18 col-
umn, which is specifically designed for polar compounds, did not allow 
the baseline separation of the AC 4:0 isomers (Fig. S3a) as well as 
showing no retention of acetylcarnitine and poor peak shape of pro-
pionylcarnitine (Figure S5). As expected, the Accucore™ C8 gave similar 
performance to the C30 in terms of the isomer separation but allowed 
higher retention of the polar species possibly due to stronger in-
teractions with the silica gel due to the lower carbon load of the C8 
column compared to the C30 (Figs. S3b–S3c). The experimental RT of 
the standard ACs were then plotted against their ClogP to evaluate the 
trends in their RT. As shown in Fig. S6, the four tested columns furnished 
good linearity, with the R2 values ranging from 0.9863 (C30) and 0.9879 
(F5). It was then noticed that if non-functionalized ACs, hydroxy ACs, 
and dicarboxyl ACs were plotted separately the R2 values exceeded 0.99 
(Figs. S7–S10). As demonstrated by Yu [50], subclasses of ACs are more 
efficiently plotted against ClogP, thus allowing better RT predictions. 
Based on the previous considerations, the Accucore™ C8 was then 
selected for further gradient optimization and the final set-up of the 
LC-HRMS method. As such, based on the general trends observed in 
Fig. S6b, in which the experimental RT of short-chain ACs (C2–C6) were 
consistently slightly lower than predicted and those of longer ACs 
(C8–C18) were often higher than predicted, a two-slope gradient was set 
up. In the linear gradient, the percentage of phase B reached around 25 
% in 7 min. Therefore, three different gradients were tested on the 
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Accucore™ C8 column, reaching 30 %, 40 %, and 50 % phase B in 7 min, 
respectively, the second of which gave the best results in terms of R2 

(Fig. S1). The final conditions were subsequently employed for metab-
olomics analysis of prostate tissue extracts following the guidelines of 
the mQACC. 

3.2. Data processing and acylcarnitine identification 

In this work, fifty prostate tissue samples (tumor and non-malignant 
BPH adjacent tissue) from 25 PCa patients undergoing robotic radical 
prostatectomy (RARP) were analyzed using untargeted MS-based 
metabolomics. Data preprocessing represents a critical step in metab-
olomics workflows, as it allows the obtention of a data matrix from the 
acquired raw data files through a series of algorithms that can greatly 
affect the outcome of the data analysis [52,53]. A major advantage of 
proper data preprocessing is the possibility of filtering out most of the 
unwanted features, including contaminations, polymers, redundancies, 
and features suffering from carry-over or other issues that hinder their 
proper peak area measurement [54]. The removal of undesired mass 
spectral features has been obtained by Kendrick Mass Filter [55], which 
groups compound homologs that differ from a specific repeating unit. 
Whenever the compounds of interest are characterized by specific 
repeating units, the KMD can be employed to filter out all other com-
pounds to simplify the data [56,57]. Aiming at setting up an efficient 
data processing method for ACs, an untargeted metabolomics workflow 

was customized on Compound Discoverer for the purpose. In particular, 
three different strategies were tested and compared. The first workflow 
(W1, Fig. S11) was a standard untargeted metabolomics workflow with 
QC-based normalization and gap filling. In the second approach (W2, 
Fig. S12), the tool “Filter by Mass Defect” was enabled in the filter di-
rection “keep” by inserting the composition of the five most abundant 
subclasses of ACs. Finally, the tool “Calculate Mass Defect” was enabled 
in the third method (W3, Fig. S13). The latter methods differ signifi-
cantly based on the order of the algorithms employed by the software. 
Whereas in W2 the mass defect filter operates right after the alignment 
step and before all the other algorithms, including detection and 
grouping of MS adduct, prediction of the molecular formulas, gap filling, 
area normalization, and database search, the customized tool in W3 
operates at the end of data processing and the KMD filters must be 
manually enabled by the user. As a result, W2 significantly reduced the 
processing time, since most features were automatically discarded 
before the application of most algorithms. The main drawback of W2 is 
represented by the possibility of inserting only a maximum of five 
compositions, thus reducing the number of ACs subclasses that can be 
analyzed at once. In Fig. 1, the Kendrick diagrams resulting from the 
three workflows are shown. The standard approach resulted in 4608 
features after the background removal, i.e., the features that were pre-
sent in the processing blank with a peak area that was higher than 10 % 
of the average area in the QC samples (Fig. 1a). Conversely, W2 and W3 
resulted in 301 and 154 features, respectively (Fig. 1b–c), a higher than 

