New Structures in the $J/\psi J/\psi$ Mass Spectrum in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV

A. Hayrapetyan *et al.*^{*} (CMS Collaboration)

(Received 12 June 2023; revised 7 December 2023; accepted 31 January 2024; published 15 March 2024)

A search is reported for near-threshold structures in the $J/\psi J/\psi$ invariant mass spectrum produced in proton-proton collisions at $\sqrt{s} = 13$ TeV from data collected by the CMS experiment, corresponding to an integrated luminosity of 135 fb⁻¹. Three structures are found, and a model with quantum interference among these structures provides a good description of the data. A new structure is observed with a local significance above 5 standard deviations at a mass of $6638^{+43}_{-38}(\text{stat})^{+16}_{-11}(\text{syst})$ MeV. Another structure with even higher significance is found at a mass of $6847^{+44}_{-28}(\text{stat})^{+48}_{-20}(\text{syst})$ MeV, which is consistent with the X(6900) resonance reported by the LHCb experiment and confirmed by the ATLAS experiment. Evidence for another new structure, with a local significance of 4.7 standard deviations, is found at a mass of $7134^{+48}_{-25}(\text{stat})^{+41}_{-15}(\text{syst})$ MeV. Results are also reported for a model without interference, which does not fit the data as well and shows mass shifts up to 150 MeV relative to the model with interference.

DOI: 10.1103/PhysRevLett.132.111901

The prospect of exotic hadrons—states other than $q\bar{q}$ or qqq—dates back to Gell-Mann's seminal 1964 paper [1]. However, interest in exotics, both theoretical and experimental, wavered for decades. The discovery of the charmoniumlike X(3872) state by the Belle Collaboration in 2003 [2] propelled exotics from speculative chimeras to the frontier of hadronic physics [3]. While many tetraquark candidates containing heavy quarks (c, b) are now known, questions still abound, including which of these are truly exotic hadrons [3] and, if they are bound states, what is their internal structure (e.g., molecules, bound states of diquarks, etc. [4–6]).

Beginning with the J/ψ discovery in 1974 [7,8], heavy quarkonia brought clarity to the quark model. Similarly, exotic states composed entirely of heavy quarks may offer analogous insights. Exotic states decaying into the $J/\psi J/\psi$ and $\Upsilon \Upsilon$ channels are particularly promising experimentally because of the efficient triggering and reconstruction of muonic channels. The possibility of structure appearing in these channels is enhanced by an empirical pattern first observed with light mesons: the mass spectra of two vector states with the same isospin (e.g., $\phi\phi$ and $\omega\phi$) have nearthreshold enhancements, whereas systems of two vector mesons of different isospin (e.g., $\phi\rho$ and $\omega\rho$) have no structure [9]. Such a behavior has been corroborated by the enhancements observed in $J/\psi\omega$ [10] and $J/\psi\phi$ [11] spectra.

The first searches for all heavy quark states were in the all-bottom sector and were inconclusive [12,13]. In 2020, the LHCb Collaboration reported structure in the $J/\psi J/\psi$ channel, which consisted of a broad enhancement just above the $J/\psi J/\psi$ mass and a narrow peak designated as X(6900) [14]. The nature of the broad structure was uncertain, but the narrow peak was interpreted to be an all-charm tetraquark state [15–22]. Considerations of such states date back to 1976 [23,24] and have recently become the object of renewed interest [25–35]. However, non-tetraquark interpretations of this new structure have also been proposed [36–38].

Here we report on the $J/\psi J/\psi$ invariant mass spectrum from proton-proton (pp) collisions as recorded with the CMS detector, where the J/ψ mesons are reconstructed from $\mu^+\mu^-$ pairs. The data sample corresponds to an integrated luminosity of 135 fb⁻¹ [39–41] at a center-ofmass energy of 13 TeV.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector can be found in Ref. [42].

^{*}Full author list given at the end of the Letter.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP³.

Several Monte Carlo (MC) samples are used to model the detector mass resolution and efficiency of signals. As simulations of tetraquarks states are not available and the analysis is independent of signal kinematic details, we use the production of other particles to simulate the signal, with the masses defined appropriately. We use $J^P = 0^+$ mesons for a variety of masses decaying to $J/\psi J/\psi$ as the signal and simulate their production via gluon-gluon interactions. We model signal particles by $\chi_{b0}(1P)$ production using the PYTHIA event generator (version 8.230) [43]. As an alternate production model, signal is also simulated by generating a sample with "Higgs bosons" decaying to ZZ^(*), where the $Z^{(*)}$ is redefined as a J/ψ , using the JHUGen event generator (version 7.40) [44,45]. To understand the detector mass resolution, the samples are generated with a negligible natural width.

Major sources of background, i.e., selected events that are not from a resonant decay to two J/ψ candidates, are expected to originate from two genuine J/ψ decays arising either from a single parton-parton collision, i.e., nonresonant single-parton scattering (NRSPS) [46–51], or a pair of parton-parton interactions in a single pp collision, i.e., double-parton scattering (DPS) [52-58]. The NRSPS contribution is expected to dominate the DPS contribution near the $J/\psi J/\psi$ threshold, with the DPS contribution dominating at masses above 11 GeV. To simulate these backgrounds we use the PYTHIA generator. The next-to-leading order CASCADE generator [59] and the next-to-next-toleading order HELAC-Onia generator [47,48,60,61] are also used to simulate alternative NRSPS shapes for the estimation of the systematic uncertainty in the background. Direct production, as well as feed-down processes where J/ψ mesons arise as decay products, are included. Feed-down processes from double-charmonium resonances [38] are generated using the PYTHIA generator separately. Generated events are processed through the full CMS detector simulation, which utilizes the GEANT4 toolkit [62].

Events of interest are selected using a two-tiered trigger system [63]. The first level (L1), composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events. The second level, known as the high-level trigger (HLT), consists of a farm of processors running a faster version of the full event reconstruction software, which reduces the event rate to around 1 kHz. The data collected in 2016 correspond to an integrated luminosity of 36.3 fb⁻¹, and were obtained with an L1 trigger that required at least three muon candidates to balance the requirements of high efficiency for the signal and a low trigger rate. The HLT required that the pseudorapidity of each muon candidate satisfies $|\eta| < 2.5$ and that a muon pair candidate is composed of oppositely charged muon candidates with an invariant mass between 2.95 and 3.25 GeV, a distance of closest approach between the two muons less than 0.5 cm, and a fit to a common vertex with a χ^2 probability greater than 0.5%. The data collected in 2017–2018 correspond to an integrated luminosity of 98.6 fb⁻¹ and utilized an *L*1 trigger requiring at least three muons with at least two muons having $p_T > 3$ GeV and one of the two muons having $p_T > 5$ GeV, and at least one oppositely charged pair of muons with invariant mass below 9 GeV. The HLT criteria replicated those of 2016 with the additional requirement that the two muons with invariant mass between 2.95 and 3.25 GeV each have $p_T > 3.5$ GeV.

The off-line selection criteria were finalized before unblinding the signal region (defined as invariant mass below 7.8 GeV) and are based in part on an examination of data collected in 2011 and 2012. It requires at least four muons, each of them having $p_{\rm T} > 2$ GeV, $|\eta| < 2.4$, and satisfying the "soft muon identification" requirements [64]. Pairs of oppositely charged muons are used to form J/ψ candidates, and these are required to have $p_T > 3.5$ GeV. To confirm the HLT requirement, each muon pair is fit to a vertex, requiring a fit probability greater than 0.5%. Combinations of four muons from two J/ψ candidates are fit to a common vertex, which must have a fit probability greater than 0.5%. A mass constrained vertex fit is applied to the oppositely charged muon pairs, in which the muon pair's mass is constrained to the known J/ψ mass $m_{J/\psi}$ [65], and the probability is required to be greater than 0.1%. The two constrained J/ψ candidates are then fit to a common vertex and its fit probability must exceed 0.1%. An event may have multiple J/ψ -pair candidates. If both charge permutations of the same four muons have masses within 3 standard deviations (3σ) of the known J/ψ mass, we select the pairing that minimizes $(\Delta m_1/\sigma_{m_1})^2 +$ $(\Delta m_2/\sigma_{m_2})^2$, where Δm is the difference between the reconstructed dimuon mass and the J/ψ mass, and σ_m is the calculated uncertainty of the reconstructed dimuon mass (affects 0.2% of events). All $J/\psi J/\psi$ candidates are kept if they arise from more than four muons (affects 0.2% of events).

The $J/\psi J/\psi$ invariant mass spectrum of the 8651 selected candidate pairs below 9 GeV is shown in Fig. 1. To better constrain the smooth background continuum, the full analysis range extends up to an invariant mass of 15 GeV (the corresponding mass spectrum is shown in the Supplemental Material [66]).

Using an unbinned extended likelihood method, we fit the data from the threshold $2m_{J/\psi}$ to 15 GeV. Signals are represented by relativistic *S*-wave Breit-Wigner (BW) functions [65,67,68] convolved with resolution functions, which are sums of two Gaussian functions with the same mean value. The detector mass resolution varies from about 10 MeV at a mass of 6500 MeV to 18 MeV at 7300 MeV. The BW functions are not modified by acceptance or efficiency corrections because these vary only slowly, by less than 1.3% over the natural width of the *X*(6900).

The NRSPS and DPS backgrounds are parametrizations of distributions of the corresponding simulated events. The NRSPS component includes an exponential function where

FIG. 1. The $J/\psi J/\psi$ invariant mass spectrum in the range up to 9 GeV, with fits consisting of three signal functions (BW₁, BW₂, and BW₃) and a background model (see text). Left: the fit without interference. Right: the fit that includes interference, where "Interfering BWs" refers to the total contribution of all the interfering amplitudes and their cross terms. For clarity, only the sum of the three background components (NRSPS + DPS + BW₀) is shown on the plots. The lower portion of the plots shows the pulls, i.e., the number of standard deviations (statistical uncertainties only) that the binned data differ from the fit.

one of its parameters is a free parameter in the fit. The effect of feed-down from heavier mass states such as the $\psi(2S)$ is accounted for as a systematic uncertainty. Combinatorial backgrounds arise when one or more muon candidates are not from a J/ψ meson decay and from hadrons that are misidentified as a muon or misreconstructed. The shapes of combinatorial backgrounds are well modeled by the NRSPS + DPS parametrizations, and the residual effects are accounted for in the systematic uncertainties.

Aside from the NRSPS and DPS background components, a component to model a threshold enhancement is included, as was done in Ref. [14]. This excess may be due to a resonance, but other processes could be responsible: coupled-channel interactions [69], triangle singularities [70], Pomeron exchange [36], or simply an inadequate NRSPS model. This region could also include feed-down from higher mass tetraquarks that are only partially reconstructed. Because of these uncertainties, we regard this enhancement as an additional background component and model it with a BW function (BW₀) with free mass and width, which provides a good *ad hoc* description of this feature.

We begin with a background-only fit (NRSPS + DPS + BW₀) and then add signal contributions one at a time to the fit, with the yields of each signal and background component being free parameters of the fit. In this first series of fits, the additional components are added without interference. A signal BW function is kept as long as its local significance exceeds 3σ , with the local significance calculated from the difference in log-likelihood between including and not including the component and only accounting for statistical uncertainties. Three resonance structures, labeled BW₁, BW₂, and BW₃ in order of increasing mass, are found to be statistically significant.

The local significance of these peaks, calculated from the log-likelihood differences between the full fit and the fit with the BW function of interest removed, are 6.5σ , 9.4σ , and 4.1σ , respectively. Figure 1 (left) shows this fit, with numerical results in Table I. The BW function widths are all much larger than the detector mass resolution. Over the full mass range of 6–15 GeV, the proportions of the background components to the total are about 58%, 25%, and 9% for NRSPS, DPS, and BW₀, respectively.

We quantify the goodness of fit by the probability of the fit's χ^2 (over the full mass range with the bin size of Fig. 1) and the number of degrees of freedom. Because the signal region is only a small fraction of the fit range, the impact of deviations from the model in this region is diluted. As an alternative, we also compute a probability using only the bins below 7.8 GeV, which we refer to as the signal-region χ^2 probability.

The full χ^2 fit probability is 98%. However, the dips in the data around 6750 and 7150 MeV are poorly described: the signal-region χ^2 probability is 9%. Agreement may be improved by introducing interference, as was done by LHCb [14].

Our construction of interference models is based on the three structures found in the no-interference fit. We consider interference between pairs of ("two-way") or all three ("three-way") components. The three-way interference is implemented with a term proportional to $|r_1 \exp(i\phi_1)BW_1 + BW_2 + r_3 \exp(i\phi_3)BW_3|^2$, where $r_{1,3}$ and $\phi_{1,3}$ are the relative magnitudes and phases of $BW_{1,3}$ with respect to BW_2 [65]. We report the results from the three-way interference model, which shows a signal-region χ^2 probability of 65%, whereas all two-way models have probabilities below 30%. The three-way interference fit is

components, and single uncertainties are only statistical.								
		BW_1	BW ₂	BW ₃				
No interference	m (MeV)	$6552\pm10\pm12$	$6927 \pm 9 \pm 4$	$7287^{+20}_{-18}\pm 5$				
	Γ (MeV)	$124^{+32}_{-26} \pm 33$	$122^{+24}_{-21}\pm18$	$95^{+59}_{-40} \pm 19$				
	Ν	470^{+120}_{-110}	492_{-73}^{+78}	156^{+64}_{-51}				
Interference	m (MeV)	6638^{+43+16}_{-38-31}	6847^{+44+48}_{-28-20}	7134_{-25-15}^{+48+41}				
	Γ (MeV)	$440^{+230+110}_{-200-240}$	191_{-49-17}^{+66+25}	97^{+40+29}_{-29-26}				

TABLE I. Summary of the fit results for the $J/\psi J/\psi$ invariant mass distribution. The mass *m* and natural width Γ for both the no-interference model and the interference model, and the signal yields *N* for the no-interference model, are given for the three signal structures. The dual uncertainties are the statistical followed by the systematic components, and single uncertainties are only statistical.

shown in Fig. 1 (right), and the fit parameters are listed in Table I.

In this fit, the local significances of all three structures increase with respect to the model without interference. For the structure with the lowest significance (BW₃), a value of 4.7σ is obtained. The global significance of BW₃ is estimated by generating MC pseudoexperiments and determining the probability that a statistical fluctuation yields a "signal" whose local significance equals or exceeds that of BW₃ in the windows 7.05–7.8 GeV for mass and 50–260 MeV for width. The BW₃ phase is unconstrained. The resulting global significance for BW₃ is 3.4 σ .

The interference between different resonances is motivated by the idea that the states could have the same quantum numbers and be coherently produced. One can also consider interference between the resonances and the NRSPS background. We consider this scenario less probable as the background is likely a mixture of J^{PC} states. We have investigated two models with this sort of interference. The first model is identical to model II from Ref. [14] with a signal BW function for the X(6900), an auxiliary BW function around 6700 MeV, the NRSPS and DPS background, and interference between the NRSPS background and the auxiliary BW function. This did not provide a good fit to our data as shown in the Supplemental Material [66]. The second model starts from the three-way interference model and adds interference between the three signal BW functions and the NRSPS background. This model did not significantly improve the fit quality.

While interference between resonances is one possible mechanism, other models may also be able to reproduce the dips. For example, inspired by predictions of dense spectroscopy of tetracharm states [15–21], representing individual peaks by multiple overlapping narrow resonances could provide good fits by enabling the BW functions to fall more deeply into the dips.

