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Abstract
Background: Low testosterone (T) level is considered a marker of poor cardiovascu-
lar health. Ten years ago, the Testosterone in Older Men with Mobility Limitations 
(TOM) trial was discontinued due to a higher number of adverse events in men re-
ceiving T compared with placebo. Since then, several studies have investigated the 
risks of T replacement therapy (TRT) in late-onset hypogonadism (LOH).
Objective: To review the mechanism by which TRT could damage the cardiovascular 
system.
Materials and methods: Comprehensive literature search of recent clinical and ex-
perimental studies.
Results: The mechanisms of T-mediated coronary vasodilation were reviewed with 
emphasis on calcium-activated and ATP-sensitive potassium ion channels. We showed 
how T regulates endothelial nitric oxide synthase (eNOS) and phosphoinositide 3-ki-
nase/protein kinase B/eNOS signaling pathways in vessel walls and its direct effects 
on cardiomyocytes via β1-adrenergic and ryanodine receptors and provided data on 
myocardial infarction and heart failure. Vascular smooth muscle senescence could 
be explained by the modulation of growth factors, matrix metalloproteinase-2, and 
angiotensin II by T. Furthermore, leukocyte trafficking, facilitated by changes in TNF-
α, could explain some of the effects of T on atheromatous plaques. Conflicting data 
on prothrombotic risk linked to platelet aggregation inhibition via NO-triggered ara-
chidonate synthesis or increased aggregability due to enhanced thromboxane A in 
human platelets provide evidence regarding the hypotheses on plaque maturation 
and rupture risk. The effects of T on cardiac electrophysiology and oxygen delivery 
were also reviewed.
Discussion: The effects of TRT on the cardiovascular system are complex. Although 
molecular studies suggest a potential benefit, several clinical observations reveal 
neutral or occasionally detrimental effects, mostly due to confounding factors.
Conclusions: Attempts to demonstrate that TRT damages the cardiovascular system 
via systematic analysis of the putative mechanisms led to the contradiction of the 
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1  | INTRODUC TION

It is well-known that both total and bioavailable testosterone (T) levels 
slightly and progressively decrease with aging in men, independently 
from other confounding factors such as obesity, illness, medications, 
cigarette smoking, or alcohol intake.1,2 The rate of decline has been 
estimated to be 0.8%-2% per year after 40  years of age.3 Indeed, 
according to the main observational studies, 12%-38.7% of men 
aged  ≥  40  years show T deficiency,1,4-6 with the incidence progres-
sively increasing from 20% in men over 60 years to 50% in those over 
80 years.1 Furthermore, a proportion of these subjects develop symp-
toms related to low T levels, such as poor morning erection, low libido, 
erectile dysfunction, inability to perform vigorous activities, depres-
sion, and fatigue.7 In this population, the presence of at least three 
sexual symptoms associated with low T levels leads to the diagnosis 
of late-onset hypogonadism (LOH),7 with a prevalence of 2.1%-6%.4,6,7

Older men with LOH can be differentiated based on hormone 
measurements, clinical features, and predisposing risk factors into 
the following functional categories: primary hypogonadism, which is 
strongly associated with age, and secondary hypogonadism, which is 
related to obesity and is potentially reversible.8 A third category is rep-
resented by compensated or subclinical hypogonadism, which should 
be considered as a specific clinical entity.8,9 These findings imply that 
age-related decline in T, mainly caused by testicular failure,10,11 is not 
the only factor underlying the pathogenesis of LOH, which also in-
volves hypothalamic-pituitary function impairment.12 Subsequently, 
LOH can be defined as mixed or combined hypogonadism.13,14 In this 
regard, comorbidities and lifestyle factors play a major role both inde-
pendently and in combination with aging.2,15 In particular, metabolic 
syndrome and type 2 diabetes dramatically contribute to hypothalam-
ic-pituitary-testicular axis suppression and can in turn be promoted by 
low T levels themselves in a bidirectional relationship.