Fig. 1. Kendrick diagrams obtained after data processing of the metabolomics raw data on Compound Discoverer using a standard metabolomics workflow (W1, a), 
the workflow employing the “Filter by Mass Defect” tool (W2, b), the workflow employing the “Calculate Mass Defect” tool (W3, c), and W3 after the identification of 
ACs (manually annotated ACs are marked in red, d). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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90 % decrease compared to M1. Once the list of putative features was 
obtained from M2 and M3, manual MS/MS spectra inspection was 
performed to tentatively identify the ACs. The MS/MS spectra of these 
compounds usually contain three main peaks, i.e., C4H5O2

+ (m/z 
85.0284), trimethylamine ion (C3H10N+, m/z 60.0808), and trimethyl-
amine neutral loss from the protonated precursor (C3H9N, mass 
59.0735). A fourth and less abundant peak is represented by dehydrated 
carnitine arising from the neutral loss of the fatty acyl moiety (m/z 
144.1019). Moreover, hydroxylated ACs display a diagnostic peak that 
depends on the site of hydroxylation (m/z 145.0495 in the common 
third position of the acyl chain) [58]. Based on the structural properties 
of ACs, the MS/MS spectra, albeit diagnostic, fail to furnish information 
on the acyl chains. 

The combination of KMD filtering, MS/MS spectra inspection, and 
RT confirmation was therefore needed to corroborate the untargeted 
identification of ACs. A total of 63 and 74 ACs (Fig. 1d) were annotated 
following W2 and W3, respectively. Not unexpectedly, W2 resulted in a 
lower number of identifications since only 5 subclasses could be 
included in the method. A possible solution to this limitation could be 
the repetition of the pre-processing workflow by including other sub-
classes. Considering the lower number of filtered features, however, W3 
was still preferred, and the “Filter by Mass Defect” tool would probably 
be the best option for classes of compounds that show a more limited 
range of variations. Table S2 reports the list of the 74 annotated ACs 
following W3, comprising their molecular formula, ClogP, experimental 
and predicted RT (with the related ΔRT), experimental and calculated 
m/z (with the related ΔMass), KMD, HMDB entry, main diagnostic 
product ions, and confidence level according to Schymansky et al. [59]. 
The ClogP of the annotated ACs ranged from − 7.24 (malonylcarnitine) 
and 5.86 (hexacosylcarnitine), demonstrating the wide range of polarity 
that could be simultaneously separated by the LC method. As regards the 
ΔRT, a maximum tolerance of 10 % was considered, with 6 exceptions. 
Acetylcarnitine (ΔRT 14.4 %) was identified by matching with the 
analytical standard, and the relatively high error is surely due to the very 
low absolute value of its RT (1 min), considering the injection peak at 
0.8 min which corresponds to a retention factor of 1.25. 
Low-molecular-weight dicarboxyl ACs exhibited the highest ΔRT. 
Among these three compounds, however, malonylcarnitine (ΔRT -19.7 
%) was again identified by matching with the analytical standards. 
Similar to acetylcarnitine, these compounds present low absolute values 
of RT, and their RT prediction is also affected by a lower value of R2 

(0.9903 vs 0.9984). Luckily, dicarboxyl ACs present typical fragmenta-
tion patterns [58] that permitted the identification of succinyl- and 
methylmalonylcarnitine. Finally, two of the three isomers of 3-hydroxy-
butyrylcarnitine resulted in ΔRT higher than 10 %. In this particular 
case, since HMDB reports a single compound corresponding to this 
molecular formula (3-hydroxybutytylcarnitine, HMDB0013127), the 
ΔRT is due to the attribution of the same ClogP to the three isomers. It is 
important to point out that 3-hydroxyisobutyrylcarnitine has been pre-
viously reported in the literature [60], and its ClogP (− 7.34) would 
result in a much lower ΔRT (4.3 %). Following the manual spectra 
annotation, the identified ACs were filtered to remove those that had a 
higher-than-25 % standard deviation in the QC samples over time and 
that could be normalized. The filtered data matrix of 62 annotated and 
normalized ACs was then subject to statistical analysis. 