Systematic uncertainties for masses and widths are determined by varying aspects of, and inputs to, the fits. For a given source, the largest deviation from a parameter's nominal value is taken as its systematic uncertainty. The sources of systematic uncertainty that have been considered are as follows: different BW function shapes (P and D wave, and alternative values for the "interaction radius" in the Blatt-Weisskopf barrier factor [67,68]); alternative DPS parametrizations, such as those obtained by mixing data events (artificial $J/\psi J/\psi$ mass spectrum formed by two J/ψ s from different events); NRSPS parametrizations from different simulations (CASCADE and HELAC-Onia) or floating otherwise fixed parameters individually; momentum scale (based on the shift in the unconstrained fitted J/ψ meson mass from the world average value [65]); detector mass resolution (slightly different resolution models based on the PYTHIA or JHUGen generators); combinatorial background shape (the result of altering the parametrization of the combinatorial background); efficiency corrections (the difference between not applying and applying efficiency corrections based on the PYTHIA or JHUGen generator); and the effects of including various feed-down components from hypothetical heavier tetraquarks [38]. The effects of feed-down components in the interference model can produce asymmetric uncertainties, so an asymmetric uncertainty is assigned for this source. For other sources, symmetric uncertainties are assigned. The principal systematic effects are summarized in Table II. The total uncertainties are their sum in quadrature and also appear in Table I. Including feed-down in the fit affects signal structures, especially for the BW₁, because of their overlap in the $J/\psi J/\psi$ mass distribution. Compared to the nointerference model, the greater complexity and increased parameter correlations of the interference model result in larger systematic uncertainties.

The impact of systematic uncertainties on the local significances of the structures was checked in the interference fit model by using discrete sets of individual alternative hypotheses and recomputing the significances. The systematic uncertainties introduce no appreciable change.

The BW₂ parameters are within 2σ , when comparing the analogous no-interference or interference models, of the X(6900) values reported by LHCb. For their model I, consisting of a BW function for the X(6900) signal plus two auxiliary threshold BW functions, they reported an X(6900) mass of $6905 \pm 11 \pm 7$ MeV with a natural width

Fit	Dominant sources	$M_{ m BW_1}$	$M_{ m BW_2}$	$M_{\rm BW_3}$	Γ_{BW_1}	Γ_{BW_2}	Γ_{BW_3}
No-interference	Signal shape	3	3	3	10	5	5
	NRSPS shape	3	1	1	18	15	17
	Feed-down	11	1	1	25	8	6
	Total uncertainty	12	4	5	33	18	19
Interference	Signal shape	7	12	7	56	8	7
	DPS shape	1	3	2	18	6	2
	NRSPS shape	9	14	13	85	9	20
	Mass resolution	8	4	1	24	7	13
	Combinatorial background	7	2	<1	5	3	2
	Feed-down	$^{+0}_{-27}$	$^{+44}_{-0}$	$^{+38}_{-0}$	$^{+0}_{-210}$	$^{+19}_{-0}$	$^{+12}_{-0}$
	Total uncertainty	$^{+16}_{-31}$	$^{+48}_{-20}$	$^{+41}_{-15}$	$+110 \\ -240$	$+25 \\ -17$	$^{+29}_{-26}$

TABLE II. Dominant contributions to the systematic uncertainties in masses and widths, in MeV, for the two fits. The "Total uncertainty" is the quadratic sum of all individual components, including the unlisted nondominant contributions.

of $80 \pm 19 \pm 33$ MeV, and $6886 \pm 11 \pm 11$ MeV and $168 \pm 33 \pm 69$ MeV for model II [14]. However, because the two experiments use different fit models, quantitative comparisons between them are not straightforward, and thus we also fit our data with the two LHCb models. Neither LHCb model provides a good description of the CMS data; nevertheless, our *X*(6900) parameters are again compatible. More information about these comparisons, including where some small discrepancies are present, is summarized in the Supplemental Material [66].

Our measured masses appear compatible with recent calculations of the $cc\bar{c}\,\bar{c}$ spectrum [21,71], which would indicate that these three structures may be a family of radial excitations of the same J^{PC} . This is the case for both no-interference and interference masses, albeit for different theoretical models.

In summary, the $J/\psi J/\psi$ invariant mass spectrum has been presented. The data were collected with the CMS detector from pp collisions at $\sqrt{s} = 13$ TeV and correspond to an integrated luminosity of 135 fb⁻¹. Three structures are found in the $J/\psi J/\psi$ invariant mass spectrum. The spectrum is better described by a model with interference among three resonances. Two new structures, tentatively named X(6600) and X(7100), are found with masses of $6638^{+43}_{-38}(\text{stat})^{+16}_{-11}(\text{syst})$ and $7134^{+48}_{-25}(\text{stat})^{+41}_{-15}(\text{syst})$ MeV; and the X(6900) structure observed by LHCb is confirmed with a mass of $6847^{+44}_{-28}(\text{stat})^{+48}_{-20}(\text{syst})$ MeV. The local statistical significances of these peaks are, for increasing mass, 7.9, 9.8, and 4.7 standard deviations. Numeric results are provided in the HEPData record [72].

Note added.—Recently, the ATLAS Collaboration released a Letter [73] confirming the X(6900) structure in the $J/\psi J/\psi$ spectrum and also reported near-threshold excesses, including a possible feature in the $\psi(2S)J/\psi$ channel.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, NSFC, Nanjing Normal University research start-up funding project, Tsinghua University Initiative Scientific Research and Dushi Programs, and Natural Science Foundation of China under Grants No. 11975010, No. 12075123, and No. 12061141002 (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.).

- M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8, 214 (1964).
- [2] S. K. Choi *et al.* (Belle Collaboration), Observation of a narrow charmoniumlike state in exclusive B[±] → K[±]π⁺π⁻J/ψ decays, Phys. Rev. Lett. **91**, 262001 (2003).
- [3] A. Ali, L. Maiani, and A. D. Polosa, *Multiquark Hadrons* (Cambridge University Press, Cambridge, England, 2019).
- [4] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, The *XYZ* states: Experimental and theoretical status and perspectives, Phys. Rep. 873, 1 (2020).
- [5] M. Nielsen, S. J. Brodsky, G. F. de Téramond, H. G. Dosch, F. S. Navarra, and L. Zou, Supersymmetry in the double-heavy hadronic spectrum, Phys. Rev. D 98, 034002 (2018).
- [6] M. Nielsen and S. J. Brodsky, Hadronic superpartners from a superconformal and supersymmetric algebra, Phys. Rev. D 97, 114001 (2018).
- [7] J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen, J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, S. C. C. Ting, S. L. Wu, and Y. Y. Lee, Experimental observation of a heavy particle *J*, Phys. Rev. Lett. **33**, 1404 (1974).
- [8] J. E. Augustin *et al.*, Discovery of a narrow resonance in e^+e^- annihilation, Phys. Rev. Lett. **33**, 1406 (1974).
- [9] K. Yi, Experimental review of structures in the $J/\psi\phi$ mass spectrum, Int. J. Mod. Phys. A **28**, 1330020 (2013).
- [10] P. del Amo Sanchez *et al.* (*BABAR* Collaboration), Evidence for the decay $X(3872) \rightarrow J/\psi\omega$, Phys. Rev. D 82, 011101 (2010).
- [11] LHCb Collaboration, Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi$, Phys. Rev. Lett. 127, 082001 (2021).
- [12] LHCb Collaboration, Search for beautiful tetraquarks in the $\Upsilon(1S)\mu^+\mu^-$ invariant-mass spectrum, J. High Energy Phys. 10 (2018) 086.
- [13] CMS Collaboration, Measurement of the Υ(1S) pair production cross section and search for resonances decaying to Υ(1S)μ⁺μ⁻ in proton-proton collisions at √s = 13 TeV, Phys. Lett. B 808, 135578 (2020).
- [14] LHCb Collaboration, Observation of structure in the J/ψ pair mass spectrum, Sci. Bull. **65**, 1983 (2020).
- [15] J.-Z. Wang, D.-Y. Chen, X. Liu, and T. Matsuki, Producing fully charm structures in the J/ψ -pair invariant mass spectrum, Phys. Rev. D **103**, 071503 (2021).
- [16] H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, Strong decays of fully-charm tetraquarks into di-charmonia, Sci. Bull. 65, 1994 (2020).
- [17] M. A. Bedolla, J. Ferretti, C. D. Roberts, and E. Santopinto, Spectrum of fully-heavy tetraquarks from a diquark + antidiquark perspective, Eur. Phys. J. C 80, 1004 (2020).
- [18] X. Jin, Y. Xue, H. Huang, and J. Ping, Full-heavy tetraquarks in constituent quark models, Eur. Phys. J. C 80, 1083 (2020).
- [19] M.-S. Liu, F.-X. Liu, X.-H. Zhong, and Q. Zhao, Full-heavy tetraquark states and their evidences in the LHCb $di-J/\psi$ spectrum, arXiv:2006.11952.
- [20] F.-X. Liu, M.-S. Liu, X.-H. Zhong, and Q. Zhao, Higher mass spectra of the fully-charmed and fully-bottom tetraquarks, Phys. Rev. D 104, 116029 (2021).

- [21] R. Zhu, Fully-heavy tetraquark spectra and production at hadron colliders, Nucl. Phys. **B966**, 115393 (2021).
- [22] J. F. Giron and R. F. Lebed, Simple spectrum of cccc states in the dynamical diquark model, Phys. Rev. D 102, 074003 (2020).
- [23] Y. Iwasaki, Is a state cccc found at 6.0 GeV?, Phys. Rev. Lett. 36, 1266 (1976).
- [24] K.-T. Chao, The (cc)— $(\bar{c}\,\bar{c})$ (diquark-antidiquark) states in e^+e^- annihilation, Z. Phys. C 7, 317 (1981).
- [25] A. V. Berezhnoy, A. V. Luchinsky, and A. A. Novoselov, Heavy tetraquarks production at the LHC, Phys. Rev. D 86, 034004 (2012).
- [26] J. Wu, Y.-R. Liu, K. Chen, X. Liu, and S.-L. Zhu, Heavy-flavored tetraquark states with the $QQ\bar{Q}\bar{Q}$ configuration, Phys. Rev. D **97**, 094015 (2018).
- [27] Y. Bai, S. Lu, and J. Osborne, Beauty-full tetraquarks, Phys. Lett. B 798, 134930 (2019).
- [28] Z.-G. Wang, Analysis of the $QQ\bar{Q}\bar{Q}$ tetraquark states with QCD sum rules, Eur. Phys. J. C 77, 432 (2017).
- [29] M. N. Anwar, J. Ferretti, F.-K. Guo, E. Santopinto, and B.-S. Zou, Spectroscopy and decays of the fully-heavy tetraquarks, Eur. Phys. J. C 78, 647 (2018).
- [30] J.-M. Richard, A. Valcarce, and J. Vijande, String dynamics and metastability of all-heavy tetraquarks, Phys. Rev. D 95, 054019 (2017).
- [31] A. Esposito and A. D. Polosa, A $bb\bar{b} \bar{b}$ di-bottomonium at the LHC?, Eur. Phys. J. C **78**, 782 (2018).
- [32] M. Karliner, S. Nussinov, and J. L. Rosner, $QQ\bar{Q}\bar{Q}$ states: Masses, production, and decays, Phys. Rev. D **95**, 034011 (2017).
- [33] M.-S. Liu, Q.-F. Lü, X.-H. Zhong, and Q. Zhao, All-heavy tetraquarks, Phys. Rev. D 100, 016006 (2019).
- [34] W. Chen, H.-X. Chen, X. Liu, T. G. Steele, and S.-L. Zhu, Hunting for exotic doubly hidden-charm/bottom tetraquark states, Phys. Lett. B **773**, 247 (2017).
- [35] G.-J. Wang, L. Meng, and S.-L. Zhu, Spectrum of the fullyheavy tetraquark state $QQ\bar{Q}'\bar{Q}'$, Phys. Rev. D **100**, 096013 (2019).
- [36] C. Gong, M.-C. Du, B. Zhou, Q. Zhao, and X.-H. Zhong, Nature of X6900 and its production mechanism at LHCb, Phys. Lett. B 824, 136794 (2022).
- [37] B.-D. Wan and C.-F. Qiao, Gluonic tetracharm configuration of X6900, Phys. Lett. B 817, 136339 (2021).
- [38] J.-Z. Wang, X. Liu, and T. Matsuki, Fully-heavy structures in the invariant mass spectrum of $J/\psi\psi(3686)$, $J/\psi\psi(3770)$, $\psi(3686)\psi(3686)$, and $J/\psi\Upsilon(1S)$ at hadron colliders, Phys. Lett. B **816**, 136209 (2021).
- [39] CMS Collaboration, Precision luminosity measurement in proton-proton collisions at $\sqrt{s} = 13$ TeV in 2015 and 2016 at CMS, Eur. Phys. J. C **81**, 800 (2021).
- [40] CMS Collaboration, CMS luminosity measurement for the 2017 data-taking period at $\sqrt{s} = 13$ TeV, CMS Physics Analysis Summary, Report No. CMS-PAS-LUM-17-004, 2018, https://cds.cern.ch/record/2621960.
- [41] CMS Collaboration, CMS luminosity measurement for the 2018 data-taking period at $\sqrt{s} = 13$ TeV, CMS Physics Analysis Summary, Report No. CMS-PAS-LUM-18-002, 2019, https://cds.cern.ch/record/2676164.
- [42] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).

- [43] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An introduction to PYTHIA8.2, Comput. Phys. Commun. **191**, 159 (2015).
- [44] Y. Gao, A. V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, and N. V. Tran, Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81, 075022 (2010).
- [45] A. V. Gritsan, J. Roskes, U. Sarica, M. Schulze, M. Xiao, and Y. Zhou, New features in the JHU generator framework: Constraining Higgs boson properties from on-shell and offshell production, Phys. Rev. D 102, 056022 (2020).
- [46] C.-F. Qiao, L.-P. Sun, and P. Sun, Testing charmonium production mechanism via polarized J/ψ pair production at the LHC, J. Phys. G **37**, 075019 (2010).
- [47] J.-P. Lansberg and H.-S. Shao, Production of $J/\psi + \eta_c$ versus $J/\psi + J/\psi$ at the LHC: Importance of real α_s^5 corrections, Phys. Rev. Lett. **111**, 122001 (2013).
- [48] J.-P. Lansberg and H.-S. Shao, J/ψ -pair production at large momenta: Indications for double parton scatterings and large $\alpha_{\rm S}^5$ contributions, Phys. Lett. B **751**, 479 (2015).
- [49] L.-P. Sun, H. Han, and K.-T. Chao, Impact of J/ψ pair production at the LHC and predictions in nonrelativistic QCD, Phys. Rev. D **94**, 074033 (2016).
- [50] S. P. Baranov and A. H. Rezaeian, Prompt double J/ψ production in proton-proton collisions at the LHC, Phys. Rev. D **93**, 114011 (2016).
- [51] A. K. Likhoded, A. V. Luchinsky, and S. V. Poslavsky, Production of $J/\psi + \chi_c$ and $J/\psi + J/\psi$ with real gluon emission at LHC, Phys. Rev. D 94, 054017 (2016).
- [52] G. Calucci and D. Treleani, Proton structure in transverse space and the effective cross-section, Phys. Rev. D 60, 054023 (1999).
- [53] A. Del Fabbro and D. Treleani, Scale factor in double parton collisions and parton densities in transverse space, Phys. Rev. D 63, 057901 (2001).
- [54] C. H. Kom, A. Kulesza, and W. J. Stirling, Pair production of J/ψ as a probe of double parton scattering at LHCb, Phys. Rev. Lett. **107**, 082002 (2011).
- [55] S. P. Baranov, A. M. Snigirev, N. P. Zotov, A. Szczurek, and W. Schäfer, Interparticle correlations in the production of J/ψ pairs in proton-proton collisions, Phys. Rev. D 87, 034035 (2013).
- [56] D. d'Enterria and A. M. Snigirev, Enhanced J/ψ -pair production from double parton scatterings in nucleusnucleus collisions at the Large Hadron Collider, Phys. Lett. B **727**, 157 (2013).
- [57] Z.-G. He and B. A. Kniehl, Complete nonrelativistic-QCD prediction for prompt double J/ψ hadroproduction, Phys. Rev. Lett. **115**, 022002 (2015).