Moreover, metabolic syndrome and type 2 diabetes are well-
known risk factors of cardiovascular (CV) disease.17,18 They may 
increase the risk of premature death in these patients. However, it 
is now understood that LOH beyond the worst metabolic profile is 
associated with CV morbidity and mortality per se.19-21

The unfavorable metabolic profile of patients with LOH could be 
restored by improvements in lifestyle22 as well as by T replacement 
therapy (TRT), which both contributes to a decrease in abdominal fat, 
total cholesterol and triglyceride levels, as well as fasting glycemia 
and insulin resistance.23,24 Therefore, the metabolic-related CV risk 
of these subjects might be reduced.19,25 Moreover, some studies have 
demonstrated a protective effect of TRT against CV events and mor-
tality in older men with T deficiency at high CV risk.26-28 Nonetheless, 

the safety of TRT in LOH is still controversial: Some studies on CV 
outcomes have shown an increase in CV adverse events.29-31 The 
Testosterone in Older Men with Mobility Limitations (TOM) trial evalu-
ated the safety and efficacy of TRT in men aged ≥ 65 years with T defi-
ciency and mobility limitation.29 However, this study was prematurely 
discontinued due to a higher rate of CV events in the T group than in 
the placebo group. The results of this trial sparked the debate of the CV 
safety of TRT as it had several flaws. First, since the primary outcome 
of the trial was the change in maximal voluntary muscle strength from 
baseline until after high-dose TRT, the study was not sufficiently pow-
ered to evaluate the CV safety of TRT. Second, the study population 
comprised elderly men with a mean age of 74 and with significantly 
limited mobility; in addition, the majority of subjects suffered from sev-
eral chronic illnesses, including preexisting heart disease. Third, eth-
nicities as well as the baseline characteristics were different between 
the two groups, with a higher rate of hypertension, dyslipidemia, and 
statin use in the T group than in the placebo group. Finally, some of 
the reported adverse CV events should have been considered as minor 
phenomena, which could have been dependent on the baseline char-
acteristics of the population. The results of two subsequent observa-
tional studies30,31 resulted in the Food and Drug Administration (FDA) 
restricting the indications for TRT, warning against the possible risk of 
myocardial infarction and strokes.32 In line with this view, the current 
Endocrine Society guidelines suggest individualized TRT only in men 
aged 65  years or older with symptomatic T deficiency after provid-
ing a detailed explanation regarding the potential risks and benefits 
of TRT.14 More recently, the European Academy of Andrology (EAA) 
guidelines for men with functional hypogonadism have underlined the 
current lack of conclusive long-term data on the CV risk of TRT,33 fol-
lowing European Medicines Agency position,34 and suggest TRT for 
hypogonadal symptomatic men with sexual or erectile dysfunction.33

Assuming that T is harmful to the CV system, this review aimed 
to examine the putative detrimental mechanisms that could be in-
volved in the increased CV risk of patients with LOH undergoing 
TRT. To this end, all putative mechanisms by which TRT may cause 
adverse CV events (Figure 1) were analyzed by first presenting the 
clinical evidence and by then examining the molecular mechanism 
pathways targeted by androgens.

2  | METHODS

A Medline search for articles published in English from incep-
tion until April 22, 2020, was performed using the following key-
words: “late-onset hypogonadism,” “hypogonadism,” “testosterone,” 

initial hypothesis. Current evidence indicates that TRT is safe once other comorbidi-
ties are addressed.
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“cardiovascular,” “angina,” “vasoconstriction,” “vasodilation,” “arte-
rial stiffness,” “atherosclerosis,” “hemostasis,” “platelet aggregabil-
ity,” “thrombosis,” “ventricular,” “repolarization,” “heart failure,” and 
“erythropoiesis.” Keywords were properly combined with Boolean 
operators to optimize the search.

2.1 | Coronary artery vasomotion

The first evidence of the beneficial effects of T for the treatment of 
angina pectoris dates back to the 1940s.35 More recent research has 
shown that T administration has a beneficial effect on exercise-in-
duced myocardial ischemia in men with coronary artery disease.36-41 
The anti-ischemic effect is achieved both in acute36,37 and chronic ad-
ministration.38-41 The response to T is greater in patients with lower 
serum T levels than in those with higher serum T levels,37-39 implying 
that coronary arteries are more sensitive to T in men with a more se-
vere degree of T deficiency. However, the beneficial effect of T on 
exercise-induced myocardial ischemia has also been demonstrated in 
men with normal plasma T concentrations.37 The beneficial effect of 
T on myocardial ischemia persists for at least 12 months and is main-
tained without tachyphylaxis as long as the treatment is continued.40

Evidence suggests that the increased angina threshold after T 
administration in men with coronary artery disease is caused by 
vasodilation of coronary arteries. The vasodilatory effects of T on 
coronary arteries have been investigated in both preclinical42-44 and 
clinical studies.45 Intracoronary administration of the physiological 

concentrations of T in eugonadal men with coronary artery disease 
induces a prompt (within 2-3  minutes) artery dilation up to 4.5% 
and increases coronary blood flow up to 17.4% following acetylcho-
line-induced contraction.45

In summary, clinical studies have shown the favorable effects of 
short- or long-term T treatment on exercise-induced cardiac isch-
emia and coronary vasomotion. However, the exact mechanism of 
action by which T exerts its effects on coronary vasculature remains 
unknown.