3.3. Chemometric evaluation of the dysregulation of ACs associated with 
PCa 

PCa cells often use FAs metabolism as the main source of energy and 
the de novo lipid biogenesis and β-oxidation are the most altered path-
ways in PCa metabolism, thus generating dysregulations in the ACs 
system [61]. In the present study, a series of PLS-DA models were built 
on the ACs data after autoscaling and validated through a rDCV pro-
cedure. On average, the prediction ability on the rDCV outer loop 
samples, which mimic an external test set was found to be 93.8 ± 4.6 % 

and 93.3 ± 4.2 % for cases and controls, respectively. In Fig. 2a, the 
average scores of the outer loop samples along the only canonical variate 
of the models are shown together with their confidence intervals. In the 
figure, red and blue bars represent cases and controls, respectively, 
whereas black whiskers delimit the confidence intervals. The plot re-
veals a distinct pattern where cases exhibit positive values on the CV, 
while controls have negative scores. On the other hand, the weights of 
the analytes on the canonical variate are shown in Fig. 2b. By comparing 
Fig. 2a and b it can be affirmed that the variables with a positive weight 
are present at higher concentrations in cancer tissues, while in 
non-malignant specimens there is a higher amount of those with a 
negative weight. It is, therefore, possible to affirm that some com-
pounds, such as malonylcarnitine (AC 3:1; O2), were present at higher 
concentrations in cancer tissues, whereas others, such as dec-
anoylcarnitine (AC 10:0), were more abundant in the non-malignant 
samples. 