- [58] C. Borschensky and A. Kulesza, Double parton scattering in pair production of J/ψ mesons at the LHC revisited, Phys. Rev. D **95**, 034029 (2017).
- [59] H. Jung, S. Baranov, M. Deak, A. Grebenyuk, F. Hautmann, M. Hentschinski, A. Knutsson, M. Krämer, K. Kutak, A. Lipatov, and N. Zotov, The CCFM Monte Carlo generator CASCADE version 2.2.03, Eur. Phys. J. C 70, 1237 (2010).
- [60] H.-S. Shao, HELAC-Onia: An automatic matrix element generator for heavy quarkonium physics, Comput. Phys. Commun. 184, 2562 (2013).
- [61] H.-S. Shao, HELAC-Onia2.0: An upgraded matrix-element and event generator for heavy quarkonium physics, Comput. Phys. Commun. 198, 238 (2016).
- [62] S. Agostinelli *et al.* (GEANT4 Collaboration), GEANT4—a simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
- [63] CMS Collaboration, The CMS trigger system, J. Instrum. 12, P01020 (2017).
- [64] CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV, J. Instrum. 7, P10002 (2012).
- [65] R. L. Workman *et al.* (Particle Data Group), Review of particle physics, Prog. Theor. Exp. Phys. **2022**, 083C01 (2022).
- [66] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.132.111901 for the fit projections in full range and the fit results with LHCb models.
- [67] F. Von Hippel and C. Quigg, Centrifugal-barrier effects in resonance partial decay widths, shapes, and production amplitudes, Phys. Rev. D **5**, 624 (1972).
- [68] S. U. Chung, Helicity-coupling amplitudes in tensor formalism, Phys. Rev. D 48, 1225 (1993); 56, 4419(E) (1997).
- [69] X.-K. Dong, V. Baru, F.-K. Guo, C. Hanhart, and A. Nefediev, Coupled-channel interpretation of the LHCb double- J/ψ spectrum and hints of a new state near the $J/\psi J/\psi$ threshold, Phys. Rev. Lett. **126**, 132001 (2021); **127**, 119901(E) (2021).
- [70] F.-K. Guo, X.-H. Liu, and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. **112**, 103757 (2020).
- [71] R. Tiwari, D. P. Rathaud, and A. K. Rai, Spectroscopy of all charm tetraquark states, Indian J. Phys. 97, 943 (2023).
- [72] HEPData record for this analysis (2023), https://doi.org/10 .17182/hepdata.141028.
- [73] ATLAS Collaboration, Observation of an excess of dicharmonium events in the four-muon final state with the ATLAS detector, Phys. Rev. Lett. **131**, 151902 (2023).

A. Hayrapetyan,¹ A. Tumasyan¹,^b W. Adam¹,² J. W. Andrejkovic,² T. Bergauer¹,² S. Chatterjee¹,² K. Damanakis¹,²
M. Dragicevic¹,² A. Escalante Del Valle¹,² P. S. Hussain¹,² M. Jeitler¹,^{2,c} N. Krammer¹,² D. Liko¹,² I. Mikulec¹,²
J. Schieck¹,^{2,c} R. Schöfbeck¹,² D. Schwarz¹,² M. Sonawane¹,² S. Templ¹,² W. Waltenberger¹,² C.-E. Wulz¹,^{2,c}

J. Schieck⁰, ^{2,c} R. Schöfbeck⁰, ² D. Schwarz⁰, ² M. Sonawane⁰, ² S. Templ⁰, ² W. Waltenberger⁰, ² C.-E. Wulz⁰, ^{2,c} M. R. Darwish⁰, ^{3,d} T. Janssen⁰, ³ P. Van Mechelen⁰, ³ E. S. Bols⁰, ⁴ J. D'Hondt⁰, ⁴ S. Dansana⁰, ⁴ A. De Moor⁰, ⁴ M. Delcourt⁰, ⁴ H. El Faham⁰, ⁴ S. Lowette⁰, ⁴ I. Makarenko⁰, ⁴ D. Müller⁰, ⁴ A. R. Sahasransu, ⁴ S. Tavernier⁰, ⁴

M. Tytgat[®],^{4,e} S. Van Putte[®],⁴ D. Vannerom[®],⁴ B. Clerbaux[®],⁵ G. De Lentdecker[®],⁵ L. Favart[®],⁵ D. Hohov[®],⁵ J. Jaramillo[®],⁵ A. Khalilzadeh,⁵ K. Lee[®],⁵ M. Mahdavikhorrami[®],⁵ A. Malara[®],⁵ S. Paredes[®],⁵ L. Pétré[®],⁵ N. Postiau,⁵ L. Thomas⁰,⁵ M. Vanden Bemden,⁵ C. Vander Velde⁰,⁵ P. Vanlaer⁰,⁵ M. De Coen⁰,⁶ D. Dobur⁰,⁶ Y. Hong⁰,⁶ J. Knolle[®],⁶ L. Lambrecht[®],⁶ G. Mestdach,⁶ C. Rendón,⁶ A. Samalan,⁶ K. Skovpen[®],⁶ N. Van Den Bossche[®],⁶ L. Wezenbeek[®],⁶ A. Benecke[®],⁷ G. Bruno[®],⁷ C. Caputo[®],⁷ C. Delaere[®],⁷ I. S. Donertas[®],⁷ A. Giammanco[®],⁷ K. Jaffel[®],⁷ Sa. Jain[®],⁷ V. Lemaitre,⁷ J. Lidrych[®],⁷ P. Mastrapasqua[®],⁷ K. Mondal[®],⁷ T. T. Tran[®],⁷ S. Wertz[®],⁷ G. A. Alves[®],⁸ E. Coelho[®],⁸ C. Hensel[®],⁸ T. Menezes De Oliveira,⁸ A. Moraes[®],⁸ P. Rebello Teles[®],⁸ M. Soeiro,⁸ W. L. Aldá Júnior[®],⁹ M. Alves Gallo Pereira[®],⁹ M. Barroso Ferreira Filho[®],⁹ H. Brandao Malbouisson[®],⁹ W. Carvalho[®],⁹ J. Chinellato,^{9,f} E. M. Da Costa⁰,⁹ G. G. Da Silveira⁰,^{9,g} D. De Jesus Damiao⁰,⁹ S. Fonseca De Souza⁰,⁹ J. Martins⁰,^{9,h} C. Mora Herrera[®],⁹ K. Mota Amarilo[®],⁹ L. Mundim[®],⁹ H. Nogima[®],⁹ A. Santoro[®],⁹ S. M. Silva Do Amaral[®],⁹ A. Sznajder¹, ⁹ M. Thiel¹, ⁹ A. Vilela Pereira¹, ⁹ C. A. Bernardes^{10, g} L. Calligaris^{10, 10} T. R. Fernandez Perez Tomei, ¹⁰ E. M. Gregores¹⁰, ¹⁰ P. G. Mercadante^{10, 10} S. F. Novaes^{10, 10} B. Orzari^{10, 10} Sandra S. Padula^{10, 10} A. Aleksandrov^{10, 11} G. Antchev[®],¹¹ R. Hadjiiska[®],¹¹ P. Iaydjiev[®],¹¹ M. Misheva[®],¹¹ M. Shopova[®],¹¹ G. Sultanov[®],¹¹ A. Dimitrov[®],¹² T. Ivanov 0 , ¹² L. Litov 0 , ¹² B. Pavlov 0 , ¹² P. Petkov 0 , ¹² A. Petrov 0 , ¹² E. Shumka 0 , ¹² S. Keshri 0 , ¹³ S. Thakur 0 , ¹³ T. Cheng^{**b**}, ¹⁴ Q. Guo, ¹⁴ T. Javaid^{**b**}, ¹⁴ M. Mittal^{**b**}, ¹⁴ L. Yuan^{**b**}, ¹⁴ G. Bauer, ^{15,ij} J. Chen, ^{15,i} J. Gu, ^{15,i} Z. Hu^{**b**}, ¹⁵ J. Liu, ¹⁵ X. Wang^{**b**}, ^{15,k} H. Wen, ^{15,i} K. Yi^{**b**}, ^{15,l,i} J. Zhang^{**b**}, ^{15,i} G. M. Chen^{**b**}, ^{16,m} H. S. Chen^{**b**}, ^{16,m} M. Chen^{**b**}, ^{16,m} F. Iemmi^{**b**}, ¹⁶ C. H. Jiang,¹⁶ A. Kapoor[®],¹⁶ H. Liao[®],¹⁶ Z.-A. Liu[®],¹⁶ F. Monti[®],¹⁶ R. Sharma[®],¹⁶ J. N. Song,^{16,n} J. Tao[®],¹⁶ C. Wang[®],¹⁶ M. Wang[®],¹⁶ H. Zhang[®],¹⁶ A. Agapitos[®],¹⁷ Y. Ban[®],¹⁷ A. Levin[®],¹⁷ C. Li[®],¹⁷ Q. Li[®],¹⁷ X. Lyu,¹⁷ Y. Mao,¹⁷ S. J. Qian[®],¹⁷ X. Sun[®],¹⁷ D. Wang[®],¹⁷ H. Yang,¹⁷ C. Zhou[®],¹⁷ Z. You[®],¹⁸ N. Lu[®],¹⁹ X. Gao[®],^{20,0} D. Leggat, ²⁰ H. Okawa, ²⁰ Y. Zhang, ²⁰ Z. Lin, ²¹ C. Lu, ²¹ M. Xiao, ²¹ C. Avila, ²² D. A. Barbosa Trujillo, ²² A. Cabrera⁽⁰⁾,²² C. Florez⁽⁰⁾,²² J. Fraga⁽⁰⁾,²² J. A. Reyes Vega,²² J. Mejia Guisao⁽⁰⁾,²³ F. Ramirez⁽⁰⁾,²³ M. Rodriguez⁽⁰⁾,²³ J. D. Ruiz Alvarez^(a),²³ D. Giljanovic^(b),²⁴ N. Godinovic^(b),²⁴ D. Lelas^(b),²⁴ A. Sculac^(b),²⁴ M. Kovac^(b),²⁵ T. Sculac^(b),²⁵ P. Bargassa⁹,²⁶ V. Brigljevic⁹,²⁶ B. K. Chitroda⁹,²⁶ D. Ferencek⁹,²⁶ S. Mishra⁹,²⁶ A. Starodumov⁹,^{26,p} T. Susa⁹,²⁶ A. Attikis⁹,²⁷ K. Christoforou⁹,²⁷ S. Konstantinou⁹,²⁷ J. Mousa⁹,²⁷ C. Nicolaou,²⁷ F. Ptochos⁹,²⁷ P. A. Razis⁹,²⁷ H. Rykaczewski,²⁷ H. Saka^(a),²⁷ A. Stepennov^(b),²⁷ M. Finger^(b),²⁸ M. Finger Jr.^(b),²⁸ A. Kveton^(b),²⁸ E. Ayala^(b),²⁹ E. Carrera Jarrin^(b),³⁰ A. A. Abdelalim^(b),^{31,q,r} E. Salama^(b),^{31,s,t} M. Abdullah Al-Mashad^(b),³² M. A. Mahmoud^(b),³² R. K. Dewanjee^(a),^{33,u} K. Ehataht^(a),³³ M. Kadastik,³³ T. Lange^(a),³³ S. Nandan^(a),³³ C. Nielsen^(a),³³ J. Pata^(a),³³ M. Raidal^(a),³³ L. Tani[®], ³³ C. Veelken[®], ³³ H. Kirschenmann[®], ³⁴ K. Osterberg[®], ³⁴ M. Voutilainen[®], ³⁴ S. Bharthuar[®], ³⁵ E. Brücken[®], ³⁵ F. Garcia⁽⁵⁾, ³⁵ J. Havukainen⁽⁵⁾, ³⁵ K. T. S. Kallonen⁽⁵⁾, ³⁵ M. S. Kim⁽⁶⁾, ³⁵ R. Kinnunen, ³⁵ T. Lampén⁽⁶⁾, ³⁵ K. Lassila-Perini⁽⁶⁾, ³⁵ S. Lehti[®],³⁵ T. Lindén[®],³⁵ M. Lotti,³⁵ L. Martikainen[®],³⁵ M. Myllymäki[®],³⁵ M. m. Rantanen[®],³⁵ H. Siikonen[®],³⁵ E. Tuominen[®],³⁵ J. Tuominiemi[®],³⁵ P. Luukka[®],³⁶ H. Petrow[®],³⁶ T. Tuuva,^{36,a} M. Besancon[®],³⁷ F. Couderc[®],³⁷ M. Dejardin[®],³⁷ D. Denegri,³⁷ J. L. Faure,³⁷ F. Ferri[®],³⁷ S. Ganjour[®],³⁷ P. Gras[®],³⁷ G. Hamel de Monchenault[®],³⁷ V. Lohezic⁽⁰⁾,³⁷ J. Malcles⁽⁰⁾,³⁷ J. Rander,³⁷ A. Rosowsky⁽⁰⁾,³⁷ M. Ö. Sahin,³⁷ A. Savoy-Navarro⁽⁰⁾,^{37,v} P. Simkina⁽⁰⁾,³⁷ M. Titov[©],³⁷ C. Baldenegro Barrera[®],³⁸ F. Beaudette[®],³⁸ A. Buchot Perraguin[®],³⁸ P. Busson[®],³⁸ A. Cappati[®],³⁸ C. Charlot[®],³⁸ F. Damas[®],³⁸ O. Davignon[®],³⁸ G. Falmagne[®],³⁸ B. A. Fontana Santos Alves[®],³⁸ S. Ghosh[®],³⁸ A. Gilbert[®], ³⁸ R. Granier de Cassagnac[®], ³⁸ A. Hakimi[®], ³⁸ B. Harikrishnan[®], ³⁸ L. Kalipoliti[®], ³⁸ G. Liu[®], ³⁸ J. Motta[®], ³⁸ M. Nguyen[®],³⁸ C. Ochando[®],³⁸ L. Portales[®],³⁸ R. Salerno[®],³⁸ U. Sarkar[®],³⁸ J. B. Sauvan[®],³⁸ Y. Sirois[®],³⁸ A. Tarabini⁰, ³⁸ E. Vernazza⁰, ³⁸ A. Zabi⁰, ³⁸ A. Zghiche⁰, ³⁸ J.-L. Agram⁰, ³⁹ W. Andrea⁰, ³⁹ D. Apparu⁰, ³⁹ D. Bloch⁰, ³⁹ J.-M. Brom⁰, ³⁹ E. C. Chabert⁰, ³⁹ C. Collard⁰, ³⁹ S. Falke⁰, ³⁹ U. Goerlach⁰, ³⁹ C. Grimault, ³⁹ R. Haeberle, ³⁹ A.-C. Le Bihan⁰, ³⁹ M. A. Sessini⁰, ³⁹ P. Van Hove⁰, ³⁹ S. Beauceron⁰, ⁴⁰ B. Blancon⁰, ⁴⁰ G. Boudoul⁰, ⁴⁰ N. Chanon⁰, ⁴⁰ J. Choi[®],⁴⁰ D. Contardo[®],⁴⁰ P. Depasse[®],⁴⁰ C. Dozen[®],^{40,x} H. El Mamouni,⁴⁰ J. Fay[®],⁴⁰ S. Gascon[®],⁴⁰ M. Gouzevitch[®],⁴⁰ C. Greenberg,⁴⁰ G. Grenier^(a),⁴⁰ B. Ille^(a),⁴⁰ I. B. Laktineh,⁴⁰ M. Lethuillier^(a),⁴⁰ L. Mirabito,⁴⁰ S. Perries,⁴⁰ M. Vander Donckt[®],⁴⁰ P. Verdier[®],⁴⁰ J. Xiao[®],⁴⁰ I. Lomidze[®],⁴¹ T. Toriashvili[®],^{41,y} Z. Tsamalaidze[®],^{41,p} V. Botta[®],⁴² L. Feld[®],⁴² K. Klein[®],⁴² M. Lipinski[®],⁴² D. Meuser[®],⁴² A. Pauls[®],⁴² N. Röwert[®],⁴² M. Teroerde[®],⁴² S. Diekmann[®],⁴³ A. Dodonova[®],⁴³ N. Eich[®],⁴³ D. Eliseev[®],⁴³ F. Engelke[®],⁴³ M. Erdmann[®],⁴³ P. Fackeldey[®],⁴³ B. Fischer[®],⁴³ T. Hebbeker[®],⁴³ K. Hoepfner[®],⁴³ F. Ivone[®],⁴³ A. Jung[®],⁴³ M. y. Lee[®],⁴³ L. Mastrolorenzo,⁴³ M. Merschmeyer[®],⁴³ A. Meyer^(a), ⁴³ S. Mukherjee^(a), ⁴³ D. Noll^(a), ⁴³ A. Novak^(a), ⁴³ F. Nowotny, ⁴³ A. Pozdnyakov^(a), ⁴³ Y. Rath, ⁴³ W. Redjeb^(a), ⁴³ F. Rehm, ⁴³ H. Reithler^(a), ⁴³ V. Sarkisovi^(a), ⁴³ A. Schmidt^(a), ⁴³ S. C. Schuler, ⁴³ A. Sharma^(a), ⁴³ A. Stein^(b), ⁴³ F. Torres Da Silva De Araujo^{1,43,z} L. Vigilante,⁴³ S. Wiedenbeck^{0,43} S. Zaleski,⁴³ C. Dziwok^{0,44} G. Flügge^{0,44}