A non-genomic action is suggested by the rapid-onset effect on 
vasodilation.36,37,45 In vivo animal models as well as in vitro models 
have shown that T induces coronary vasodilation by an endotheli-
um-independent mechanism and modulates the activity of potas-
sium and calcium channels on the surface of vascular smooth muscle 
cells.46,47 In particular, T stimulates the opening of large-conductance 
calcium-activated potassium ion channels,48-50 voltage-sensitive po-
tassium ion channels,50 and ATP-sensitive potassium ion channels51 
and, more importantly, inactivates L-type calcium ion channels.52-54 
In addition, it may cause vasodilation via the inhibition of intracellular 
calcium influx via store-operated calcium channels.55 The mechanism 
of the endothelium-dependent action of T on vascular cells includes 
long-term genomic effects mediated by the androgen receptor (AR); 
these include an increase in hydrogen sulfide production, which in 
turn induces vasodilation via TRPV4 and large-conductance calci-
um-activated potassium ion channels.56 Furthermore, an increase in 
the expression of endothelial nitric oxide synthase (eNOS) results in 
an increase in nitric oxide (NO) production.57 Moreover, T has been 

F I G U R E  1   Summary of testosterone cardiovascular (CV) effects. Created with images 
adapted from SMART—Servier Medical Art (http://smart.servi​er.com), licensed under a Creative Common Attribution 3.0 License (https://
creat​iveco​mmons.org/licen​ses/by/3.0)
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demonstrated to increase eNOS activity via rapid AR-dependent 
activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B 
(Akt)/eNOS signaling pathway (Table 1).58

2.2 | Peripheral arterial stiffness

Existing evidence has recognized increased arterial stiffness, 
defined as an increased resistance to deformation or decreased 
elastic compliance, as a predictor of CV events and mortality.59 
Stiffening of the arterial tree increases cardiac afterload and 
lowers diastolic pressure, thereby altering the transmural dis-
tribution of myocardial blood flow. This results in a decrease in 
subendocardial perfusion during ventricular contraction, eliciting 

subendocardial ischemia, regardless of the presence of coronary 
artery stenosis.60

Several studies have demonstrated an independent inverse as-
sociation between T levels and arterial stiffness.61-66 However, this 
has been confirmed in specific populations, such as older hypogo-
nadal men 63,64 and adults without CV disease.65,66 The effect of 
T deficiency on arterial stiffness appears to be more prominent in 
adult men (<60  years) and in subjects with higher blood pressure 
(mean pressure ≥ 102 mmHg).65 T exerts a long-term influence on 
the arteries, as indicated by the findings of a longitudinal study that 
demonstrated that low serum T levels are an independent predictor 
of the arterial stiffness index.62 Moreover, there is evidence that 
acute or chronic T treatment has a favorable effect on arterial stiff-
ness in older men with T deficiency and coronary disease.63,67

TA B L E  1   Summary of the effects of testosterone on vessel and endothelial function: small, medium, large vessels

Testosterone target Molecular effect Physiological effect

Coronary arteries vasomotion

Large-conductance calcium-activated K 
channels48-50

Activation Vasodilation

Voltage-sensitive K channels50 Activation Vasodilation

ATP-sensitive K channels51 Activation Vasodilation

L-type Ca channels52-54 Inactivation Vasodilation

Store-operated Ca channels55 Inactivation Vasodilation

Hydrogen sulfide6 Increased expression and activation of TRPV4 and 
large-conductance calcium-activated K channels

Vasodilation

Endothelial nitric oxide synthase (eNOS)57,58 Increased expression and activity and increased NO 
production

Vasodilation

Peripheral arterial stiffness

Growth arrest-specific gene 6 (GAS6)70 Activation Reduced apoptosis and 
calcification of vascular smooth 
muscle cells (VSMCs)

Growth arrest-specific gene 6 (GAS6)71 Activation with reduced expression and activity of 
matrix metalloproteinase-2 and collagen synthesis 
induced by angiotensin II

Reduced senescence of VSMCs

Large vessels atherosclerosis

Tumor necrosis factor (TNF)-α86,87 Inhibition of TNF-α-induced vascular cell adhesion 
protein 1 (VCAM-1) expression

Reduced leukocyte adhesion to 
endothelium

TNF-α, interleukin (IL)-1β, IL-6, IL-1089,90 Reduced production of proinflammatory cytokines 
by antigen-presenting cells (APC), increased 
production of anti-inflammatory cytokines