To have a more refined interpretation of the variables characteristic 
of the discrimination between the two groups of samples, VIP analysis 
was employed to rank the most significant features, shedding light on 
the crucial factors that contributed to the model’s efficacy. This has 
revealed that there were a number of variables that significantly 
contributed to the discrimination between cancer and non-malignant 
tissues, i.e., propionylcarnitine, 2-methylbutyroylcarnitine (AC 5:0_1), 
isovalerylcarnitine (AC 5:0_2), malonylcarnitine, 3-hydroxyhexanoyl-
carnitine (AC 3-OH 6:0_1), 3-hydroxyisohexanoylcarnitine (AC 3-OH 
6:0_2), decanoylcarnitine, tetradecadienoylcarnitine (AC 14:2), 3- 
hydroxyhexadecanoylcarnitine (AC 3-OH 16:0), octadecadienoylcarni-
tine (AC 18:2), nonadecanoylcarnitine (AC 19:0), eicosate-
traenoylcarnitine (AC 20:4), eicosatrienoylcarnitine (AC 20:3), and 
lignoceroylcarnitine (AC 24:0), confirming the indication obtained by 
the inspection of the CV1 weights. The interpretation of the multivariate 
results based on the AC subclasses is not straightforward, but some 
interesting trends can be observed by the CV1 weights shown in Fig. 2b. 
A closer look at the data for short- and medium-chain ACs (C2–C12), 
highlights generally negative values of CV1 for non-oxidized com-
pounds, such as acetylcarnitine, isobutyrylcarnitine, isovalerylcarnitine, 
hexanoylcarnitine (AC 6:0), and decanoylcarnitine, with the notable 
exception of propionylcarnitine. On the other hand, several oxidized 
ACs display positive values, including malonylcarnitine, 3-hydroxybu-
tyrylcarnitine (AC 3-OH 4:0_2), 3-hydroxyhexanoylcarnitine, and 3- 
hydroxyisohexanoylcarnitine. Interestingly, most of these compounds 
are among the variables that were selected by VIP analysis. A previous 
study by Albini et al. found that some medium-chain ACs, such as dec-
anoylcarnitine and octanoylcarnitine, were significantly decreased in 
serum samples from PCa patients when compared to those from BPH 
cases, suggesting a protective role of these ACs against PCa progression 
through an anti-angiogenetic and angiopreventive effect in two micro-
environment settings: hypoxia and inflammation [62]. Moreover, the 
higher abundances of propionylcarnitine in cancer tissues were in 
agreement with a case-control study on the progression of PCa [61]. In 
opposition to short ACs, long- and very long-chain ACs had often posi-
tive CV1 values, such as oleylcarnitine (AC 18:1_1), non-
adecanoylcarnitine, and eicosatrienoylcarnitine. Previous studies have 
highlighted opposite trends of short- and long-chain ACs in association 
with tumors. In the case of hepatocellular carcinoma, evidence sug-
gested a significant decrease in the serum levels of short- and 
medium-chain ACs compared to healthy controls, while measuring a 
simultaneous increase in long-chain ACs [33,63]. A multi-center case--
control study on 1077 PCa cases and 1077 controls showed that plas-
matic oleylcarnitine and propionylcarnitine had an opposite association 
with the risk of overall PCa [64]. In correlation with opposite trends for 
short- and long-chain ACs, the ratio (AC 16:0 + 18:1)/AC 2:0 is an index 
of the activity of carnitine palmitoyltransferase II, an enzyme that oxi-
dizes long-chain FAs in the mitochondria and whose alteration has been 
associated with tumors [65]. The area under receiver operative char-
acteristic (AUC) curve, a performance measurement tool for the 
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classification, however, demonstrated that the index was not affected 
(Fig. S14), and other compounds or parameters must be taken into ac-
count. To evaluate the individual contribution of the investigated ACs, 
univariate statistical analysis on the data matrix was performed by 
MetaboAnalyst. Fig. 3a displays the results of the volcano plot analysis, a 
scatter plot that plots significance (p-values) versus the fold-change of 
each of the compounds in the ACs data matrix. Among the investigated 
ACs, the two isomers of 3-hydroxyhexanoylcarnitine stood out among 
the others. These two metabolites were among the ones highlighted by 
the multivariate model that had consistently higher abundances in the 
cancer tissue samples, as shown in the exemplary box and whiskers plot 
in Fig. 3b for 3-hydroxyhexanoylcarnitine (AUC were around 0.65 as 
shown in Figs. S15–16). The correlation heatmap is a graphical tool that 
displays the correlation between multiple variables (on a scale from − 1, 
negative, to 1, each variable with itself) and is therefore useful to 
visualize the existence of clusters of metabolites whose variability is 
correlated [66]. 

The Pearson correlation heatmap in Fig. 3c shows distinct clusters of 

ACs with significant correlation. The cluster with the highest Pearson 
correlation values is visible right at the center of the heatmap and is 
constituted by hydroxylated and non-hydroxylated long-chain ACs (C18 
and C20) with up to two unsaturation. This cluster had also a good 
correlation with two other clusters of longer- (C22–C24) and shorter- 
chain (C14–C17) ACs. The latter cluster had also positive Pearson cor-
relation values with a large cluster of compounds that is visible at the 
bottom right corner of the diagram and is constituted by medium- and 
long-chain (C6–C16) ACs, as well as two highly unsaturated compounds 
(AC 20:3 and 20:4) and propionylcarnitine. In contrast, at the top left 
corner of the heatmap, several ACs with few highly positive Pearson 
correlation values are shown, including acetylcarnitine and the dicar-
boxyl ACs. In this area of the diagram, there are also pairs of unsur-
prisingly highly correlated isomers (AC 5:0 and AC 3-OH 5:0), as well a 
small but interesting cluster of five short-chain hydroxylated ACs, i.e., 
the two isomers of 3- hydroxyhexanoylcarnitine and the three isomers of 
3-hydroxybutyrylcarnitine. The existence of such a cluster supports the 
previously stated hypothesis of an increase in the abundance of short- 