W. Haj Ahmad[®],^{44,aa} T. Kress[®],⁴⁴ A. Nowack[®],⁴⁴ O. Pooth[®],⁴⁴ A. Stahl[®],⁴⁴ T. Ziemons[®],⁴⁴ A. Zotz[®],⁴⁴ H. Aarup Petersen[®], ⁴⁵ M. Aldaya Martin[®], ⁴⁵ J. Alimena[®], ⁴⁵ S. Amoroso, ⁴⁵ Y. An[®], ⁴⁵ S. Baxter[®], ⁴⁵ M. Bayatmakou[®], ⁴⁵ H. Becerril Gonzalez^(b),⁴⁵ O. Behnke^(b),⁴⁵ A. Belvedere^(b),⁴⁵ S. Bhattacharya^(b),⁴⁵ F. Blekman^(b),^{45,bb} K. Borras^(b),^{45,cc} H. Becerni Gonzalezo, O. Bennkeo, A. Belvedereo, S. Bhattacharyao, F. Blekmano, K. Borraso, D. Brunnero, ⁴⁵ A. Campbello, ⁴⁵ A. Cardinio, ⁴⁵ C. Cheng, ⁴⁵ F. Colombinao, ⁴⁵ S. Consuegra Rodríguezo, ⁴⁵
G. Correia Silvao, ⁴⁵ M. De Silvao, ⁴⁵ G. Eckerlin, ⁴⁵ D. Ecksteino, ⁴⁵ L. I. Estevez Banoso, ⁴⁵ O. Filatovo, ⁴⁵ E. Galloo, ^{45,bb}
A. Geisero, ⁴⁵ A. Giraldio, ⁴⁵ G. Greau, ⁴⁵ V. Guglielmio, ⁴⁵ M. Guthoffo, ⁴⁵ A. Hinzmanno, ⁴⁵ A. Jafario, ^{45,dd} L. Jeppeo, ⁴⁵ N. Z. Jomhario, ⁴⁵ B. Kaecho, ⁴⁵ M. Kasemanno, ⁴⁵ H. Kaveho, ⁴⁵ C. Kleinworto, ⁴⁵ R. Koglero, ⁴⁵ M. Kommo, ⁴⁵ D. Krückero, ⁴⁵ W. Lange, ⁴⁵ D. Leyva Perniao, ⁴⁵ K. Lipkao, ^{45,ee} W. Lohmanno, ^{45,ff} R. Mankelo, ⁴⁵
I.-A. Melzer-Pellmanno, ⁴⁵ M. Mendizabal Morentino, ⁴⁵ J. Metwally, ⁴⁵ A. B. Meyero, ⁴⁵ G. Milellao, ⁴⁵ A. Mussgillero, ⁴⁵ F. D. Diberocho *45* D. A. Nürnberg⁽⁶⁾, ⁴⁵ Y. Otarid, ⁴⁵ D. Pérez Adán⁽⁶⁾, ⁴⁵ E. Ranken⁽⁶⁾, ⁴⁵ A. Raspereza⁽⁶⁾, ⁴⁵ B. Ribeiro Lopes⁽⁶⁾, ⁴⁵ J. Rübenach, ⁴⁵ A. Saggio⁽⁶⁾, ⁴⁵ M. Scham⁽⁶⁾, ⁴⁵, cc, ⁹ g. V. Scheurer, ⁴⁵ S. Schnake⁽⁶⁾, ⁴⁵ C. Schwanenberger⁽⁶⁾, ⁴⁵ b. M. Shchedrolosiev⁽⁶⁾, ⁴⁵ R. E. Sosa Ricardo⁽⁶⁾, ⁴⁵ L. P. Sreelatha Pramod, ⁴⁵ D. Stafford, ⁴⁵ F. Vazzoler⁽⁶⁾, ⁴⁵ A. Ventura Barroso⁽⁶⁾, ⁴⁵ R. Walsh⁽⁶⁾, ⁴⁵ Q. Wang⁽⁶⁾, ⁴⁵ Y. Wen⁽⁶⁾, ⁴⁵ K. Wichmann, ⁴⁵ L. Wiens⁽⁶⁾, ⁴⁵ C. Wissing⁽⁶⁾, ⁴⁵ A. Ventura Barroso⁽⁶⁾, ⁴⁵ R. Walsh⁽⁶⁾, ⁴⁵ Q. Wang⁽⁶⁾, ⁴⁵ Y. Wen⁽⁶⁾, ⁴⁵ K. Wichmann, ⁴⁵ L. Wiens⁽⁶⁾, ⁴⁶ A. Ventura Barroso⁽⁶⁾, ⁴⁵ R. Walsh⁽⁶⁾, ⁴⁵ Q. Wang⁽⁶⁾, ⁴⁵ Y. Wen⁽⁶⁾, ⁴⁵ K. Wichmann, ⁴⁵ L. Wiens⁽⁶⁾, ⁴⁶ A. Ventura Barroso⁽⁶⁾, ⁴⁵ R. Walsh⁽⁶⁾, ⁴⁵ Q. Wang⁽⁶⁾, ⁴⁵ Y. Wen⁽⁶⁾, ⁴⁵ K. Wichmann, ⁴⁵ L. Wiens⁽⁶⁾, ⁴⁶ A. Ventura Barroso⁽⁶⁾, ⁴⁵ R. Walsh⁽⁶⁾, ⁴⁵ Y. Wen⁽⁶⁾, ⁴⁵ K. Wichmann, ⁴⁵ L. Wiens⁽⁶⁾, ⁴⁶ A. Ventura Barroso⁽⁶⁾, ⁴⁵ R. ⁴⁵ Y. Wen⁽⁶⁾, ⁴⁵ K. Wichmann, ⁴⁵ L. Wiens⁽⁶⁾, ⁴⁶ Y. Wang⁽⁶⁾, ⁴⁵ Y. Wen⁽⁶⁾, ⁴⁵ K. Wichmann, ⁴⁵ L. Wiens⁽⁶⁾, ⁴⁶ Y. Wen⁽⁶⁾, ⁴⁶ Y. ⁴⁶ Y S. Wuchterl[®],⁴⁵ Y. Yang[®],⁴⁵ A. Zimermmane Castro Santos[®],⁴⁵ A. Albrecht[®],⁴⁶ S. Albrecht[®],⁴⁶ M. Antonello[®],⁴⁶ S. Bein[®], ⁴⁶ L. Benato[®], ⁴⁶ M. Bonanomi[®], ⁴⁶ P. Connor[®], ⁴⁶ M. Eich, ⁴⁶ K. El Morabit[®], ⁴⁶ Y. Fischer[®], ⁴⁶ A. Fröhlich, ⁴⁶ C. Garbers[®], ⁴⁶ E. Garutti[®], ⁴⁶ A. Grohsjean[®], ⁴⁶ M. Hajheidari, ⁴⁶ J. Haller[®], ⁴⁶ H. R. Jabusch[®], ⁴⁶ G. Kasieczka[®], ⁴⁶ P. Keicher,⁴⁶ R. Klanner[®],⁴⁶ W. Korcari[®],⁴⁶ T. Kramer[®],⁴⁶ V. Kutzner[®],⁴⁶ F. Labe[®],⁴⁶ J. Lange[®],⁴⁶ A. Lobanov[®],⁴⁶ C. Matthies[®],⁴⁶ A. Mehta[®],⁴⁶ L. Moureaux[®],⁴⁶ M. Mrowietz,⁴⁶ A. Nigamova[®],⁴⁶ Y. Nissan,⁴⁶ A. Paasch[®],⁴⁶ K. J. Pena Rodriguez^(a), ⁴⁶ T. Quadfasel^(a), ⁴⁶ B. Raciti^(a), ⁴⁶ M. Rieger^(a), ⁴⁶ D. Savoiu^(a), ⁴⁶ J. Schindler^(a), ⁴⁶ P. Schleper^(a), ⁴⁶ M. Schröder^(*), ⁴⁶ J. Schwandt^(*), ⁴⁶ M. Sommerhalder^(*), ⁴⁶ H. Stadie^(*), ⁴⁶ G. Steinbrück^(*), ⁴⁶ A. Tews, ⁴⁶ M. Wolf^(*), ⁴⁶ S. Brommer^(*), ⁴⁷ M. Burkart, ⁴⁷ E. Butz^(*), ⁴⁷ T. Chwalek^(*), ⁴⁷ A. Dierlamm^(*), ⁴⁷ A. Droll, ⁴⁷ N. Faltermann^(*), ⁴⁷ M. Giffels^(*), ⁴⁷ A. Gottmann[®],⁴⁷ F. Hartmann[®],^{47,hh} M. Horzela[®],⁴⁷ U. Husemann[®],⁴⁷ M. Klute[®],⁴⁷ R. Koppenhöfer[®],⁴⁷ M. Link,⁴⁷ A. Lintuluoto⁹,⁴⁷ S. Maier⁹,⁴⁷ S. Mitra⁹,⁴⁷ M. Mormile⁹,⁴⁷ Th. Müller⁹,⁴⁷ M. Neukum,⁴⁷ M. Oh⁹,⁴⁷ G. Quast⁹,⁴⁷ K. Rabbertz¹,⁴⁷ I. Shvetsov¹,⁴⁷ H. J. Simonis¹,⁴⁷ N. Trevisani¹,⁴⁷ R. Ulrich¹,⁴⁷ J. van der Linden¹,⁴⁷ R. F. Von Cube¹,⁴⁷ M. Wassmer[®], ⁴⁷ S. Wieland[®], ⁴⁷ F. Wittig, ⁴⁷ R. Wolf[®], ⁴⁷ S. Wunsch, ⁴⁷ X. Zuo[®], ⁴⁷ G. Anagnostou, ⁴⁸ P. Assiouras[®], ⁴⁸ G. Daskalakis[®], ⁴⁸ A. Kyriakis, ⁴⁸ A. Papadopoulos, ^{48,hh} A. Stakia[®], ⁴⁸ D. Karasavvas, ⁴⁹ P. Kontaxakis[®], ⁴⁹ G. Melachroinos,⁴⁹ A. Panagiotou,⁴⁹ I. Papavergou^(*),⁴⁹ I. Paraskevas^(*),⁴⁹ N. Saoulidou^(*),⁴⁹ K. Theofilatos^(*),⁴⁹ E. Tziaferi^(*),⁴⁹ K. Vellidis^(*),⁴⁹ I. Zisopoulos^(*),⁴⁹ G. Bakas^(*),⁵⁰ T. Chatzistavrou,⁵⁰ G. Karapostoli^(*),⁵⁰ K. Kousouris^(*),⁵⁰ I. Papakrivopoulos⁵⁰, E. Siamarkou,⁵⁰ G. Tsipolitis,⁵⁰ A. Zacharopoulou,⁵⁰ K. Adamidis,⁵¹ I. Bestintzanos,⁵¹ I. Evangelou[®],⁵¹ C. Foudas,⁵¹ P. Gianneios[®],⁵¹ C. Kamtsikis,⁵¹ P. Katsoulis,⁵¹ P. Kokkas[®],⁵¹ P. G. Kosmoglou Kioseoglou[®],⁵¹ N. Manthos[®],⁵¹ I. Papadopoulos[®],⁵¹ J. Strologas[®],⁵¹ M. Csanád[®],⁵² K. Farkas[®],⁵² P. G. Kosmoglou Kloseoglou⁶, N. Manthos⁶, I. Papadopoulos⁶, J. Strologas⁶, M. Csahad⁶, K. Farkas⁶,
M. M. A. Gadallah⁶, ⁵²,ⁱⁱ Á. Kadlecsik⁶, ⁵² P. Major⁶, ⁵² K. Mandal⁶, ⁵² G. Pásztor⁶, ⁵² A. J. Rádl⁶, ⁵²,^{ij} G. I. Veres⁶, ⁵² M. Bartók⁶, ⁵³,^{kk} C. Hajdu⁶, ⁵³ D. Horvath⁶, ⁵³,^{ll,mm} F. Sikler⁶, ⁵³ V. Veszpremi⁶, ⁵³ G. Bencze, ⁵⁴ S. Czellar, ⁵⁴ J. Karancsi⁶, ⁵⁴,^{kk} J. Molnar, ⁵⁴ Z. Szillasi, ⁵⁴ P. Raics, ⁵⁵ B. Ujvari⁶, ⁵⁵,ⁿⁿ G. Zilizi⁶, ⁵⁵ T. Csorgo⁶, ⁵⁶,^{ij} F. Nemes⁶, ⁵⁶,^{ij} T. Novak⁶, ⁵⁶ J. Babbar⁶, ⁵⁷ S. Bansal⁶, ⁵⁷ S. B. Beri, ⁵⁷ V. Bhatnagar⁶, ⁵⁷ G. Chaudhary⁶, ⁵⁷ S. Chauhan⁶, ⁵⁷ N. Dhingra⁶, ⁵⁷ P. Kumar⁶, ⁵⁷ A. Kaur⁶, ⁵⁷ H. Kaur⁶, ⁵⁷ M. Kaur⁶, ⁵⁷ S. Kumar⁶, ⁵⁷ P. Kumar⁶, ⁵⁷ N. Dinigrae, K. Oupta, A. Radre, A. Radre, H. Radre, M. Radre, S. Rumare, S. Rumare, T. Rumare, M. Meena⁵⁷, K. Sandeep⁵⁷, T. Sheokand,⁵⁷ J. B. Singh^{57,pp} A. Singla⁵⁷, A. Ahmed⁵⁸, A. Bhardwaj⁵⁸, A. Chhetri⁵⁸, B. C. Choudhary⁵⁸, A. Kumar⁵⁸, M. Naimuddin⁵⁸, K. Ranjan⁵⁸, S. Saumya⁵⁸, S. Baradia⁵⁹, S. Barman^{59,qq}, S. Bhattacharya⁵⁹, D. Bhowmik,⁵⁹ S. Dutta⁵⁹, S. Dutta⁵⁹, B. Gomber^{59,rr}, P. Palit⁵⁹, G. Saha⁵⁹, B. Sahu^{59,rr}, S. Sarkar,⁵⁹, P. K. Behera⁵⁰, S. C. Behera⁵⁰, S. Chatterjee⁵⁰, P. Jana⁶⁰, P. Kalbhor⁵⁰, ⁶⁰ J. R. Komaragiri^{(6), ss} D. Kumar^{(6), ss} M. Mohammad Mobassir Ameen,⁶⁰ L. Panwar^{(6), ss} R. Pradhan^{(6), ss} P. R. Pujahari[®], ⁶⁰ N. R. Saha[®], ⁶⁰ A. Sharma[®], ⁶⁰ A. K. Sikdar[®], ⁶⁰ S. Verma[®], ⁶⁰ T. Aziz, ⁶¹ I. Das[®], ⁶¹ S. Dugad, ⁶¹ M. Kumar[®], ⁶¹ G. B. Mohanty[®], ⁶¹ P. Suryadevara, ⁶¹ A. Bala[®], ⁶² S. Banerjee[®], ⁶² R. M. Chatterjee, ⁶² M. Guchait[®], ⁶² S. Karmakar[®],⁶² S. Kumar[®],⁶² G. Majumder[®],⁶² K. Mazumdar[®],⁶² S. Mukherjee[®],⁶² A. Thachayath[®],⁶² S. Bahinipati[®],^{63,tt} A. K. Das,⁶³ C. Kar[®],⁶³ D. Maity[®],^{63,uu} P. Mal[®],⁶³ T. Mishra[®],⁶³
V. K. Muraleedharan Nair Bindhu[®],^{63,uu} K. Naskar[®],^{63,uu} A. Nayak[®],^{63,uu} P. Sadangi,⁶³ P. Saha[®],⁶³ S. K. Swain,⁶³ S. Varghese^{63,uu} D. Vats^{63,uu} A. Alpana^{6,64} S. Dube^{6,64} B. Kansal^{6,64} A. Laha^{6,64} A. Rastogi^{6,64} S. Sharma^{6,64} H. Bakhshiansohi⁶, ^{65,vv} E. Khazaie^{65,wv} M. Zeinali⁶, ^{65,xx} S. Chenarani⁶, ^{66,yy} S. M. Etesami⁶, ⁶⁶ M. Khakzad⁶, ⁶⁶ M. Khakzad⁶, ⁶⁷ M. Abbrescia⁶, ^{68a,68c,4} A. Colaleo^{68a}, ^{68a}