Decreased inflammation

Lipopolysaccharide (LPS)91 Inhibition of LPS-induced VCAM-1 and intercellular 
adhesion molecule-1 (ICAM-1) expression

Reduced endothelial inflammatory 
response

Reactive oxygen species (ROS) – Vascular smooth 
muscle cells (VSMCs)92,93

Induction of ROS production from VSMCs Promotion of ROS induced VSMCs 
migration and apoptosis

Prostate overexpressed protein 1 (PTOV1)94 Increased expression Induction of VSMCs proliferation

Note: Coronary arteries vasomotion: Testosterone exerts a vasodilating action through a rapid, non-genomic, and endothelial-independent action on 
K and Ca channels. Moreover, it has also an endothelial-dependent vasodilating effect mediated by NO. Peripheral arterial stiffness: Testosterone 
reduces arterial stiffness through an androgen receptor-dependent modulation of apoptosis and senescence of vascular smooth muscle cells. 
Testosterone vasodilating action and anti-inflammatory effect may also have a role. Large vessels atherosclerosis: Testosterone exerts several 
anti-atherogenic actions, including an anti-inflammatory effect which may hinder the initial development of atheroma. The effect on VSMSs are 
complex and may be reliant on the stage of plaque development. VSMCs migration and proliferation could be considered protective against plaque 
destabilization, while VSMCs apoptosis could be responsible of plaque vulnerability.
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The mechanisms by which T affects arterial stiffness are poorly 
understood. Several mechanisms have been proposed, including the 
vasodilating action of T47,65 as well as the modulating action of T on 
the apoptosis and proliferation of vascular smooth muscle cells47,65 
and its anti-inflammatory effects.47,65 Growth arrest-specific 6 
(GAS6) gene is an important pro-survival agent that functions by de-
creasing the apoptosis of vascular smooth muscle cells via the PI3K/
Akt pathway68 as well as by reducing their inorganic phosphate (Pi)-
induced calcification.69 T regulates GAS6 transactivation via an AR-
dependent mechanism.70 Moreover, T-mediated GAS6 activation 
can regulate vascular smooth muscle cell senescence. T can restore 
angiotensin II (Ang II)-induced downregulation of GAS6 in vascular 
smooth muscle cells, resulting in the reduced expression and activity 
of matrix metalloproteinase-2 (MMP-2) and collagen synthesis in-
duced by Ang II (Table 1).71

2.3 | Large vessel atherosclerosis

Several studies have demonstrated that low T levels are in-
dependently associated with carotid intimal-media thickness 
(CIMT),72-75 a surrogate marker of atherosclerosis that predicts CV 
events.76,77 Lower levels of T are also associated with accelerated 
progression of CIMT.73 The effects of TRT have been evaluated in 
a randomized placebo-controlled study. This study showed that T 
treatment (T undecanoate, 1000 mg every 12 weeks) resulted in 
a significant reduction in CIMT in men with metabolic syndrome 
and LOH, which was found to be related to the increase in plasma 
T levels from baseline.78 More recently, the long-term effects of 
T administration (T gel 1%; starting dose, 7.5 g daily) on CIMT or 
the coronary artery calcium score have been studied in older men 
with low or low-normal T levels. The results of this randomized 
placebo-controlled trial showed no significant difference in the 
rate of change of either CIMT or the coronary artery calcium 
score. A possible confounding factor that might explain these 
negative results may be the use of statins. Indeed, in explora-
tory analyses that have only included statin non-users, the annual 
rate of change of coronary artery calcium score was lower in the 
T group than in the placebo group; on the other hand, in statin 
users, no differences were observed between the two groups.79 
In another trial, the effect of T on coronary artery plaque volume 
was studied in symptomatic hypogonadal men aged  >  65  years. 
Compared with placebo, T treatment (T gel 1%; starting dose, 5 g 
daily) was associated with a significant increase in non-calcified 
plaque volume and total plaque volume without any significant 
change in coronary calcium score. Moreover, an exploratory anal-
ysis showed that T therapy significantly increased fibrous plaque 
volume compared with placebo.80 Therefore, T could promote a 
more stable plaque with a lower risk of rupture.81 Clearly, meta-
bolic impairment is a major modulator of CV risk, particularly of 
atherosclerotic risk, in males with hypogonadism. A detailed re-
view of the changes in metabolic status under T replacement has 
been recently published.16

The exact mechanism by which T mediates its effects on ath-
erogenesis remains unclear; however, several pathways have been 
explored. In mouse models, T replacement was shown to inhibit 
fatty streak formation.82 The attachment of leukocytes to endothe-
lial surfaces is a key step in the initial development of atheroma, and 
this process is facilitated by the enhanced expression of vascular 
cell adhesion protein 1 (VCAM1).83-85 Tumor necrosis factor (TNF)-
induced expression of VCAM1 can be suppressed by T in human aor-
tic endothelial cells86 and human umbilical vein endothelial cells.87 
Furthermore, this study has reported that the aromatization of T to 
estradiol is important in this protective T effect.87 However, another 
study has reported divergent results.88

