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Introduction: Pure hereditary spastic paraplegia (SPG) type 4 (SPG4) is caused by

mutations of SPAST gene. This study aimed to analyze SPAST variants in SPG4

patients to highlight the occurrence of splicing mutations and combine functional

studies to assess the relevance of these variants in the molecular mechanisms of

the disease.

Methods: Weperformed anNGS panel in 105 patients, in silico analysis for splicing

mutations, and in vitro minigene assay.

Results and discussion: The NGS panel was applied to screen 105 patients

carrying a clinical phenotype corresponding to upper motor neuron syndrome

(UMNS), selectively a�ecting motor control of lower limbs. Pathogenic mutations

in SPAST were identified in 12 patients (11.42%), 5 missense, 3 frameshift, and 4

splicing variants. Then, we focused on the patients carrying splicing variants using

a combined approach of in silico and in vitro analysis through minigene assay and

RNA, if available. For two splicing variants (i.e., c.1245+1G>A and c.1414-2A>T),

functional assays confirm the types of molecular alterations suggested by the in

silico analysis (loss of exon 9 and exon 12). In contrast, the splicing variant c.1005-

1delG di�ered from what was predicted (skipping exon 7), and the functional

study indicates the loss of frame and formation of a premature stop codon. The

present study evidenced the high splice variants in SPG4 patients and indicated

the relevance of functional assays added to in silico analysis to decipher the

pathogenic mechanism.
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1 Introduction

Hereditary spastic paraplegias (HSPs) are inherited motor

neuron disorders caused by mutations that may occur in more

than 70 distinct loci (SPG1–72). These mutations vary concerning

inheritance patterns, including pure and complicated autosomal

dominant, autosomal recessive, and X-linked chromosomes (1, 2).

The most frequent HSPs are autosomal dominant hereditary

spastic paraplegia (ADHSPs), with a prevalence ranging from

1.8 to 5.5/100,000 in most populations (3, 4). Pure hereditary

spastic paraplegia (SPG) type 4 (SPG4) is the most common form,

accounting for 15–40% of all HSP cases (3, 5–10). Patients affected

by SPG4 manifest an upper motor neuron syndrome, which is

characterized by weakness mostly involving the lower limb and

increased muscle tone (i.e., spasticity) involving both proximal

and distal muscles. Moreover, neurogenic urinary disturbances,

including urgency, hesitancy, and incontinence, are usually present.

According to this clinical syndrome, SPG4 is defined as a non-

complicated or pure HSP. Such a definition rules out those

syndromes, including ataxia, dementia, developmental delay, optic

neuropathy, retinopathy, peripheral neuropathy, amyotrophy,

extrapyramidal dysfunction, deafness, or ichthyosis (11).

SPG4 is caused by mutations in SPAST (located on 2p22.3),

which encodes the microtubule-severing protein spastin, a member

of the AAA (ATPase associated with various cellular activities)

protein family. Hundreds of variants without mutational hotspots

have been reported, including missense mutations clustered

mainly in the AAA domain, along with nonsense, splice-

site point mutations, insertions, and deletions found in all

regions (6, 8, 12–16).

Next-generation sequencing (NGS) represents the best

approach for the genetic study of HSP since it allows a massive

concomitant analysis of more than 80 causal SPG genes (1, 17),

which allow a detection rate between 20 and 70% considering

sporadic vs. familial patients in diagnostic procedures (18).

Variants in the SPAST gene are the most common cause of HSP

and, depending upon the ethnic background of patients, account

for 15–40% of all HSP cases (7–9).

Among SPAST mutations, splicing events occur roughly in 10%

of patients with a pathogenic variant (12) although it is likely

that such a prevalence is underestimated due to the sequencing

pipeline used in routine NGS experiments for current molecular

diagnosis. This approach allows routine detection of canonical

splicing variants only. These correspond tomutations falling within

essential dinucleotide sites, while other splicing variants (i.e., deep

intronic, near splice-site, synonymous, or missense) are either

missed out or cannot be detected unless additional studies are

carried out, and their molecular relevance is established (19).