D. Creanza⁰, ^{68a,68c} B. D` Anzi⁰, ^{68a,68b} N. De Filippis⁰, ^{68a,68c} M. De Palma⁰, ^{68a,68b} A. Di Florio⁰, ^{68a,68c} W. Elmetenawee⁰, ^{68a,68c} L. Fiore⁰, ^{68a} G. Iaselli⁰, ^{68a,68c} G. Maggi⁰, ^{68a,68c} M. Maggi⁰, ^{68a} I. Margjeka⁰, ^{68a,68b} V. Mastrapasqua^(b), ^{68a,68b} S. My^(b), ^{68a,68b} S. Nuzzo^(b), ^{68a,68b} A. Pellecchia^(b), ^{68a,68b} A. Pompili^(b), ^{68a,68b} G. Pugliese^(b), ^{68a,68c} B. Radogna^(b), ^{68a} G. Ramirez-Sanchez^(b), ^{68a,68c} D. Ramos^(b), ^{68a} A. Ranieri^(b), ^{68a} L. Silvestris^(b), ^{68a} F. M. Simone^(b), ^{68a,68b} Ü. Sözbilir[®],^{68a} A. Stamerra[®],^{68a} R. Venditti[®],^{68a} P. Verwilligen[®],^{68a} A. Zaza[®],^{68a,68b} G. Abbiendi[®],^{69a} C. Battilana[®],^{69a,69b} D. Bonacorsi[®],^{69a,69b} L. Borgonovi[®],^{69a} R. Campanini[®],^{69a,69b} P. Capiluppi[®],^{69a,69b} A. Castro[®],^{69a,69b} F. R. Cavallo⁽⁶⁾, ^{69a} M. Cuffiani⁽⁶⁾, ^{69a,69b} G. M. Dallavalle⁽⁶⁾, ^{69a} T. Diotalevi⁽⁶⁾, ^{69a,69b} F. Fabbri⁽⁶⁾, ^{69a} A. Fanfani⁽⁶⁾, ^{69a,69b} D. Fasanella[®], ^{69a,69b} P. Giacomelli[®], ^{69a} L. Giommi[®], ^{69a,69b} C. Grandi[®], ^{69a} L. Guiducci[®], ^{69a,69b} S. Lo Meo[®], ^{69a,zz} L. Lunerti[©], ^{69a,69b} S. Marcellini[©], ^{69a} G. Masetti[©], ^{69a} F. L. Navarria[©], ^{69a,69b} A. Perrotta[©], ^{69a} F. Primavera[©], ^{69a,69b} A. M. Rossi[©], ^{69a,69b} T. Rovelli[©], ^{69a,69b} S. Costa[©], ^{70a,70b,aaa} A. Di Mattia[©], ^{70a} R. Potenza, ^{70a,70b} A. Tricomi[©], ^{70a,70b,aaa} C. Tuve[©], ^{70a,70b} G. Barbagli[©], ^{71a} G. Bardelli[©], ^{71a,71b} B. Camaiani[©], ^{71a,71b} A. Cassese[©], ^{71a} R. Ceccarelli[©], ^{71a} V. Ciulli[®],^{71a,71b} C. Civinini[®],^{71a} R. D'Alessandro[®],^{71a,71b} E. Focardi[®],^{71a,71b} G. Latino[®],^{71a,71b} P. Lenzi[®],^{71a,71b} M. Lizzo[®], ^{71a,71b} M. Meschini[®], ^{71a} S. Paoletti[®], ^{71a} A. Papanastassiou, ^{71a,71b} G. Sguazzoni[®], ^{71a} L. Viliani[®], ^{71a} L. Benussi[®], ⁷² S. Bianco[®], ⁷² S. Meola[®], ^{72,bbb} D. Piccolo[®], ⁷² P. Chatagnon[®], ^{73a} F. Ferro[®], ^{73a} E. Robutti[®], ^{73a} S. Tosi[®],^{73a,73b} A. Benaglia[®],^{74a} G. Boldrini[®],^{74a} F. Brivio[®],^{74a} F. Cetorelli[®],^{74a} F. De Guio[®],^{74a,74b} M. E. Dinardo[®],^{74a,74b} P. Dini[®],^{74a} S. Gennai[®],^{74a} A. Ghezzi[®],^{74a,74b} P. Govoni[®],^{74a,74b} L. Guzzi[®],^{74a} M. T. Lucchini[®],^{74a,74b} M. Malberti[®],^{74a} S. Malvezzi[®],^{74a} A. Massironi[®],^{74a} D. Menasce[®],^{74a} L. Moroni[®],^{74a} M. Paganoni[®],^{74a,74b} D. Pedrini[®],^{74a} B. S. Pinolini,^{74a} S. Ragazzi[®], ^{74a,74b} N. Redaelli[®], ^{74a} T. Tabarelli de Fatis[®], ^{74a,74b} D. Zuolo[®], ^{74a} S. Buontempo[®], ^{75a} A. Cagnotta[®], ^{75a,75b} F. Carnevali, ^{75a,75b} N. Cavallo[®], ^{75a,75c} A. De Iorio[®], ^{75a,75b} F. Fabozzi[®], ^{75a,75c} A. O. M. Iorio[®], ^{75a,75b} L. Lista[®], ^{75a,75b}, ^{75a,75b} P. Paolucci[®], ^{75a,4bh} B. Rossi[®], ^{75a} C. Sciacca[®], ^{75a,75b} R. Ardino, ^{76a} P. Azzi[®], ^{76a} N. Bacchetta[®], ^{76a,ddd} P. Bortignon[®], ^{76a} P. Paolucci[®], ^{76a,76b} B. Kossi[®], ^{76a} C. Sciacca[®], ^{76a,76b} P. Checchia[®], ^{76a} T. Dorigo[®], ^{76a} F. Gasparini[®], ^{76a,76b} U. Gasparini[®], ^{76a,76b} G. Grosso, ^{76a} L. Layer, ^{76a,76b} P. Checchia[®], ^{76a,76b} A. T. Meneguzzo[®], ^{76a,76b} M. Migliorini[®], ^{76a,76b} F. Montecassiano[®], ^{76a} J. Pazzini[®], ^{76a,76b} P. Ronchese[®], ^{76a,76b} R. Rossi[®], ^{76a,76b} F. Simonetto[®], ^{76a,76b} G. Strong[®], ^{76a} M. Tosi[®], ^{76a,76b} A. Triossi[®], ^{76a,76b} S. Ventura[®], ^{76a} H. Yarar, ^{76a,76b} M. Zanetti[®], ^{76a,76b} P. Zotto[®], ^{76a,76b} A. Zucchetta[®], ^{76a,76b} G. Zumerle[®], ^{76a,76b} S. Abu Zeid[®], ^{77a,77b} A. Braghieri[®], ^{77a} S. Calzaferri[®], ^{77a,77b} D. Fiorina[®], ^{77a,77b} P. Montagna[®], ^{77a,77b} V. Re[®], ^{77a} C. Riccardi[®], ^{77a,77b} P. Salvini[®], ^{77a,77b} P. Vitulo[®], ^{77a,77b} S. Ajmal[®], ^{78a,78b} C. Aim^{*®}, ^{78a,78b} L. Eacle[®], ^{78a,78b} M. M. A. Lucchetta[®], ^{78a,78b} C. M. Pilci[®], ^{78a,78b} C. M. Pilci[®], ^{78a,78b} L. Eacle[®], ^{78a,78b} M. A. Lucchetta[®], ^{78a,78b} C. M. Rightin[®], ^{78a,78b} C. M. Rightin[®], ^{78a,78b} L. Eacle[®], ^{78a,78b} M. M. K. Lucchetta[®], ^{78a,78b} C. M. Rightin[®], ^{78a,78b} M. Salvini[®], ^{77a,77b} P. Salvini[®], ^{77a,77b} P. Vitulo[®], ^{77a,77b} S. Ajmal[®], ^{78a,78b} C. M. Rightin[®], ^{78a,78b} M. K. Lucchetta[®], ^{78a,78b} C. M. Rightin[®], ^{78a,78b} M. K. Lucchetta[®], ^{78a,78b} C. M. Rightin[®], ^{78a,78b} M. Salvini[®], ^{78a,78b} M. K. Lucchetta[®], ^{78a,78b} C. M. Rightin[®], ^{78a,78b} M. Salvini[®], ^{78a,78b} M. K. Lucchetta[®], ^{78a,78b} C. M. Rightin[®], ^{78a,78b} M. Salvini[®], ^{78a,78b} M. K. Lucchetta[®], ^{78a,78b} C. M. Rightin[®], ^{78a,78b} M. K. Lucchetta[®], ^{78a,78b} P. Asenov, ^{78a,fff} G. M. Bilei, ^{78a} D. Ciangottini, ^{78a,78b} L. Fano, ^{78a,78b} M. Magherini, ^{78a,78b} G. Mantovani, ^{78a,78b} V. Mariani^(a),^{78a,78b} M. Menichelli^(a),^{78a} F. Moscatelli^(a),^{78a,fff} A. Piccinelli^(a),^{78a,78b} M. Presilla^(a),^{78a,78b} A. Rossi^(a),^{78a,78b} A. Santocchia[®], ^{78a,78b} D. Spiga[®], ^{78a} T. Tedeschi[®], ^{78a,78b} P. Azzurri[®], ^{79a} G. Bagliesi[®], ^{79a} R. Bhattacharya[®], ^{79a} L. Bianchini[®], ^{79a,79b} T. Boccali[®], ^{79a} E. Bossini[®], ^{79a} D. Bruschini[®], ^{79a,79c} R. Castaldi[®], ^{79a} M. A. Ciocci[®], ^{79a,79b} M. Cipriani[®], ^{79a,79b} V. D'Amante[®], ^{79a,79d} R. Dell'Orso[®], ^{79a} S. Donato[®], ^{79a} A. Giassi[®], ^{79a} F. Ligabue[®], ^{79a,79c} D. Matos Figueiredo[®], ^{79a} A. Messineo[®], ^{79a,79b} M. Musich[®], ^{79a,79b} F. Palla[®], ^{79a} S. Parolia[®], ^{79a} A. Rizzi[®], ^{79a,79b} G. Rolandi[®], ^{79a,79c} S. Roy Chowdhury[®], ^{79a} T. Sarkar[®], ^{79a} A. Scribano[®], ^{79a} P. Spagnolo[®], ^{79a} R. Tenchini[®], ^{79a,79b} G. Tonelli[®], ^{79a,79b} N. Turini[®], ^{79a,79d} A. Venturi[®], ^{79a} P. G. Verdini[®], ^{79a} P. Barria[®], ^{80a} M. Campana[®], ^{80a,80b} F. Cavallari[®], ^{80a} L. Cunqueiro Mendez[®], ^{80a,80b} D. Del Re[®], ^{80a,80b} E. Di Marco[®], ^{80a} M. Diemoz[®], ^{80a} F. Errico[®], ^{80a,80b} E. Longo[®], ^{80a,80b} E. Longo[®], ^{80a,80b} F. Cavallari[®], ^{80a,80b} P. Meridiani[®], ^{80a} J. Mijuskovic[®], ^{80a,80b} G. Organtini[®], ^{80a,80b} F. Pandolfi[®], ^{80a} R. Paramatti[®], ^{80a,80b} C. Quaranta[®], ^{80a,80b} P. Meridialito, J. Mijuskovico, G. Organnino, F. Fandonio, K. Faramatro, C. Qualanao,
S. Rahatlou[®], ^{80a,80b} C. Rovelli[®], ^{80a} F. Santanastasio[®], ^{80a,80b} L. Soffi[®], ^{80a} R. Tramontano[®], ^{80a,80b} N. Amapane[®], ^{81a,81b} R. Arcidiacono[®], ^{81a,81c} S. Argiro[®], ^{81a,81b} M. Arneodo[®], ^{81a,81c} N. Bartosik[®], ^{81a} R. Bellan[®], ^{81a,81b} A. Bellora[®], ^{81a,81b} C. Biino[®], ^{81a} N. Cartiglia[®], ^{81a} M. Costa[®], ^{81a,81b} R. Covarelli[®], ^{81a,81b} N. Demaria[®], ^{81a} L. Finco[®], ^{81a} M. Grippo[®], ^{81a,81b} B. Kiani[®], ^{81a,81b} F. Legger[®], ^{81a} F. Luongo[®], ^{81a,81b} C. Mariotti[®], ^{81a} S. Maselli[®], ^{81a} A. Mecca[®], ^{81a,81b} E. Migliore[®], ^{81a,81b} E. Migliore[®], ^{81a,81b} B. Kiani[®], ^{81a,81b} F. Legger[®], ^{81a} F. Luongo[®], ^{81a,81b} C. Mariotti[®], ^{81a} S. Maselli[®], ^{81a} A. Mecca[®], ^{81a,81b} E. Migliore[®], ^{81a,81b} E. ^{81a,81b} B. Klanib, W. F. Leggerb, F. Luongob, W. C. Mariottib, S. Masellib, A. Meccab, E. Miglioreb, M. Montenob, ^{81a} R. Mulargiab, ^{81a} M. M. Obertinob, ^{81a,81b} G. Ortonab, ^{81a} L. Pacherb, ^{81a,81b} N. Pastroneb, ^{81a} M. Pelliccionib, ^{81a} M. Ruspab, ^{81a,81c} F. Sivierob, ^{81a,81b} V. Solab, ^{81a,81b} A. Solanob, ^{81a,81b} D. Soldib, ^{81a,81b} A. Staianob, ^{81a} C. Tarriconeb, ^{81a,81b} M. Tornagob, ^{81a,81b} D. Trocinob, ^{81a} G. Umoretb, ^{81a,81b} A. Vagnerinib, ^{81a,81b} E. Vlasovb, ^{81a,81b} S. Belforteb, ^{82a,82b} M. Casarsab, ^{82a} F. Cossuttib, ^{82a} K. De Leob, ^{82a,82b} G. Della Riccab, ^{82a,82b} S. Dograb, ⁸³ J. Hongb, ⁸³ C. Huhb, ⁸³ B. Kimb, ⁸³ D. H. Kimb, ⁸³ J. Kimb, ⁸³ H. Leeb, ⁸³ S. W. Leeb, ⁸³ C. S. Moonb, ⁸³ S. Dograe, J. Holge, C. Hulle, B. Kline, D. H. Kline, J. Kline, H. Leee, S. W. Leee, C. S. Moone, Y. D. Oho, ⁸³ S. I. Pako, ⁸³ M. S. Ryuo, ⁸³ S. Sekmeno, ⁸³ Y. C. Yango, ⁸³ G. Bako, ⁸⁴ P. Gwako, ⁸⁴ H. Kimo, ⁸⁴ D. H. Moono, ⁸⁴ E. Asilaro, ⁸⁵ D. Kimo, ⁸⁵ T. J. Kimo, ⁸⁵ J. A. Merlin, ⁸⁵ J. Parko, ⁸⁵ S. Choio, ⁸⁶ S. Han, ⁸⁶ B. Hongo, ⁸⁶ K. Lee, ⁸⁶ K. S. Leeo, ⁸⁶ J. Park, ⁸⁶ S. K. Park, ⁸⁶ J. Yooo, ⁸⁶ J. Goho, ⁸⁷ H. S. Kimo, ⁸⁸ Y. Kim, ⁸⁸ S. Lee, ⁸⁸ J. Almond, ⁸⁹ J. H. Bhyun, ⁸⁹ J. Choio, ⁸⁹ S. Jeono, ⁸⁹ W. Juno, ⁸⁹ J. Kimo, ⁸⁹ J. S. Kim, ⁸⁹ S. Koo, ⁸⁹ H. Kwono, ⁸⁹ H. Lee, ⁸⁹ J. Leeo, ⁸⁹