Another potential mechanism is the anti-inflammatory effect 
of T. Indeed, T suppresses serum proinflammatory cytokines, such 
as TNF-α and interleukin (IL)-1β, and promotes anti-inflammatory 
actions mediated by IL-10.89 Moreover, T can inhibit the release of 
TNF-α, IL-1β, and IL-6 from the cultured monocytes of T-deficient 
men with type 2 diabetes,90 furthermore T reduces lipopolysaccha-
ride (LPS)- and TNFα-induced inflammatory response in endothelial 
cells.91

T exerts multiple AR-dependent and AR-independent actions 
on vascular smooth muscle cells, including the induction of reactive 
oxygen species (ROS),92,93 extrinsic apoptosis,93 migration,92 and 
proliferation.94 Therefore, the consequences of the actions of T on 
vascular smooth muscle cells in patients with atherosclerosis are dif-
ficult to elucidate and may rely on the stage of plaque development 
(Table 1).47

2.4 | Primary hemostasis

It has been reported that T might have prothrombotic effects in an-
drogenic steroids users95 and could lead to an increased risk of myo-
cardial infarction and stroke.96 Accordingly, current EAA guidelines 
suggest that TRT should not be initiated in patients with a recent major 
acute CV event.33 Indeed, T enhances thromboxane A2 (TXA2) recep-
tor density in human platelets, thereby increasing ex vivo platelet ag-
gregability.97 These data have been confirmed in a study conducted 
in castrated older men showing a lower maximum platelet aggrega-
tion response.98 However, contrasting results have been shown in 
subsequent animal studies.99-102 In castrated rats, the restoration 
of the physiological doses of androgens inhibited oxidative stress-
induced platelet aggregation and reduced TXA2 release from plate-
lets.100 Moreover, T could inhibit platelet aggregation via increased 
NO synthesis, which is associated with endothelial cell growth.101 
Similar results were also obtained in a study that included men aged 
60-65 years. This study showed that low levels of T and dihydrotes-
tosterone (DHT) were significantly related to platelet activation and 
reactivity.103 Moreover, an in vitro model has confirmed that both T 
and DHT significantly inhibit platelet aggregation triggered by ara-
chidonate or collagen.103 However, a recent study failed to show any 
difference in the procoagulant state of treated or untreated men with 
Klinefelter syndrome (KS) but demonstrated that thrombin generation 
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in men with KS was inversely associated with androgen action and that 
it was lower in treated subjects than in untreated subjects.104 Finally, 
the largest available meta-analysis revealed no risk of venous thrombo-
embolism (VTE) associated with TRT.105 Because the risk of VTE could 
be higher in the presence of thrombophilia,33 EAA guidelines suggest 
obtaining a detailed personal and family history of VTE and related risk 
factors before starting TRT.33

Overall, the currently available data suggest that the effects of 
T on primary hemostasis are complex and not yet fully understood; 
however, if any risk exists, it appears to be very low under physiolog-
ical replacement (Table 2).

2.5 | Cardiac contractility and remodeling

Clinical data suggest that T has an influence on cardiac contractility. 
The effect of acute T administration has been evaluated in a rand-
omized placebo-controlled trial in men with moderate-to-severe left 
ventricular dysfunction. A single dose of buccal T (60 mg) increased 
cardiac output and reduced systemic vascular resistance, with the 
maximal effect observed at 180 minutes. The main contributor to the 

improvement in left ventricular function could be the decrease in pe-
ripheral vascular resistance as suggested by the absence of an acute 
improvement in pulmonary wedge pressure.106 Furthermore, T therapy 
(combined T esters, 100 mg every 2 weeks) has been shown to improve 
exercise capacity and symptoms in men with moderate heart failure 
(ventricular ejection fraction, 35%).107 Subsequently, three randomized 
placebo-controlled trials confirmed the beneficial effects of T admin-
istration on functional exercise capacity and symptoms.108-110 The 
increase in serum T level was directly related to the benefits on func-
tional exercise capacity,108 which may instead be related to improved 
overall skeletal muscle strength.108,109 Moreover, a significant increase 
in left ventricular length (T patch, 5 mg daily) and a significant improve-
ment in New York Heart Association class score were observed with 
T treatment.108 It is noteworthy that only low doses of T have been 
used in the abovementioned randomized controlled trials because high 
doses can cause myocardial stiffening and hypertrophy.111