The present study aimed to detect SPAST variants in SPG4

patients, deciphering the aberrant molecular mechanisms that

lead to the disease state. This is carried out by implementing

a panel including 80 genes involved with HSP. The study was

conducted on 105 patients with a clinical phenotype compatible

with an upper motor neuron syndrome (UMNS) selectively

affecting lower limbs. The NGS was implemented by molecular

approaches to detect pathogenicity and molecular mechanisms of

novel splicing variants.

2 Materials and methods

2.1 Patients

All patients were recruited by IRCCS Neuromed Institute,

Pozzilli (IS), Department of Human Neurosciences, Sapienza

University of Rome and Center for Neurodegenerative Diseases

at Fondazione Panico, Tricase (LE), according to the following

inclusion criteria: (1) clinical phenotype compatible with upper

motor neuron syndrome (UMNS) and selectively affecting

lower limbs; (2) exclusion of sporadic, non-genetic causes of

paraplegia (e.g., brain and spinal cord lesions) as detected from

1.5T MRI scanning. Once recruited, all patients were scored

by applying the spastic paraparesis rating scale (SPSR), the

modified Ashworth scale (MAS), and Barthel Index (BI). The

instrumental evaluation of patients included measurement of

nerve conduction, somatosensory-evoked potentials (SSEP), and

motor-evoked potentials (MEP) both to the upper and lower limbs.

All patients gave written informed consent in agreement with

the Helsinki Declaration. The local ethical committee approved

the study.

The study cohort included 105 patients, already considered in

Ferese et al. (20) focusing on non-canonical splice variants. In the

present study, the same cohort of patients has been well described

and characterized, and the focus was shifted to canonical splice

site mutations.

2.2 DNA extraction

Genomic DNA was isolated from peripheral blood leukocytes

according to standard procedures (QIAamp DNA Blood Mini Kit–

QIAGEN).

2.3 Next-generation sequencing panel

The NGS analysis was performed using the SeqCap EZ

Choice Enrichment Kits (Hoffmann-La Roche, Basel) on an

Illumina MiSeq (San Diego, CA). A full list of genes sequenced

is provided in Supplementary Table 1. All coding exons of

the RefSeq transcripts of the genes and 15 base pairs of

the flanking introns were targeted. In total, 99% of the

coding exons were sequenced with a minimal read depth

of 30X.

GenomeUp software (https://lab.juliaomix.com/) was used for

data analysis. It provides automated annotation (Best Practices

workflows of GATK v4.1 for germline variant calling), alignment

of sequence reads to the reference genome GRCh37/hg19, and

selection of potentially pathogenic variants. Direct evaluation

of data sequence was performed by the Integrative Genomics

Viewer v.2.3.Mutation re-sequencing and segregation analysis were

performed by the Sanger sequencing ABI 3130xl Genetic Analyzer

(Applied Biosystems).
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2.4 Data analysis and variants interpretation

Variants were classified with the help of public databases

(VarSome https://varsome.com; GnomAD https://gnomad.

broadinstitute.org) and according to the American College of

Medical Genetics Guideline for germline variant classification

(pathogenic (class 5), likely pathogenic (class 4), and variants

of uncertain significance (VoUS; class 3) (21). In silico analyses

were performed using SIFT, PolyPhen, PROVEAN, and Mutation

Assessor. The novel variants identified have been submitted to the

ClinVar database.