Fig. 2. (a) Mean scores of the outer loop samples along the only canonical variate of the model, together with their 95 % confidence intervals (black whiskers). Blue 
bars: Non-Malignant; Red bars: Cancer; (b) Weights of the measured variables for the definition of the only canonical variate of the model (pink bars) together with 
their 95 % confidence intervals (black whiskers). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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chain hydroxylated ACs and a contemporary decrease in their non- 
hydroxylated counterparts based on the CV1 values resulting from the 
PLS-DA multivariate model. Interestingly, a previous study by Puhka 
[27] reported significantly lower abundances of isobutyrylcarnitine (AC 

4:0) in the urines of patients before surgical removal of prostate cancer 
compared to their urine after the operation and healthy controls. 
Moreover, Ren [26] measured a significant increase in AC OH-4:0 in 
prostate cancer tissue compared to the adjacent non-malignant tissue. 

Fig. 3. Volcano plot (significance vs fold-change) analysis of the ACs data matrix from tumor and adjacent non-malignant tissue samples (a); box and whiskers plot of 
3-hydroxyhexanoylcarnitine in the two sets of samples (b); correlation heatmap of the annotated ACs based on their trends in tumor and adjacent non-malignant 
tissue samples. 
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By considering the list of ACs with Pearson correlation values higher 
than 0.5 with the two isomers of 3-hydroxyhexanoylcarnitine selected 
by the volcano plot, additional confirmation of the hypothesis is ob-
tained. Other than the three isomers of 3-hydroxybutyrylcarnitine 
(0.61–0.84), there were only three other compounds, i.e., 3-hydroxyoc-
tanoylcarnitine (0.69–0.74), 3-hydroxyheptanoylcarnitine (0.62–0.65), 
and malonylcarnitine (0.57–0.60). By comparison, the Pearson corre-
lation values of hydroxylated ACs with 10–16 carbon atoms were around 
0.3–0.4 and fell around zero for hydroxylated longer-chain ACs. The 
insurgence of PCa appears therefore to be possibly linked to oxidation 
phenomena on short- and medium-chain ACs which do not occur on 
longer-chain compounds, in agreement with the previous hypothesis of 
anti-angiogenetic and angiopreventive effects of these compounds. 

4. Conclusions 

Metabolomics is a possible missing link between phenotype and 
genotype, and it reflects changes arising from the insurgence of pa-
thologies, such as tumors, which are known to extensively alter the cell 
metabolism. In the present study, an innovative analytical platform was 
developed for a straightforward albeit comprehensive characterization 
of ACs based on untargeted HRMS, KMD filtering, and confirmation by 
prediction of their RT. As a result, a large number of ACs was identified 
from non-malignant BPH and malignant PCa tissue samples from the 
same patient in a cohort of patients undergoing RARP. This type of 
analysis, in which each patient is represented in the sample and control 
groups, allowed reducing the effect of comorbidities and other intra- and 
inter-group differences. Later, a PLS-DA model validated by rDCV was 
built on the ACs dataset, with classification rates higher than 93 % for 
both groups, and univariate statistical analysis helped elucidating the 
individual role of the annotated ACs. Hydroxylation of short- and 
medium-chain ACs appeared to be a significant variable in describing 
tissue differences. In particular, the fact that in PCa tissue there was an 
increase in short-chain hydroxylated ACs and a contemporary decrease 
in their non-hydroxylated counterparts, suggests the hypothesis that the 
neoplastic growth is linked to oxidation phenomena on selected ACs. 
Several previous studies based on targeted MS focused solely on selected 
high abundance ACs, overlooking the role of minor compounds, i.e., 
most of the hydroxylated ones. It is possible to speculate that these 
differences in the metabolic profiles of ACs could help in the early 
identification of PCa if significantly correlated to the analysis in bio-
logical fluids or by intervening on the hydroxylation mechanism of ACs 
to develop a strategy for preventive or therapeutic purposes. Starting 
from the specific results obtained from the tissue analysis, further 
studies are needed to compare and extended the analysis and models on 
biological fluids, to verify which biological fluid can best represent 
prostatic activity and how the radical removal of the prostate gland may 
cause significant changes in the following months. 
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