The effects of T on cardiac contractility and relaxation have also 
been demonstrated in preclinical studies. In isolated rat ventricular 
cardiomyocytes, exposure to T increased the rate of cardiomyocyte 
relaxation.112 Moreover, in cardiomyocytes isolated from castrated 
rats, the maximum cardiomyocyte shortening was significantly 

Testosterone target Molecular effect Physiological effect

Primary hemostasis

Thromboxane A2 (TXA2) 
receptor97

Increased density on 
platelets

Increased platelet 
aggregability

TXA2100 Reduced release from 
platelets

Reduced platelet aggregability

Endothelial nitric oxide synthase 
(eNOS)101

Increased expression 
and activity and 
increased NO 
production

Reduced platelet aggregability

Oxygen delivery

Erythropoietin (EPO)150 Increased production Increased erythropoiesis

Hepcidin152 Reduced expression Increased iron incorporation 
into red blood cells

Salt retention and muscle strength

Type II and type I muscle fiber172 Shift from type II to 
type I muscle fiber

Increased muscle strength

Angiotensinogen173,174 Increased expression Increased salt and water 
retention

Na/H  exchanger74,175 Increased expression 
and activity

Increased salt and water 
retention

Aquaporin 1176 Increased expression 
and activity

Increased salt and water 
retention

Epithelial sodium channel 
(ENaC)177

Increased expression 
and activity

Increased salt and water 
retention

Note: Primary hemostasis: Testosterone effects on primary hemostasis are complex. TXA2 and its 
receptor, which stimulate platelets activation and increase platelet aggregation, seem to mediate 
testosterone action in primary hemostasis. Oxygen delivery: Testosterone promotes erythropoiesis 
through a stimulation of EPO production, which is the major erythropoiesis-stimulating 
hormone, and increasing iron incorporation into red blood cells. Salt retention and muscle strength: 
Testosterone reduces fatigue related to chronic heart failure increasing muscle strength. However, 
testosterone could exacerbate chronic heart failure increasing salt and water retention.

TA B L E  2   Summary of testosterone 
molecular mechanisms and effects on 
primary hemostasis, oxygen delivery, salt 
retention, and muscle strength
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reduced and relaxation was delayed compared with controls or 
T-treated orchiectomized rats.113 Physiological levels of T increase 
positive inotropic response and myocardial relaxation to α1-adren-
ergic and β1-adrenergic receptors stimulation via an AR-dependent 
action.114 Other mechanisms by which T can modulate cardiac perfor-
mance are by regulating the functional expression of the L-type cal-
cium channel and Na/Ca exchanger,115 increasing calcium release via 
the ryanodine receptor, and enhancing calcium clearance by increas-
ing sarcoplasmic/endoplasmic reticulum calcium ATPase levels.114,116

In animal studies, T has been shown to induce the activation of 
the renin-angiotensin-aldosterone system (RAAS), resulting in in-
creased maladaptive remodeling.117 In contrast, it has been shown 
that T treatment can suppress ventricular remodeling and improve 
cardiac function in rats, diminishing the imbalance between IL-10 
and TNF-α.118 In addition, it has been demonstrated that T, via the 

AR system, exerts a protective action against angiotensin II-induced 
cardiac remodeling.119,120

There is evidence that T has a beneficial effect on myocyte sur-
vival. Indeed, the immediate cardioprotection of ischemic precon-
ditioning is lacking in the absence of T.121 Moreover, T mediates 
delayed cardioprotection by inducing heat shock protein 70 (HSP-
70),122 while the induction of ATP-sensitive potassium channels in 
the mitochondrial inner membrane by T could represent another 
mechanism of myocyte protection (Table 3).123

2.6 | Cardiac electrophysiology

Growing evidence suggests that T has a direct effect on the car-
diac conduction system, particularly on ventricular repolarization.124 

Testosterone target Molecular effect Physiological effect

Cardiac contractility and remodeling

α1- and β1-adrenoceptors114 Increased activity Increased ventricular 
contractility and relengthening

L-type calcium channel115 Increased expression Increased ventricular 
contractility

Na/Ca exchanger115 Increased expression Increased ventricular 
relengthening

Sarcoplasmic/endoplasmic 
reticulum calcium 
ATPase114,116

Increased activity Increased ventricular 
relengthening

Angiotensin II and angiotensin 
type Ia receptor117

Increased expression Increased maladaptive 
remodeling

Interleukin (IL)-10 and Tumor 
necrosis factor (TNF)-α118

Increased IL-10 and 
reduced TNF-α

Reduced inflammation

Mitochondria transcription 
factor A (Tfam)119

Increased expression Reduced apoptosis

Serine-threonine kinase 
(Akt)119

Decreased 
phosphorylation

Reduced apoptosis

Angiotensin II receptor120 Reduced transcription Reduced cardiac fibrosis

Bcl 2120 Reduced expression Reduced apoptosis

Heat shock protein 70122 Increased expression Delayed cardioprotection of 
ischemic preconditioning