J. Lee[®], ⁸⁹ S. Lee, ⁸⁹ B. H. Oh[®], ⁸⁹ S. B. Oh[®], ⁸⁹ H. Seo[®], ⁸⁹ U. K. Yang, ⁸⁹ I. Yoon[®], ⁸⁹ W. Jang[®], ⁹⁰ D. Y. Kang, ⁹⁰ Y. Kang[®], ⁹⁰ S. Kim[®], ⁹⁰ B. Ko, ⁹⁰ J. S. H. Lee[®], ⁹⁰ Y. Lee[®], ⁹⁰ I. C. Park[®], ⁹⁰ Y. Roh, ⁹⁰ I. J. Watson[®], ⁹⁰ S. Yang[®], ⁹⁰ S. Ha[®], ⁹¹ H. D. Yoo[®], ⁹¹ M. Choi[®], ⁹² M. R. Kim[®], ⁹² H. Lee, ⁹² Y. Lee[®], ⁹² I. Yu[®], ⁹² T. Beyrouthy, ⁹³ Y. Maghrbi[®], ⁹³ K. Dreimanis[®], ⁹⁴ A. Gaile[®], ⁹⁴ G. Pikurs, ⁹⁴ A. Potrebko[®], ⁹⁴ M. Seidel[®], ⁹⁴ V. Veckalns[®], ⁹⁴, ⁹⁴ gg N. R. Strautnieks[®], ⁹⁵ M. Ambrozas[®], ⁹⁶ A. Juodagalvis[®], ⁹⁶ A. Rinkevicius[®], ⁹⁶ G. Tamulaitis[®], ⁹⁶ N. Bin Norjoharuddeen[®], ⁹⁷ I. Yusuff[®], ^{97,hhh} Z. Zolkapli, ⁹⁷ K. De the set of ⁹⁸ M. A. F. Strautnieks[®], ⁹⁸ M. A. Go, ⁹⁸ M. A. F. Strautnieks[®], ⁹⁶ M. A. Condert, ⁹⁸ M. A. F. Strautnieks[®], ⁹⁶ M. A. Solkapli, ⁹⁷ S. Strautnieks[®], ⁹⁶ M. Seidel[®], ⁹⁶ N. Bin Norjoharuddeen[®], ⁹⁷ I. Yusuff[®], ^{97,hhh} Z. Zolkapli, ⁹⁷ S. K. Strautnieks[®], ⁹⁸ M. A. Solkapli, ⁹⁸ M. K. Strautnieks[®], ⁹⁸ M. K. Solkapli, ⁹⁸ M. K. Strautnieks[®], ⁹⁸ M. K. Solkapli, ⁹⁹ S. Solkapli, ⁹¹ S. Solkapli, ⁹² S. Solkapli, ⁹¹ S. Solkapli, ⁹² S. Solkapli, ⁹³ S. Solkapli, ⁹⁴ S. Solka J. F. Benitez⁽⁹⁾, A. Castaneda Hernandez⁽⁹⁾, ⁹⁸ H. A. Encinas Acosta, ⁹⁸ L. G. Gallegos Maríñez, ⁹⁸ M. León Coello⁽⁹⁾, J. A. Murillo Quijada^{9,98} A. Sehrawat^{9,98} L. Valencia Palomo^{9,98} G. Ayala^{9,99} H. Castilla-Valdez^{9,99}
 E. De La Cruz-Burelo^{9,99} I. Heredia-De La Cruz^{9,99,iii} R. Lopez-Fernandez^{9,99} C. A. Mondragon Herrera,⁹⁹
 A. Sánchez Hernández^{9,99} C. Oropeza Barrera^{9,100} M. Ramírez García^{9,100} I. Bautista^{9,101} I. Pedraza^{9,101} H. A. Salazar Ibarguen[®],¹⁰¹ C. Uribe Estrada[®],¹⁰¹ I. Bubanja,¹⁰² N. Raicevic[®],¹⁰² P. H. Butler[®],¹⁰³ A. Ahmad[®],¹⁰⁴ M. I. Asghar,¹⁰⁴ A. Awais[®],¹⁰⁴ M. I. M. Awan,¹⁰⁴ H. R. Hoorani[®],¹⁰⁴ W. A. Khan[®],¹⁰⁴ V. Avati,¹⁰⁵ L. Grzanka[®],¹⁰⁵ M. Malawski[®],¹⁰⁵ H. Białkowska[®],¹⁰⁶ M. Bluj[®],¹⁰⁶ B. Boimska[®],¹⁰⁶ M. Górski[®],¹⁰⁶ M. Kazana[®],¹⁰⁶ M. Szleper[®],¹⁰⁶ P. Zalewski[®],¹⁰⁶ K. Bunkowski[®],¹⁰⁷ K. Doroba[®],¹⁰⁷ A. Kalinowski[®],¹⁰⁷ M. Konecki[®],¹⁰⁷ J. Krolikowski[®],¹⁰⁷ P. Zalewski[®], ¹⁰⁰ K. Bunkowski[®], ¹⁰⁷ K. Doroba[®], ¹⁰⁷ A. Kalinowski[®], ¹⁰⁷ M. Konecki[®], ¹⁰⁸ J. Krolikowski[®], ¹⁰⁸ A. Muhammad[®], ¹⁰⁷ M. Araujo[®], ¹⁰⁸ D. Bastos[®], ¹⁰⁸ C. Beirão Da Cruz E Silva, ¹⁰⁸ A. Boletti[®], ¹⁰⁸ M. Bozzo[®], ¹⁰⁸ P. Faccioli[®], ¹⁰⁸ M. Gallinaro[®], ¹⁰⁸ J. Hollar[®], ¹⁰⁸ N. Leonardo[®], ¹⁰⁸ T. Niknejad[®], ¹⁰⁸ M. Pisano[®], ¹⁰⁸ J. Seixas[®], ¹⁰⁸ J. Varela[®], ¹⁰⁸ P. Adzic[®], ¹⁰⁹ P. Milenovic[®], ¹⁰⁹ M. Dordevic[®], ¹¹⁰ J. Milosevic[®], ¹¹⁰ V. Rekovic, ¹¹⁰ M. Aguilar-Benitez, ¹¹¹ J. Alcaraz Maestre[®], ¹¹¹ M. Barrio Luna, ¹¹¹ Cristina F. Bedoya[®], ¹¹¹ M. Cepeda[®], ¹¹¹ M. Cerrada[®], ¹¹¹ N. Colino[®], ¹¹¹ B. De La Cruz[®], ¹¹¹ A. Delgado Peris[®], ¹¹¹ D. Fernández Del Val[®], ¹¹¹ J. P. Fernández Ramos[®], ¹¹¹ J. Flix[®], ¹¹¹ M. C. Fouz[®], ¹¹¹ O. Gonzalez Lopez[®], ¹¹¹ S. Goy Lopez[®], ¹¹¹ J. M. Hernandez[®], ¹¹¹ M. I. Josa[®], ¹¹¹ J. León Holgado[®], ¹¹¹ D. Margen[®], ¹¹¹ C. Parez Dengra[®], ¹¹¹ A. Pérez-Calero Yzquierdo[®], ¹¹¹ H. D. Moran[©],¹¹¹ C. M. Morcillo Perez[©],¹¹¹ Á. Navarro Tobar[©],¹¹¹ C. Perez Dengra[©],¹¹¹ A. Pérez-Calero Yzquierdo[©],¹¹¹ J. Puerta Pelayo[©],¹¹¹ I. Redondo[©],¹¹¹ D. D. Redondo Ferrero[®],¹¹¹ L. Romero,¹¹¹ S. Sánchez Navas[©],¹¹¹ L. Urda Gómez[©],¹¹¹ J. Vazquez Escobar[©],¹¹¹ C. Willmott,¹¹¹ J. F. de Trocóniz[©],¹¹² B. Alvarez Gonzalez[®],¹¹³ J. Cuevas⁰, ¹¹³ J. Fernandez Menendez⁰, ¹¹³ S. Folgueras⁰, ¹¹³ I. Gonzalez Caballero⁰, ¹¹³ J. R. González Fernández⁰, ¹¹³ E. Palencia Cortezon⁰, ¹¹³ C. Ramón Álvarez⁰, ¹¹³ V. Rodríguez Bouza⁰, ¹¹³ A. Soto Rodríguez⁰, ¹¹³ A. Trapote⁰, ¹¹³ C. Vico Villalba⁰, ¹¹³ P. Vischia⁰, ¹¹³ S. Blanco Fernández⁰, ¹¹⁴ J. A. Brochero Cifuentes⁰, ¹¹⁴ I. J. Cabrillo⁰, ¹¹⁴ A. Calderon⁰, ¹¹⁴ J. Duarte Campderros⁰, ¹¹⁴ M. Fernandez⁰, ¹¹⁴ C. Fernandez Madrazo⁰, ¹¹⁴ G. Gomez⁰, ¹¹⁴ A. Calderon, ¹¹⁴ J. Duarte Campderros, ¹¹⁴ M. Fernandezo, ¹¹⁴ C. Fernandez Madrazoo, ¹¹⁴ G. Gomezo, ¹¹⁴ C. Lasaosa Garcíao, ¹¹⁴ C. Martinez Riveroo, ¹¹⁴ P. Martinez Ruiz del Arbolo, ¹¹⁴ F. Matorras, ¹¹⁴ P. Matorras Cuevaso, ¹¹⁴ E. Navarrete Ramos, ¹¹⁴ J. Piedra Gomezo, ¹¹⁴ C. Prieels, ¹¹⁴ L. Scodellaroo, ¹¹⁴ I. Vilao, ¹¹⁴ P. Matorras Cuevaso, ¹¹⁴ M. K. Jayanandao, ¹¹⁵ B. Kailasapathyo, ¹¹⁵jii D. U. J. Sonnadarao, ¹¹⁵ D. D. C. Wickramarathnao, ¹¹⁵ W. G. D. Dharmaratnao, ¹¹⁶ K. Liyanageo, ¹¹⁶ N. Pererao, ¹¹⁶ N. Wickramageo, ¹¹⁶ D. Abbaneoo, ¹¹⁷ C. Amendolao, ¹¹⁷ E. Auffrayo, ¹¹⁷ G. Auzingero, ¹¹⁷ J. Baechler, ¹¹⁷ D. Barneyo, ¹¹⁷ A. Bermúdez Matínezo, ¹¹⁷ M. Biancoo, ¹¹⁷ B. Bilino, ¹¹⁷ A. A Bin Anuaro, ¹¹⁷ A. Boccio, ¹¹⁷ E. Brondolino, ¹¹⁷ C. Caillolo, ¹¹⁷ T. Camporesio, ¹¹⁷ G. Cerminarao, ¹¹⁷ N. Chernyavskayao, ¹¹⁷ D. d'Enterriao, ¹¹⁷ A. Dabrowskio, ¹¹⁷ A. Davido, ¹¹⁷ A. De Roceko, ¹¹⁷ M. M. Defranchiso, ¹¹⁷ M. Deisono, ¹¹⁷ F. Fallavollita, ^{117,kkk} L. Forthommeo, ¹¹⁷ G. Franzonio, ¹¹⁷ W. Funko, ¹¹⁷ S. Giani, ¹¹⁷ P. Janoto, ¹¹⁷ J. Kieselero, ¹¹⁷ S. Laurilao, ¹¹⁷ F. Meijerso, ¹¹⁷ J. Hegemano, ¹¹⁷ V. Innocenteo, ¹¹⁷ S. Maiero, ¹¹⁷ P. Janoto, ¹¹⁷ S. Surarilao, ¹¹⁷ F. Pantaleoo, ¹¹⁷ S. Mersio, ¹¹⁷ C. Arerillo, ¹¹⁷ M. Rovero, ¹¹⁷ A. Pfeiffero, ¹¹⁷ M. Mulderso, ¹¹⁷ S. Orfanelli, ¹¹⁷ F. Pantaleoo, ¹¹⁷ S. Mersio, ¹¹⁷ C. Peruccianio, ¹¹⁷ M. Rovero, ¹¹⁷ M. Sakulio, ¹¹⁷ S. Scarfio, ¹¹⁷ M. Selvaggio, ¹¹⁷ A. Shermao, ¹¹⁷ D. Bilvao, ¹¹⁷ P. Shicaso, ¹¹⁷ M. Selvaggio, ¹¹⁷ A. Shermao, ¹¹⁸ Q. Ingramo, ¹¹⁸ H. C. Kaestio, ¹¹⁷ M. Rovero, ¹¹⁷ J. Wanczyko, ¹¹⁷ M. Selvaggio, ¹¹⁷ A. Sharmao, ¹¹⁸ K. Horisbergero, ¹¹⁷ M. Rovero, ¹¹⁷ M. Rovero, ¹¹⁷ M. Sultao, ¹¹⁷ M. Selvaggio, ¹¹⁷ A. Sharmao, ¹¹⁸ C. Reales Gutiérez, ¹¹⁷ M. Rovero, ¹¹⁷ J. Wanczyko, ¹¹⁷ M. Selvaggio, ¹¹⁷ A. Sharmao, ¹¹⁸ C. Raeles Gutiérez, ¹¹⁷ M. Rovero, ¹¹⁷ H. Sakulino, ¹¹⁷ D. Hits^[0], ¹¹⁹ W. Lustermann^[0], ¹¹⁹ A.-M. Lyon^[0], ¹¹⁹ R. A. Manzoni^[0], ¹¹⁹ M. Marchegiani^[0], ¹¹⁹ L. Marchese^[0], ¹¹⁹ C. Martin Perez^[0], ¹¹⁹ A. Mascellani^[0], ¹¹⁹ F. Nessi-Tedaldi^[0], ¹¹⁹ F. Pauss^[0], ¹¹⁹ V. Perovic^[0], ¹¹⁹ S. Pigazzini^[0], ¹¹⁹ M. G. Ratti^[0], ¹¹⁹ M. Reichmann^[0], ¹¹⁹ C. Reissel^[0], ¹¹⁹ T. Reitenspiess^[0], ¹¹⁹ B. Ristic^[0], ¹¹⁹ F. Riti^[0], ¹¹⁹ D. Ruini, ¹¹⁹