2.5 In silico analysis for splicing mutations

The identified DNA variation was tested for potential splicing

effects using the following online software products: varSEAK SSP

(https://varseak.bio) is a website that provides information about

genetic variants from public databases. The prediction of how

a splicing site may lead to functional (positive values) or non-

functional (negative values) effects was expressed by a probability

score ranging from−100% to+100%. This is expressed by 1Score

(DeltaScore): the difference between the score of the splice site

on the reference sequence and the score of the splice site on the

variant sequence. NNSPLICE (http://www.fruitfly.org/seq_tools/

splice.html) employs two “neural networks” that were trained

on consensus splice sites while also considering dinucleotide

frequencies due to the strong correlation between neighboring

nucleotides in splice site consensus sequences (22), NNsplice

assigns a score of 0 to 1 for native splice sites EX SKIP (https://

ex-skip.img.cas.cz). This software compares the exonic splicing

enhancers (ESEs) vs. exonic splicing silencers (ESSs) profile of

a wild-type and a mutated allele to quickly determine which

exonic variant has the highest chance to skip this exon. The

software calculates the total number of ESSs, ESEs, and their

ratio. Specifically, it computes the number of RESCUE-ESEs (23),

fluorescence-activated screen for exonic splicing silencers (FAS-

ESSs) (24), putative ESEs (PESEs) on putative ESSs (PESSs) (25),

neighborhood inference (26), and exon-identity elements (EIE) on

intron-identity elements (IIEs) (27) for each segment. CRYP-SKIP

(https://cryp-skip.img.cas.cz) compares the ESE/ESS profile of a

wild-type and a mutated allele to quickly determine which exonic

variant has the highest chance to skip this exon. SpliceRover (http://

bioit2.irc.ugent.be/rover/splicerover) is a prediction tool that can

be used for donor and acceptor splice site prediction to gives us

a score, the median for donor splice sites increases from 0.816 to

0.907 score (28).

2.6 In vitro splicing analysis (minigene
assay)

The potential splicing effect of the SPAST variants was

investigated by using the pSPL3 minigene vector (exon trapping

system, Gibco, BRL, Carlsbad, CA). The SPAST exon and

flanking intronic sequences were amplified using the DNA from

heterozygous patients as a template.

In case of an intron is too small, the assay requires the insertion

of two exons. Instead, it is not possible to perform this assay when

the variant is localized in the last exon since the splicing junction is

not present.

The minigene constructs containing either the wild-type

or variant sequence were transfected into HEK 293 cells by

Lipofectamine 2000 (Invitrogen Corporation, Carlsbad, CA). After

48 h, total cellular RNA was isolated with the acidic guanidine

phenol-chloroform method. First-strand cDNA was synthesized

by SuperScript R© VILOTM (Thermo Fisher Scientific). RT-PCR

was performed using vector exonic primers SD6 (forward) and

SA2 (reverse) according to the manufacturer’s instructions. The

final PCR products obtained from transfection with wild-type and

variant plasmids were analyzed by DNA sequencing.

2.7 Literature review

Systematic literature review was conducted to identify the

detection rate of genetic variants and the clinical phenotype

of SPAST patients. Pubmed, Medline, and Embase databases

identified 20 cohort analysis studies consisting of world SPG

patients between 2000 and 2022. The literature studies identified

48 splicing mutations, 83.3% of which are placed in the AAA

Cassette (40/48), while 6.2% (3/48) are placed in the MIT motive,

and 10.4 % (5/48) in theMTBNmotive. These data are summarized

in Supplementary Table 2 and Figure 1 (8, 11, 15, 17, 20, 24, 29–

43).

3 Results

3.1 Cohort and genetic analysis

The study cohort included 105 patients, all suffering from

upper motor neuron syndrome affecting lower limbs. In detail,

patients manifested a variable severity of lower limb weakness,

predominant in the distal muscles, associated with hyperreflexia,

sustained ankle clonus, and finally, Babinski’s sign (i.e., spasticity).

None of these patients suffered from sensory loss, cerebellar

dysfunction, or additional neurological signs and symptoms, which

are commonly observed in HSP-plus conditions, as reflected by

the spastic paraparesis rating scale (SPRS) scores. None of these

patients had a concomitant involvement of the peripheral nervous

system, as shown by normal nerve conduction studies. All patients

had normal SEP from both upper and lower limb stimulation.

In this cohort of SPG4 patients, MEP was typically normal when

measured at the level of the upper limbs, whereas a variable degree

of impairment was recorded from lower limb muscles.

A total of 12 patients have pathogenic variants in SPG4, 2 in

SPG7, 1 KIF5a, 1 in SPG11.