Mitochondrial ATP-sensitive 
potassium channels123

Activation Increased myocardial tolerance 
to ischemia

Cardiac electrophysiology

Delayed-rectifier potassium 
channels (IKs)137

Activation Facilitated ventricular 
repolarization

L-type calcium channels 
(ICaL)137

Inhibition Facilitated ventricular 
repolarization

Delayed-rectifier potassium 
channels (IKr)138

Activation Facilitated ventricular 
repolarization

Ultra-rapid potassium channels 
(IKur)139

Activation Facilitated ventricular 
repolarization

Note: Cardiac contractility and remodeling: Testosterone seems to have an overall favorable effect 
on ventricular contractility and remodeling, with a protective effect on cardiomyocytes. Cardiac 
electrophysiology: Testosterone also promotes ventricular repolarization through a direct action on 
several ion channels involved in the generation of the action potential.

TA B L E  3   Summary of testosterone 
molecular mechanisms and effects on 
cardiac tissue
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The role of T is corroborated by the evidence that after puberty, the 
corrected QT (QTc) interval is significantly shorter in boys than in 
girls.125 Subsequent studies have found a negative correlation be-
tween endogenous serum T levels in adults and the QTc interval,126 
which is prolonged in hypogonadal men.127,128 Accordingly, men with 
an early repolarization ECG pattern (rapidly ascending ST-segment) 
showed higher endogenous serum T levels than those without this 
pattern.129

Moreover, the age-related decline in serum T levels could in 
part explain the age-dependent prolongation of the QTc interval in 
men.130 Ventricular arrhythmias, such as torsade de pointes, and sud-
den cardiac death are associated with prolonged QTc intervals.131-133 
Indeed, as shown in a single-center case series of seven patients, 
male hypogonadism was associated with torsade de pointes, possi-
bly representing a reversible cause of this life-threatening tachyar-
rhythmia, which could be treated or prevented by TRT.134 Moreover, 
T treatment has been shown to shorten the QTc interval length in 
community-dwelling men135 as well as in those with chronic heart 
failure (CHF).136

In animal models, T administration facilitated cardiomyocyte 
repolarization and shortened the action potential duration. T can 
increase the gradual activation of delayed-rectifier potassium cur-
rents (IKs),137 inhibit inward depolarizing L-type calcium currents 
(ICaLs),137 increase the rapid activation of delayed-rectifier potas-
sium currents (IKr),138 and increase ultra-rapid potassium currents 
(IKur).139 However, chronic T treatment increased ICaLs via AR 
activation,140 while the opposite was observed for acute T admin-
istration,137 suggesting the existence of a complex network of mod-
ulation (Table 3).

2.7 | Oxygen delivery

The role of T in the regulation of erythropoiesis is well-known,141,142 
and increased hematocrit is the most frequent adverse effect of 
TRT in men with hypogonadism men.14 The stimulatory effect of 
T on erythropoiesis is dose-dependent and is more pronounced in 
older men.143 In a recent randomized placebo-controlled trial that 
included older men with T deficiency, T therapy significantly in-
creased the hemoglobin levels of all anemic patients, including those 
with unexplained anemia, as well as those who were not anemic.144 
Therefore, given that T treatment can improve unexplained ane-
mia in older men, the evaluation of T levels should be considered 
in men who have unexplained anemia as well as symptoms sugges-
tive of T deficiency.144 Furthermore, T therapy could have beneficial 
effects in men with chronic anemia and CHF. Indeed, an increase 
in hematocrit may improve the symptoms of CHF.108 In fact, the 
oxygen-transporting capacity is improved by an increased number 
of erythrocytes within a physiologic range.145 Favorable effects of 
TRT have also been observed in men with chronic kidney disease 
(CKD)146 in whom hypogonadism may be an additional cause of 
anemia with reduced responsiveness of erythropoiesis-stimulating 
agents.147 However, as shown in animal studies, blood viscosity is 

increased by T-induced erythropoiesis,148 leading to an increase in 
blood flow resistance. Moreover, a correlation between hematocrit 
and platelet aggregation has been demonstrated, suggesting that an 
increased number of erythrocytes could increase the risk of throm-
bosis.149 Therefore, EAA guidelines do not recommend TRT in the 
presence of elevated hematocrit.33