<page-header><code-block></code>

PHYSICAL REVIEW LETTERS 132, 111901 (2024)
A. Bornheime, ¹⁴⁵ O. Cerri, ¹⁴⁵ A. Latorre, ¹⁴⁵ J. M. Lawhorne, ¹⁴⁵ J. Maoe, ¹⁴⁵ H. B. Newmane, ¹⁴⁵ T. Q. Nguyee, ¹⁴⁵ M. Spiropulue, ¹⁴⁵ J. R. Vlimante, ¹⁴⁵ C. Wang, ¹⁴⁵ S. Xiee, ¹⁴⁵ R. Y. Zhue, ¹⁴⁵ J. Alisone, ¹⁴⁶ S. Ane, ¹⁴⁶ M. B. Andrewse, ¹⁴⁶ M. Spiropulue, ¹⁴⁶ V. Duttae, ¹⁴⁶ T. Fergusone, ¹⁴⁶ A. Harilale, ¹⁴⁶ C. Liue, ¹⁴⁶ T. Mudholkare, ¹⁴⁶ S. Murthye, ¹⁴⁶ M. Paulinie, ¹⁴⁶ A. Robertse, ¹⁴⁶ M. A. Sancheze, ¹⁴⁶ W. Terrille, ¹⁴⁶ J. P. Cumalate, ¹⁴⁷ W. T. Forde, ¹⁴⁷ A. Hassanie, ¹⁴⁷ G. Karathanasise, ¹⁴⁷ K. Stensone, ¹⁴⁷ N. Manganellie, ¹⁴⁷ F. Marinie, ¹⁴⁷ N. Zippere, ¹⁴⁷ J. Alexandere, ¹⁴⁸ S. Bright-Thonneye, ¹⁴⁸ X. Chene, ¹⁴⁸ M. A. Ulmere, ¹⁴⁷ S. R. Wagnere, ¹⁴⁷ N. Zippere, ¹⁴⁷ J. Alexandere, ¹⁴⁸ S. Hogane, ¹⁴⁸ J. Monroye, ¹⁴⁸ J. R. Patterssone, ¹⁴⁸ B. J. Cranshawe, ¹⁴⁸ M. Reide, ¹⁴⁸ A. Ryde, ¹⁴⁸ J. Thome, ¹⁴⁸ P. Wittiche, ¹⁴⁸ R. Zoue, ¹⁴⁸ J. Monroye, ¹⁴⁹ J. R. Patterssone, ¹⁴⁹ G. A. Ulmere, ¹⁴⁹ J. S. Thome, ¹⁴⁹ D. Gadkarie, ¹⁴⁹ R. Gueure, ¹⁴⁹ J. Berryhille, ¹⁴⁹ D. Caharame, ¹⁴⁹ D. J. Burtler, ¹⁴⁹ J. D. Stuttere, ¹⁴⁹ A. Apresyane, ¹⁴⁰ L. A. T. Bauerdicke, ¹⁴⁹ D. Berrye, ¹⁴⁹ J. Berryhille, ¹⁴⁹ K. Burkette, ¹⁴⁹ J. N. Butlere, ¹⁴⁹ A. Canepae, ¹⁴⁹ G. B. Ceratie, ¹⁴⁹ H. W. K. Cheunge, ¹⁴⁹ J. Burkette, ¹⁴⁹ J. D. Green, ¹⁴⁹ S. Grünendahle, ¹⁴⁰ D. Guerreroe, ¹⁴⁹ O. Gustechee, ¹⁴⁹ R. Marise, ¹⁴⁹ Z. Gecsee, ¹⁴⁹ L. Graye, ¹⁴⁹ D. Green, ¹⁴⁹ S. Grünendahle, ¹⁴⁹ D. Masone, ¹⁴⁹ D. Guerreroe, ¹⁴⁹ O. Gustechee, ¹⁴⁹ R. Hullere, ¹⁴⁹ Z. Gecsee, ¹⁴⁹ L. Graye, ¹⁴⁹ D. Green, ¹⁴⁹ S. Grünendahle, ¹⁴⁹ D. Masone, ¹⁴⁹ D. Lincolme, ¹⁴⁹ R. Liptone, ¹⁴⁹ S. Shreen, ¹⁴⁹ J. Stypine, ¹⁴⁹ J. Ngadiubae, ¹⁴⁹ S. Stypine, ¹⁴⁹ D. Masone, ¹⁴⁹ D. Lincolme, ¹⁴⁹ R. Liptone, ¹⁴⁹ S. Shreen, ¹⁴⁹ M. Stypine, ¹⁴⁹ J. Stypine, ¹⁴⁹ J. Stypine, ¹⁴⁹ D. Masone, ¹⁴⁹ D. Lincolme, ¹⁴⁹ R. Liptone, ¹⁴⁹ S B. Alsufyani, ¹⁵² M. M. Baarmando, ¹⁵² S. Butallao, ¹⁵² T. Elkafrawyo, ¹⁵² M. Hohlmanno, ¹⁵² R. Kumar Vermae, ¹⁵² M. Rahmani, ¹⁵³ M. R. Adamso, ¹⁵³ C. Bennett, ¹⁵³ R. Cavanaugho, ¹⁵³ D. Dittnero, ¹⁵³ R. Escobar Francoo, ¹⁵³
O. Evdokimovo, ¹⁵³ C. E. Gerbero, ¹⁵³ D. J. Hofmano, ¹⁵³ J. h. Leeo, ¹⁵³ D. S. Lemoso, ¹⁵³ A. H. Merrito, ¹⁵⁴ C. Millso, ¹⁵³ S. Nandao, ¹⁵³ G. Oho, ¹⁵³ B. Ozeko, ¹⁵³ D. Pilipovico, ¹⁵³ T. Royo, ¹⁵³ S. Rudrabhatlao, ¹⁵⁴ M. B. Tonjeso, ¹⁵³ N. Varelaso, ¹⁵³ X. Wang, ¹⁵³ Z. Yeo, ¹⁵³ J. Yooo, ¹⁵⁴ M. Alhussenino, ¹⁵⁴ D. Blend, ¹⁵⁴ K. Dilsizo, ¹⁵⁴ M. B. Londiato, ¹⁵⁴ G. Karamano, ¹⁵⁴ O. K. Köseyano, ¹⁵⁴ J.-P. Merlo, ¹⁵⁴ A. Mestvirishvilio, ^{154,0000} J. Nachtmano, ¹⁵⁴ O. Neogi, ¹⁵⁴ H. Ogulo, ^{154,49909} Y. Onelo, ¹⁵⁴ A. Penzoo, ¹⁵⁴ C. Snyder, ¹⁵⁴ E. Tiraso, ^{154,4990} B. Blumenfeldo, ¹⁵⁵ L. Corcodiloso, ¹⁵⁵ J. Daviso, ¹⁵⁵ A. V. Gritsano, ¹⁵⁵ L. Kango, ¹⁵⁵ S. Kyriacouo, ¹⁵⁵ P. Maskimovico, ¹⁵⁵ M. Roguljico, ¹⁵⁶ P. Baringero, ¹⁵⁶ A. Beano, ¹⁵⁶ Z. Flowerso, ¹⁵⁶ D. Grove, ¹⁵⁶ J. Kingo, ¹⁵⁶ G. Krintraso, ¹⁵⁶ M. Lazarovitso, ¹⁵⁶ C. Le Mahieuo, ¹⁵⁶ C. Le Mahieuo, ¹⁵⁶ S. Popescuo, ¹⁵⁶ T. Kuago, ¹⁵⁶ S. Sanderso, ¹⁵⁶ C. Smitho, ¹⁵⁶ M. Pitte, ¹⁵⁶ S. Popescuo, ¹⁵⁶ T. C. Rogano, ¹⁵⁶ C. Royono, ¹⁵⁶ R. Salvaticoo, ¹⁵⁶ S. Sanderso, ¹⁵⁷ D. Kim, ¹⁵⁷ Y. Maravino, ¹⁵⁷ K. Nam, ¹⁵⁷ J. Natolio, ¹⁵⁷ J. Rovov, ¹⁵⁷ K. Kaadzeo, ¹⁵⁷ A. Kalogeropouloso, ¹⁵⁷ D. Kim, ¹⁵⁷ Y. Maravino, ¹⁵⁷ K. Nam, ¹⁵⁷ J. Natolio, ¹⁵⁹ A. Bethanio, ¹⁵⁹ Y. M. Cheno, ¹⁵⁹ S. C. Enoo, ¹⁵⁹ N. J. Hadleyo, ¹⁵⁹ S. Jabeeno, ¹⁵⁹ O. Baron, ¹⁵⁹ J. Koetho, ¹⁵⁹ Y. Laio, ¹⁵⁹ K. Wongo, ¹⁵⁹ J. Sacio, ¹⁵⁹ S. Schine, ¹⁶⁰ W. Busza, ¹⁶⁰ I. A. Calio, ¹⁶⁰ Y. Cheno, ¹⁶⁰ J. Koreho, ¹⁶⁰ J. Krupao, ¹⁶⁰ J. Krupao, ¹⁶⁰ G. Gomez-Ceballoso, ¹⁶⁰ M. Goncharov, ¹⁶⁰ C. Pauseo, ¹⁶⁰ M. D'Alfonso, ¹⁶⁰ J. Krupao, ¹⁶⁰ J. Krupao, ¹⁶⁰ G. Gomez-Ceballoso, ¹⁶⁰ M. Gronaro

<page-header><code-block></code>

A. Toropin[®],¹⁸⁴ L. Uvarov[®],¹⁸⁴ A. Uzunian[®],¹⁸⁴ A. Vorobyev,^{184,a} N. Voytishin[®],¹⁸⁴ B. S. Yuldashev,^{184,yyyy} A. Zarubin[®],¹⁸⁴ I. Zhizhin[®],¹⁸⁴ and A. Zhokin[®],¹⁸⁴

(CMS Collaboration)

¹Yerevan Physics Institute, Yerevan, Armenia ²Institut für Hochenergiephysik, Vienna, Austria ³Universiteit Antwerpen, Antwerpen, Belgium ⁴Vrije Universiteit Brussel, Brussel, Belgium ⁵Université Libre de Bruxelles, Bruxelles, Belgium ⁶Ghent University, Ghent, Belgium ⁷Université Catholique de Louvain, Louvain-la-Neuve, Belgium ⁸Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil ⁹Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil ¹⁰Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil ¹¹Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria ¹²University of Sofia, Sofia, Bulgaria ¹³Instituto De Alta Investigación, Universidad de Tarapacá, Casilla 7 D, Arica, Chile ⁴Beihang University, Beijing, China ¹⁵Department of Physics, Tsinghua University, Beijing, China ¹⁶Institute of High Energy Physics, Beijing, China ¹⁷State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China ¹⁸Sun Yat-Sen University, Guangzhou, China ¹⁹University of Science and Technology of China, Hefei, China ²⁰Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China ²¹Zhejiang University, Hangzhou, Zhejiang, China ²²Universidad de Los Andes, Bogota, Colombia ²³Universidad de Antioquia, Medellin, Colombia ²⁴University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia ²⁵University of Split, Faculty of Science, Split, Croatia ²⁶Institute Rudjer Boskovic, Zagreb, Croatia ²⁷University of Cyprus, Nicosia, Cyprus ²⁸Charles University, Prague, Czech Republic ²⁹Escuela Politecnica Nacional, Quito, Ecuador ³⁰Universidad San Francisco de Quito, Quito, Ecuador ³¹Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt ³²Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt ³National Institute of Chemical Physics and Biophysics, Tallinn, Estonia ³⁴Department of Physics, University of Helsinki, Helsinki, Finland ³⁵Helsinki Institute of Physics, Helsinki, Finland ³⁶Lappeenranta-Lahti University of Technology, Lappeenranta, Finland ⁷IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France ³⁸Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France ³⁹Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France ⁴⁰Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France ⁴¹Georgian Technical University, Tbilisi, Georgia ⁴²*RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany* ⁴³RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany ⁴⁴RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany ⁴⁵Deutsches Elektronen-Synchrotron, Hamburg, Germany ⁴⁶University of Hamburg, Hamburg, Germany ⁴⁷Karlsruher Institut fuer Technologie, Karlsruhe, Germany ⁴⁸Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece ⁴⁹National and Kapodistrian University of Athens, Athens, Greece ⁵⁰National Technical University of Athens, Athens, Greece ⁵¹University of Ioánnina, Ioánnina, Greece