Among patients with SPAST variants, 5 carry a missense, 3

a frameshift, and 4 carry splicing variant (Table 1) (20). These

variants were identified in three familial and eleven sporadic

patients (four have been previously reported as causative of HSPs,

and nine are novel variants). All variants, except p.Lys90Ter (TM

domain) and p.Lys236ProfsTer6 (MTBN domain), are placed in the

AAA Cassette. Nine of these variants are novel, while four have
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FIGURE 1

SPAST splicing variants reported in the literature. The SPAST gene spans the region of ∼90 kb of genomic DNA and contains 17 exons. Mutations

detected in this study are shown in red. TM (57–79 amino acids), MIT (116–197 amino acids), MTBD (270–328 amino acids), and AAA cassette

(342–599 amino acids) are highlighted.

been previously reported p.Arg460Cys (44), c.1245+1G>A (11),

and p.Arg431Ter (12). These variants are classified as class 4 or 5,

according to ACMG guidelines.

3.2 Splicing mutations

Four splicing variants have been identified in four families

(Table 2).

3.2.1 Family 497
The proband (II:1), 57 years old female, with disease onset

at 47 years, presented with progressive weakness and spasticity

of the lower limbs and dysphagia. Molecular analysis identified a

novel heterozygous variant c.[1414-2A>T] classified as pathogenic

(PVS1-PM2-PP3). This splicing variant falls within the typical

essential dinucleotides site, and it is considered a “conventional

splice-site mutation.” In silico analysis suggests a loss of acceptor

site (varSEAK SSP, NNSPLICE, EX SKIP, and CRYP-SKIP)

(Table 2). This in silico prediction was confirmed byminigene assay,

as shown in Figure 2A. PCR of cDNA without the variant produces

an amplicon of 436 bp related to a wild-type genotype (172 bp

of normal splicing of exons 11 and 12 + 264 bp of pSPL3 exon),

while PCR of cDNA with the variant produces an amplicon of

358 bp, which indicates abnormal splicing causing the loss of exon

12 (264 + 92 bp [exon 11]). These data have been confirmed by

RNA analysis in vivo on proband II:1 and her brother II:2 healthy

(Figure 2A). The PCR analyses produce an amplicon of 288 bp

(from exon 10 to exon 13) for II:2 and wild-type control, and one

amplicon of 288 bp (wild-type allele) and one of 208 bp (loss of exon

12) in the proband (II:1) (Figure 3).

This was confirmed by the Sanger sequence.

3.2.2 Family 159
The proband (III:2), 55-year-old female, with disease onset at

35 years, presented with progressive weakness and spasticity of the

lower limbs and bladder disturbances. Molecular analysis identified

a heterozygous variant c.[1245+1G>A] as previously described by

McDermott et al. (32), and classified as pathogenic (PVS1-PP5-

PM2-PP3). This variant falls within the essential dinucleotides site,

and it is considered a “conventional splice-site mutation.” In silico

analysis suggests a loss of donor site (varSEAK SSP, NNSPLICE, and

EX SKIP) or no splicing effect (CRYP-SKIP) (Table 2). These data

were confirmed by minigene assay, as shown in Figure 2B. PCR of
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TABLE 1 Genetic and clinical data in the cohort of patients analyzed.

Family
ID

HGVSc HGVSp dbSNP ID Mutation ACMG Criteria Clinvar Genotype Age Onset Sex Family
history

Score Ref

25 c.1378C>T p.Arg460Cys rs878854990 Missense 5 PM1-PM2-

PM5-PP2-

PP3-PP5

SCV000290032 Hz 45 33 F YES 151.38.00 (44)

71 c.1679C>T p.Pro560Leu Missense 4 PM1-PM2-

PP2-PP3

SCV000492797 Hz 65 44 M YES 161.26.00 This study

159 c.1245+ 1G>A Splicing 5 PVS1-PP5-

PM2-PP3

SCV001745884 Hz 55 35 F YES 165.41.00 (32)

497 c.1414-2A>T Splicing 5 PVS1-PM2-

PP3

SCV001745882 Hz 57 47 F NO 165.41.00 This study

246 c.268A>T p.Lys90Ter Missense 5 PVS1-PM2 Submitted Hz 51 35 M NO 150.57.00 This study

565 c.1215_1219del p.Asn405LysfsTer36 rs1553317032 Frameshift,

Ter

5 PVS1-PM2-

PP3-PP5

SCV000645342 Hz 51 40 M NO 134.53.00 (17)

861 c.1729-1G>C Splicing 5 PVS1-PM2-

PP3

SCV001745878 Hz 68 NA F NO 165.41.00 This study

879 c.1774_1775insG p.Ile592SerfsTer39 Frameshift,

Ter

5 PVS1-PM2-

PP3

SCV001451018 Hz 36 30 F YES 122.15.00 This study

992 c.1349G>A p.Arg450Lys Missense 4 PM5-PM2-

PM1-PP3

SCV002061744 Hz 59 6 M YES 160.19.00 This study

1281 c.1291C>T p.Arg431Ter rs786204126 Missense 5 PVS1-PM2-

PP3-PP5

SCV000218741 Hz 79 NA F NO 143.19.00 (12)

1323 c.1005-1delG Splicing 5 PVS1-PM2-PP SCV001745879 Hz 73 53 M YES 128.43.00 This study

1823 c.706_710del p.Lys236ProfsTer6 Frameshift,

Ter

5 PVS1-PM2 Submitted Hz 67 NA M NO 121.35.00 This study

NA, not applied; Hz, heterozygous; F, female; M, male.
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cDNA without variant produces an amplicon of 337 bp related to

a wild-type genotype (73 bp of normal splicing of exon 9 + 264

bp of pSPL3 exon), while PCR of cDNA with variant produces an

amplicon of 264 bp evidencing abnormal splicing causing the loss

of exon 9 (337–73 bp [exon 9]). Family members were not available

for testing.

3.2.3 Family 1323
The proband (II:2), 73-year-old male, with disease onset at

53 years, presented with progressive weakness and spasticity of

the lower limbs, autonomic involvement with urinary and fecal

incontinence, moderate hypo-pallesthesia, and severe subcortical

atrophy. Molecular analysis identified a novel heterozygous variant

c.[1005-1delG], classified as pathogenic (PVS1-PM2-PP3). This

variant falls within the typical essential dinucleotides site, and it is

considered a “conventional splice-site mutation.” In silico analysis

suggests a loss of acceptor site (varSEAK SSP, NNSPLICE, EX

SKIP, and CRYP-SKIP) (Table 2). In contrast to in silico predictions,

the minigene assay is shown in Figure 2C. PCR of cDNA without

variant produces an amplicon of 492 bp related to a wild-type

genotype (228 bp of normal splicing of exons 6 and 7 + 264 bp

of pSPL3 exon), while PCR of cDNA with variant producesan

amplicon of 492 bp evidencing normal splicing. Instead, the

sequencing analysis shows a loss of eight nucleotides of exon 7

that causes the loss of frame and a premature stop codon. Family

members were not available for testing, and it was not possible to

perform RNA analysis.

3.2.4 Family 861
The proband, 68-year-old female, presented with pyramidal

signs and progressive weakness and spasticity of the lower limbs.

Molecular analysis identified a novel heterozygous variant c.[1729-

1G>C] (rs1064793976) classified as pathogenic (PVS1-PM2-PP3).

In silico analysis suggests a loss of acceptor site (varSEAK SSP,

NNSPLICE, EX SKIP, and CRYP-SKIP) (Table 2). These findings

could not be tested by minigene assay because the variant is present

on the last exon of the gene. Moreover, we could not analyze RNA

since family members were unavailable for testing.

4 Discussion

This study identified pathogenic SPAST variants in 12 out of

105 patients (11.42%, 5 missense, 3 frameshifts, and 4 splicing

variants). Eight of these variants are novel, and three have been

previously reported.

The rate of HSP patients with genetic mutations ranges from

50% in AD-HSP to 25% in AR-HSP, and these variations are

bound to sporadic or familial patients, variability in the population,

variability of clinical phenotypes, and diagnostic criteria (1). Since

SPAST mutations represent half of these variants, the detection rate

of this study is in line with the literature data.

Most mutations described in SPAST are predicted to disrupt the

highly conserved functional domain known as the AAA cassette,

which grants an effective axonal flow (39). This domain is placed

between amino acids 342 and 599, which includes the predicted
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FIGURE 2

Pedigree, minigene assay, Sanger sequencing of SPAST families 497, 159, and 1,323. (A) Family ID 497. Agarose gel shows RT-PCR results of minigene

assay for variant c.1414-2A>T. In lane 1 is shown an amplicon of 436 bp correspondent to a wild-type genotype (172 bp of normal splicing of exons

11 and 12 + 264 bp of pSPL3 exon); in lane 2 is shown an amplicon of 358 bp correspondent to abnormal splicing produced by variant c.1414-2A>T

(358 bp [80 bp of normal splicing (exon 11)−92 bp of exon 12 loss] + 264 bp of pSPL3 exon); in lane 3 is shown the amplification of pSPL3 without

SPAST cloning; in lane 4 is shown the amplification of HEK 293T cDNA without transfection of pSPL3; and in lane 5 is shown negative control of PCR

amplification. Sanger sequence shows the loss of exon 11 and normal sequence. (B) Family ID 159. Agarose gel shows RT-PCR results of minigene

(Continued)
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FIGURE 2 (Continued)

assay for variant c.1245+1G>A. In lane 1 is shown an amplicon of 337 bp correspondent to a wild-type genotype (74 bp of normal splicing of exon 9

+ 264 bp of pSPL3 exon); in lane 2 is shown an amplicon of 264 bp correspondent to abnormal splicing produced by variant c.1245+1G>A (264 bp

[74 bp of normal splicing (exon 9) – 74 bp (exon 9)] + 264 bp of pSPL3 exon); in lane 3 is shown the amplification of pSPL3 without SPAST cloning; in

lane 4 is shown the amplification of HEK 293T cDNA without transfection of pSPL3; and in lane 5 is shown negative control of PCR amplification.

Sanger sequence shows the loss of exon 9 in SPAST gene and normal sequence. (C) Family ID 1323. Agarose gel shows RT-PCR results of minigene

assay for variant c.1005-1delG. In lane 1 is shown an amplicon of 492 bp correspondent to a wild-type genotype (228 bp of normal splicing of exons

6 and 7 + 264 bp of pSPL3 exon); in lane 2 is shown an amplicon apparently of 492 bp correspondent to normal splicing produced by variant

c.1005-1delG (492 bp [134 bp of normal splicing (exons 6) – 94 bp (exon 7)] + 264 bp of pSPL3 exon); in lane 3 is shown the amplification of pSPL3

without SPAST cloning; in lane 4 is shown the amplification of HEK 293T cDNA without transfection of pSPL3; in lane 5 is shown negative control of

PCR amplification. Sanger sequence shows the loss of eight nucleotides of exon 7 causing the loss of frame and a premature stop codon.

ATP binding and hydrolysis sites (17). No mutations have been

detected in SPAST exon 4, which might be alternatively spliced

(9, 10). Literature data show that pathogenic mutations clustered in

the AAA cassette represent 77–96% of all SPASTmutations (17). In

line with this, six out of nine mutations reported here are placed

within AAA cassette (p.Arg460Cys, p.Pro560Leu, p.Arg450Lys,

p.Arg431Ter, p.Asn405LysfsTer36, and p.Ile592SerfsTer39).

Mutations outside the AAA domain, especially missense

mutations, lead spastin M1 to reduce interactions with spastin-

M87, which causes a loss of microtubule-severing activity. This

study reports one variant in the TM domain (p.Lys90Ter) and one

in the MTBN domain (p.Lys236ProfsTer6).

Splicing events in SPAST are reported in approximately 10%

of patients affected by inherited spastic paraplegia (12). The rate

is higher in this study, where splicing mutations are reported

in 4/12 of the mutations identified, thus representing 37% of

patients carrying SPAST mutations. This frequency is likely to

be underestimated since half of the disease-causing mutations

in the human gene mutation database affect splicing (45, 46);

however, only 16% of these mutations are placed within splicing

sites (43).

This number is underestimated since it does not take into

account on-canonical splice variants within the gene (missense

mutations, which could represent ESE and ISE motifs), or intronic

variants located more than 100 base pairs from exon–intron

boundaries, which could activate cryptic (non-canonical) splice

sites or alter splicing enhancer or silencer elements in introns (47).

The identification of such variants requires other approaches

based on RNA analysis (48). The importance of mutations in

the AAA cassette is also evident in splicing mutations. All

splicing variants identified in our cohort of patients (c.1005-1delG,

c.1245+1G>A, c.1414-2A>T, and c.1729-1G>C) fall in the AAA

Cassette. Of these, two variants are novel, while c.1245+1G>A has

already been reported (11).

Our review of literature on splicing variants in SPAST identified

48 splicing variants, 83.3 % are placed in the AAA Cassette (40/48),

while 6.2% (3/48) are placed in the MIT motifs, and 10.4% (5/48)

are placed in the MTBN motifs (Supplementary Table 2, Figure 1).

Within the AAA Cassette, the splicing variants are mainly placed

within all introns except the intron 10. Most of these are canonical

splicing variants since they fall in the first two nucleotides outside

the exons. In fact, 38 out of 48 variants are classified as class

4/5 (80%) and 10 as VoUS (20%) (Supplementary Table 2). In line

with this, the splicing variants identified in the present report are

canonical splicing variants and are classified as 4/5 (c.1005-1delG,

c.1245+1G>A, c.1414-2A>T, and c.1729-1G>C).

In two out of four splicing variants, functional assay confirms

the pathogenic mechanism suggested by in silico analysis,

thus validating their pathogenicity. In detail, for the splicing

variant c.1414-2A>T reported in Patient II:1 of Family 497 and

c.1245+1G>A in Patient III:2 of Family 159, the loss of acceptor

and donor site, respectively, which produces an exon-skipping

proposed by in silico analysis is confirmed by minigene assay

indicating the loss of exon 9 and 12, respectively. These data were

not evaluated for c.1729-1G>C of Family 861 since the variant is

present on the last exon of the gene, which does not allow setting

up the minigene assay.

In Patient II:2 of Family 132, functional study deciphers the

correct pathogenic mechanism caused by c.1005-1delG splicing

mutations. For instance, in silico analysis suggests that this variant,

causes a loss of acceptor site, which should have produced the

skipping of exon 7. In contrast, the minigene assay followed by

Sanger sequencing shows a loss of eight nucleotides of exon 7,

determining the loss of frame and formation of a premature

stop codon.

Functional studies, such as minigene assay or RNA analysis,

can add important value for variant classification according to

ACMG. Codes PS3 and BS3 can be used for “well-established”

functional assays, demonstrating whether a variant has abnormal or

normal gene/protein function. Although this classification does not

provide guidance on how functional evidence should be evaluated,

it remains relevant since the code PS3 allows classification as a

pathological variant previously considered as VoUS (49–51).

These data are not crucial for canonical splicing variants since

they are classified as pathological without the help of functional

studies. For example, adding PS3 to the canonical splice mutations

identified in this study does not change the variant classification,

and functional assays remain useful to shed light on the correct

pathological mechanism.

In contrast, PS3 is crucial for non-canonical splice mutations,

which are often considered as VoUS, and PS3 could be useful for

switching these variants to class 4 or 5 (20).

Although this study considered a small number of SPAST

variants, and family segregation or functional analysis was

performed in a few numbers of patients, this study highlights the

relevance of SPAST in diagnosing HSP, and the high frequency of

splicing mutations in the SPAST gene both in our cohort of patients

and in patients from literature data concomitantly reviewed in the

present study.

In addition, we suggest that pathological mechanisms caused

by each splicing mutation could be wrongly predicted by in silico

analysis; thus, functional assays are an essential tool to decipher
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FIGURE 3

Sanger sequencing of SPAST family 497. We performed RNA analysis from peripheral blood of Fam ID 497: II:1 and II:2. The line 1 show the

amplification from the exon 10 to exon 13 in II:1 with two amplicon of 288 bp and 208 bp corresponding at wilde-type allele and loss of exon 12, line

2 and 3 show the amplification of II:2 and wild-type sample (288 bp). The 4 line shows negative control of PCR amplification.
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the correct molecular mechanism. Although in silico analysis is

helpful to assess potential pathogenic mechanisms, and ACMG

guidelines remain essential for establishing variant pathogenicity,

molecular insights such as the analysis of minigene assay are

helpful to answer additional questions such as the right pathogenic

mechanism caused by some splicing variants.

The conclusions of the present study remark on the

need to implement molecular analysis in patients affected

by spastic paraplegia to improve the identification of some

specific variants and interpreting their functional relevance

(Supplementary Figure 1).
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