T stimulates erythropoiesis, increasing erythropoietin (EPO) 
levels and iron utilization.150 EPO secretion could be stimulated 
by T by inducing hypoxia or hypoxic sensing.151 Furthermore, it 
could regulate the expression of hypoxia-inducible factors (HIFs), 
Von Hippel-Lindau (VHL), prolyl hydroxylase (PHD), or EPO.150-

152 Alternatively, T could affect renal physiology by altering EPO 
secretion from erythropoietin-producing cells.153 Increased iron 
utilization is suggested by the reduction of ferritin and hepcidin 
concentrations induced by T.150 Indeed, T can regulate hepcidin ex-
pression by regulating bone morphogenetic protein (BMP) signaling 
pathways (Table 2).152

2.8 | Chronic heart failure

Among men with CHF, approximately one-third show T defi-
ciency.154 Moreover, in men with CHF, low T levels independently 
correlate with exercise intolerance155 and are associated with 
muscle wasting and cachexia.156,157 Therefore, it has been postu-
lated that T deficiency is involved in the pathophysiology of CHF, 
contributing to some extent to its clinical features, such as fatigue 
and dyspnea.158,159 It has also been shown that low T levels are 
related to poor prognosis, increased hospital admissions, and all-
cause mortality in men with CHF.160,161 This evidence suggests 
that T treatment may ameliorate the clinical status of hypogonadal 
patients with CHF by improving muscle strength and functional 
pulmonary capacity.162 However, some of the adverse CV events 
reported in the TOM trial were related to an exacerbation of CHF.29 
Indeed, T modulates salt and water homeostasis by promoting salt 
and water retention as well as the expansion of the extracellular 
water volume.163 A 2012 meta-analysis of randomized controlled 
trials strengthened the evidence of a beneficial effect of T treat-
ment on exercise capacity and oxygen consumption in patients 
with CHF.164 However, a more recent meta-analysis showed that 
TRT did not improve the exercise capacity, cardiac function, qual-
ity of life, or clinical outcome of patients with CHF.165 Taken to-
gether, current EAA guidelines recommend against the use of TRT 
in patients with severe CHF given the risk of polycythemia and 
VTE in a frail population.33

Impaired skeletal muscle function and muscle atrophy are features 
of CHF that could be related to the state of chronic inflammation and 
insulin resistance characterizing these patients.166,167 Inflammation 
has been demonstrated to be promoted by TNF-α, IL-1β, and IL-6.167 
Although the anti-inflammatory action of T is well-known,89 treatment 
with a T patch for 3 months (5 mg daily) in men with CHF did not show 
a reduction in TNF-α levels.168 The insulin resistance of these patients, 
which is related to worse symptomatic status,169 could be linked to a 
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decrease in the glucose transporter GLUT4.166 There is evidence that 
T treatment improves insulin sensitivity109,170,171 and reduces fasting 
glucose levels170 in men with CHF and metabolic syndrome or type 2 
diabetes. Another mechanism that could have a role in the improved 
exercise capacity and muscle strength promoted by T in these pa-
tients is the shift from type II to type I muscle fiber.172 Salt and water 
retention promoted by T are mediated by the proximal tubule RAA 
system by the increased expression of angiotensinogen173,174 and in-
creased expression and activity of Na/H exchanger174,175 and aqua-
porin 1176 in the proximal tubules and the epithelial sodium channel in 
the collecting ducts (Table 2).177

3  | CONCLUSIONS

Using the reductio ad absurdum logic, we contradicted the initial 
assumption of an overall harmful effect of T on the CV system. 
Although T has been demonstrated to have overall favorable effects 
on vasomotion, arterial stiffness, atherosclerosis, cardiac electro-
physiology, oxygen delivery, cardiac contractility, and remodeling, it 
possesses a prothrombotic effect due to its action on platelet func-
tion and blood viscosity. In summary, based on the current evidence, 
CV disease does not appear to be increased in patients undergoing 
TRT.178,179 Most physicians against TRT will argue that TRT is “neu-
tral” in terms of CV safety. While the latter is possible, the indica-
tion for TRT has never been to address CV dysfunction but rather to 
improve various signs and symptoms in LOH that correlate well with 
low testosterone levels. Nonetheless, in older patients with a known 
CV risk factor, a tailored approach is suggested.14,25 Symptoms, co-
morbidities, baseline and target levels of T, formulation, and therapy 
timing25,180,181 should be considered to improve sexual function, 
mood, depressive symptoms, and the mobility of patients with low 
testosterone levels.13,33,182,183
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