111901-15

⁵²MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary ³Wigner Research Centre for Physics, Budapest, Hungary ⁵⁴Institute of Nuclear Research ATOMKI, Debrecen, Hungary ⁵⁵Institute of Physics, University of Debrecen, Debrecen, Hungary ⁵⁶Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary ⁵⁷Panjab University, Chandigarh, India ⁵⁸University of Delhi, Delhi, India ⁵⁹Saha Institute of Nuclear Physics, HBNI, Kolkata, India ⁶⁰Indian Institute of Technology Madras, Madras, India ⁶¹Tata Institute of Fundamental Research-A, Mumbai, India ⁶²Tata Institute of Fundamental Research-B, Mumbai, India ⁶³National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Bhubaneswar, Odisha, India ⁶⁴Indian Institute of Science Education and Research (IISER), Pune, India ⁶⁵Isfahan University of Technology, Isfahan, Iran ⁶⁶Institute for Research in Fundamental Sciences (IPM), Tehran, Iran ⁶⁷University College Dublin, Dublin, Ireland ^{68a}INFN Sezione di Bari, Bari, Italy ^{68b}Università di Bari, Bari, Italy ^{68c}Politecnico di Bari, Bari, Italy ^{69a}INFN Sezione di Bologna, Bologna, Italy ^{69b}Università di Bologna, Bologna, Italy ^{70a}INFN Sezione di Catania, Catania, Italy ^{70b}Università di Catania, Catania, Italy ^{71a}INFN Sezione di Firenze, Firenze, Italy ^{71b}Università di Firenze, Firenze, Italy ⁷²INFN Laboratori Nazionali di Frascati, Frascati, Italy ^{73a}INFN Sezione di Genova, Genova, Italy ^{73b}Università di Genova, Genova, Italy ^{74a}INFN Sezione di Milano-Bicocca, Milano, Italy ^{74b}Università di Milano-Bicocca, Milano, Italy ^{75a}INFN Sezione di Napoli, Napoli, Italy ^{75b}Università di Napoli 'Federico II', Napoli, Italy ⁷⁵CUniversità della Basilicata, Potenza, Italy ^{75d}Università G. Marconi, Roma, Italy ^{76a}INFN Sezione di Padova, Padova, Italy ^{76b}Università di Padova, Padova, Italy ^{76c}Università di Trento, Trento, Italy ^{77a}INFN Sezione di Pavia, Pavia, Italy ^{77b}Università di Pavia, Pavia, Italy ^{78a}INFN Sezione di Perugia, Perugia, Italy ^{78b}Università di Perugia, Perugia, Italy ^{79a}INFN Sezione di Pisa, Pisa, Italy ^{79b}Università di Pisa, Pisa, Italy ⁷⁹cScuola Normale Superiore di Pisa, Pisa, Italy ^{9d}Università di Siena, Siena, Italy ^{80a}INFN Sezione di Roma, Roma, Italy ^{80b}Sapienza Università di Roma, Roma, Italy ^{81a}INFN Sezione di Torino, Torino, Italy ^{81b}Università di Torino, Torino, Italy ⁸¹^cUniversità del Piemonte Orientale, Novara, Italy ^{32a}INFN Sezione di Trieste, Trieste, Italy ^{82b}Università di Trieste, Trieste, Italy ⁸³Kyungpook National University, Daegu, Korea ⁸⁴Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea ⁸⁵Hanyang University, Seoul, Korea ⁸⁶Korea University, Seoul, Korea ⁸⁷Kyung Hee University, Department of Physics, Seoul, Korea ⁸⁸Sejong University, Seoul, Korea ⁸⁹Seoul National University, Seoul, Korea ⁹⁰University of Seoul, Seoul, Korea

PHYSICAL REVIEW LETTERS 132, 111901 (2024)

⁹¹Yonsei University, Department of Physics, Seoul, Korea ²²Sungkyunkwan University, Suwon, Korea ⁹³College of Engineering and Technology, American University of the Middle East (AUM), Dasman, Kuwait ⁹⁴Riga Technical University, Riga, Latvia ⁹⁵University of Latvia (LU), Riga, Latvia ⁹⁶Vilnius University, Vilnius, Lithuania ⁹⁷National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia ⁹⁸Universidad de Sonora (UNISON), Hermosillo, Mexico ⁹⁹Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico ¹⁰⁰Universidad Iberoamericana, Mexico City, Mexico ¹⁰¹Benemerita Universidad Autonoma de Puebla, Puebla, Mexico ¹⁰²University of Montenegro, Podgorica, Montenegro ¹⁰³University of Canterbury, Christchurch, New Zealand ¹⁰⁴National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan ¹⁰⁵AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland ¹⁰⁶National Centre for Nuclear Research, Swierk, Poland ¹⁰⁷Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland ¹⁰⁸Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal ¹⁰⁹Faculty of Physics, University of Belgrade, Belgrade, Serbia ¹¹⁰VINCA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia ¹¹¹Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain ¹¹²Universidad Autónoma de Madrid, Madrid, Spain ¹¹³Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain ⁴Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain ¹¹⁵University of Colombo, Colombo, Sri Lanka ¹¹⁶University of Ruhuna, Department of Physics, Matara, Sri Lanka ¹¹⁷CERN, European Organization for Nuclear Research, Geneva, Switzerland ¹¹⁸Paul Scherrer Institut, Villigen, Switzerland ¹¹⁹ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland ¹²⁰Universität Zürich, Zurich, Switzerland ¹²¹National Central University, Chung-Li, Taiwan ¹²²National Taiwan University (NTU), Taipei, Taiwan ¹²³Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand ¹²⁴Cukurova University, Physics Department, Science and Art Faculty, Adana, Turkey ¹²⁵Middle East Technical University, Physics Department, Ankara, Turkey ¹²⁶Bogazici University, Istanbul, Turkey ¹²⁷Istanbul Technical University, Istanbul, Turkey ¹²⁸Istanbul University, Istanbul, Turkey ¹²⁹Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkiv, Ukraine ¹³⁰National Science Centre, Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine ¹³¹University of Bristol, Bristol, United Kingdom ¹³²Rutherford Appleton Laboratory, Didcot, United Kingdom ¹³³Imperial College, London, United Kingdom ¹³⁴Brunel University, Uxbridge, United Kingdom ¹³⁵Baylor University, Waco, Texas, USA ¹³⁶Catholic University of America, Washington, DC, USA ¹³⁷The University of Alabama, Tuscaloosa, Alabama, USA ¹³⁸Boston University, Boston, Massachusetts, USA ¹³⁹Brown University, Providence, Rhode Island, USA ¹⁴⁰University of California, Davis, Davis, California, USA ¹⁴¹University of California, Los Angeles, California, USA ¹⁴²University of California, Riverside, Riverside, California, USA ¹⁴³University of California, San Diego, La Jolla, California, USA ¹⁴⁴University of California, Santa Barbara - Department of Physics, Santa Barbara, California, USA ⁴⁵California Institute of Technology, Pasadena, California, USA ¹⁴⁶Carnegie Mellon University, Pittsburgh, Pennsylvania, USA ¹⁴⁷University of Colorado Boulder, Boulder, Colorado, USA ¹⁴⁸Cornell University, Ithaca, New York, USA ¹⁴⁹Fermi National Accelerator Laboratory, Batavia, Illinois, USA ¹⁵⁰University of Florida, Gainesville, Florida, USA

¹⁵¹Florida State University, Tallahassee, Florida, USA ¹⁵²Florida Institute of Technology, Melbourne, Florida, USA ¹⁵³University of Illinois at Chicago (UIC), Chicago, Illinois, USA ¹⁵⁴The University of Iowa, Iowa City, Iowa, USA ¹⁵⁵Johns Hopkins University, Baltimore, Maryland, USA ¹⁵⁶The University of Kansas, Lawrence, Kansas, USA ¹⁵⁷Kansas State University, Manhattan, Kansas, USA ¹⁵⁸Lawrence Livermore National Laboratory, Livermore, California, USA ¹⁵⁹University of Maryland, College Park, Maryland, USA ¹⁶⁰Massachusetts Institute of Technology, Cambridge, Massachusetts, USA ⁶¹University of Minnesota, Minneapolis, Minnesota, USA ¹⁶²University of Mississippi, Oxford, Mississippi, USA ¹⁶³University of Nebraska-Lincoln, Lincoln, Nebraska, USA ¹⁶⁴State University of New York at Buffalo, Buffalo, New York, USA ¹⁶⁵Northeastern University, Boston, Massachusetts, USA ¹⁶⁶Northwestern University, Evanston, Illinois, USA ¹⁶⁷University of Notre Dame, Notre Dame, Indiana, USA ¹⁶⁸The Ohio State University, Columbus, Ohio, USA ¹⁶⁹Princeton University, Princeton, New Jersey, USA ¹⁷⁰University of Puerto Rico, Mayaguez, Puerto Rico, USA ¹⁷¹Purdue University, West Lafayette, Indiana, USA ¹⁷²Purdue University Northwest, Hammond, Indiana, USA ¹⁷³Rice University, Houston, Texas, USA ¹⁷⁴University of Rochester, Rochester, New York, USA ¹⁷⁵The Rockefeller University, New York, New York, USA ¹⁷⁶Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA ¹⁷⁷University of Tennessee, Knoxville, Tennessee, USA ¹⁷⁸Texas A&M University, College Station, Texas, USA

¹⁷⁹Texas Tech University, Lubbock, Texas, USA

¹⁸⁰Vanderbilt University, Nashville, Tennessee, USA

¹⁸¹University of Virginia, Charlottesville, Virginia, USA

¹⁸²Wayne State University, Detroit, Michigan, USA

¹⁸³University of Wisconsin - Madison, Madison, Wisconsin, USA

¹⁸⁴An institute or international laboratory covered by a cooperation agreement with CERN

^aDeceased.

- ^bAlso at Yerevan State University, Yerevan, Armenia.
- ^cAlso at TU Wien, Vienna, Austria.

^dAlso at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.

- ^eAlso at Ghent University, Ghent, Belgium.
- ^fAlso at Universidade Estadual de Campinas, Campinas, Brazil.
- ^gAlso at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
- ^hAlso at UFMS, Nova Andradina, Brazil.
- ⁱAlso at Nanjing Normal University Department of Physics, Nanjing, China.
- ^jAlso at Henan Normal University, Xinxiang, China.
- ^kAlso at Sun Yat-Sen University, Guangzhou, China.
- ¹Also at The University of Iowa, Iowa City, Iowa, USA.
- ^mAlso at University of Chinese Academy of Sciences, Beijing, China.
- ⁿAlso at University of Chinese Academy of Sciences, Beijing, China.
- ^oAlso at Université Libre de Bruxelles, Bruxelles, Belgium.
- ^pAlso at Another institute or international laboratory covered by a cooperation agreement with CERN.
- ^qAlso at Helwan University, Cairo, Egypt.
- ^rAlso at Zewail City of Science and Technology, Zewail, Egypt.
- ^sAlso at Ain Shams University, Cairo, Egypt.
- ^tAlso at British University in Egypt, Cairo, Egypt.
- ^uAlso at Birla Institute of Technology, Mesra, Mesra, India.
- ^vAlso at Purdue University, West Lafayette, Indiana, USA.
- ^wAlso at Université de Haute Alsace, Mulhouse, France.
- ^xAlso at Department of Physics, Tsinghua University, Beijing, China.

- ^yAlso at Tbilisi State University, Tbilisi, Georgia.
- ^zAlso at The University of the State of Amazonas, Manaus, Brazil.
- ^{aa}Also at Erzincan Binali Yildirim University, Erzincan, Turkey.
- ^{bb}Also at University of Hamburg, Hamburg, Germany.
- ^{cc}Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
- ^{dd}Also at Isfahan University of Technology, Isfahan, Iran.
- ^{ee}Also at Bergische University Wuppertal (BUW), Wuppertal, Germany.
- ^{ff}Also at Brandenburg University of Technology, Cottbus, Germany.
- ^{gg}Also at Forschungszentrum Jülich, Juelich, Germany.
- ^{hh}Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
- ⁱⁱAlso at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt.
- ^{jj}Also at Wigner Research Centre for Physics, Budapest, Hungary.
- ^{kk}Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
- ¹¹Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
- ^{mm}Also at Universitatea Babes-Bolyai—Facultatea de Fizica, Cluj-Napoca, Romania.
- ⁿⁿAlso at Faculty of Informatics, University of Debrecen, Debrecen, Hungary.
- ⁰⁰Also at Punjab Agricultural University, Ludhiana, India.
- ^{pp}Also at UPES—University of Petroleum and Energy Studies, Dehradun, India.
- ^{qq}Also at University of Visva-Bharati, Santiniketan, India.
- ^{rr}Also at University of Hyderabad, Hyderabad, India.
- ^{ss}Also at Indian Institute of Science (IISc), Bangalore, India.
- ^{tt}Also at IIT Bhubaneswar, Bhubaneswar, India.
- ^{uu}Also at Institute of Physics, Bhubaneswar, India.
- ^{vv}Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany.
- ^{ww}Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran.
- ^{xx}Also at Sharif University of Technology, Tehran, Iran.
- ^{yy}Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran.
- ^{zz}Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy.
- ^{aaa}Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy.
- ^{bbb}Also at Università degli Studi Guglielmo Marconi, Roma, Italy.
- ^{ccc}Also at Scuola Superiore Meridionale, Università di Napoli 'Federico II', Napoli, Italy.
- ^{ddd}Also at Fermi National Accelerator Laboratory, Batavia, Illinois, USA.
- eee Also at Università di Napoli 'Federico II', Napoli, Italy.
- ^{fff}Also at Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali, Perugia, Italy.
- ^{ggg}Also at Riga Technical University, Riga, Latvia.
- hhh Also at Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia.
- ⁱⁱⁱAlso at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
- ⁱⁱⁱAlso at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka.
- ^{kkk} Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy.
- ^{III}Also at National and Kapodistrian University of Athens, Athens, Greece.
- ^{mmm}Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland.
- ⁿⁿⁿAlso at University of Vienna Faculty of Computer Science, Vienna, Austria.
- ⁰⁰⁰Also at Universität Zürich, Zurich, Switzerland.
- ppp Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria.
- ^{qqq}Also at Laboratoire d'Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France.
- ^{rrr}Also at Near East University, Research Center of Experimental Health Science, Mersin, Turkey.
- ^{sss}Also at Konya Technical University, Konya, Turkey.
- ^{ttt}Also at Izmir Bakircay University, Izmir, Turkey.
- ^{uuu}Also at Adiyaman University, Adiyaman, Turkey.
- ^{vvv}Also at Necmettin Erbakan University, Konya, Turkey.
- ^{www}Also at Bozok Universitetesi Rektörlügü, Yozgat, Turkey.
- ^{xxx}Also at Marmara University, Istanbul, Turkey.
- ^{yyy}Also at Milli Savunma University, Istanbul, Turkey.
- ^{ZZZ}Also at Kafkas University, Kars, Turkey.
- ^{aaaa}Also at Hacettepe University, Ankara, Turkey.
- bbbb Also at Istanbul University—Cerrahpasa, Faculty of Engineering, Istanbul, Turkey.
- ^{cccc}Also at Yildiz Technical University, Istanbul, Turkey.
- ^{dddd}Also at Vrije Universiteit Brussel, Brussel, Belgium.
- eeee Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
- ffff Also at University of Bristol, Bristol, United Kingdom.

- gggg Also at IPPP Durham University, Durham, United Kingdom.
- ^{hhhh}Also at Monash University, Faculty of Science, Clayton, Australia.
- ⁱⁱⁱⁱAlso at Università di Torino, Torino, Italy.
- ^{jiii}Also at Bethel University, St. Paul, Minnesota, USA.
- ^{kkkk} Also at Karamanoğlu Mehmetbey University, Karaman, Turkey.
- ^{IIII}Also at California Institute of Technology, Pasadena, California, USA.
- ^{mmmm}Also at United States Naval Academy, Annapolis, Maryland, USA.
- ⁿⁿⁿⁿAlso at Bingol University, Bingol, Turkey.
- ⁰⁰⁰⁰Also at Georgian Technical University, Tbilisi, Georgia.
- pppp Also at Sinop University, Sinop, Turkey.
- ^{qqqq}Also at Erciyes University, Kayseri, Turkey.
- marAlso at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania.
- ^{ssss}Also at Texas A&M University at Qatar, Doha, Qatar.
- ttttAlso at Kyungpook National University, Daegu, Korea.
- ^{uuuu}Also at Universiteit Antwerpen, Antwerpen, Belgium.
- ^{vvvv}Also at Yerevan Physics Institute, Yerevan, Armenia.
- wwwwAlso at Northeastern University, Boston, Massachusetts, USA.
- ^{xxxx}Also at Imperial College, London, United Kingdom.

yyyy Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan.