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Abstract We present a quantitative analysis of the Boltzmann–Grad (low-
density) limit of a hard sphere system. We introduce and study a set of
functions, the correlation errors, measuring the deviations in time from the
statistical independence of particles (propagation of chaos). In the context of
the BBGKY hierarchy, a correlation error of order k measures the event where
k particles are connected by a chain of interactions preventing the factoriza-
tion. We show that, provided k < ε−α , such an error flows to zero with the
average density ε, for short times, as εγ k , for some positive α, γ ∈ (0, 1).
This provides an information on the size of chaos, namely j different particles
behave as dictated by the Boltzmann equation even when j diverges as a neg-
ative power of ε. The result requires a rearrangement of Lanford perturbative
series into a cumulant type expansion, and an analysis of many-recollision
events.
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List of symbols

(α, β) Table of recollisions
B Boltzmann collision kernel
Bε BBGKY collision kernel
Cε

j+1 BBGKY collision operator

CE
j+1 Enskog hierarchical collision operator

C j+1 Boltzmann hierarchical collision operator
χH,K , χ̄H,K Generic constraints on graphs
χov

H,K Overlap constraint
χrec

L0
Recollision constraint

� Axis of T ε
ξ

d� Integration measure in the tree expansion
E
B Expectation with respect to the Boltzmann density

ηε(·) Velocities in the IBF
E j Correlation error of order j
EB

j Boltzmann error term

EE
j Enskog error term

E0
K Time-zero correlation error associated to the partition in the

clusters K
Ē0
K Extension of E0

K to the whole space
ĒK Extension of EK to the whole space
Fi Observable in the particle system, associated to the test

function ϕi
f Solution to the Boltzmann equation
f j j-particle function solving the Boltzmann hierarchy
f ε

j Rescaled correlation function (r.c.f.) of order j
Fθ3 A cutoffed function of the energy
gε Solution to the Enskog equation
gε

j j-particle function solving the Enskog hierarchy
�i Tree generated by particle i
�( j, n) n-collision, j-particle tree
HK Energy of the trees in K
J Set of indices of particles {1, 2, . . . , j}
J Set of indices of clusters {1, 2, . . . , j}
M Grand-canonical phase space
Mn Canonical n-particle phase space
Mx

n(δ) Position space of n particles with mutual distance larger than
δ

n� Fraction of particles in the region � ⊂ R
3 × R

3

ρε
j Correlation function of order j
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S(i) Set of particles belonging to the tree �i
Sε

j j-particle interacting flow operator
S j j-particle free flow operator
tn Times of scattering (creation) in backwards flow
(ti , ωi , v j+i ) Triple describing a scattering (creation) in backwards flow
T ε

ξ “Tube” of external recollision
Tε

n n-particle hard sphere flow
vi Velocity of particle i
Wε State of the hard sphere system: a collection of measures

{W ε
0,n}n≥0

ξ ε(·) Positions in the IBF
xi Position of particle i
ζ ε(·) Interacting backwards flow
ζB(·) Boltzmann backwards flow
ζ E (·) Enskog backwards flow
ζ̃

ε
(·) Uncorrelated interacting backwards flow

ζ̄ i (·) Virtual trajectory of particle i in the flow ζ̄

zi State (position xi , velocity vi ) of particle i
z j Vector (z1, . . . , z j )

z j,n Vector (z j+1, . . . , z j+n)
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1 Introduction

1.1 Lanford’s theorem and beyond

In 1975 O. E. Lanford III presented his celebrated proof of the mathematical
validity of the Boltzmann equation, in a time interval small enough [25]. To
recall his result, let us consider a system of identical hard spheres of diameter
ε moving in the space R

3 with collisions governed by the laws of elastic
reflection.

The initial data are random, including the number of particles n ∈ N. The
state of the system is specified by an absolutely continuous probability on the
grand canonical phase space ∪n≥0(R3 × R

3)n . Restricted to n particles, it is
given by a function W ε

0,n such that

1

n!W
ε
0,n(z1, . . . , zn)dz1 · · · dzn

is the probability of finding exactly n particles in dz1 · · · dzn at the initial time,
say t = 0. Here zi = (xi , vi ) ∈ R

3×R
3 stands for the position and the velocity

of the i-th particle. W ε
0,n is symmetric by permutation of the particle labels. If

pn = (1/n!) ∫ W ε
0,n , then

∑
k≥0 pk = 1 and the average number of particles is

〈n〉 :=
∑

k≥0
k pk .

We analyze a low-density limit, the Boltzmann–Grad limit [18,19] defined
by 〈n〉 → ∞, ε → 0 and 〈n〉ε2 → λ−1 > 0, (1.1)

at times of order 1, where λ is a fixed constant proportional to the mean free
path. The fraction of volume occupied by the particles ∼〈n〉ε3 goes to zero.

It is not conceivable to follow in time the positions and the velocities of
the entire particle system. We are rather interested in the amount of single
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particles, couples of particles, triples etc., in given configurations. We define
the vector of correlation functions {ρε

0, j } j≥0 by

ρε
0, j (z1, . . . , z j ) =

∞∑

k=0

1

k!
∫

dz j+1 · · · dz j+k W ε
0, j+k(z1, . . . , z j+k).

Under a boundedness assumption, the map {W ε
0,n}n≥0 → {ρε

0, j } j≥0 is

invertible (with W ε
0,n =

∑∞
k=0

(
(−1)k/k!) ∫ dzn+1 · · · dzn+k ρε

0,n+k) and the
correlation functions are an alternative way to encode the statistical properties
of the particle system.

Since
∫

ρε
0, j (z1, . . . , z j ) dz1 · · · dz j = 〈n(n−1) · · · (n− j+1)〉, the scaling

(1.1) requires that
∫

ρε
0, j ∼ ε−2 j as ε → 0. This leads to introduce rescaled

correlation functions (r.c.f.)

f ε
0, j = ε2 jρε

0, j ,

expected to be finite when ε → 0. The r.c.f. differ from the marginals of the
measure only by proper normalization factors.

We focus on the quantities f ε
j (t), namely the r.c.f. of the system at time

t > 0, evolved deterministically (starting from f ε
0, j ) according to the hard

sphere dynamics.
Lanford proves that, if the initial state factorizes in the limit, meaning that

lim
ε→0

f ε
0, j = f ⊗ j

0 , (1.2)

then there exists t̄ > 0 such that

lim
ε→0

f ε
j (t) = f (t)⊗ j for 0 ≤ t < t̄ . (1.3)

Here f0 is a given one-particle probability density and f (t) is a solution of the
Boltzmann equation with initial datum f0. The convergence fails on certain
exceptional sets as will be discussed in detail. Initially, j particles are “almost
independent” by (1.2) and (1.3) shows that this property propagates, at least
for short times.

Viewed probabilistically, the result is a law of large numbers, that is with
probability close to 1, the fraction of particles in the volume element� at time
t is approximated by

∫
�

dz f (z, t). Moreover, it has been shown that, looked
on the scale of the interparticle distance ∼ε2/3, the distribution of particles is
close to a homogeneous Poisson law with density

∫
dv f (x, v, t) at (x, t) [39].
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1140 M. Pulvirenti, S. Simonella

Note that we found convenient to recall the theorem of Lanford as stated in
[23] (or also in [3,35]), namely with random total number of particles n. The
advantage of this formulation in our context will be discussed later on.

We write here the Boltzmann equation for the density f = f (x, v, t), with
hard sphere kernel and mean free path λ [8],

(∂t + v · ∇x ) f (x, v, t) = λ−1
∫

R3
dv1

∫

S2+
dω(v − v1) · ω

× {
f (x, v′1, t) f (x, v′, t)− f (x, v1, t) f (x, v, t)

}

(1.4)

where S2+ = {ω ∈ S2| (v−v1)·ω ≥ 0}, S2 is the unit sphere inR3 (with surface
measure dω), (v, v1) is a pair of velocities in incoming collision configuration
and (v′, v′1) is the corresponding pair of outgoing velocities defined by the
elastic reflection rules

{
v′ = v − ω[ω · (v − v1)]
v′1 = v1 + ω[ω · (v − v1)]. (1.5)

This equation is well understood in the case of spatially homogeneous solu-
tions [29] and of perturbations of the equilibrium [41,42]; we refer to [44] for
a review on the Cauchy problem. In the general inhomogeneous setting, global
existence and stability have been proved based on the notion of renormalized
solution [14].

Lanford’s result also implies, of course, local in time existence under proper
hypotheses on the initial data. More precisely, the initial datum is bounded
from above by a Maxwellian. The time t in (1.3) is a fraction of the mean free
flight time. Nevertheless, it is enough to show unambiguously that there is no
contradiction between the reversiblemicroscopic dynamics and the irreversible
behaviour described by the Boltzmann equation. We shall adopt the restriction
0 ≤ t < t̄ in the present work.

So far, an extension of Lanford’s theorem to arbitrary times has been
achieved in the special situation of a rare cloud of gas expanding in the infi-
nite space [20,21]. This relies on a smallness assumption on the initial datum
(“perturbation of the vacuum”) for which the Boltzmann equation becomes
close to the free transport equation. More recently, it has been shown that the
Boltzmann–Grad limit can be controlled up to very long times for a tracer
particle in a hard sphere fluid at equilibrium [4]. Brownian motion is then
derived in a hydrodynamic regime, using the linear Boltzmann equation as
intermediate step.

The proof in [25], and in the subsequent works on the subject, is carried
out by assuming suitable uniform estimates on the family of r.c.f. at time zero.
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The Boltzmann–Grad limit of a hard sphere system… 1141

The available estimates deteriorate in time in such a way that, at time t̄ , any
possibility of a uniform control is lost. Indeed the strategy of Lanford is based
on an expansion of f ε

j (t), for given j > 0, in terms of a series (involving only
the initial data f ε

0, j ) which is absolutely convergent, uniformly in ε, only for
0 ≤ t < t̄ . To complete the proof it is enough to exploit the term by term
convergence. Further discussions can be found in [13,16,37,39,40,43].

The original argument of Lanford is qualitative, in the sense that (1.3) is
shown without an explicit rate of convergence. Recently, a rate of convergence
has been obtained in [16]. It is of the form

| f ε
j (t) − f (t)⊗ j | ≤ C jεγ for 0 ≤ t < t̄, (1.6)

for some C, γ > 0, outside a subset of (R3 × R
3) j which measure goes to

zero as ε → 0 (see also [30] for a different class of potentials).
The purpose of the present paper is to introduce a notion of correlation error

for the many-particle system, providing explicit estimates.
Before giving precise definitions, let us explain our result informally. From

now on, we assume 0 ≤ t < t̄ .

1.2 The size of chaos

The result (1.3) has been proved by Lanford for any fixed j > 0. This cannot
be uniform in j since, for very large j e.g. j � ε−2, f ε

j (t) is far from a
tensor product. It is however natural to ask whether there exists a notion of
convergence holding for j = j (ε) suitably diverging with ε.

A first answer is given by the quantitative analysis in [16,30]. From (1.6)
it follows that the convergence of r.c.f. holds for j ≤ C0| log ε|, for some
positiveC0. One would expect, instead, a power–law divergence, at least along
the following heuristic argument.

The proof of the asymptotic behavior (1.3) is intimately connected with the
problem of propagation of chaos, i.e. the conservation in time of the statistical
independence of particles (provided that it holds at time zero). Given a group
of j particles, consider, for any i = 1, 2, . . . , j , the set Bi of particles “really
influencing” the dynamics of particle i up to the time t . We assume that the
cardinality of the sets Bi is finite to have a correct kinetic behaviour in the
limit. For the propagation of chaos to hold, the groups Bi must be disjoint.
Therefore, the probability that two given particles in the group {1, 2, . . . , j}
are dynamically correlated will be O(1/〈n〉). Correspondingly, the probability
that the j particles do not behave as mutually independent will be O( j2/〈n〉),
which is small for j � ε−1. (We refer to [2] for related considerations.)

Our goal here is to analyze the “size of chaos”, i.e., how large can be a
cluster of asymptotically independent particles.
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In the effort of going beyond the logarithmic scale we immediately realize
that there is no hope to improve estimate (1.6). Even ignoring the correlations
and assuming that f ε

j (t) ≈ ( f ε
1 (t))⊗ j , one cannot do better than expanding

( f ε
1 (t))⊗ j−( f (t))⊗ j . On the other hand, trivially, ( f ε

1 (t)− f (t))⊗ j = O(εγ j )

uniformly in j . We are led then to give the following notion of error. Let
zn = (z1, . . . , zn) be a configuration of the particle system and let zn(t) =
(z1(t), . . . , zn(t)) be the corresponding time-evolved configuration. Given a
sequence of test functions over R3 ×R

3, denoted ϕ1, ϕ2, . . ., we consider the
one-particle observables F1 = F1(t), F2 = F2(t), . . . defined by

Fi (t)(zn) = ε2
n∑

j=1

ϕi (z j (t)). (1.7)

When ϕi is the characteristic function of the set �, then Fi (t) is the fraction
of particles in � at time t . In terms of law of large numbers, the validity of
the Boltzmann equation can be rephrased by saying that the error (Fi (t) −
E
B[ϕi (t)]) ≈ 0 for ε small, where E

B[ϕ(t)] = ∫
dxdv ϕ(x, v) f (x, v, t).

We look now at the product of j such simultaneous deviations and compute
its expected value E

ε in the state of the particle system. We will prove that,
in the Boltzmann–Grad limit, there exists a constant α ∈ (0, 1) such that, if
0 ≤ t < t̄ ,

lim
ε→0

sup
j<ε−α

∣
∣
∣
∣
∣
∣
E

ε

⎡

⎣
j∏

i=1

(
Fi (t)− E

B[ϕi (t)]
)
⎤

⎦

∣
∣
∣
∣
∣
∣
= 0. (1.8)

Roughly speaking, with respect to (1.3), we replace the difference of products
with the product of differences, which is expected to be much smaller (but
more difficult to control).

By (1.8) groups of up to ε−α particles become statistically independent
and simultaneous deviations of the particles behaviour from the Boltzmann
behaviour are negligible in the limit.

1.3 Result on correlation errors

The notion of error in (1.8) is closely related to what is known, in statistical
physics, as fluctuation around the average value. Usually one focuses on the
particle system and ignores the convergence error EB[ϕi (t)] −E

ε[Fi (t)]. The
quantity

E
ε

⎡

⎣
j∏

i=1

(
Fi (t)− E

ε[Fi (t)]
)
⎤

⎦ ≈ 0 (1.9)
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The Boltzmann–Grad limit of a hard sphere system… 1143

gives the j-th order moment of the fluctuation field and is formally seen
to be O(ε j ) for any fixed j . For previous results on the fluctuations in the
Boltzmann–Grad limit, see [3,35,36].

To be more concrete, let us choose a collection of disjoint sets �1, . . . , � j
in R3 ×R

3 and, as ϕi , the indicator function of the set �i . Fi (t) = n�i is the
fraction of particles in the region. We have

E
ε

⎡

⎣
j∏

i=1

(
n�i − E

ε[n�i ]
)
⎤

⎦ =
∫

�1×···×� j

dz1 · · · dz j E j (z1, . . . , z j , t),

(1.10)
which introduces a new sequence of (ε-dependent) functions E j = E j (z j , t),
j = 1, 2, . . .. Here we call E j (t) the correlation error of order j . Its size
is a measure of the statistical dependence of j distinct particles in different
regions. In our work, these will be the fundamental objects.

Technically, E j is connected to the r.c.f. by a cumulant type expansion.
Explicitly,

E1(z1) = 0,

E2(z1, z2) = f ε
2 (z1, z2)− f ε

1 (z1) f ε
1 (z2),

E3(z1, z2, z3) = f ε
3 (z1, z2, z3)− f ε

2 (z1, z2) f ε
1 (z3)− f ε

2 (z1, z3) f ε
1 (z2)

− f ε
2 (z2, z3) f ε

1 (z1)+ 2 f ε
1 (z1) f ε

1 (z2) f ε
1 (z3), (1.11)

etc., and for generic j

E J (t) =
∑

K⊂J

(−1)k( f ε
1 (t))⊗K f ε

J\K (t), (1.12)

where J = {1, 2, . . . , j}, K is a subset of indices in J (∅ and J are included
in the sum, with the convention f ε

∅ = 1 = ( f ε
1 )⊗∅), k = |K | is the cardinality

of the set K and, if Q = {i1, . . . , iq}, one denotes

f ε
Q(t) = f ε

Q(zQ, t) = f ε
q (zi1, . . . , ziq , t),

EQ(t) = EQ(zQ, t) = Eq(zi1, . . . , ziq , t),

( f ε
1 (t))⊗Q = f ε

1 (zi1, t) f ε
1 (zi2, t) · · · f ε

1 (ziq , t). (1.13)

Equation (1.12) can be inverted to give

f ε
J (t) =

∑

K⊂J

( f ε
1 (t))⊗K E J\K (t), (1.14)
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having a physical interpretation as a sum over subgroups of uncorrelated par-
ticles. In this paper we shall adopt (1.14) as definition of correlation error.
The connection with fluctuations and cumulant expansions will be further
discussed in Sects. 4.7 and 4.8.1.

We stress again that the above definitions involve the particle system only
and do not refer to any kinetic equation. The propagation of chaos amounts to
say that, for any given j , as ε → 0

E j (0) → 0 for all j ≥ 1 �⇒ E j (t) → 0 for all j ≥ 1 (1.15)

for t > 0. The correlation errors identify and strictly isolate those dynamical
events which destroy propagation of chaos.

Our main result will be the following. There exist constants α, γ ∈ (0, 1)
such that, in the Boltzmann–Grad limit, if 0 ≤ t < t̄ and provided j < ε−α ,

∫
dv1 · · · dv j |E j (z1, . . . , z j , t)| ≤ εγ j (1.16)

for any given configuration x1, . . . , x j of distinct points. The available esti-
mates are such that a linear combination of α, γ with positive coefficients is
bounded by c < 1. Moreover, c → 0 as x1, . . . , x j approach a small scale
distance. Of course an estimate similar to (1.16) has to be assumed at time
zero, together with uniform estimates on the family of r.c.f. (as in Lanford’s
theorem). We shall construct natural examples of initial states satisfying such
hypotheses. The convergence result (1.8) will be a consequence of the main
estimate (1.16).

1.4 Strategy: hierarchical particle flows

Let us comment briefly on the difficulties. The only known strategy to rig-
orously derive estimates on the particle system goes through a reformulation
of the problem in terms of characteristics of a set of hierarchical equations.
Such flows share all the features of the interacting dynamics of finite groups
of particles and their control is a delicate task.

The breakdown of the statistical independence is indeed due to mechanical
effects. First of all, one should keep in mind that any given state of the sys-
tem (in particular, whatever choice of the time-zero state) cannot be exactly
factorized, simply because of the hard core exclusion. This is a static feature.
Secondly, and most importantly, correlations between particles are generated
by the dynamics itself. In the context of [25] and of the subsequent literature,
the events responsible for these dynamical correlations are called recollisions.
Their effective control is quite complicated since they generally depend on the
full particle dynamics.
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To be more precise, one looks at the BBGKY hierarchy, namely the set
of coupled evolution equations for { f ε

j } j≥1.1 The iteration of the hierarchy
gives an expression of f ε

j (t) in terms of a series expansion depending only on
the initial data. Each term of this expansion is in one-to-one correspondence
with a special trajectory of clusters of particles flowing backwards in time. It
is looking at these flows that we single out precisely the (re-)collisions that
generate correlations.

Roughly, formulas (1.14), (1.16) will be constructed starting from the
BBGKY expansion for f ε

j , by systematically replacing such collision-events
with “free overlap-events” where the two considered particles ignore and cross
each other freely, and estimating the consequent errors (see Sect. 4.2 for a sim-
ple example). In addition, one has to extract the correlation error of the initial
state due to the exclusion. The main technical part of the work shall consist of
(1) a suitable cluster expansion (needed to control the total number of produced
terms) and (2) geometric estimates for trajectories of j particles showing up
many recollisions.

The net result expresses f ε
j (t) as a sum of contributions (1.14). The first,

O(1), is just the product state. Then, we sumover all possibleways of choosing
two correlated particles, the remaining j−2 particles being uncorrelated. This
events are O(ε2γ ) (actually O(ε2)). Then we pass to the events in which three
particles are correlated, which give a contribution O(ε3γ ), and so on.

Note that we derive the bound on E j , as roughly explained above, exploit-
ing the series expansion for f ε

j . Another possibility is to use (1.12) and the
evolution equations for f ε

j and f ε
1 . However a closed evolution equation for

correlation errors seems to be more difficult to handle.

1.5 The Enskog error

Although the main technical effort in the present work will concern the corre-
lation error E j , it is important to observe that this function describes a part, but
not all, of the total correlation between particles. The remainder is encoded in
the one-point function f ε

1 .
Working again in terms of backwards flows, one may extract from the defin-

ition of f ε
1 a second (and last) class of recollision-events. This operation leads

to define another sequence of quantities EE
j (z j , t), j = 1, 2, . . ., given by

f ε
J (t) =

∑

K⊂J

(gε(t))⊗K EE
J\K (t) (1.17)

1 Originally written for smooth potentials by Bogolyubov, Born, Green, Kirkwood and Yvon
[6] and, later on, by Cercignani for the hard sphere system [12].
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(where we extend the notations of (1.13)) or by

EE
J (t) =

∑

K⊂J

(−1)k(gε(t))⊗K f ε
J\K (t), (1.18)

where gε(t) is defined by an explicit expression that does not involve any
more correlations among particles. Namely, gε(t) is the series solution to the
Enskog equation (more properly, the Boltzmann–Enskog equation [7]), which
we recall:

(∂t + v · ∇x )g
ε(x, v, t) = λ−1

∫

R3
dv1

∫

S2+
dω (v − v1) · ω

× {
gε(x − ωε, v′1, t)gε(x, v′, t)− gε(x + ωε, v1, t)gε(x, v, t)

}
. (1.19)

Here we used the notations introduced next to (1.4). We shall refer to this
second class of correlation errors EE

j (z j , t), j = 1, 2, . . ., as the Enskog error
terms.

Note that if f ε
j (t) factorizes strictly, i.e. f ε

J (t) = ( f ε
1 (t))⊗J , then

EE
J (t) = (

( f ε
1 − gε)(t)

)⊗J
.

More properly, EE
J (t) measures both the breakdown of propagation of chaos

and the error in the convergence of f ε
1 to gε. We will show that EE

j (t) can be
bounded as E j (t), i.e.

∫
dv1 · · · dv j |EE

j (t)| ≤ εγ j (1.20)

for 0 ≤ t < t̄ and j < ε−α , as soon as f ε
1 (0) is assumed to converge uniformly

as a power of ε to the initial datum for the Enskog equation.
In our framework, the Enskog equation appears as a natural bridge between

the hard sphere dynamics and the Boltzmann equation. In particular, to obtain
the representation (1.17)–(1.20), no regularity property needs to be assumed
for the state of the system. The Enskog picture is what emerges from the
mechanical system once we eliminate all the sources of correlation, including
both the dynamical correlations and the static correlations of the time-zero
state.

1.6 The Boltzmann error

Finally, the only difference between the Enskog system described by gε(t) and
the Boltzmann system described by f (t) and (1.4) (with same initial datum),
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The Boltzmann–Grad limit of a hard sphere system… 1147

is that the interactions occur at distance ε instead of zero. In other words,
microscopic translations of the Enskog flow lead to the Boltzmann flow. A
simple continuity property (assumed for the initial data) implies now

∫
dv1 · · · dv j |EB

j (t)| ≤ εγ j (1.21)

for 0 ≤ t < t̄ and j < ε−α , where the Boltzmann error term EB
j , j = 1, 2, . . .

is defined by
f ε

J (t) =
∑

K⊂J

( f (t))⊗K EB
J\K (t) (1.22)

or by
EB

J (t) =
∑

K⊂J

(−1)k( f (t))⊗K f ε
J\K (t). (1.23)

Equations (1.21)–(1.22) reformulate Lanford’s result, together with an
explicit representation of the error. The restriction to short times is also the
same. However if the Boltzmann equation were globally valid, the statisti-
cal independence could not fail to hold and, in this case, we believe that our
estimations would be also globally valid.

The quantities EB
j (t), under the name “v-functions”, were previously intro-

duced in [9–11] in dealing with kinetic limits of stochastic particle systems.
Equation (1.8) follows froma further estimate of contraction terms due to the

fact that, for generic observables, the same particle may appear simultaneously
in the computation of Fi and Fj , i �= j .

2 Assumptions and main results

In this section we describe precisely our setting, fix the notation and state the
main results.

2.1 The hard sphere system

We consider a system of hard spheres of unit mass and of diameter ε > 0
moving in the whole space R3. We will denote

zi = (xi , vi ) ∈ R
3 × R

3

the state (position, velocity) of the i-th particle, i = 1, 2, . . .. For groups of
particles we shall use the notation

z j = z1, . . . , z j , z j,n = z j+1, . . . , z j+n,

and call “particle i” a particle whose configuration is labelled by the index i .
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We will work in the grand-canonical phase space

M(ε) = ∪n≥0 Mn(ε), (2.1)

where

Mn(ε) =
{
zn ∈ R

6n, |xi − x j | > ε, i �= j
}
, M0(ε) = ∅. (2.2)

Unless necessary we omit, for simplicity, the dependence of the spaces on ε.
Notice that MN , with N ∼ ε−2, is the canonical N -particle phase space

used in [25] and in most of the subsequent literature on the Boltzmann–
Grad limit. In this paper we find convenient to consider a more general
class of measures where the exact number of particles n is not necessar-
ily fixed. The advantage of this picture will be discussed in Sect. 2.4.1,
Remark 6.

The equations of motion for the n-particle system are defined as follows.
Between collisions eachparticlemoves on a straight linewith constant velocity.
When two hard spheres collide with positions xi , x j (at distance ε), impact
direction

ω = (xi − x j )/|xi − x j | = (xi − x j )/ε ∈ S2

and incoming velocities vi , v j (that means (vi − v j ) · ω < 0), these are
instantaneously transformed to outgoing velocities v′i , v′j (with (v′i −v′j ) ·ω >

0) through the relations

v′i = vi − ω[ω · (vi − v j )],
v′j = v j + ω[ω · (vi − v j )]. (2.3)

The collision transformation is invertible and preserves the Lebesgue measure
on R

6.
The above prescription defines the flow of the n-particle dynamics, t �→

Tε
n(t)zn . Observe that these rules do not cover all possible situations, e.g.

triple collisions are excluded. Nevertheless, as proved by Alexander in [1],
there exists a full-measure subset ofMn , over which Tε

n(t) is uniquely defined
for all t (see also [13,28]). Thus Tε

n(t) can be defined as a one-parameter group
of Borel maps on Mn , leaving the Lebesgue measure invariant.

Notice that the flow Tε
n(t) is piecewise continuous in t (we do not identify

outgoing and incoming configurations). If necessary, we may distinguish the
limit from the future (+) and the limit from the past (−) bywritingTε

n(t
±)zn =

limε→0+ Tε
n(t±ε)zn . Moreover, we shall fix the convention of right-continuity

of the flow, Tε
n(t)zn = Tε

n(t
+)zn .
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2.2 Statistical states and kinetic limit

Let us turn now to a statistical description. We adopt a general formulation, in
the spirit of classical statistical mechanics [32].

We introduce the set of density functions over M, denoted Wε
0 =

{W ε
0,n}n≥0, where W ε

0,n : Mn → R
+ is a positive Borel function symmet-

ric in the particle labels. The quantity (1/n!)W ε
0,n(zn) gives the probability

density of finding exactly n particles in z1, . . . , zn . We refer to Wε
0 as the state

of the particle system.
Note that n, the total number of particles, is a random variable, and

(1/n!) ∫ W ε
0,n is its distribution. The normalization condition reads

∞∑

n=0

1

n!
∫

W ε
0,n = 1. (2.4)

Given an initial measure overMwith density specified byWε
0, its evolution

at time t is given by the Liouville equation

W ε
n (zn, t) = W ε

0,n(T
ε
n(−t)zn), (2.5)

to be valid almost everywhere in Mn . This defines Wε(t), the state at time t .
For notational convenience, we shall sometimes extend the definition of the

state to the whole space as

W ε
n (zn, t) = 0 if |xi − xk | < ε (2.6)

for some i �= k.
We define next the vector of correlation functions over M as ρε(t) =

{ρε
j (t)} j≥0, t ≥ 0, by

ρε
j (z j , t) =

∞∑

k=0

1

k!
∫

Mk

dz j+1 · · · dz j+k W ε
j+k(z j+k, t). (2.7)

A state admits correlation functions when the series in the right hand side of
(2.7) is convergent, together with the series in the inverse formula

W ε
j (z j , t) =

∞∑

k=0

(−1)k

k!
∫

Mk

dz j+1 · · · dz j+kρ
ε
j+k(z j+k, t). (2.8)

In this case, the set of functions ρε(t) describes all the properties of the system.
Later on, we will assume explicit estimates ensuring the convergence of the
series for any finite ε.
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The normalization condition for the correlation functions is
∫

M j

ρε
j (z j , t)dz j = Et (n(n−1) · · · (n− j+1)) = E0(n(n−1) · · · (n− j+1)),

(2.9)
where n is the total number of particles, and the expectation Et is done with
respect to the state Wε(t).

In this setting, the Boltzmann–Grad scaling is given by the following con-
dition: the average number of particles diverges as ε−2, that is

lim
ε→0

ε2
∫

R6
ρε
1(z1, t) = λ−1, (2.10)

where λ > 0 is proportional to the mean free path. From now on, we shall fix

λ = 1

for simplicity.
The central object of our study becomes the collection of rescaled correla-

tion functions (r.c.f.) defined by

f ε
j (z j , t) = ε2 jρε

j (z j , t). (2.11)

These are expected to be O(1) as ε → 0.

2.3 Assumptions on the initial state

2.3.1 Initial data for the particle system

The state of the hard sphere system at time zero, Wε
0, admits, as rescaled

correlation functions, the collection f ε
0, j : M j → R

+, j ≥ 0, which are by
definition Borel functions, symmetric for permutation of particle labels.

We assume:

Hypothesis 2.1 There exist constants z, β > 0 and a function h ∈
L1(R3;R+) with ess supx h(x) = z, such that the rescaled functions at time
zero, f ε

j (·, 0) ≡ f ε
0, j , satisfy the bound

f ε
0, j (z j ) ≤ h(x1) · · · h(x j ) e−(β/2)

∑ j
i=1 v2i ≤ z j e−(β/2)

∑ j
i=1 v2i . (2.12)

Hypothesis 2.2 There exist two positive constants α0, γ0 such that the initial
r.c.f. admit the following representation:

f ε
0,J =

∑

H⊂J

( f ε
0,1)

⊗H E0
J\H (2.13)
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with E0
∅ = 1, E0

k : Mk → R and, for ε small enough,

|E0
K | ≤ εγ0k zk e−(β/2)

∑
i∈K v2i ∀ k < ε−α0 . (2.14)

The bound (2.14) holds almost everywhere in Mk(ε). Observe that E0
1 = 0.

Here we are using the same notation introduced in Sect. 1.3 which we recall
now and that will be adopted throughout all the paper. We use capital latin
letters (J, H, K , . . .) for subsets of indices of {1, 2, 3, . . .} and corresponding
small letters for the cardinality of the same sets ( j = |J |, k = |K |, . . .),
namely, in (2.13), J = {1, 2 · · · j} and H = {i1, i2 · · · ih} ⊂ J . In addition,
zH = (zi1, zi2, . . . , zih ) and, for given functions fh , f , we abbreviate fH =
fh(zH ) and f ⊗H =∏

i∈H f (zi ). Finally, the conventions f∅ = f ⊗∅ = 1 are
used.

Notice that, with respect to the hypotheses of Lanford’s theorem, we are
requiring the additional explicit information (2.13)–(2.14). Recall that the hard
core exclusion, |xi−x�| > ε, prevents the full factorization of the state. A class
ofmeasureswhich are “maximally factorized”, in the sense that the correlations
are only those arising from the exclusion, is constructed in Appendix A. Such
a class of states fulfills the hypotheses above.

2.3.2 Initial data for the kinetic equation

The initial datum for the Boltzmann and Enskog equations f0 = f0(x, v) is a
probability density over R3 × R

3 (
∫
R3×R3 f0 = 1).

As regards the error bound involving the kinetic equation, we postulate:

Hypothesis 2.3 There exists a positive constant γ0 such that, for ε small
enough,

|( f ε
0,1 − f0)(x, v)| ≤ εγ0 z e−(β/2)v2 . (2.15)

In particular, condition (2.10) is satisfied with λ = 1. Here the constant γ0 has
been chosen equal to the one in Hypothesis 2.2 for notational simplicity.

Putting together the Hypotheses 2.2 and 2.3, it follows that the r.c.f. of the
hard sphere system admit as well the following representation in terms of f0:

f ε
0,J =

∑

H⊂J

f ⊗H
0 EB,0

J\H , (2.16)

with EB,0
k : Mk → R satisfying

|EB,0
K | ≤ εγ ′0kzk e−(β/2)

∑
i∈K v2i ∀ k < ε−α0, (2.17)

for some γ ′0 > 0 and ε small enough.
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2.4 Results

We are now in a position to formulate our main results, summarized in the
following theorem. Let

Mx
n(δ) = {

xn ∈ R
3n, |xi − x j | > δ, i �= j

}
(2.18)

where
δ = εθ (2.19)

and θ ∈ (0, 1].
Theorem 2.4 Let Wε

0 be a state of the hard sphere system with rescaled corre-
lation functions f ε

0, j satisfying Hypotheses 2.1 and 2.2. Let Wε(t) be the state
evolved at time t > 0, with r.c.f. f ε

j (t). There exist positive constants θ, α, γ ,
a time t∗ > 0 and ε0 > 0 such that

f ε
J (t) =

∑

H⊂J

( f ε
1 (t))⊗H E J\H (t) (2.20)

and ∫

R3k
dvk |EK (t)| ≤ εγ k ∀ k < ε−α, (2.21)

for any t < t∗, ε < ε0 and xk ∈ Mx
k (δ).

Moreover, let gε(t), f (t) be the solutions to the Enskog and the Boltzmann
equation respectively, with f0 the common initial datum.

If f0 satisfies Hypothesis 2.3, then for any t < t∗, ε < ε0 and xk ∈ Mx
k (δ),

f ε
J (t) =

∑

H⊂J

(gε(t))⊗H EE
J\H (t), (2.22)

∫

R3k
dvk |EE

K (t)| ≤ εγ k ∀ k < ε−α. (2.23)

If, additionally, f0 is Lipschitz continuous with respect to the space vari-
ables, with Lipschitz constant Le−(β/2)v2 , L > 0, then for any t < t∗, ε < ε0
and xk ∈ Mx

k (δ),

f ε
J (t) =

∑

H⊂J

( f (t))⊗H EB
J\H (t), (2.24)

∫

R3k
dvk |EB

K (t)| ≤ εγ k ∀ k < ε−α. (2.25)
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The main result (2.21) is proved in Sect. 4.3.5 and the geometric estimates
on recolliding trajectories are postponed to Sects. 4.4, 4.5. Finally, (2.23) and
(2.25) are proved in Sect. 4.6.

As we shall see in the course of the proof, the solutions gε(t) and f (t) are
local in time and constructed by means of a series expansion.

Equations (2.20)–(2.21) are an expression for the propagation of chaos, with
an explicit representation of the error, while Eqs. (2.22)–(2.23) and (2.24)–
(2.25) express in addition the asymptotic equivalence of the r.c.f. with the
solution of the Enskog and the Boltzmann equation.

The convergence to the Boltzmann equation can be also expressed in terms
of deviation from average values of observables. To this purpose, let us denote
E

ε, EB the average values with respect to the hard sphere state and the Boltz-
mann density respectively. Then the following result holds:

Theorem 2.5 Let ϕi ∈ Cc(R
6;R), i = 1, 2, . . . be a sequence of test functions

with max(‖ϕi‖L∞, ‖ϕi‖L1
x (L∞v )) ≤ G for some G > 0. Moreover, let Fi =

Fi (t) : M → R be the associated sequence of observables defined by (1.7).
Then, if Hypotheses 2.1, 2.2 and 2.3 hold, there exists a positive constant α′
such that, for any t < t∗,

lim
ε→0

sup
j<ε−α′

∣
∣
∣
∣E

ε

[ j∏

i=1

(

Fi (t)− E
B[ϕi (t)]

)]∣∣
∣
∣ = 0. (2.26)

The theorem is proved in Sect. 4.7.

2.4.1 Comments on the result

1. The constants α and γ can be computed explicitly. Upper bounds will be
given in Sect. 4.3.3.a, as a byproduct of the proof. They are the result of
a balance between the combinatorial factors and the geometric recollision
estimates. These bounds are certainly not optimal (for instance, (A.15) in
appendix shows that there is no limitation on α for maximally factorized
initial data). In this paperwe are not concernedwith optimal bounds on rates
of convergence nor with the optimality of the coefficient α. Improvements
in this direction would complicate the proof considerably. An exception is
the geometrical estimate of internal recollisions (see Lemma 4.12), which
can be shown to be εγ1 for arbitrary γ1 < 1 by following the proof in
Appendix D.

2. The limiting time t∗ is obtained by imposing the absolute (uniform in
ε) convergence of the series expansions appearing in the proof, and is
determined only by z, β (see Hypothesis 2.1).
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3. The use of the L1-norm in the velocity variables is essential in the proof
of the estimate of many-recollision events (Lemmas 4.10 and 4.12 below),
to obtain a k-dependent rate of convergence such as (2.21). Chebyshev’s
inequality implies then that |EK (t)| ≤ εγ̄ k for some γ̄ > 0 (and similar
estimates for EE and EB), outside a subset ofMk of measure smaller than
ε(γ−γ̄ )k .

4. In particular, the comparison with the uniform estimate in Hypothesis 2.2
shows that the set where the convergence takes place deteriorates in time.
This is a feature of the Boltzmann–Grad limit. In fact, it will be clear
from the proof that, due to recollisions, the propagation of chaos f ε

J (t) →
( f ε

1 (t))⊗J necessarily fails over the time-dependent set

{
zJ

∣
∣
∣ min

i,k∈J
min

s∈(0,t)
[(xi − xk)− (vi − vk) s] = 0

}
.

Actually it can be proved that, over compacts outside this null-measure set,
EK (t) = O(εη) for some η > 0 and ε small enough (e.g. [30], where this
is done for the more difficult case of smoothly interacting particles).

5. The above discussion does not prevent, however, the following integrated
result.

Proposition 2.6 Let ϕi be test funtions as in Theorem 2.5. If Hypotheses 2.1
and 2.2 hold, there exists α′ > 0 such that, for t < t∗ and ε small enough,

∣
∣
∣
∣

∫

R6k
dzk ϕ(z1) · · ·ϕ(zk) EK (zk, t)

∣
∣
∣
∣ ≤ εγ k ∀ k < ε−α′ . (2.27)

Observe that, by definition (remind (2.6)), since f ε
J (zJ , t) = 0 when two

particles in zJ are at distance smaller than ε, inside the “excluded” region
R
6k\Mk (of small measure) the correlation errors will generally satisfy the

bad estimate |EK (t)| ≤ (const.)k (by (1.12)). Equation (2.27) will be derived
in Sect. 4.7.

We conclude with some comments on the choice of the setting.

6. We are working with rescaled correlation functions in a grand canonical
formalism (no fixed total number of particles N ) in place of the more usual
formulation in terms of marginals in the canonical setting (fixed N = ε−2).
This choice is convenientwhen dealingwith fluctuations and truncation for-
mulas of cumulant type, see e.g. [3,35,36]. The reason is that themere facts
of (1) fixing the number of particles N , and (2) labelling the particles from
1 to N (implied in the definition of marginal) are itself a source of corre-
lation. Consequently, even though the r.c.f. are asymptotically equivalent
to the marginals of the canonical setting, here additional error terms are

123



The Boltzmann–Grad limit of a hard sphere system… 1155

produced which should be expanded and estimated in order to get a quan-
titative result like (2.21). We do not deal with this problem in the present
paper. More details on this point will be provided in Sect. 4.8.3.

7. Another simplification comes from the choice of the unbounded spatial
domain R

3. Since we do not use dispersive properties, our analysis in the
whole space can be transferred to the case of a bounded box (assuming
periodic or reflecting boundary conditions) with minor modifications (see
Sect. 4.8.4). One faces here two extra difficulties. The first one arises from
the fact that the recollisions are more likely. This has been discussed in [4].
The second one is that, as in the canonical formalism, the total number of
particles cannot exceed a given integer, that is the close-packing number
Ncp. However Ncp = O(ε−3) is much larger than the average density and
the corresponding error of correlation is very small and easily tractable.

2.4.2 Further remarks on the initial states

In the proof of the main result we shall find more convenient to use a repre-
sentation of the initial data different from the one given by Hypothesis 2.2. We
illustrate it in this section.

Let S = {1, . . . , s} be a set of indices (particles) and {S1, S2, . . . , S j } a
partition of S into nontrivial clusters, i.e. ∪ j

i=1Si = S, Si ∩ Sk = ∅ for i �= k,
|Si | > 0.

Denote by J = {1, . . . , j} the set of indices of the clusters {Si }. We intro-
duce an expansion on products of higher order, not only 1-point, rescaled
correlation functions. We use a calligraphic capital letter for the subsets of J .

Property 1 There exist two positive constants α0, γ0 such that the initial r.c.f.
admit the following collection of representations:

f ε
0,S =

∑

H⊂J

(
∏

i∈H
f ε
0,Si

)

E0
J \H (2.28)

for any partition of the set S, where E0
∅ = 1, E0

K : Mk → R and, for ε small
enough,

|E0
K| ≤ εγ0|K|zk e−(β/2)

∑
i∈K v2i ∀ k < ε−α0, (2.29)

with |K| = total number of elements (clusters) in K, and k = total number of
indices (particles) in K = ∪i∈KSi .

Note that E0
K = 0 for |K| = 1. We stress that E0

K and E0
K denote different

quantities (unless all the clusters in K are singletons).
Property 1 is actually equivalent to Hypothesis 2.2. For the proof, we refer

to Appendix A.
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Observe that, again, E0
K will be order 1 (in ε) outside Mk(ε). As already

mentioned, this is due to the hard sphere exclusion which is a first obvious
source of correlation, namely the fact that the r.c.f. f ε

j (t) is naturally defined on
M j and extended to zero outside. On the other hand, we will need to compare
the r.c.f. with ( f ε

1 (t))⊗ j which is defined in the extended phase space R6 j . In
particular it will be necessary, in the course of the proof, to embed (2.28) in
the whole space R6s as follows:

f ε
0,S = χ̄0

S

∑

H⊂J

(
∏

i∈H
f ε
0,Si

)

E0
J \H, (2.30)

where

χ̄0
S =

∏

i,k∈S
i �=k

χ̄0
i,k

and χ̄0
i,k is the indicator function of the set {|xi − xk | > ε}.

In Sect. 4.3 we develop a technique which allows a useful expansion of χ̄0
S ,

for which we can prove (see Appendix A):

Property 2 Equation (2.28) can be extended in R
6s according to

f ε
0,S =

∑

H⊂J

(
∏

i∈H
χ̄0

Si
f ε
0,Si

)

Ē0
J \H, (2.31)

with

|Ē0
K| ≤

∑

H1,H2H1∪H2=K
H1∩H2=∅

⎛

⎝C |H1| |H1|!χ0
H1,K

∏

i∈H1

χ̄0
Si

f ε
0,Si

⎞

⎠
(
χ̄0

H2
|E0

H2
|) , (2.32)

where:

(i) χ0
H1,K = 1 if and only if any cluster Si , with i ∈ H1, has, at least, one

particle “overlapping” with another particle in S j with j ∈ K, j �= i ;
(ii) H2 = ∪i∈H2 Si .

By overlap of two particles we mean that their relative distance is smaller
than ε.

Note that χ̄0
H2

allows to insert (2.29) into (2.32),while the particles contained
in H1 are constrained to lie in a small set. Explicitly,
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The Boltzmann–Grad limit of a hard sphere system… 1157

|Ē0
K| ≤ zk e−(β/2)

∑
i∈K v2i

∑

H1,H2H1∪H2=K
H1∩H2=∅

C |H1| |H1|!χ0
H1,K εγ0|H2|, (2.33)

for all k < ε−α0 .

3 Hierarchies

In this section we introduce the standard description of the evolution of a
statistical state of particles, namely the chain of BBGKY hierarchy equations
(Sect. 3.1). We also introduce the analogue hierarchies at the kinetic level,
which can be obtained by formally taking the limit ε → 0 (Sects. 3.2, 3.3).
An explicit representation of the solution to the BBGKY can be given in
terms of a tree expansion and of a class of special flows of particles evolving
backwards in time.An analogous description is also possible for theBoltzmann
(or the Enskog) evolution equation. These well known expressions, which will
be our basic tool, are introduced in Sects. 3.4 and 3.5, together with some
new expansions that will have the role of intermediate object in the transition
towards the kinetic limit. We conclude the section with a summary of the main
tools introduced.

3.1 BBGKY hierarchy

We describe here the time evolution of the hard sphere system for any fixed
ε > 0. The evolution equations for the considered quantities were first derived
formally by Cercignani in [12].

Assuming some explicit bound and sufficient smoothness, he deduced the
hard sphere version of the BBGKY hierarchy of equations [6], which for the
rescaled correlation functions takes the form
⎛

⎝∂t +
j∑

i=1

vi · ∇xi

⎞

⎠ f ε
j (z j , t) =

j∑

i=1

∫

S2×R3
dω dv j+1 Bε(ω; v j+1 − vi )

× f ε
j+1(z j , xi + εω, v j+1, t), (3.1)

where

Bε(ω; v j+1 − vi ) = ω · (v j+1 − vi )1{min�=1,..., j;� �=i |xi+ωε−x�|>ε}(ω). (3.2)

Here 1A denotes the indicator function of the set A.
Notice that the difference of this formula with respect to the hierarchy

written for marginals in the canonical setting (as for instance in [12]), is that

123



1158 M. Pulvirenti, S. Simonella

the factor ε2(N− j) is absent in the right hand side (N = fixed total number of
particles). This is a small notational advantage in using correlation functions.

The series solution of the hierarchy (obtained from integration and repeated
iteration of the above formula) is

f ε
j (t) =

∑

n≥0

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

Sε
j (t − t1)Cε

j+1Sε
j+1(t1 − t2) · · · Cε

j+nSε
j+n(tn) f ε

j+n(0), (3.3)

where we used the definitions of interacting flow operator Sε
j (t) and BBGKY

collision operator Cε
j+1, i.e. respectively

Sε
j (t) f ε

j (z j , ·) = f ε
j (T

ε
j (−t)z j , ·) (3.4)

and

Cε
j+1 =

j∑

k=1

Cε
k, j+1

Cε
k, j+1 f ε

j+1(z j , ·) =
∫

S2×R3
dωdv j+1Bε(ω; v j+1 − vk)

f ε
j+1(z j , xk + ωε, v j+1, ·). (3.5)

Rigorous derivations of the hard sphere hierarchy, under rather weak
assumptions on the initial measure, have been discussed later on, e.g.
[22,34,38].2 The latter references focus mainly on the validity of the series
expansion (3.3).

Let us formulate the result in a form useful for our analysis.

Proposition 3.1 (BBGKY series expansion) Let Wε
0 be a state of the hard

sphere system satisfying Hypothesis 2.1. Then the measure at any time t > 0
has rescaled correlation functions f ε

j (t) given by (3.3), for almost all points
in M j .

For a complete proof of the validity result as formulated above, we refer to
[34].3

Proposition 3.1 is the starting point of our analysis. All the formulas involv-
ing the r.c.f. at positive times will be valid only almost everywhere.

2 See also [31], appeared before revision of the present paper.
3 Note that the quoted result of [34] (Corollary 2) is stated for a systemof particles in a finite box.
Given the explicit assumption on the spatial decay (2.12), the result can be easily established
on the full space along the same lines.
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3.2 Boltzmann hierarchy

Wewant to give a picture of theBoltzmann equationwhich can be conveniently
compared to (3.3).

Suppose that f is a solution to the Boltzmann equation (1.4) (with λ = 1).
Consider the products

f j (z j , t) = f (t)⊗ j (z j ) = f (z1, t) f (z2, t) · · · f (z j , t). (3.6)

The family of f j solves the hierarchy of equations (Boltzmann hierarchy):

⎛

⎝∂t +
j∑

i=1

vi · ∇xi

⎞

⎠ f j = C j+1 f j+1,

where

C j+1 =
j∑

k=1

Ck, j+1

Ck, j+1 = C+k, j+1 − C−k, j+1

C+k, j+1 f j+1(z j , ·) =
∫

R3
dv j+1

∫

S2+
dω(vk − v j+1)

·ω f j+1(z1, . . . , xk, v
′
k, . . . , z j , xk, v

′
j+1, ·)

C−k, j+1 f j+1(z j , ·) =
∫

R3
dv j+1

∫

S2+
dω(vk − v j+1)

·ω f j+1(z1, . . . , xk, vk, . . . , z j , xk, v j+1, ·), (3.7)

with {
v′k = vk − ω[ω · (vk − v j+1)]
v′j+1 = v j+1 + ω[ω · (vk − v j+1)] (3.8)

and
S2+ = {ω | (vk − v j+1) · ω ≥ 0}. (3.9)

The corresponding series solution reads

f j (t) =
∑

n≥0

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

×S j (t − t1)C j+1S j+1(t1 − t2) · · · C j+nS j+n(tn) f0, j+n, (3.10)
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where now S j (t) is the free flow operator, defined as

S j (t) f j (z j , ·) = f j (x1 − v1t, v1, . . . , x j − v j t, v j , ·), (3.11)

and
f0, j = f ⊗ j

0 (3.12)

are the initial data.
The absolute convergence of this formula has been discussed in [25] and

holds (over all R6 j ) only for a sufficiently small time. We shall give a proof,
for completeness, in Sect. 4.1 (Proposition 4.1). This implies, in particular,
local existence and uniqueness of the solution to the time-integrated version
of the Boltzmann hierarchy in the class of continuous functions such that

| f j (t)| ≤ c j e−c′
∑ j

i=1 v2i for some c, c′ > 0. Moreover, in the case of initial
product states, factorization is propagated in time, each factor being the local
solution to the time-integratedBoltzmann equation (see formula (3.52) below).

The similarity of (3.10) and (3.3) follows from the decomposition of the
BBGKY collision operator into its positive and negative part.

3.3 Enskog hierarchy

We provide here an intermediate item between the BBGKY hierarchy and the
Boltzmann hierarchy, that is the so called Enskog hierarchy.

Let gε be a solution to the Enskog Equation (1.19) (with λ = 1). Proceeding
as above, the products

gε
j (z j , t) = gε(t)⊗ j (z j ) (3.13)

satisfy ⎛

⎝∂t +
j∑

i=1

vi · ∇xi

⎞

⎠ gε
j = CE

j+1gε
j+1, (3.14)

where the definition of CE
j+1 is induced by that of the collision operator on the

right hand side of (1.19) (the symbol E stands for “Enskog”, while we drop
the dependence on ε), i.e.

CE
j+1gε

j+1(z j , ·) =
j∑

k=1

{∫

R3
dv j+1

∫

S2+
dω(vk − v j+1)

·ω gε
j+1(z1, . . . , xk, v

′
k, . . . , z j , xk − ωε, v′j+1, ·)

−
∫

R3
dv j+1

∫

S2+
dω(vk − v j+1)

·ω gε
j+1(z1, . . . , xk, vk, . . . , z j , xk + ωε, v j+1, ·)

}

. (3.15)
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We derive the corresponding series solution:

gε
j (t) =

∑

n≥0

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

×S j (t − t1)CE
j+1S j+1(t1 − t2) · · · CE

j+nS j+n(tn)g
ε
0, j+n, (3.16)

where
gε
0, j = f ⊗ j

0 (3.17)

are the initial data (which in this paper will be assumed, for simplicity, equal
to the initial data for the Boltzmann hierarchy).

Notice that the operator CE
j+1 is identical to C j+1 introduced in (3.7), except

for the fact that the particle j + 1 has position xk −ωε in the gain and xk +ωε

in the loss.
Local existence, uniqueness and propagation of chaos are discussed exactly

as for the Boltzmann hierarchy (see the comment after (3.12), and formula
(3.46) below).

3.4 The tree expansion

In this section we shall follow mainly [30] Sec. 6, adapting discussions and
notation therein to the simpler case of hard spheres. Our purpose is to rewrite
formulas (3.3) and (in the next section) (3.10) in a convenient andmore explicit
way.

We start from (3.3), which we write as

f ε
j (t) =

∑

n≥0

∑

kn

∗ ∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

×Sε
j (t − t1)Cε

k1, j+1Sε
j+1(t1 − t2) · · · Cε

kn, j+nSε
j+n(tn) f ε

0, j+n,

(3.18)

where

∑

kn

∗ =
j∑

k1=1

j+1∑

k2=1

· · ·
j+n−1∑

kn=1

. (3.19)

We introduce the n-collision, j-particle tree, denoted �( j, n), as the col-
lection of integers k1, . . . , kn that are present in the sum (3.19), i.e.

k1 ∈ I j , k2 ∈ I j+1, . . . , kn ∈ I j+n−1, with Is = {1, 2, . . . , s}, (3.20)
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1 27463

t −

0 −

t −

t −

t −

t −

t −

1

2

3

4

5

5

Fig. 1 The two-particle tree�(2, 5) = (1, 2, 1, 3, 2). The tree associated to 1 is�1 = (1, 1, 3),
while �2 = (2, 2)

so that ∑

kn

∗ =
∑

�( j,n)

. (3.21)

The name “tree” is justified by its natural graphical representation, which
we explain by means of an example: see Fig. 1 corresponding to �(2, 5) given
by 1, 2, 1, 3, 2. In the figure, we have also drawn a time arrow in order to
associate times to the nodes of the trees: at time ti the line j + i is “created”.
Lines 1 and 2 of the example, existing for all times, are called “root lines”.

3.4.1 The interacting backwards flow (IBF)

Given a j-particle tree �( j, n) and fixed a value of all the integration vari-
ables in the expansion (3.18) (times, unit vectors, velocities), we associate to
them a special (ε-dependent) trajectory of particles, which we call interacting
backwards flow (IBF in the following), since it will be naturally defined by
going backwards in time. The rules for the construction of this evolution are
explained in what follows.

First, we introduce a notation for the configuration of particles in the IBF,
by making use of Greek alphabet, i.e. ζ ε(s), where s ∈ [0, t] is the time. Note
that there is no label specifying the number of particles. This number depends
indeed on the time. If s ∈ (tr+1, tr ) (with the convention t0 = t, tn+1 = 0),
there are exactly j + r particles:

ζ ε(s) = (ζ ε
1 (s), . . . , ζ ε

j+r (s)) ∈ M j+r for s ∈ (tr+1, tr ), (3.22)
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with
ζ ε

i (s) = (ξε
i (s), ηε

i (s)), (3.23)

the positions and velocities of the particles being respectively

ξ ε(s) = (ξε
1 (s), . . . , ξ ε

j+r (s)),

ηε(s) = (ηε
1(s), . . . , η

ε
j+r (s)). (3.24)

Our final goal is to write (3.18) in terms of the IBF (to be defined below),
i.e.:

f ε
j (z j , t) =

∑

n≥0

∑

�( j,n)

T ε(z j , t) (3.25)

where T ε(z j , t) is the value of the tree �( j, n) with configuration z j at time
t , for the interacting flow,

T ε(z j , t) =
∫

d�(tn, ωn, v j,n)

n∏

i=1

Bε(ωi ; v j+i − ηε
ki
(ti )) f ε

0, j+n(ζ
ε(0)),

(3.26)

tn = t1, . . . , tn,

ωn = ω1, . . . , ωn,

v j,n = v j+1, . . . , v j+n, (3.27)

d� is the measure on R
n × S2n × R

3n

d�(tn, ωn, v j,n) = 1{t>t1>t2···>tn>0}dt1 · · · dtndω1 · · · dωndv j+1 · · · dv j+n,

(3.28)
and we use the shorthand notation

Bε(ωi ; v j+i − ηε
ki
(ti )) = ωi · (v j+i − ηε

ki
(ti ))1{|ξε

j+i (ti )−ξε
k (ti )|>ε ∀k �=ki }.

(3.29)

In other words, in the generic term T ε(z j , t), the initial datum f ε
0, j+n is inte-

grated, with the suitable weight, over all the possible time-zero states of the
IBF associated to �( j, n).

In formula (3.26), the triple (ti , ωi , v j+i ) may be thought as associated to
the node of �( j, n) where line j + i is created (see Fig. 1). In the rest of the
paper, we shall abbreviate further

∫
d�(tn, ωn, v j,n)

∏
Bε =

∫
d�(tn, ωn, v j,n)

n∏

i=1

Bε(ωi ; v j+i − ηε
ki
(ti )),

(3.30)
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where the ηε
ki
(ti ) in the factors Bε have to be computed through the rules spec-

ified below, starting from the set of variables (tn, ωn, v j,n), the corresponding
j-particle tree (whose nodes are labeled by (tn, ωn, v j,n)), together with the
associated value of z j , t .

Let us construct ζ ε(s) for a fixed collection of variables �( j, n), z j , tn, ωn,

v j,n , with
t ≡ t0 > t1 > t2 > · · · > tn > tn+1 ≡ 0, (3.31)

andωn satisfying a further constraint that will be specified soon. The root lines
of the j-particle tree are associated to the first j particles, with configuration
ζ ε
1 , . . . , ζ ε

j . Each branch j + � (� = 1, . . . , n) represents a new particle with
the same label, and state ζ ε

j+�. This new particle appears, going backwards in
time, at time t� in a collision configuration with a previous particle (branch)
k� ∈ {1, . . . , j + �− 1}, with either incoming or outgoing velocity.

More precisely, in the time interval (tr , tr−1) particles 1, . . . , j +r −1 flow
according to the interacting dynamics Tε

j+r−1. This defines ζ ε
j+r−1(s) starting

from ζ ε
j+r−1(tr−1). At time tr the particle j + r is “created ” by particle kr in

the position
ξε

j+r (tr ) = ξε
kr

(tr )+ ωr ε (3.32)

and with velocity v j+r . This defines ζ ε(tr ) = (ζ ε
1 (tr ), . . . , ζ ε

j+r (tr )).
The characteristic function in the collision operator (3.2)–(3.5) (or the char-

acteristic function in (3.29)), is a constraint on ωr ensuring that two hard
spheres cannot be at distance smaller than ε.

Next, the evolution in (tr+1, tr ) is contructed applying to this configuration
the dynamics Tε

j+r (with negative times). We have two cases. If ωr · (v j+r −
ηε

kr
(tr )) ≤ 0, then the velocities are incoming and no scattering occurs, namely

for times s < tr the pair of particles moves backwards freely with velocities
ηε

kr
(tr ) and v j+r . If insteadωr ·(v j+r−ηε

kr
(tr )) ≥ 0, the pair is post-collisional.

Then the presence of the interaction in the flowTε
j+r forces the pair to performa

(backwards) instantaneous collision. The two situations are depicted in Fig. 2.
Proceeding inductively, the IBF is constructed for all times s ∈ [0, t].

3.4.2 Recollisions and factorization

Observe that between two creation times tr+1, tr any pair of particles among
the existing j + r can possibly interact. These interactions are called recolli-
sions, because they may involve particles that have already interacted at some
creation time (in the future) with another particle of the IBF. In our language,
recollisions are the “interactions different from creations”.

Let us focus now in more detail on the structure of the backwards flow and
on the mechanisms of correlation.
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r

v j + r

r

v j + r

k r
r

k r
r

Fig. 2 At time tr , particle j + r is created by particle kr , either in incoming (ωr · (v j+r −
ηε

kr
(tr )) ≤ 0) or in outgoing (ωr · (v j+r − ηε

kr
(tr )) ≥ 0) collision configuration. Particle kr is

called the progenitor of particle j + r

We observe preliminarily that the graphical representation of a n-collision,
j-particle tree �( j, n) = (k1, . . . , kn) consists of j connected components.
Each of these components is associated to a root line i ∈ {1, 2, . . . , j} and
collects ni nodes i1, i2, . . . , ini . In particular, we have the following map:

�( j, n) −→ 	 j = �1, . . . , � j ,

�i = (ki
1, . . . , ki

ni
), ki

h = kih . (3.33)

In the sequel we will call simply tree (generated by i) the collection of integers
�i . In the example of Fig. 1 one has �1 = (1, 1, 3), �2 = (2, 2).

Note that the map (3.33) is not invertible, since the collection 	 j does not
specify the ordering of particles belonging to different trees. A one-to-one
correspondence is instead the following:

n, �( j, n), tn ←→ n1, �1, t1n1, . . . , n j , � j , t j
n j , (3.34)

where

ti
ni
= t i

1, . . . , t i
ni

, t i
h = tih .

Clearly n =∑
i ni .

For a given sequence of trees 	 j , there are several j-particle trees �( j, n)

having 	 j as image of the map (3.33). However summing the time–ordered
product over such trees �( j, n) is equivalent to a free time integration leaving
only the partial ordering dictated by the sequence 	 j . Namely it holds:

∑

�( j,n)

∫
1{t>t1>t2···>tn>0}dt1 · · · dtn F =

j∏

i=1

∑

�i

∫
1{t>t i

1>t i
2···>t i

ni
>0}dti

1 · · · dti
ni

F (3.35)

where F = F(	 j , tn).
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Applying this property to the expansion (3.25), we obtain the following
factorization result:

f ε
j (z j , t) =

∑

n≥0

∑

�( j,n)

∫
d�(tn, ωn, v j,n)

∏
Bε f ε

0, j+n(ζ
ε(0))

=
j∏

i=1

⎛

⎝
∑

ni ,�i

∫
d�(ti

ni
, ωi

ni
, vi

1,ni
)

⎞

⎠
∏

Bε f ε
0, j+n(ζ

ε(0)). (3.36)

In (3.36), the triples in (ti
ni

, ωi
ni

, vi
1,ni

) are associated to the nodes of the tree
�i , while the IBF (hence the integrand

∏
Bε f ε

0, j+n) has to be computed with
the rules specified in the previous subsection.

With the notations introduced above (see in particular Fig. 1), it should be
clear that each particle of the IBF “belongs” to exactly one tree �i . Therefore
we may distinguish two types of recollisions. The internal recollisions, occur-
ring among particles of the same tree and the external recollisions, occurring
between particles belonging to different trees. Because of the external rec-
ollisions, we say that different trees are correlated, in the sense that their
interacting backwards flows are not pairwise independent.

Remark Formula (3.36) shows a partial factorization: a full factorization is
prevented by the correlations of the initial datum f ε

0, j+n , the forbidden (exter-
nal) overlaps of created particles at the creation times (written in Bε) and,
more importantly, the external recollisions in the IBF. If we simply ignore
these effects and replace f ε

0, j+n with a tensor product, then (3.36) becomes a
completely factorized expression.

From now on, in handling formula (3.36) and similar ones established in
the sequel, we will use intensively the notations

�i = tree generated by particle i ∈ {1, . . . , j}, (3.37)

which is a (ni -collision) tree with associated configuration zi at time t ,

(ti
ni

, ωi
ni

, vi
1,ni

) = collection of triples associated to the nodes of �i , (3.38)

and
S(i) = set of particles associated to �i . (3.39)

Moreover,
S(K ) = ∪i S(i), (3.40)

where K is any subset of {1, . . . , j}.
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3.5 Factorized expansions

3.5.1 The uncorrelated IBF

Using the symmetry of the state, we could change notation in the integrals
(3.36), by substituting ζ ε(0) with (ζ ε

S(1)(0), . . . , ζ
ε
S( j)(0)), where ζ ε

S(i) =
{ζ ε

k ; k ∈ S(i)}. As already pointed out, however, configurations ζ ε
S(i) with

different values of i are correlated through the external recollisions.
Let us introduce a different notion of backwards flow, in which the correla-

tions among different groups ζ ε
S(i) are ignored. Suppose that we want the tree

�i to be “uncorrelated”. Then, for all k ∈ S(i), we substitute the IBF ζ ε
k (s)

with the evolution
ζ̃ ε

k (s), (3.41)

to be constructed as ζ ε
k (s)with the additional prescription that its external rec-

ollisions are ignored (see Fig. 3). The constraint excluding overlaps of created
particles in �i with particles of different trees at the moment of creation, has
to be also ignored. Notice that (3.41) is a function of the only zi , �i , ti

ni
, ωi

ni
,

vi
1,ni

.
For instance if we want all the trees in the expansions (3.36) to be uncorre-

lated in the above sense, we shall replace ζ ε(s) → ζ̃
ε
(s) inside the formula

and require that:

– factors Bε associated to different trees become completely independent;
– the initial data are evaluated in the time-zero configuration ζ̃

ε
(0) =

(ζ̃
ε

S(1)(0), . . . , ζ̃
ε

S( j)(0)) (with ζ̃
ε

S(i) = {ζ̃ ε
k ; k ∈ S(i)}), that is a collec-

tion of j independent objects. The resulting quantity would differ from the
tensorized product f ε

1 (t)⊗ j (z j ) just because of the correlations assumed
for the initial r.c.f. f ε

0, j+n .

3.5.2 The Enskog backwards flow (EBF)

Even after replacing the IBF with the uncorrelated flow in (3.36), there is still
a nontrivial correlation among particles of the same tree. This is due to the
internal recollisions in ζ̃

ε
, among particles of each set S(i). To get rid of them,

one has to introduce the completely uncorrelated backwards flow

ζ E
k (s) (3.42)

(where E stands for “Enskog”) for all k ∈ S(i), to be constructed as ζ̃ ε
k (s)with

the additional prescription that its internal recollisions are ignored, together
with the constraint excluding overlaps of created particles at the moment of
creation.
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The evolution ζ E will be called Enskog backwards flow (EBF). In this flow,
particles are created at distance ε (from their progenitor), but they may reach
a distance smaller than ε during the evolution (in particular, its time-zero state
ζ E (0) varies in R

6( j+∑i ni )).
Alternatively, we may say that the EBF is constructed as the IBF, with the

following differences:

– except for the scattering at the creation times, the interacting dynamics Tε

is replaced by the simple free dynamics;
– there is no constraint on ωr .

The name “Enskog” is due to the obvious connectionwith theEnskog equation.
Indeed (3.15)–(3.16) can be rewritten explicitly

gε
j (z j , t) =

∞∑

n=0

∑

�( j,n)

T E (z j , t) (3.43)

where T E (z j , t) is the value of the tree �( j, n) with configuration z j at time
t , for the Enskog flow

T E (z j , t) =
∫

d�(tn, ωn, v j,n)
∏

BE gε
0, j+n(ζ

E (0)), (3.44)

with
∏

BE =∏n
i=1 B(ωi ; v j+i − ηE

ki
(ti )),

B(ωi ; v j+i − ηE
ki
(ti )) = ωi · (v j+i − ηE

ki
(ti )). (3.45)

Note that the EBF allows a complete factorization, whenever the initial
datum does. Namely if gε

0, j = ( f0)⊗ j for all j , the expansion above gives
immediately

gε
j (z j , t) =

j∏

i=1

⎛

⎝
∑

ni ,�i

∫
d�(ti

ni
, ωi

ni
, vi

1,ni
)
∏

BE gε
0,1+ni

(ζ E
S(i)(0))

⎞

⎠ ,

(3.46)
where ζ E

S(i) = {ζ E
k ; k ∈ S(i)}.

3.5.3 The Boltzmann backwards flow (BBF)

The previous discussion can be repeated, with minor changes, for the case of
the Boltzmann series (3.10). The interacting backwards flow is now substituted
by theBoltzmann backwards flow (BBF) ζ (s).For it, we use the same notations
of (3.22)–(3.24) with the superscript ε omitted.
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Since the collision operator (3.7) is splitted into a gain and a loss term, then,
together with the sum over �( j, n), we have an additional

∑
σ n

with σ n =
(σ1, . . . , σn), σi = ±. To have a compact expression, we change variables
ω →−ω inside the positive part of the collision operators. As a result, in each
termof the expansion,σi fixes the sign of the productωi ·(v j+i−ηki (ti )) (where
the relative velocity at the moment of creation appears). Note that the same
procedure has to be followed when rewriting (3.16) in the form (3.43)–(3.45).

The BBF turns out to be defined exactly as the IBF, except for the following
differences:

– the interacting dynamics Tε is replaced by the simple free dynamics;
– in the right hand side of (3.32) the second term is missing, i.e. the created
particle appears at the same position of its progenitor: ξ j+r (tr ) = ξkr (tr );

– there is no constraint on ωr other than the sign (implied by the value of σr );
– if σr = +, to determine the configuration of particles in (tr+1, tr ),

before applying free evolution we have to change velocities according to
(ηkr (t

+
r ), v j+r ) → (ηkr (t

−
r ), η j+r (t−r )),where→ denotes the elastic scat-

tering rule with scattering vector ωr . We recall that, in our conventions,
ηkr (tr ) ≡ ηkr (t

+
r ) (which indicates the limit from the future, while ηkr (t

−
r )

indicates the limit from the past).

Equation (3.10) can then be rewritten:

f j (z j , t) =
∞∑

n=0

∑

�( j,n)

T (z j , t), (3.47)

where T (z j , t) is the value of the tree �( j, n) with configuration z j at time t ,
for the Boltzmann flow,

T (z j , t) =
∫

d�(tn, ωn, v j,n)
∏

B f0, j+n(ζ (0)), (3.48)

with
∏

B =∏n
i=1 B(ωi ; v j+i − ηki (ti )) and

B(ωi ; v j+i − ηki (ti )) =
∑

σi

σi |ωi · (v j+i − ηki (ti ))|1{σi ωi ·(v j+i−ηki (ti ))≥0}

= ωi · (v j+i − ηki (ti )). (3.49)

Note that, in the final formula, the difference between gain and loss collision
operators is hidden inside the rule for the construction of the BBF, which
depends, as explained above, on the sign of each product ωi · (v j+i − ηki (ti )).

Note also that
η = ηE (3.50)
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and
B = BE , (3.51)

the only difference between the BBF and the EBF being due to the position in
space of created particles.

As before, (3.47) can be immediately written in the form

f j (z j , t) =
j∏

i=1

⎛

⎝
∑

ni ,�i

∫
d�(ti

ni
, ωi

ni
, vi

1,ni
)
∏

B

⎞

⎠ f0, j+n(ζ (0)), (3.52)

which shows a complete factorization in the case of factorized initial data.

3.6 Summary

We have introduced:

(i) the tree expansion for the evolution of the hard sphere system, solution
to the BBGKY hierarchy of equations: see (3.25)–(3.26) (equivalently,
(3.36));

(ii) an “uncorrelated” tree expansion described in Sect. 3.5.1;
(iii) the tree expansion for the Enskog equation, solution to the Enskog hier-

archy: (3.43)–(3.44);
(iv) the tree expansion for the Boltzman equation, solution to the Boltzmann

hierarchy: (3.47)–(3.48);

and, correspondingly:

(i’) the interacting backwards flow ζ ε(s), expressing the evolution of the
rescaled correlation functions of the hard sphere system;

(ii’) the partially uncorrelated flow ζ̃
ε
(s), obtained from the IBF by ignoring

the external recollisions;
(iii’) the Enskog backwards flow ζ E (s), obtained from the IBF by ignoring

all the recollisions;
(iv’) the Boltzmann backwards flow ζ (s), describing the evolution of func-

tions obeying the Boltzmann hierarchy, and obtained from the EBF by
making the particles interact at distance zero instead of ε.

See Fig. 3 below.
The flows in (iii’) and (iv’) will be used to prove convergence of the hard

sphere system to the Enskog and the Boltzmann equation, while (ii’) will be
enough for the proof of propagation of chaos.
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ζ̃ε(s)
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t
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ζE (s)
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t

0

5

4

Fig. 3 An example of trajectories drawn by the four types of backwards flow introduced, in
the case of the two-particle tree �(2, 3) = (1, 2, 3), for fixed values of the variables (here
z2, t3, ω3, v2,3). The hard spheres of diameter ε are pictured at the creation times and at the
recollision times

4 Proof

4.1 Basic estimates

In this section we recall the basic estimate given by Lanford, in a form well
suited for our purposes.
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The following convergence property of theBBGKY,Enskog andBoltzmann
series expansions introduced in Sect. 3, is preliminary to our work.

Proposition 4.1 (Short time estimates) If the initial data f ε
0, j and f0, j are

bounded as in (2.12), then the absolute convergence of the expansions (3.25),
(3.43) (uniformly in ε) and (3.47) holds, for any t < t̄ = t̄(z, β).

The proof, reported here for completeness, reduces immediately to the
bound given by the following lemma, which is stated in a somewhat general
form.

Lemma 4.2 Let a = 1, 2. There exist constants t̄, C̄ > 0 (depending on z, β)
such that, for any t < t̄ , the following estimate holds:

∑

n≥0
z j+n

∑

�( j,n)

∫
d�(tn, ωn, v j,n)

(∏
|Bε|

)a
e−(β/2)

∑
i∈S(J )(η

ε
i (0))2

≤ C̄ j e−(β/4)
∑

i∈J v2i . (4.1)

The same result holds when Bε, ζ ε are replaced by BE , ζ E (Enskog flow) or
B, ζ (Boltzmann flow).

Remind that J = {1, . . . , j} and, by the notation (3.40), S(J ) = {1, 2, . . . , j+
n}.

In the case a = 1, this shows that the expansions of Proposition 4.1 are
absolutely convergent in the norm ess supx j

∫
dv j . The case a = 2 will be

used as technical tool in Appendix C (Lemma C.1).

Proof of Lemma 4.2 The conservation of energy at collisions implies

∑

i∈S(J )

(ηε
i (0))

2 =
j+n∑

i=1

v2i . (4.2)

In particular
∑ j+i−1

ki=1 (ηε
ki
(ti ))2 ≤∑ j+n

i=1 v2i . Using the expression of Bε (3.29)
and (3.19), we find

∑

�( j,n)

(∏
|Bε|

)a ≤ an
n∏

i=1

⎡

⎢
⎣( j + n)|v j+i |a + ( j + n)

2−a
2

⎛

⎝
j+n∑

l=1

v2l

⎞

⎠

a
2
⎤

⎥
⎦ .

(4.3)
Moreover,

⎛

⎝
j+n∑

l=1

v2l

⎞

⎠

1
2

e−
β
4n

∑ j+n
i=1 v2i ≤

√
2n

eβ
,

⎛

⎝
j+n∑

l=1

v2l

⎞

⎠ e−
β
4n

∑ j+n
i=1 v2i ≤ 4n

eβ
. (4.4)
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Inserting these estimates in the l.h.s. of (4.1), it follows that we can bound
it by

e−(β/4)
∑

i∈J v2i
∑

n≥0
2nz j+n

∫
d�

n∏

i=1

e−
β
4 v2j+i

×
(

( j + n)|v j+i |a +
√
2n( j + n)√

eβ
+ 4n

eβ

)

. (4.5)

The integral on the velocities factorizes so that

(4.5) ≤ e−(β/4)
∑

i∈J v2i
∑

n≥0
C(z, β) j+n tn

n! ( j + n)n (4.6)

for a suitable constantC(z, β) > 0 (explicitly computable in terms of gaussian
integrals). Since

( j + n)n

n! ≤ ( j + n) j+n

( j + n)! ≤ e j+n, (4.7)

we have that (4.6) is bounded by a geometric series. Hence choosing

t̄ <
1

C(z, β)e
, (4.8)

we obtain (4.1).
The cases of the Enskog and of the Boltzmann flow are treated in the same

way. � 
Remark Lemma 4.2 and Proposition 4.1 imply of course that the correlation
errors EK , EE

K , EB
K introduced in Theorem 2.4 are bounded by (const.)k ,

uniformly in ε, for all t < t̄ . Note that this is also true (and optimal) in the
regions R6k\Mk , as soon as the definition of the r.c.f. is extended there as
f ε

J (zJ , t) = 0.

4.2 Plan of the proof

In this section we outline the main technical difficulties in proving our result
and give some intuitive explanation of the strategies and sketch of the argu-
ments developed to overcome them. We concentrate on estimate (2.21) which
is the main result of the paper. There are three main issues:

Step 1: Combinatorics;
Step 2: Ordering of recollisions;
Step 3: Estimate of the single recollision event.
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In Step 1 we construct a perturbative expression for the correlation error EK
and control the number of terms. Steps 2, 3 deal with the estimate of such an
expression. All these steps present peculiar difficulties and we shall discuss
them separately.

General strategy. We start from the explicit formula for the evolution of
rescaled correlation functions f ε

j , that is the tree expansion described in
Sect. 3.4, see (3.36). It is important to keep in mind the structure of this
formula: (a) a sum over j binary tree graphs; (b) an integral over characteristic
flows of type ζ ε associated to the trees (see Fig. 3-i above).

Our first purpose is to manipulate directly the formula and reorganize it into
the cumulant type expansion (1.14).

Reconstructing formula (1.14) from the tree expansion means to extract,
among the j trees, different subsets of independent one-particle trees. “Inde-
pendent” here has a precise meaning, namely the value of the tree does not
depend on particles external to the tree. Conversely, “correlated” trees are not
independent trees. By working with formula (3.36) we are in a favourable
position, since the sources of correlation become totally explicit (remind the
discussion in Sect. 3.5.1).

There are two different effects: the propagation in time of the initial cor-
relations due to the hard sphere exclusion, and the dynamical correlations
induced by the external recollisions. As an example, consider the two-particle
function f ε

2 . An associated trajectory is Fig. 3-i where the trees �1, �2 are
correlated through the external recollision. To get independent trees we would
need: (1) to replace ζ ε by ζ̃

ε
, where the particles of different trees ignore

and cross each other freely (overlap); (2) to replace the time-zero distribu-
tion f ε

0,5(z1, . . . , z5) with f ε
0,3(z1, z3, z5) f ε

0,2(z2, z4). Point (1) is achieved by
the following elementary addition/subtraction procedure: for any integrable
function of the flow F (here F = F(z2, t3, ω3, v2,3)), it holds that (here∫ = ∫

d�(t3, ω3, v2,3))

∫
F(ζ ε) =

∫
Fχrec

1,2 (ζ ε)+
∫

F(1− χrec
1,2 )(ζ ε)

=
∫

F(ζ̃
ε
)+

∫ [
Fχrec

1,2 (ζ ε)− Fχov
1,2(ζ̃

ε
)
]
,

whereχrec
1,2 (χov

1,2) is the indicator function of the recollision (overlap) condition
between the two trees. The last integral, which will be O(ε2γ ) for some γ > 0,
is part of the correlation error E2, and to have the complete expression it suffices
now to add the error term in point (2).

We stress that the flows in Fig. 3 above, as well as the notions of recollision
and overlap do not have direct physical interpretation. Technically, the estima-
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tion of recollisions and overlaps will be treated in the sameway in Sect. 4.4 (ζ ε

has external recollisions iff ζ̃
ε
has overlaps). But to give an explicit expression

for EK , we need to distinguish between the two.
The extension of the procedure to the case of k > 2 particles leads to

a combinatorial problem. One could write 1 = ∏
i<�[χrec

i,� + (1 − χrec
i,� )]

and proceed as above. For any pair of recolliding trees we hope to gain a

factor O(ε2γ ). But for k recolliding trees one would get ∼ 2
k(k−1)

2 terms,

therefore nothing better than EK ∼ 2
k(k−1)

2 εγ k (yielding k ≤ O(log ε−1)).
To reach k ∼ O(ε−α), we use a simple graph expansion procedure (Lemma
4.4 below) allowing to improve the bad counting factor to k!. In Sect. 4.3 we
introduce this technique (in a sense reminiscent of the cluster expansion in
equilibrium statistical mechanics) in an abstract form, and then apply it to
both the dynamical and the initial correlation.

Let us explain here the method in a few words.

Step 1. Suppose to have a set J of trees. Some of them recollide externally, say
those in L0 ⊂ J , while the other trees L = J\L0 do not. We indicate these
conditions with the characteristic functions of the flow: χrec

L0
, χ̄rec

L ,J . Obviously
the second function makes the trees in L not independent. To make them
independent we need to substitute ζ ε → ζ̃

ε
: we produce an error

F χ̄rec
L ,J = F −

∑

∅�=L1⊂L

F χov
L1,L0∪L1

χ̄rec
L\L1,J

where everything is evaluated in ζ̃
ε
, and χov

L1,L0∪L1
means that all the trees in

L1 are constrained to overlap with some other tree in L0 ∪ L1. From the |L1|
overlapping condition, we want to gain O(εγ |L1|) (steps 2, 3 below). The trees
L\L1 are still correlated through χ̄rec

L\L1,J , but here we just iterate the formula.
It follows that

1 =
∑

L0⊂J

χrec
L0

χ̄rec
L ,J =

∑

L0⊂J

χrec
L0

∑

Q⊂J\L0

R(Q, L0) (4.9)

where R(Q, L0) contains q overlapping conditions and a number of terms
growing as the number of partitions of a set with cardinality q = |Q|, i.e.

∑

Q⊂J\L0

R(Q, L0) ≈ Cqq!χov
Q,Q∪L0

(4.10)

for some constantC > 0 (see Appendix B for the exact expression). The result
is summarized in the picture.
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JL0

Q

dynamically
independent

recolliding

overlapping
in Q ∪ L0

The trees in J\(L0 ∪ Q) are free of dynamical conditions and evaluated in
the uncorrelated flow ζ̃

ε
, therefore they are correlated only through the initial

data. Such a correlation, which is due to the hard sphere exclusion at time zero,
can be treated by the same method, with the “recollision condition” replaced
by the “overlap of spheres at time zero” (Sect. 2.4.2, Property 2). This makes
the final expression for the correlation error EK slighty more complicated than
what can be guessed from (4.9) (see (4.27) below).

Step 1.1 Once derived the expression for EK it becomes clear that we need to
face an estimate of events with many external recollisions and overlaps, like∫

χrec
L0

χov
Q,Q∪L0

(· · · ). This will be the object of steps 2 and 3. A preliminary,
crucial operation is the substitution of the integrand (· · · ) with a simplified
expression. This is based on estimates known from previous papers. In Sect.
4.3.3 we will show that the Hypotheses on the initial data and the introduc-
tion of several cutoffs allow to replace the integrands in the expansion for
EK with a positive, bounded, compactly supported function of the energy of
trees.

Step 2. Let F = F(K ) be a nice function of the energy of the trees in K .
Consider, for simplicity (Q = ∅ above), the estimate of K recolliding trees
with n created particles:

∫
χrec

K F(K ), from which we want to gain a factor
εγ k . This is a delicate point because, while it is understood how to estimate
a single (internal or external) recollision (see [16,30] and Appendix D of the
present paper) it is not obvious at all that, in case of k recolliding trees—
implying at least k/2 external recollisions—one can gain the εγ k by means of
a sufficiently large number of integrations.

The k/2 recollision conditions are, of course, not independent. Therefore,
we need to proceed carefully. First, we order the recollisions in time. Secondly,
for any possible sequence, we estimate the recollisions one by one iteratively,
following the time order.

To clarify this better, let us consider the following possible ordering. Going
backwards in time, the first two trees to collide are �2 and �1. Going fur-
ther backwards, the first collision involving a new tree is between �3 and
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�2, the second is between �4 and �3 and so on up to the last collision of
the chain, between �k and �k−1. It is natural to say that the trees α and β

are in a relation “bullet-target” when the first external recollision of α going
backwards in time occurs with β. In the case considered, we have a sequence
(α1, β1), (α2, β2), . . . , (αk−1, βk−1), where (αi , βi ) = (�i+1, �i ) and the first
external recollision of αi occurs in the future with respect to the first external
recollision of αi+1. For instance for k = 4:

Γ2 = α1, β2Γ1 = β1 Γ3 = α2, β3 Γ4 = α3t

0

where we represented with wavy lines the recollisions characterizing the bul-
lets.

The velocities at time t of the particles generating the trees are denoted
by v1, v2, . . . , vk respectively. Now fix all the integration variables but those
relative to the last tree �k . Then we can integrate with respect to the latter
variables (including vk) with no interference with the other constraint, thanks
to the fact that the recollision �k −�k−1 is the last one in backward order. We
gain a small factor εγ1 by this integration (Lemma 4.10 below) and we iterate
the procedure to obtain the desired result.

More generally, to handle with
∫

χrec
K F(K ) we shall introduce, in Sect.

4.4, a “table of recollisions” {(α1, β1), (α2, β2), . . . , (α�, β�)}, characterizing
one of all possible choices of the couples bullet-target and of the orderings of
bullets in time.Whatever is the sequence,we know that � ≥ k/2, andwe reduce
to an ordered integral ((4.46) below) which allows to estimate the constraints
one by one (integrate out the α�-variables first, then the α�−1-variables, and
so on up to α1).

Step 3. The price we pay for the approach in Step 2 is that we need now to con-
trol the single overlap of a given bullet against one target tree whose particles
perform a very complicated trajectory, possibly due to several recollisions. In
fact, even if we ignore the internal recollisions of the bullet tree (as can be
actually done producing a small error, see Sect. 4.5.1), we are still left with
the following kind of challenge
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ξ

a particle in
the target tree

α

namely the geometry of the constraint is more complex with respect to the one
studied in [16,30]. In the latter references, targets move freely, while here they
may have an uncontrolled number of recollisions.

The key ingredients to deal with such an estimate are: (1) a parametrization
of the constraint in terms of the relative velocities of the bullet tree at the
creation times (Sect. 4.5.3); (2) to exploit the variable vα , namely the velocity
of the root of the bullet tree (Sect. 4.5.5). Indeed, thanks to (1), the constraint
may be rewritten as 1(vα ∈ T ε

ξ ), where T ε
ξ is a thin tube around a curve of

parametric equation given by ξ (which is frozen) and by all the variables (but
vα) spanning the flow of the bullet ((4.77) below).

No scattering transform is required in this procedure. On the other hand, it
is crucial to integrate in the velocities

∫
dvk as stated in the main theorem. For

this reason, we cannot treat the internal recollisions with the same method.

4.3 Step 1: Combinatorics

In this section we develop the graph expansion technique, Lemma 4.4 below,
which we use to reconstruct the representation (2.20) with an explicit expres-
sion for EK (t). We find convenient to discuss this method of expansion
in an abstract formulation first (i.e. for generic graphs) since it will be
used twice in the sequel, that is it will be applied to the BBGKY series
(3.36) (in Sect. 4.3.1) and to the initial data (proof of Property 2 in Appen-
dix A, applied in Sect. 4.3.2). Next, the discussion in Sects. 4.3.3–4.3.5
will reduce the proof of the theorem to an estimate of many-recollision
events.

Let us start with some classical definitions.

Definition 4.3 (i) A graph over a set I = {a1 · · · an} of vertices, is a col-
lection of edges (links) {�i, j }i �= j , where �i, j takes the values 1, 0 if the
vertices ai and a j are connected or not respectively (e.g. Fig. 4).

(ii) G is the family of all graphs over I.
(iii) We introduce the following characteristic functions on G:

χi,K = 1
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Fig. 4 Graph
�1,4 = �2,3 = �2,5 = 1, and
different �i, j = 0

a1

a

a
a

a
a

14

3
2

6
5

if and only if the vertex ai is connected with some vertex in K ⊂ I;
χ̄i,K = 1− χi,K ;

and, for H ⊂ I,

χH,K =
∏

i∈H

χi,K ,

χ̄H,K =
∏

i∈H

χ̄i,K .

χH,K = 1 if and only if any vertex of H is connected with some vertex in K ,
and χ̄H,K = 1 if and only if any vertex in H is not connected with any vertex
in K . Note that a vertex cannot be self connected, i.e. χi,i = 0 and χ̄i,i = 1.

The following Lemma is the abstract, rigorous formulation of the ideas
explained in ‘Sect. 4.2—General strategy and Step 1’ (where I = J = L∪ L0
is a set of trees).

Lemma 4.4 Let L ⊂ I and L0 = I\L. Then,

χ̄L ,L∪L0 =
∑

Q⊂L

R(Q, L0) (4.11)

where, for some pure constant C > 0,

|R(Q, L0)| ≤ Cq q!χQ,Q∪L0 . (4.12)

We remind the notation q = |Q| and the convention χ̄∅,· = χ∅,· = 1.
Note that each term of the expansion (4.11) does not depend on L\Q, i.e.

there is no condition on the vertices of this set (they are “free” vertices).
The proof of the Lemma is a simple algebraic computation and can be found

in Appendix B (see (B.5) for the exact expression of R).

4.3.1 Expanding the dynamical constraints

We start by rewriting the formula, introduced in Sect. 3.4, yielding the reduced
correlation functions at time t , namely
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f ε
J (zJ , t) =

∑

n≥0

∑

�( j,n)

∫
d�

∏
Bε f ε

0,S(J ), (4.13)

where we abbreviate
∫

d� =
∫

d�(tn, ωn, v j,n), (4.14)

f ε
0,S(J ) = f ε

0,|S(J )|(ζ
ε
S(J )(0)), (4.15)

�( j, n) denotes the set of j-particle treeswith n created particles, (tn, ωn, v j,n)

are the collections of node variables in the tree and S(J ) denotes the set of
indices of the particles created in the backwards flow ζ ε at time 0. Clearly,
|S(J )| = j + n.

4.3.1.a Selection of the recolliding set Let us focus on the external recollisions.
Consider the map (3.33). We say that two trees, say �i and �k (or, briefly,

i and k) recollide if there is a particle in S(i) which collides with a particle in
S(k).
We introduce the characteristic function χrec

i,K defined by:

χrec
i,K = 1

if and only if the tree i recollides with some tree in K ⊂ J . This is a function
of the IBF ζ ε. Also, we introduce

χrec
K =

∏

i∈K

χrec
i,K ,

so that χrec
K = 1 if and only if all the trees in K recollide with some other tree

in K . Finally,

χ̄rec
i,K = 1− χrec

i,K

and, for H ⊂ J ,

χ̄rec
H,K =

∏

i∈H

χ̄rec
i,K .

That is χ̄rec
H,K = 1 if and only if the trees in H do not recollide with any tree

in K .
With these definitions, one has

1 =
∑

L0⊂J

χrec
L0

χ̄rec
J\L0,J . (4.16)
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Observe that, if L0 �= ∅, l0 = |L0| ≥ 2. Inserting now this partition of unity
into (4.13), we find

f ε
J (zJ , t) =

∑

n≥0

∑

�( j,n)

∑

L0⊂J

∫
d�

∏
Bε χrec

L0
χ̄rec

J\L0,J f ε
0,S(J ). (4.17)

The set J\L0 is themaximal set of treeswithout external recollision andwe are
in the position to apply (4.9) (i.e. Lemma 4.4). This requires the introduction
of the “mixed flow” first.

4.3.1.b Mixed backwards flow From the discussion in Sect. 4.2 it should be
clear that, to treat (4.17),weneed todefine amixedbackwardsflow, inwhich the
particles of the trees in L0 are evolved by taking into account all the recollisions
among themselves, while the particles belonging to the trees in J\L0 are
evolved through the flow ζ̃

ε
, i.e. by ignoring their external recollisions (see

Fig. 3 above). We shall indicate such a flow

(ζ (L0), ζ̃
(J\L0)

), (4.18)

where ζ (L0) is the flow of particles of the trees in L0 and ζ̃
(J\L0) is the flow

of particles of the trees in J\L0. Note that we are ignoring the dependence on
ε (now clear from the context) to unburden the notation.

Let i ∈ H ⊂ J\L0 and K ⊂ J . We introduce the following characteristic
functions:

χov
i,K = 1

if and only if the tree i overlaps with some tree in K ⊂ J in the dynamics
(4.18) (in the sense that some particle in S(i) reaches a distance smaller than
ε from some other particle in S(K )); moreover we set

χov
H,K =

∏

i∈H

χov
i,K ,

χ̄ov
i,K = 1− χov

i,K ,

χ̄ov
H,K =

∏

i∈H

χ̄ov
i,K .

That is, χov
H,K = 1 if and only if all the trees in H overlap with some tree in K

while χ̄ov
H,K = 1 if and only if all the trees in H do not overlap with any tree

in K .
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Finally, we write (with a slight abuse w.r.t. the notation (3.29))

∏
Bε(ζ (L0), ζ̃

(J\L0)
) = 1L0 1̃J\L0

n∏

i=1
(ki∈L0)

ωi · (v j+i − ηε
ki
(ti ))

×
n∏

i=1
(ki∈J\L0)

ωi · (v j+i − η̃ε
ki
(ti )), (4.19)

where:

– 1L0 is the characteristic function ensuring that the particles created in the
trees	L0 do not overlapwith other particles of the trees	L0 at themoments
of creation;

– 1̃K\L0 is the characteristic function ensuring that the particles created in
the tree �i , i ∈ K\L0 do not overlap “internally” (i.e. with particles of the
same tree) at the moments of creation.

With these definitions, the following trivial identity holds:

(∏
Bε χrec

L0
χ̄rec

J\L0,J f ε
0,S(J )

)
(ζ ε)

=
(∏

Bε χrec
L0

χ̄ov
J\L0,J f ε

0,S(J )

)
(ζ (L0), ζ̃

(J\L0)
), (4.20)

which inserted into (4.17) leads to

f ε
J (zJ , t) =

∑

n≥0

∑

�( j,n)

∑

L0⊂J

∫
d�

∏
Bε χrec

L0
χ̄ov

J\L0,J f ε
0,S(J ) (4.21)

with the integrand function calculated via the flow (4.18).

4.3.1.c Application of Lemma 4.4
Up to now, we just changed notation in (4.17).

Next we apply Lemma 4.4 to the case: I = J , χ̄ = χ̄ov and L = J\L0.
We obtain

χ̄ov
J\L0,J = χ̄ov

L ,L∪L0
=

∑

Q⊂L

Rov(Q, L0), (4.22)

where
|Rov(Q, L0)| ≤ Cqq!χov

Q,Q∪L0
(4.23)

for some C > 0.
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Inserting the expansion in (4.21), we find

f ε
J (zJ , t) =

∑

L0⊂J

∑

Q⊂J\L0

∑

n≥0
�( j,n)

∫
d�

∏
Bεχrec

L0
Rov(Q, L0) f ε

0,S(J ).

(4.24)
Each tree in Q must obey an overlap-condition in order that Rov �= 0, while the
trees in L0 must recollide among themselves. In contrast, the trees J\(L0∪Q)

are free, in the sense that there is no condition over them, so that they are not
dynamically correlated (see the figure in Sect. 4.2—Step 1).

Of course, the latter are still correlated through the initial data f ε
0,S(J ).

Actually if the initial data were factorizing, then the algebraic part of our proof
would finish here by extracting the leading term (namely, the trees which are
free) which would reconstruct exactly the factorized part in (2.20).

4.3.2 Expanding the initial correlation: final expression for EK (t)

To eliminate the additional correlation due to the initial datum, we expand
it according to Property 2—Eq. (2.31)4 with respect to the following tree-
dependent partition of S(J ):

{Si }i∈J\(L0∪Q), S(L0 ∪ Q)

where Si = S(i) is the set of indices of the particles in the tree �i . For this
particular partition, (2.31) yields

f ε
0,S(J ) =

∑

H⊂J\(Q∪L0)

(
∏

i∈H

f ε
0,S(i)

)

×
(

Ē0
{Si }i∈J\H ,S(Q∪L0)

+ Ē0{Si }i∈J\H
f ε
0,S(Q∪L0)

)
, (4.25)

which holds in the extended phase spaceR6|S(J )|. Notice that we are assuming
now the convention (2.6) for the initial data f ε

0,S(J ), therefore we omit the

characteristic functions χ̄0
S(i), χ̄

0
S(Q∪L0)

.
Inserting this equation into (4.24) we readily find the final result

f ε
J (t) =

∑

H⊂J

( f ε
1 (t))⊗H E J\H (t), (4.26)

4 It is now clear that we need an expansion in the extended phase space because the mixed
backwards flow (4.18) allows overlapping particles.
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where the correlation error has the expression:

EK (t) =
∑

L0,Q
⊂ K
disjoint

∑

n≥0

∑

�(k,n)

∫
d�

∏
Bεχrec

L0
Rov(Q, L0)

×
(

Ē0
{S(i)}i∈K\(Q∪L0),S(Q∪L0)

+ Ē0
{S(i)}i∈K\(Q∪L0)

f ε
0,S(Q∪L0)

)
,

(4.27)

with
∫

d� = ∫
d�(tn, ωn, vk,n) and with the integrand calculated through

the mixed flow (ζ (L0), ζ̃
(K\L0)

).

4.3.3 Step 1.1: Reduction to energy functionals

Let us provide a first, preliminary estimate of EK , by using the available
informations on Rov and on the initial data. As announced in Sect. 4.2 (Step
1.1), our purpose here is to replace the integrand in (4.27) with a simplified
expression depending on the energy of flows only. To do this we shall introduce
some cutoff parameters.

We recall first the estimates at disposal:

– from Lemma 4.4, one has the combinatorial bound (4.23) for Rov(Q, L0);
– to control the initial data, we use Hypothesis 2.1 and (2.33) to obtain, for

k + n < ε−α0 ,

∣
∣
∣Ē0

{S(i)}i∈K\(Q∪L0)
f ε
0,S(Q∪L0)

∣
∣
∣ ≤ zk+n e−(β/2)

∑
i∈S(K ) v2i

×
∑

B⊂K\(Q∪L0)

Cbb!χ0
B,K\(Q∪L0)

εγ0(k−q−l0−b) (4.28)

and similar estimate for the other term in (4.27). Again we use the conventions
b = |B|, q = |Q|, l0 = |L0|. Here χ0

B,K\(Q∪L0)
= 1 if and only if all the trees

in B have a particle overlapping, at time zero, with some particle in a different
tree belonging to K\(Q ∪ L0).

Inserting this information into (4.27) we establish the following result. Set

HK :=
∑

i∈S(K )

v2i

(twice) the energy of the trees in K and

Fθ3 = Fθ3(K ) := e−(β/2)HK 1HK≤ε−θ3 . (4.29)
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Lemma 4.5 Let θ1, θ2, θ3 > 0. There exist α, γ such that, for k < ε−α , t < t̄
and ε sufficiently small,

∫
dvK |EK (t)| ≤ 3 εγ k

4
+ (zC)k k! ε−θ1k

∑

L0,Q
⊂ K

disjoint

εγ0(k−q−l0)

×
log ε−θ2k
∑

n=0

zn
∑

�(k,n)

∫
d� dvk 1L0 1̃K\L0 χrec

L0
χov

Q,K Fθ3(K ).

(4.30)

Formula (4.30) summarizes the combinatorial part of our proof. It says that,
up to a small error, we reduce to a finite sum and integrals over compact sets of
a bounded function. Moreover, for each pair L0, Q, we gained from the initial
data a factor εγ0(k−l0−q) < εγ (k−l0−q) if γ < γ0. The remaining εγ (l0+q)

necessary to achieve the main theorem must be obtained from the constraints
χrec

L0
χov

Q,K (each tree in Q overlaps with some other tree in K and each tree in
L0 recollides externally), requiring to control the “many-recollision integral”
on which we focus in Sect. 4.3.4.

In (4.30), C > 0 is a pure constant as in Lemma 4.4 (but larger) not depend-
ing on any parameter introduced. The factor ε−θ1k is the truncation on

∏ |Bε|.
The characteristic functions1L0, 1̃K\L0 (ensuringwell posedness of themixed

flow (ζ (L0), ζ̃
(K\L0)

) on which χrec
L0

χov
Q,K is evaluated) have been defined after

(4.19).
The meaning of the several cutoffs introduced is summarized in the list that

follows.
Theproof ofLemma4.5 is rather straightforward and is postponed toAppen-

dix C.

4.3.3.a List of parameters We collect here, for the reader’s convenience, a list
of positive parameters entering in the proof of the main theorem. We indicate
the point where they are precisely introduced, and the conditions they will
have to obey according to our estimates.

– z, β fix the norm of the initial data (Hypothesis 2.1).
– α0, γ0 describe the correlation error estimates satisfied by the initial state
(Hypothesis 2.2).

– The truncation on the physical space (formula (2.18)) is given by δ = εθ

with
θ < 1/4 (4.31)
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(see comment (4), Sect. 2.4.1 for explanations). The reason of this specific
choice is technical and related to Step 3 of the proof (Sect. 4.5.5).

– t∗ is the limiting time of absolute convergence of the expansions involved
in the proofs (Theorem 2.4) and it will be determined by z, β. We shall not
optimize the value of t∗ (for more details, see Sect. 4.8.2).

– ε−θ1 is the truncation of cross-section factors in one-particle trees (Lemma
4.5 and Lemma C.1).

– θ2 is the cutoff parameter bounding the number of creations in a collection
of trees (formula (4.30)).

– θ3 is the cutoff parameter controlling high energies (formula (4.29)).

For the sake of concreteness we fix now the latter technical cutoffs as follows:
⎧
⎪⎨

⎪⎩

θ1 = a(γ0)

θ2 = 1/(2 log(t̄C(z, β)e)−1)

θ3 = 1/5

, (4.32)

where
a(γ0) := min[γ0/2, 1/4] (4.33)

and the constant C(z, β) and the time t̄ appear in Lanford’s estimate, see (4.8).

– Finally, α, γ describe the correlation error bounds satisfied by the state
at time t (Theorem 2.4). According to our estimates (Appendix C and
Sect. 4.3.5), they will satisfy:

{
α < min

[
α0 (1/3)a(γ0) 1/4− (1/3)a(γ0)− (2/3)θ

]

γ < min
[

a(γ0) 3/4− a(γ0)− 2θ
]− 3α

. (4.34)

These conditions are associated to the choice (4.32) above.

4.3.4 Many-recollision estimate

As explained after (4.30), we focus on the following result.

Proposition 4.6 There exist constants C1 = C1(z, β) > 0 and γ1 > 0 such
that, for all n ≤ ε−3/4 log ε−θ2 , Q, L0 ⊂ K , Q ∩ L0 = ∅ and ε sufficiently
small,

zn
∑

�(k,n)

∫
d� dvk 1L0 1̃K\L0 χrec

L0
χov

Q,K Fθ3(K )

≤ Ck
1 kk (n + k)k (C1t)n εγ1

q+l0
2 (4.35)

for xk ∈ Mx
k (δ).
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Sections 4.4 and 4.5 are devoted to the proof of Proposition 4.6.

Remark on γ1. The coefficient γ1 comes from the geometrical estimates of
recollisions (Lemmas 4.10 and 4.12 below) which imply an arbitrary choice
in the interval γ1 ∈ (0,min[1, 2− 4θ − (5/2)θ3]) (see (4.101)).

4.3.5 Proof of (2.21)

We show here how to conclude the proof of (2.21).
Let us fix the truncation parameters as in (4.32) and assume (4.31), (4.34)

(see also the Remark in Appendix C).
Notice that (4.34) implies α < 3/4 and hence n ≤ ε−3/4 log ε−θ2 in (4.30).

By Lemma 4.5 and Proposition 4.6, choosing t∗ < (eC1)
−1 we deduce that,

for t < t∗,
∫

R3k
dvk |EK (t)|

≤ 3 εγ k

4
+ (zC)k kk ε−θ1k 3k Ck

1 kk
∑

n≥0
(n + k)k (C1t∗)n εmin[γ0,γ1/2]k

≤ 3 εγ k

4
+
⎛

⎝
∑

n≥0

(n + k)k

k! (C1t∗)n

⎞

⎠ (3zCC1)
k k3k ε(min[γ0,γ1/2]−θ1)k

≤ 3 εγ k

4
+
⎛

⎝
∑

n≥0
(eC1t∗)n

⎞

⎠ (3zCC1e)k k3k ε(min[γ0,γ1/2]−θ1)k

≤ 3 εγ k

4
+
⎛

⎝
∑

n≥0
(eC1t∗)n

⎞

⎠ (3zCC1e)k ε(min[γ0,γ1/2]−θ1−3α)k . (4.36)

In the third step we applied (4.7) while in the fourth step we used k < ε−α .
We conclude that (2.21) holds for ε small enough if

γ < min[γ0, γ1/2] − θ1 − 3α. (4.37)

By the above Remark on γ1 and (4.32), this is ensured by

γ < min[2a(γ0), 3/4− 2θ ] − a(γ0)− 3α. (4.38)

� 
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4.4 Step 2: Ordering of multiple recollisions

This section is devoted to the proof of Proposition 4.6. We follow the strategy
described in ‘Sect. 4.2—Step 2’. After suitable ordering in time of the recol-
lision / overlap constraints, we will show in Sect. 4.4.2 that the estimate of a
single recollision event (Lemma 4.10, proved in Sect. 4.5) allows to conclude
the proof.

Let us focus on the constraint χrec
L0

χov
Q,K (ζ (L0), ζ̃

(K\L0)
), where the flow in

the argument is the mixed flow naturally entering in the definition of corre-
lation error, Sect. 4.3.1.b. To simplify the proof, we will treat simultaneously
recollisions and overlaps with a unique method.

Definition 4.7 (Table of recollisions) Let L0, Q ⊂ K , L0 ∩ Q = ∅. A “table
of recollisions” associated to (K , L0, Q) is a set of couples

(α, β) := {(α1, β1), . . . , (α�, β�)},
with αi ∈ L0 ∪ Q and βi ∈ K , such that:

– (∪�
i=1αi ) ∪ (∪�

i=1βi ) ⊃ L0 ∪ Q;
– αi �= α1, . . . , αi−1, β1, . . . , βi−1 for all i = 1, . . . , �.

We call “bullet” a particle of type α and “target” a particle of type β.

According to this definition, the bullets are always new with respect to the
previous array.

We shall apply the above definition to the case when the bullets α and
the targets β are indices of the particles generating the trees �α , �β (see
Fig. 5 below). Remind that an external recollision/overlap between �α and �β

indicates a recollision/overlap between a pair of particles of the two trees.

Remark 1. All the particles in L0∪Q are either bullets or targets (or both) and
each particle can be the target for several bullets. Conversely, each particle
can be the bullet for at most one target, namely the αi are all distinct and

|(α, β)| = � ≥ (q + l0)/2. (4.39)

2. A rough bound on the total number of tables of recollision associated to
(K , L0, Q) is the following:

∑

(α,β)

≤ (q + l0)! kq+l0 ≤ k! kk . (4.40)

3. We can construct one particular table with the following explicit procedure.

Fix (ζ (L0), ζ̃
(K\L0)

) such that χrec
L0

χov
Q,K = 1. The first backwards external
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1 2 3 4 5 6

1 1

22

3 3

44

Fig. 5 A scheme for a table of recollisions associated to K = {1, 2, . . . , 6}, Q ∪ L0 =
{1, 2, 3, 5, 6}. Here � = 4. The vertical lines can be associated to particles (trees) in a backwards
flow (time flowing upwards) and the wavy lines to their external recollisions/overlaps. In this
case, the fourth and the last wavy lines represent recollisions (or overlaps) that do not appear
in the table

recollision or overlap identifies the couple (α1, β1) (up to the exchange
α1 ↔ β1, if both particles belong to L0 ∪ Q). Going further backwards
in time, we consider the first external recollision/overlap involving at least
one tree in L0 ∪ Q and different from α1, β1. This identifies the couple
(α2, β2), with the following constraint. If one (and only one) of the two
trees involved is α1 or β1, we set such tree = β2, and its partner = α2.
We iterate this procedure until all the particles in L0 ∪ Q have received a
name. See Fig. 5 for an example.

We shall say that a table of recollisions (α, β) is “realized” if and only if

the mixed dynamics (ζ (L0), ζ̃
(K\L0)

) is well defined (see the Remark on the
existence of flows below) and, for all i = 1, . . . , �:

(a) the first (backwards) recollision/overlap of the tree �αi occurs in (0, t)
with the tree �βi ;

(b) the first (backwards) recollision/overlap of the tree �αi occurs in the past
with respect to the first (backwards) recollisions/overlaps of �αi ′ , i ′ < i .

Lemma 4.8 The following inequality holds true:

1L0 1̃K\L0 χrec
L0

χov
Q,K ≤

∑

(α,β)

χ(α,β), (4.41)

where χ(α,β) denotes the indicator function of the event for which the table of
recollisions (α, β) is realized.

Proof of Lemma 4.8 It follows immediately (by subadditivity) fromDefinition
4.7 and the Remark 3 above. � 
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The next lemma allows to estimate the integrations in the left hand side of
(4.35) iteratively.

Lemma 4.9 The following inequality holds true:

χ(α,β)
(
ζ (L0), ζ̃

(K\L0)
)

≤
�∏

i=1

χ(αi ,βi )
(
ζ (L0\{α�,α�−1,...,αi }), ζ̃ (K\(L0∪{α�,α�−1,...,αi }))

, ζ̃
(αi )

)
,

(4.42)

where χ(αi ,βi ) = 1 if and only if the first backwards overlap of the tree �αi

occurs in (0, t) with the tree �βi .

Notice that the mixed flow in the argument of χ(αi ,βi ) is not the same as in
the left hand side, namely the value of χ(αi ,βi ) is computed as if the trees
{α�, α�−1, . . . , αi+1}were absent. The right hand side corresponds to an over-
counting since the collection of recollision/overlap constraints realizing the
table (α, β) is not ordered in time (i.e. at this stage we drop, for simplicity,
condition (b) above).

Remark (Existence of flows) The requirement of well posedness of the flows
involved in the above expressions (forbidden overlaps at creations) is implicitly
absorbed in the definition of χ(α,β), χ(α,β). Note that χ(α,β) is a function of
the indicated flow only through its history in the time interval (s, t) where s is
the overlap time of α with β (if any, and zero otherwise). Therefore, existence
of the flows in (0, s) is not required. The same is true for χ(α,β), being in this
case s the overlap time of α� with β�.

Proof of Lemma 4.9 We observe that

χ(α,β)
(
ζ (L0), ζ̃

(K\L0)
)
= χ(α,β)

(
ζ (L0\α�), ζ̃

(K\(L0∪α�))
, ζ̃

(α�)
)

, (4.43)

that is we can always use the uncorrelated dynamics for the flow of the bullet.
It follows that

χ(α,β)(ζ (L0), ζ̃
(K\L0)

) ≤ χ(α,β)�−1
(
ζ (L0\α�), ζ̃

(K\(L0∪α�))
)

χ(α�,β�)

×
(
ζ (L0\α�), ζ̃

(K\(L0∪α�))
, ζ̃

(α�)
)

(4.44)

where (α, β)�−1 = {(α1, β1), . . . , (α�−1, β�−1)} (and of course (α, β) =
(α, β)�). Note that in the r.h.s. the overlap of�α�

with�β�
can occur at any time

in (0, t) (we forget item (b) above). The constraint χ(α,β)�−1 is now computed
ignoring the history of the bullet tree �α�

.
Recursive application of (4.44) leads to the claim. � 
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4.4.1 Reordering of the integrations in (4.35)

Applying Lemmas 4.8 and 4.9 to the left hand side of (4.35), one finds

zn
∑

�(k,n)

∫
d� dvk 1L0 1̃K\L0 χrec

L0
χov

Q,K Fθ3(K )

≤ zn
∑

(α,β)

∑

�(k,n)

∫
d� dvk

�∏

i=1

χ(αi ,βi ) Fθ3(K )

= zn
∑

(α,β)

∑

n1,...,nk ,
n=∑i ni

∑

�1,...,�k

∫
d�1 · · · d�k dvk

�∏

i=1

χ(αi ,βi ) Fθ3(K ) (4.45)

where the χ(αi ,βi ) is evaluated via the flow

(ζ (L0\{α�,α�−1,...,αi }), ζ̃
(K\(L0∪{α�,α�−1,...,αi }))

, ζ̃
(αi )

).

In the last equality, which follows from the factorization of trees (3.35), we
introduced d�i =

∫
d�(ti

ni
, ωi

ni
, vi

1,ni
).

The function Fθ3 , defined by (4.29), satisfies F(K1 ∪ K2) ≤ F(K1)F(K2).
Setting A = K\{α1, α2, . . . , α�}, 	A = {�i }i∈A and d�A =∏

i∈A

∫
d�(ti

ni
,

ωi
ni

, vi
1,ni

), it follows that

zn
∑

�(k,n)

∫
d� dvk 1L0 1̃K\L0 χrec

L0
χov

Q,K Fθ3(K )

≤ zn
∑

(α,β)

∑

n1,...,nk ,
n=∑i ni

∑

	A

∫
d�A dvA Fθ3(A)

×
∑

�α1

∫
d�α1 dvα1 χ(α1,β1) Fθ3(α1)

∑

�α2

∫
d�α2 dvα2 · · ·

×
∑

�α�

∫
d�α�

dvα�
χ(α�,β�) Fθ3(α�). (4.46)

4.4.2 Proof of Proposition 4.6

4.4.2.a Single-recollision estimate Our purpose is to estimate iteratively the
integrals in (4.46). The result we need for the single step is given in the next
lemma. Intuitively, it is depicted in Sect. 4.2—Step 3. In the figure, the trajec-
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tory on the left is the “target trajectory” with position and velocity (ξ(s), η(s)),
s ∈ (0, t). This trajectory is fixed and has bounded energy. It may actually
include microscopic jumps in position (not shown in the figure), their total
number being however limited by n. The “bullet trajectory” is the entire IBF,
usual notation ζ ε(s), associated to a given tree (in the picture the bullet α).
Its energy and number of creations are also bounded. At time t we assume a
separation δ $ ε between bullet and target. Then the goal is to measure the
size of events where bullet trajectories reach a distance smaller than ε from
the target.

Lemma 4.10 (Estimate of one external recollision) Let s → η(s) be a
piecewise constant function from (0, t) to R

3 such that |η| ≤ ε−θ3/2, with
discontinuity points in the finite set T = {τ1, τ2, . . .}. Let s → ξ(s) be a
piecewise free trajectory in R

3 with velocity

dξ

ds
= η (4.47)

except on T . In a subset of T , jumps of entity ε may occur ( |ξ(τ+i )−ξ(τ−i )| =
ε ). Let n ≤ ε−3/4 log ε−θ2 be the maximum number of such jumps. Fix x1 ∈ R

3

and assume |x1 − ξ(t)| > δ = εθ . Then, there exist D > 0 and γ1 > 0 such
that, for all n1 ≤ n and ε small enough,

∑

�(1,n1)

∫
d� dv1 χov

ξ (ζ ε) Fθ3(1) ≤ (Dt)n1 εγ1, (4.48)

where ζ ε = (ζ ε
1 , . . . , ζ ε

1+n1
) is the IBF associated to the 1-particle, n1-

collision tree �(1, n1) with ζ ε
1 (t) = x1, and χov

ξ is the indicator function
of the event

{∃ s ∈ (0, t) | D(t − s) < ε}

where, for s ∈ (ti , ti−1], D(s) = D[ζ ε](s) := mink=1,...,i |ξ(s)− ξε
k (s)|.

Note that it is implicit in the definition of χov
ξ that the IBF is well defined (no

internal overlaps at the creation times) up to the first s verifying the condition.
The constant D depends only on the parameter β appearing in Fθ3 .

The Lemma is proved in Sect. 4.5.

4.4.2.b Virtual trajectories Following [30], we introduce a global notion of
trajectory which will be convenient in the next subsection to apply iteratively
the previous lemma. This will be also used in the geometrical estimate of
Step 3.
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Loosely speaking, a virtual trajectory is a trajectory of a given particle in the
IBF (or other flow) extended up to time t . We shall use for it an upper-index
notation. For instance, ζ ε,i (s) coincides with ζ ε

i (s) for s > 0 and up to the
time of creation of i ; thereafter is extended by the trajectory of its progenitor
up to its creation time, and so on.

Definition 4.11 (Virtual trajectory) Consider particle i in the graph of a tree
�(k, n) = (k1, . . . , kn). Let tn = t1, . . . , tn be the sequence of times associated
to the nodes of the tree.

(i) A polygonal path pi is uniquely defined if we walk on the tree by going
forward in time, starting from the time-zero endpoint of line i and going
up to the root-point at time t (e.g. Fig. 6).

(ii) Let ti1, . . . , tini be the decreasing subsequence of t1, . . . , tn , made of the

times corresponding to the nodes met by following the path pi (ni being
the number of such nodes, with the convention i0 = 0, ti0 = t). Then, for
any backwards flow ζ̄ which can be constructed from �(k, n), tn ,5 we call
virtual trajectory associated to particle i in the flow, and indicate it
with upper indices ζ̄ i (s) = (ξ̄ i (s), η̄i (s)) ∈ R

6, s ∈ [0, t], the trajectory
given by:

ζ̄ i (s) =
{

ζ̄i (s) for s ∈ [0, tini )

ζ̄kir
(s) for s ∈ [tir , tir−1), 0 < r ≤ ni . (4.49)

Note that the virtual trajectory is piecewise-free, and built up with pieces of
trajectories of (different) particles of ζ̄ . Instantaneous jumps of entity ε occur
at creation times, when the name of the particle in the flow ζ̄ changes (e.g. ti1 ,
ti2 and ti4 in Fig. 6). Only during the time of existence of particle i in the flow,
ζ̄ i (s) = ζ̄i (s) holds.

4.4.2.c Iterative estimate of multiple recollisionsWe come back to (4.46) and
focus on χ(α�,β�) (defined in Lemma 4.9). Remind the notation (3.39). If

χ(α�,β�) = 1, there exists i ∈ S(β�) such that ζ̃
(α�) overlaps with the tra-

jectory of particle i in the mixed flow (ζ (L0\α�), ζ̃
(K\(L0∪α�))

). In particular,
α� overlaps with the virtual trajectory of i in the flow (Definition 4.11 applied
to the mixed flow).

5 In this definition, ζ̄ can be either the IBF ζ ε , the uncorrelated flow ζ̃
ε
, the EBF ζE or a mixed

flow. We shall use it in different contexts.
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Fig. 6 The line closest to the dashed line is the path pi in the tree �(2, 6), with i = 8. The
states of the particle associated to it via the flow ζ̄ form the“virtual trajectory of i”

We denote such virtual trajectory by ζ̂ i = (ξ̂ i , η̂i ). Then,

∑

�α�

∫
d�α�

dvα�
χ(α�,β�) Fθ3(α�)

≤
∑

i∈S(β�)

∑

�α�

∫
d�α�

dvα�
χov

ξ̂ i (ζ ε) Fθ3(α�), (4.50)

where the function χov is defined in Lemma 4.10 and ζ ε is now the IBF
associated to the 1-particle, nα�

-collision tree �α�
.

The presence of the functions Fθ3 in (4.46) ensures that |η̂i | ≤ ε−θ3/2.
Furthermore, xk ∈ Mx

k (δ) ensures |xα�
− ξ̂ i (t)| > δ = εθ . Therefore, we are

in the position to apply Lemma 4.10 and we deduce

∑

�α�

∫
d�α�

dvα�
χ(α�,β�) Fθ3(α�) ≤ (nβ�

+ 1) (Dt)nα� εγ1 . (4.51)

Inserting into (4.46) we obtain

zn
∑

�(k,n)

∫
d� dvk 1L0 1̃K\L0 χrec

L0
χov

Q,K Fθ3(K )

≤ εγ1 zn
∑

(α,β)

∑

n1,...,nk ,
n=∑i ni

(nβ�
+ 1) (Dt)nα�

∑

	A

∫
d�A dvA Fθ3(A)
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×
∑

�α1

∫
d�α1 dvα1 χ(α1,β1) Fθ3(α1)

· · ·
∑

�α�−1

∫
d�α�−1 dvα�−1 χ(α�−1,β�−1) Fθ3(α�−1). (4.52)

We repeat the above discussion ad litteram for χ(α�−1,β�−1), and so on up to
χ(α1,β1). Since � ≥ (q + l0)/2, the result is:

zn
∑

�(k,n)

∫
d� dvk 1L0 1̃K\L0 χrec

L0
χov

Q,K Fθ3(K )

≤ εγ1
q+l0
2 zn

∑

(α,β)

∑

n1,...,nk ,
n=∑i ni

�∏

i=1

(nβi + 1) (Dt)nαi

∑

	A

∫
d�A dvA Fθ3(A).

(4.53)

Using (4.7), the last sum over trees is bounded by (const.)|A| (e 4π
(2π/β)3/2 t)

∑
i∈A ni . Since A = K\{α1, α2, . . . , α�} and∑�

i=1 nαi +
∑

i∈A ni
= n, there holds

zn
∑

�(k,n)

∫
d� dvk 1L0 1̃K\L0 χrec

L0
χov

Q,K Fθ3(K )

≤ εγ1
q+l0
2 (C ′

1)
k (C ′

1t)n
∑

(α,β)

∑

n1,...,nk ,
n=∑i ni

�∏

i=1

(nβi + 1) (4.54)

for suitable C ′
1 = C ′

1(z, β). We conclude that

zn
∑

�(k,n)

∫
d� dvk 1L0 1̃K\L0 χrec

L0
χov

Q,K Fθ3(K )

≤ εγ1
q+l0
2 (C ′

1)
k (C ′

1t)n
∑

α1,...,α�
αi �=α j

∑

n1,...,nk ,
n=∑i ni

�∏

i=1

∑

βi∈K

(nβi + 1)

= εγ1
q+l0
2 (C ′

1)
k (C ′

1t)n
∑

α1,...,α�
αi �=α j

∑

n1,...,nk ,
n=∑i ni

(n + k)�

≤ εγ1
q+l0
2 (C1)

k+n tn k! (n + k)k, (4.55)

for suitable C1 > C ′
1. � 
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4.5 Step 3: Estimate of an external recollision

In this section, we prove Lemma 4.10. The proof is organized in seven steps
which will be discussed in separate subsections. The main ideas are summa-
rized in Sect. 4.2 (Step 3).

4.5.1 Substitution of the IBF with the EBF

The flow ζ ε in the left hand side of (4.48) involves internal recollisions, which
is convenient to eliminate first. Let

χ int = χ int (tn1, ωn1, v1+n1) = 1 (4.56)

if and only if:

– either an overlap at a creation time occurs (ill-defined ζ ε), or
– the IBF ζ ε delivers an internal recollision.

Lemma 4.12 (Estimate of the internal recollision) There exists a constant
D > 0 such that, for any γ1 < 1 and ε small enough,

∑

�(1,n1)

∫
d� dv1 χ int e−(β/2)

∑
i∈S(1) v2i ≤ (Dt)n1 εγ1

2
. (4.57)

The control of the internal recollisions is well known (see [16,30]) and we
postpone the proof to Appendix D. We note, incidentally, that the present
estimate is optimal (γ1 � 1).

Lemma 4.12 allows to bound the l.h.s. in (4.48) with a much simpler expres-
sion, i.e.

∑

�(1,n1)

∫
d� dv1 χov

ξ (ζ ε) Fθ3(1)

≤ (Dt)n1 εγ1

2
+

∑

�(1,n1)

∫
d� dv1 χov

ξ (ζ ε) (1− χ int ) Fθ3(1)

≡ (Dt)n1 εγ1

2
+

∑

�(1,n1)

∫
d� dv1 χov

ξ (ζ E ) (1− χ int ) Fθ3(1)

≤ (Dt)n1 εγ1

2
+

∑

�(1,n1)

∫
d� dv1 χov

ξ (ζ E ) Fθ3(1) (4.58)

where ζ E = (ζ E
1 , . . . , ζ E

1+n1
) is the EBF associated to the 1-particle, n1-

collision tree �(1, n1), introduced in Sect. 3.5.2 (Fig. 3, (iii)).
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4.5.2 Integration over virtual trajectories

We shall reduce the problem to the estimate of an integral spanning a single
virtual trajectory (Sect. 4.4.2.b).

Condition χov
ξ (ζ E ) = 1 indicates the event “D[ζ E ](t − s) < ε for some

s ∈ (0, t)”, which in turn implies

“|ξ(s)− ξEi (s)| < ε for some i ∈ {1, . . . , n1 + 1} and some s ∈ (0, ti−1)
′′.

(4.59)
Note now that such event depends actually not on the full EBF, but just on the
virtual trajectory ζ E ,i . Consequently, we may integrate out all the variables
which are not entering in the construction of ζ E ,i (s).

According to Definition 4.11, for any given �(1, n1), i , calling ni the num-
ber of nodes encountered by ζ E ,i and i1, i2, . . . , ini their names (ordered as
increasing sequence), the integration variables describing completely the vir-
tual trajectory are:

v1, ti1, . . . , tini , ωi1, . . . , ωini , vi1, . . . , vini −→ ζ E ,i .

Since we are using upper indices for virtual trajectories, we rename the vari-
ables for convenience as

v1, t1, . . . , tni
, ω1, . . . , ωni

, v1, . . . , vni −→ ζ E ,i .

With this notation and

Hi
1 := v21 +

ni
∑

k=1

(vk)2, (4.60)

we get

∑

�(1,n1)

∫
d� dv1 χov

ξ (ζ E ) Fθ3(1)

≤
∑

�(1,n1)

n1+1∑

i=1

(D′t)n1−ni

(n1 − ni )!
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tni−1

0
dtni

∫
dω1 · · · dωni

×
∫

dv1dv1 · · · dvni
1{infs∈(0,t) |ξ(s)−ξE ,i (s)|<ε} e−(β/2)Hi

1 1Hi
1≤ε−θ3 ,

(4.61)

where D′ = 4π (2π/β)3/2.
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4.5.3 A change of variables: relative velocities

Let us focus on the last line in (4.61). To integrate over the characteristic func-
tion, it is convenient to use the variable v1 together with the relative velocities
at the creation times, which we introduce in what follows.

The virtual trajectory ζ E ,i has piecewise constant velocity, with ni jumps
at the creation times. We call

η1, η2, . . . , ηni+1

the values assumed by the velocity, namely

η1 = v1,

ηk ≡ ηE ,i ((tk−1)−) ≡ ηE ,i (s) for s ∈ (tk, tk−1).

The relative velocities at creations are then:

V1 = v1 − η1,

V2 = v2 − η2,

· · ·
Vni = vni − ηni

.

Note that vk are velocities of added particles at themoment of their creation.
In particular, ηk is independent of vk , so that the previous relations can be
regarded as simple translations and

∫
dv1dv1 · · · dvni

1{infs∈(0,t) |ξ(s)−ξE ,i (s)|<ε} e−(β/2)Hi
1 1Hi

1≤ε−θ3

=
∫

dv1 dV1 · · · dVni 1{infs∈(0,t) |ξ(s)−ξE ,i (s)|<ε} e−(β/2)Hi
1 1Hi

1≤ε−θ3 ,

(4.62)

where now ζ E ,i (s) and Hi
1 have to be computed by using V1, . . . , Vni .

The energy function reads:

Hi
1 = v21 +

ni
∑

k=1

(Vk + ηk)2, (4.63)

which wewant to express completely in terms of the new integration variables.
To do this, observe that each jump of velocity in the virtual trajectory ζ E ,i , i.e.

ηk = ηE ,i ((tk)+) → ηk+1 = ηE ,i ((tk)−),
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can be of two types, determined uniquely by the structure of the tree �(1, n1)

(and corresponding for instance to nodes i2 (type 1) and i3 (type 2) in Fig. 6).
That is:

Type 1
(outgoing)

Type 2
(outgoing)

ηk

ηk+1

ωk

ηk

ηk+1
ωk

vk vk

• Type 1. The position jumps according to ξE ,i ((tk)+) → ξE ,i ((tk)−) =
ξE ,i ((tk)+)+ εωk ; the velocity jumps according to

ηk+1 − ηk =
{

P⊥
ωk Vk = Vk − ωk(ωk · Vk) (ωk · Vk) ≥ 0 (outgoing collision)

Vk (ωk · Vk) < 0 (incoming collision)
;

• Type 2. The position does not jump: ξE ,i ((tk)+) = ξE ,i ((tk)−); the veloc-
ity jumps according to

ηk+1 − ηk =
{

P‖
ωk Vk = ωk(ωk · Vk) (ωk · Vk) ≥ 0 (outgoing collision)

0 (ωk · Vk) < 0 (incoming collision)
.

To have a compact notation, we write the above transformation as

ηk+1 − ηk = Pk Vk (4.64)

where Pk depends only on the tree �(1, n1) and on the variable ωk . Hence
the expression of the energy function (4.63) in terms of the new integration
variables is

Hi
1 =

ni
∑

k=0

(

Vk +
k−1∑

h=1

Ph Vh + v1

)2

, (4.65)

with the convention V0 = 0.
The plan is now to bound e−(β/2)Hi

1 , uniformly in v1, with an integrable
function of V1, . . . , Vni and treat the recollision condition in (4.62) as a simpler
condition on the variable v1. The bound on Hi

1 is included in the next section
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(and the boundedness of the corresponding Gaussian integral will be proved
in Sect. 4.5.7), while the expression of the constraint as a v1-tube is given in
Sect. 4.5.5. Finally, the volume of the tube is estimated in Sect. 4.5.6.

4.5.4 Energy bounds

We collect here some energy estimates that will be used later on.
First, the lower bound on the energy function. Observe that

ak := Vk +
k−1∑

h=1

Ph Vh (4.66)

is a v1-independent quantity and therefore

inf
v1

Hi
1 = inf

v1

ni
∑

k=0

(ak + v1)
2

= inf
v1

⎛

⎝
ni
∑

k=0

a2
k + (ni + 1)v21 + 2v1 ·

ni
∑

k=0

ak

⎞

⎠

≥
ni
∑

k=0

a2
k −

(∑ni

k=0 ak

)2

ni + 1
. (4.67)

Secondly, we derive some upper bounds on velocities and displacements in
the virtual trajectory of the bullet.

The conservation of energy at collisions implies |ηk |2+|vk |2 ≥ |ηk+1|2. In
particular, by (4.60), for any k = 1, . . . , ni + 1 one has

Hi
1 ≥ v21 +

k−1∑

q=1

(vq)2 = |η1|2 +
k−1∑

q=1

(vq)2 ≥ |η2|2 +
k−1∑

q=2

(vq)2 ≥ · · · ≥ |ηk |2,

(4.68)

so that Hi
1 ≤ ε−θ3 leads to

|ηk | ≤ ε−θ3/2 (4.69)

for all k and
∣
∣
∣
∣
∣

r∑

k=1

Pk Vk

∣
∣
∣
∣
∣
≤ 2ε−θ3/2 (4.70)

for all r ∈ {0, 1, . . . , ni }.

123



The Boltzmann–Grad limit of a hard sphere system… 1201

Moreover, for s ∈ (tr+1, tr ), the quantity

r∑

k=1

Pk Vk(t
k − s) = (η2 − η1)(t1 − s)+ · · · + (ηr+1 − ηr )(tr − s)

= −η1(t − s)+ η1(t − t1)+ η2(t1 − t2)+ · · · + ηr+1(tr − s) (4.71)

is bounded uniformly in s, r by

sup
s∈(0,t)

∣
∣
∣
∣
∣

r∑

k=1

Pk Vk(t
k − s)

∣
∣
∣
∣
∣
≤ 2max

k
|ηk |t ≤ 2tε−θ3/2. (4.72)

Let
A := {(4.71) and (4.73) are satisfied} (4.73)

and notice that this is v1-independent. Using (4.61), (4.62) and (4.67), we
arrive to

∑

�(1,n1)

∫
d� dv1 χov

ξ (ζ E ) Fθ3(1)

≤
∑

�(1,n1)

n1+1∑

i=1

(D′t)n1−ni

(n1 − ni )!
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tni−1

0
dtni

∫
dω1 · · · dωni

×
∫

dV1 · · · dVni e
−(β/2)

∑
k a2k+ (β/2)

ni+1
(
∑

k ak)
2

1A

×
∫

dv11{infs∈(0,t) |ξ(s)−ξE ,i (s)|<ε} 1Hi
1≤ε−θ3 . (4.74)

We shall study the latter integral in the next subsection.

4.5.5 The overlap constraint as an integral over “tubes”

We denote by | · | the volume of the set · in R
3. We also introduce a small

ε-dependent quantity
Rε = ε1−θ−θ3/2 4t (4.75)

and require θ + θ3/2 < 1. Next we prove the following estimate.

Lemma 4.13 In the assumptions of Lemma 4.10, one has

∫
dv11{infs∈(0,t) |ξ(s)−ξE ,i (s)|<ε} 1Hi

1≤ε−θ3 ≤
|T ε

ξ |
t3

1|ξ(t)−x1|≤3tε−θ3/2, (4.76)
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where T ε
ξ is the region spanned by a ball of radius Rε with center moving on

the curve of parametric equation (�(s))s∈(0,t−εt/Rε), defined by

�(s) := t

t − s

⎡

⎣(ξ(s)− ξ(t))+ (ξ(t)− x1)+
r∑

k=1

Pk Vk(t
k − s)−

∑

k≤r

∗
ε ωk

⎤

⎦

(4.77)

for s ∈ (tr+1, tr ), with the sum
∑∗ running over all the nodes of type 1.

The above result holds for any choice of the variables determining ζ E ,i (s).

Proof of Lemma 4.13 Given r ∈ {0, 1, . . . , ni }, at time s ∈ (tr+1, tr ) (remind
t0 ≡ t) the virtual trajectory reads:

ξE ,i (s) = x1 − v1(t − t1)− η2(t1 − t2)− · · · − ηr+1(tr − s)+
∑

k≤r

∗
ε ωk

= x1 − v1(t − s)− (η2 − η1)(t1 − s)− · · · − (ηr+1 − ηr )(tr − s)+
∑

k≤r

∗
ε ωk

= x1 − v1(t − s)−
r∑

k=1
Pk Vk(t

k − s)+
∑

k≤r

∗
ε ωk . (4.78)

By assumption, the velocity of the target is bounded as |η| ≤ ε−θ3/2 and
the same is true for the bullet (see (4.69)). Furthermore, both the trajectories
of bullet and target may have at most n jumps of entity ε in position, where
n ≤ ε−3/4 log ε−θ2 as fixed by Proposition 4.6. Namely, the displacements are
bounded by

max
(
|ξ(s)− ξ(t)|, |ξE ,i (s)− x1|

)
≤ |η|(t − s)+ n ε

≤ ε−θ3/2(t − s)+ ε1/4 log ε−θ2 . (4.79)

From this, we deduce two remarks on the overlap condition {infs∈(0,t) |ξ(s)−
ξE ,i (s)| < ε}.

1. Time s realizing the condition can not be too close to t . In fact, since by
hypothesis |ξ(t)− x1| ≥ εθ ,

|ξ(s)− ξE ,i (s)| ≥ |ξ(t)− x1| − |ξ(s)− ξ(t)| − |ξE ,i (s)− x1|
≥ εθ − 2ε−θ3/2(t − s)− 2ε1/4 log ε−θ2, (4.80)

which implies, through simple algebra,

(t − s) > εθ+θ3/2/2− ε1/4+θ3/2 log ε−θ2 − ε1+θ3/2/2, (4.81)
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and hence
(t − s) > εθ+θ3/2/4 (4.82)

if θ < 1/4 and ε is small enough.
2. The condition implies that bullet and target are initially (i.e. at time t)
not too far from each other, i.e.

|ξ(t)− x1| ≤ |ξ(s)− ξE ,i (s)| + |ξ(s)− ξ(t)| + |ξE ,i (s)− x1|
< ε + 2ε−θ3/2(t − s)+ 2ε1/4 log ε−θ2

≤ 3 t ε−θ3/2. (4.83)

Inserting now (4.78) and using (4.75), (4.82), the overlap condition assumes
the form

inf
s∈(0,t−εt/Rε)

∣
∣
∣
∣(ξ(s)− ξ(t))+ (ξ(t)− x1)+ v1(t − s)+

r∑

k=1

Pk Vk(t
k − s)

−
∑

k≤r

∗
ε ωk

∣
∣
∣
∣ < ε. (4.84)

Alternatively, using the position variable

X := −v1t (4.85)

and definition (4.77), one has:

inf
s∈(0,t−εt/Rε)

t − s

t
|X −�(s)| < ε. (4.86)

Thus, taking into account the above Remarks (1) and (2), conditions

inf
s∈(0,t−εt/Rε)

|X −�(s)| < Rε (4.87)

and (4.83) have to be both satisfied.
We conclude that
∫

dv11{infs∈(0,t) |ξ(s)−ξE ,i (s)|<ε} 1Hi
1

≤ 1

t3

(∫
d X 1{infs∈(0,t−εt/Rε) |X−�(s)|<Rε}

)

1|ξ(t)−x1|≤3tε−θ3/2 . (4.88)

But � does not depend on X . Therefore, the integral in d X is nothing but the
volume of the region T ε

ξ . � 
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Fig. 7 Curve �. The boundary of the region T ε
ξ is in dotted lines

4.5.6 Volume of T ε
ξ

The parametric curve � inherits its features from the trajectories of the bullet
ξE ,i and of the target ξ , namely:

– �(s) is piecewise smooth, with singularity points in the set T ∪
{t1, t2, . . . , tni };

– at most n singular points τ ∗1 , τ ∗2 , . . . are jumps of entity ε;
– all the singular points are finite jumps in the velocity �′(s).

See e.g. Fig. 7.
Let Lε be the length of the curve. If there were no jumps in position,

|T ε
ξ | would be bounded by (4π/3)(Rε)3 + π(Rε)2Lε. In fact, the volume

of a tube with a cuspid in s is bounded by the volume of the smooth tube
where we put �′(s+)/|�′(s+)| = �′(s−)/|�′(s−)|. Moreover, observe that
n jumps in position produce an error in |T ε

ξ | which is at most (4π/3)(Rε)3n.
Therefore,

|T ε
ξ | ≤ π(Rε)2Lε + (4π/3)(Rε)3(n + 1). (4.89)

Let us give a bound on Lε. Denoting by �̄ the continuous parametric curve
obtained from� by disregarding the positional jumps of entity ε, we can write
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Lε =
∫ t−εt/Rε

0
ds |�̄′(s)|. (4.90)

If s ∈ (tr+1, tr ) and outside singularity points, one has

�̄′(s) = �̄(s)

t − s
+ t

t − s

(

η(s)−
r∑

k=1

Pk Vk

)

. (4.91)

We have now all the ingredients to provide a uniform bound on this, i.e.:

(t − s) > εθ+θ3/2/4;
|η| ≤ ε−θ3/2;

|ξ(t)− x1| ≤ 3tε−θ3(by(4.76));

sup
s∈(0,t)

∣
∣
∣
∣
∣

r∑

k=1

Pk Vk(t
k − s)

∣
∣
∣
∣
∣
≤ 2tε−θ3/2 and

∣
∣
∣
∣
∣

r∑

k=1

Pk Vk

∣
∣
∣
∣
∣
≤ 2ε−θ3/2 (we integrate over the setAdefined by (4.73)).

We infer that

|�̄(s)| ≤ 4tε−θ−θ3/2
[
ε−θ3/2t + 3tε−θ3/2 + 2tε−θ3/2

] = 24 t2ε−θ−θ3,

(4.92)

|�̄′(s)| ≤ 4ε−θ−θ3/2 24 t2ε−θ−θ3 + 4tε−θ−θ3/2
(
ε−θ3/2 + 2ε−θ3/2

)

= 96 t2ε−2θ−3θ3/2 + 12 tε−θ−θ3 (4.93)

and hence
Lε ≤ C t3 ε−2θ−3θ3/2, (4.94)

where C > 0 is a pure constant.
Collecting (4.89), (4.94), (4.75) and n ≤ ε−3/4 log ε−θ2 , we finally obtain

|T ε
ξ | ≤ C t5 ε2−4θ−(5/2)θ3 (4.95)

for some pure constant C > 0.
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4.5.7 Conclusion

Equations (4.58), (4.74), (4.76) and (4.95) lead to

∑

�(1,n1)

∫
d� dv1 χov

ξ (ζ ε) Fθ3(1) ≤ (Dt)n1 εγ1

2
+ C t2 ε2−4θ−(5/2)θ3

×
∑

�(1,n1)

n1+1∑

i=1

(D′t)n1−ni

(n1 − ni )!
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tni−1

0
dtni

∫
dω1 · · · dωni

×
∫

dV1 · · · dVni e
−(β/2)

∑
k a2k+ (β/2)

ni+1
(
∑

k ak)
2

. (4.96)

It remains to compute the Gaussian integral. This is conveniently done in
the variables ak . Note that Vk → ak , defined by (4.66), is a further translation.
Then,

∫
dV1 · · · dVni e

−(β/2)
∑

k a2k+ (β/2)
ni+1

(
∑

k ak)
2

=
∫

da1 · · · dani e
−(β/2)

∑
k a2k+ (β/2)

ni+1
(
∑

k ak)
2

≡ Ini . (4.97)

For n ≥ 1, denoting Sn =∑n
k=1 ak , Qn =∑n

k=1 a2
k ,

In =
∫

da1 · · · dan e−(β/2)Qn+ (β/2)
n+1 S2n

=
∫

da1 · · · dan−1 e−(β/2)Qn−1+ (β/2)
n+1 S2n−1

∫
da e−(β/2)a2+ (β/2)

n+1 a2+ (β/2)
n+1 2a·Sn−1

=
∫

da1 · · · dan−1 e−(β/2)Qn−1+ (β/2)
n+1 S2n−1

∫
da e

− (β/2)n
n+1

(
a− Sn−1

n

)2

e+
(β/2)

n(n+1) S2n−1

=
∫

da1 · · · dan−1 e−(β/2)Qn−1+ (β/2)
n+1 S2n−1

(
2π

β

)3/2 (n + 1

n

)3/2

e+
(β/2)

n(n+1) S2n−1

= In−1

(
2π

β

)3/2 (n + 1

n

)3/2

. (4.98)

Iterating n times up to I0 ≡ 1, one gets the result

In =
(
2π

β

) 3
2n

(n + 1)3/2 . (4.99)
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Replace this into (4.96). Then

∑

�(1,n1)

∫
d� dv1 χov

ξ (ζ ε) Fθ3(1) ≤ (Dt)n1 εγ1

2
+ C t2 ε2−4θ−(5/2)θ3

×
∑

�(1,n1)

n1+1∑

i=1

(D′t)n1−ni

(n1 − ni )!
(D′t)ni

ni ! (ni + 1)3/2

≤ (Dt)n1 εγ1

2
+ C t2 ε2−4θ−(5/2)θ3(2D′t)n1

∑

�(1,n1)

(n1 + 1)5/2

n1!

= (Dt)n1 εγ1

2
+ C t2 ε2−4θ−(5/2)θ3(2D′t)n1(n1 + 1)5/2. (4.100)

In the first term, γ1 < 1 arbitrary (from Lemma 4.12). Restrict now

γ1 < min[1, 2− 4θ − (5/2)θ3]. (4.101)

Lemma 4.10 is proved. � 

4.6 Completion of the proof of Theorem 2.4

4.6.1 Proof of (2.23)

We insert gε(t) into (2.20) by writing

f ε
J (t) =

∑

H⊂J

( f ε
1 (t))⊗H E J\H (t)

=
∑

H⊂J

( f ε
1 (t)− gε(t)+ gε(t))⊗H E J\H (t)

=
∑

H⊂J

(gε(t))⊗H EE
J\H (t), (4.102)

where the Enskog error term of order k is

EE
K (t) :=

∑

Q⊂K

( f ε
1 (t)− gε(t))⊗Q EK\Q(t)

=
∑

Q⊂K

(EE
1 (t))⊗Q EK\Q(t). (4.103)
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Resorting to the respectiveBBGKYandEnskog tree expansions, Eqs. (3.36)
and (3.43)–(3.44), the one-point Enskog error reads

EE
1 (t) =

∞∑

n=0

∑

�(1,n)

∫
d�

(∏
Bε f ε

0,1+n(ζ
ε(0))−

∏
BE gε

0,1+n(ζ
E (0))

)

=
∞∑

n=0

∑

�(1,n)

∫
d�

∏
Bε

(
f ε
0,1+n(ζ

ε(0))− gε
0,1+n(ζ

ε(0))
)

+
∞∑

n=0

∑

�(1,n)

∫
d�

(∏
Bεgε

0,1+n(ζ
ε(0))−

∏
BE gε

0,1+n(ζ
E (0))

)
,

(4.104)

where gε
0,1+n = f ⊗(1+n)

0 .
Applying Hypothesis 2.2 first and then Hypotheses 2.3 and 2.1, the rate of

convergence of the initial data is

| f ε
0,1+n(ζ

ε(0))− gε
0,1+n(ζ

ε(0))| ≤ |( f ε
0,1)

⊗(1+n)(ζ ε(0))− gε
0,1+n(ζ

ε(0))|
+ εγ0(2z)1+ne−(β/2)

∑
i∈S(1)(η

ε
1(0))

2

≤ 2 εγ0(2z)1+ne−(β/2)
∑

i∈S(1)(η
ε
1(0))

2

(4.105)

for ε small and 1+ n < ε−α0 (same estimate with no εγ0 for larger n). Using
this and the estimates of Lemma 4.2 and its proof:

∣
∣
∣
∣
∣
∣

∞∑

n=0

∑

�(1,n)

∫
d�

∏
Bε

(
f ε
0,1+n(ζ

ε(0))− gε
0,1+n(ζ

ε(0))
)
∣
∣
∣
∣
∣
∣

≤ 2εγ0

∞∑

n=0

∑

�(1,n)

∫
d�

∏
|Bε|(2z)1+n e−(β/2)

∑
i∈S(1)(η

ε
1(0))

2

+2
∑

n≥ε−α0

∑

�(1,n)

∫
d�

∏
|Bε|(2z)1+n e−(β/2)

∑
i∈S(1)(η

ε
1(0))

2

≤ 3 εγ0 C̄ e−(β/4)v21 (4.106)

where C̄ = C̄(2z, β) > 0 and t < t̄ .
The last term in (4.104) is due to the differences among the IBF and the EBF.

Since, in absence of internal recollisions of the IBF and of internal overlaps
of the EBF, the two flows coincide, it holds that
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∞∑

n=0

∑

�(1,n)

∫
d�

(∏
Bεgε

0,1+n(ζ
ε(0))−

∏
BE gε

0,1+n(ζ
E (0))

)

=
∞∑

n=0

∑

�(1,n)

∫
d�

(∏
Bεχ int gε

0,1+n(ζ
ε(0))−

∏
BE χ i.o.gε

0,1+n(ζ
E (0))

)

(4.107)

where χ int = χ int (ζ ε) and χ i.o. = χ i.o.(ζ E ) are defined by (4.56) and

(D.2) respectively.We use, in order, |gε
0,1+n| ≤ 2 (2z)1+ne−(β/2)

∑
i∈S(1)(η

ε
1(0))

2
,

Lemma C.1, Lemma 4.12 and (D.3) to deduce that

∞∑

n=0

∑

�(1,n)

∫
dv1d�

(∏
|Bε|χ int gε

0,1+n(ζ ε(0))+
∏

|BE |χ i.o.gε
0,1+n(ζE (0))

)

≤ C̄ ′ εθ1 + εγ1−θ1 2 z
∑

n≥0
(2zDt)n (4.108)

for any γ1 ∈ (0, 1), arbitrary θ1 and ε small enough. Up to constants depending
on z, β, this is smaller than εγ1/2 when t < t∗.

We conclude that
∫

dv|EE
1 (t)| ≤ εγ k for any γ < min[γ0, γ1/2] and in

particular for the γ appearing in (2.21) (remind (4.37)).
The final result follows readily from (4.103) and (2.21). � 

4.6.2 Proof of (2.25)

From (4.102) one gets

f ε
J (t) =

∑

H⊂J

( f (t))⊗H EB
J\H (t),

EB
K (t) :=

∑

Q⊂K

(gε(t)− f (t))⊗Q EE
K\Q(t). (4.109)

We resort once again to the tree expansions, Eqs. (3.43)–(3.44) and (3.47)–
(3.48). By gε

0,1+n = f ⊗(1+n)
0 = f0,1+n and (3.51), we obtain

gε(t)− f (t) =
∞∑

n=0

∑

�(1,n)

∫
d�

(∏
BE gε

0,1+n(ζ
E (0))−

∏
B f0,1+n(ζ (0))

)

=
∞∑

n=0

∑

�(1,n)

∫
d�

∏
B
[

f0,1+n(ζ
E (0))− f0,1+n(ζ (0))

]
.

(4.110)
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Using the Lipschitz-regularity assumption on f0, (3.50) and

|ξEi (0)− ξi (0)| ≤ n ε (4.111)

(as follows e.g. from Fig. 3, (iii)–(iv)), one finds
∣
∣
∣ f0,1+n(ζ

E (0))− f0,1+n(ζ (0))
∣
∣
∣

≤ 21+n (max(L , 2z))1+n e−(β/2)
∑

i∈S(1)(η
ε
1(0))

2
(nε) (4.112)

for ε small and n < ε−α with arbitrary α < 1 (same estimate with no (nε) for
larger n). Inserting into (4.110) and by further application of the estimates of
Lemma 4.2, one proves

∫
dv |gε(t)− f (t)| ≤ C̄ ′′ε1−α (4.113)

for suitable C̄ ′′ = C̄ ′′(z, β, L) and t < t∗. Since α is here arbitrary, we
conclude that this is smaller than εγ k with γ as in (2.21).

Equation (2.25) follows from (4.109) and (2.23). � 

4.7 Convergence of high order fluctuations

In this section we prove Theorem 2.5. Note preliminarily that, if the test func-
tions ϕ1, . . . , ϕ j have disjoint supports, then the result follows immediately
fromTheorem2.4. Indeed a simple algebra (see the remark after (4.122) below)
leads to the identity

E
ε

⎡

⎣
j∏

i=1

(
Fi (t)− E

B[ϕi (t)]
)
⎤

⎦ =
∫

R6 j
dz j ϕ(z1) · · ·ϕ(z j ) EB

j (z j , t)

(4.114)
and hence to the result by observing that no δ-overlap occurs in the integrand
of the r.h.s. for ε small (so (2.25) can be applied). Whenever the ϕi ’s have
supports which are not disjoint, the estimate of the l.h.s. of (4.114) complicates
considerably.

In the present section, we will work with the extended version of the corre-
lation error Ek over R6k , defined by

f ε
J =

∑

K⊂J

(
f ε
1

)⊗K
Ē J\K , (4.115)

where ĒK : R6k → R and (2.6) is used. Since no confusion arises, we shall
denote Ēk = Ek .
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4.7.1 Proof of Theorem 2.5

Let us replace, for the moment, EB[ϕi ] by E
ε[Fi ]. Then we compute the

fluctuation of order j , namely (1.9), i.e.

E
ε

⎡

⎣
j∏

i=1

(
Fi (t)− E

ε[Fi (t)]
)
⎤

⎦ =
∑

L⊂J

(

(−1)l
∏

i∈L

E
ε[Fi (t)]

)

E
ε

⎡

⎣
∏

i∈J\L

Fi (t)

⎤

⎦ .

(4.116)
We use, again, l = |L|, j = |J | and so on. From (1.7) and by symmetry of the
state,

E
ε[Fi (t)] = ε2

∑

n≥0

1

n!
∫

Mn

dz1 · · · dznW ε
n (zn, t)

n∑

j=1

ϕi (z j )

= ε2
∫

dz ϕi (z) ρε
1(z, t)

=
∫

dz ϕi (z) f ε
1 (z, t), (4.117)

where we introduced the correlation function (2.7) and its rescaled version
(2.11). Similarly, for K = {1, 2, . . . , k},

E
ε

[
∏

i∈K

Fi (t)

]

= ε2k
E

ε

⎡

⎣
∑

j1,..., jk

ϕ1(z j1) · · ·ϕk(z jk )

⎤

⎦

= ε2k
E

ε

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k∑

m=1

∑

P1,...,Pm∪q Pq=K
|Pq |≥1

Pq∩Ph=∅,q �=h

∑

j1,..., jm
jq �= jh ,q �=h

m∏

q=1

∏

i∈Pq

ϕi (z jq )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
k∑

m=1

ε2k−2m
∑

P1,...,Pm∪q Pq=K
|Pq |≥1

Pq∩Ph=∅,q �=h

∫
dz1 · · · dzm

m∏

q=1

∏

i∈Pq

ϕi (zq ) f ε
m(z1, . . . , zm , t).

(4.118)

Observe that, in the evaluation of this integral, the observables {ϕi }i∈Pq are
contracted in the variable zq . We insert the two previous expressions into
(4.116). Setting
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�Pq =
∏

i∈Pq

ϕi (zq),

we find

E
ε

⎡

⎣
j∏

i=1

(
Fi (t)− E

ε[Fi (t)]
)
⎤

⎦

=
∑

L⊂J

(

(−1)l
∏

i∈L

∫
ϕi f ε

1

) j−l∑

m=1

ε2 j−2l−2m

×
∑

P1,...,Pm∪q Pq=J\L
|Pq |≥1

Pq∩Ph=∅,q �=h

∫
dzM

m∏

q=1

�Pq f ε
m(zM , t), (4.119)

where M = {1, . . . , m}. Denoting S = L ∪ {Pi ; |Pi | = 1},

E
ε

⎡

⎣
j∏

i=1

(
Fi (t)− E

ε[Fi (t)]
)
⎤

⎦ =
∑

S⊂J

j−s∑

m=1

ε2 j−2m−2s
∑

P1,...,Pm∪q Pq=J\S
|Pq |≥2

Pq∩Ph=∅,q �=h

×
∫

dzM dz′S

(
∏

i∈S

ϕi (z
′
i )

) ⎛

⎝
m∏

q=1

�Pq

⎞

⎠

×
∑

L⊂S

(−1)l( f ε
1 )⊗l(z′L) f ε

m+s−l(zM , z′S\L). (4.120)

Let us write this expression in terms of correlation errors. For any S ⊂ K ,
the following algebraic identities hold:

∑

L⊂S

(−1)l( f ε
1 )⊗L f ε

K\L

=
∑

L⊂S

(−1)l( f ε
1 )⊗L

∑

L ′⊂K\S

δL ′,∅( f ε
1 )⊗L ′ f ε

K\(L∪L ′)

=
∑

L⊂S

(−1)l( f ε
1 )⊗L

∑

L ′⊂K\S

⎛

⎝
∑

L ′′⊂L ′
(−1)l ′′

⎞

⎠ ( f ε
1 )⊗L ′ f ε

K\(L∪L ′)
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=
∑

L⊂K\S

( f ε
1 )⊗L

∑

L ′⊂K\L

(−1)l ′( f ε
1 )⊗L ′ f ε

K\(L∪L ′)

=
∑

L⊂K\S

( f ε
1 )⊗L EK\L (4.121)

where in the last step we used the definition of correlation error, (1.12),
extended in the whole space. Notice that in the fourth line we just renamed
L ∪ L ′′ → L ′, L ′\L ′′ → L . Inserting (4.121) into (4.120), we obtain

E
ε

⎡

⎣
j∏

i=1

(
Fi (t)− E

ε[Fi (t)]
)
⎤

⎦ =
∑

S⊂J

j−s∑

m=1

ε2 j−2m−2s
∑

P1,...,Pm∪q Pq=J\S
|Pq |≥2

Pq∩Ph=∅,q �=h

×
∫

dzM dz′S

(
∏

i∈S

ϕi (z
′
i )

) ⎛

⎝
m∏

q=1

�Pq

⎞

⎠

×
∑

L⊂M

( f ε
1 )⊗l(z′L)Em+s−l(zM , z′S\L). (4.122)

Remark (Observableswith disjoint support)Assume that suppϕi∩suppϕ j = ∅
for i �= j . Then the above algebra becomes trivial, because no contractions
are possible (it must be z jr �= z js for r �= s) and the only surviving term in
(4.118) is m = k. Eqs. (4.119) and (1.12) lead immediately to

E
ε

⎡

⎣
j∏

i=1

(
Fi (t)− E

ε[Fi (t)]
)
⎤

⎦ =
∫

R6 j
dz j ϕ(z1) · · ·ϕ(z j ) E j (z j , t)

(4.123)

and the same computation with f ε
1 replaced by f leads to (4.114).

Observe that, actually, 2m ≤ j − s. Hence, by Proposition 2.6 (to be proved
below)
∣
∣
∣
∣
∣
∣
E

ε

⎡

⎣
j∏

i=1

(
Fi (t)− E

ε[Fi (t)]
)
⎤

⎦

∣
∣
∣
∣
∣
∣
≤ G j

∑

S⊂J

j−s∑

m=1
ε j−s

∑

P1,...,Pm∪q Pq=J\S
|Pq |≥2

Pq∩Ph=∅,q �=h

∑

L⊂M

2l εγ (m+s−l)

≤ εγ j (8GC) j j !
≤ εγ ′ j (4.124)
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for any j < ε−α′ , t < t∗, γ ′ < γ − α′ and ε small enough (having bounded
the sum over partitions as in (B.6)).

On the other hand, |Eε[Fi (t)]−E
B[ϕi (t)]| = | ∫ ϕi EB

1 | ≤ Gεγ by Theorem
2.4. Therefore, slightly decreasing α′, we conclude that

sup
j<ε−α′

∣
∣
∣
∣
∣
∣
E

ε

⎡

⎣
j∏

i=1

(
Fi (t)− E

B[ϕi (t)]
)
⎤

⎦

∣
∣
∣
∣
∣
∣

≤ sup
j<ε−α′

∑

L⊂J

∣
∣
∣
∣
∣
E

ε

[
∏

i∈L

(
Fi (t)− E

ε[Fi (t)]
)
]∣∣
∣
∣
∣

(Gεγ ) j−l

≤ sup
j<ε−α′

∑

L⊂J

εγ ′l(Gεγ ) j−l, (4.125)

which goes to zero as a power of ε. Theorem 2.5 is proved. � 
In the proof of Theorem 2.5 we had to estimate the quantity

∫

R6k
dzk ϕ(z1) · · ·ϕ(zk) Ek(zk, t). (4.126)

Note that, by Theorem, 2.4 we control Ek only in the region

Mx
k (δ) = {xk ∈ R

3k, |xi − x j | > δ, i �= j}.
Suppose now that zk = (zQ′, zK\Q′), where

xQ′ ∈ Mx
q ′(δ) ∩

⎧
⎪⎨

⎪⎩
xQ′ ∈ R

3q ′, min
i∈Q′

j∈K\Q′
|xi − x j | > δ

⎫
⎪⎬

⎪⎭
(4.127)

and xK\Q′ ∈ R
3(k−q ′) is some configuration lying in a small measure set with

overlaps at distance δ. Then we cannot estimate brutally |Ek | by (const.)k , but
we need to recover a small error εγ q ′ , relative to the non-overlapping configu-
rations. That is, we need a natural improvement of Theorem 2.4 including the
case in which δ-overlaps are admitted for a subset of xk . This is expressed by
the following corollary, whose proof is deferred to Appendix E.

Corollary 4.14 Under the assumptions of Theorem 2.4, let Q′ ⊂ K . Then
there exists a positive constant C2 = C2(z, β) such that, for any t < t∗ and ε

small enough,
∫

R3q′
dvQ′ |EK (t)| ≤ Ck

2

(
εγ k + εγ ′1q ′ ε−α1k) ∀ k < ε−α, (4.128)
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with γ ′1 = min[γ0, γ1/2], α1 = θ1 + 3α, xK\Q′ ∈ R
3(k−q ′) and xQ′ as in

(4.127).

The parameters γ, γ0, θ1, α, δ and γ1 are listed in Sects. 4.3.3 and 4.3.4.
By using the above corollary we achieve next the proof of Proposition 2.6.

4.7.2 Proof of Proposition 2.6

Let us fix δ = εθ with θ in the interval

θ ∈ (3/14, 1/4). (4.129)

Furthermore, let
1 =

∑

Q⊂K

χδ
Q χ̄ δ

K\Q,K , (4.130)

where χδ
Q = 1 if and only if any particle with index in Q “δ-overlaps” with a

different particle in Q, and χ̄0
K\Q,K = 1 if and only if all the particles in K\Q

lie at distance strictly larger than δ from any other particle in K .
Inserting the partition of unity, (4.126) becomes

∑

Q⊂K

∫
dzQ χδ

Q

⎛

⎝
∏

i∈Q

ϕi (zi )

⎞

⎠
∫

dzK\Q

⎛

⎝
∏

i∈K\Q

ϕi (zi )

⎞

⎠ χ̄ δ
K\Q,K EK (zk, t).

For Q = ∅ we can apply the main theorem, while, for |Q| ≥ 2, we resort to
Corollary 4.14. Taking the supremum over velocities of the test functions, one
obtains

∣
∣
∣
∣

∫

R6k
dzk ϕ(z1) · · ·ϕ(zk) EK (zk, t)

∣
∣
∣
∣

≤ Gkεγ k +
∑

Q⊂K
|Q|>1

Gk−qCk
2

(
εγ k + εmin[γ0,γ1/2](k−q) ε−θ1k−3αk

)

×
∫

dzQ χδ
Q

⎛

⎝
∏

i∈Q

|ϕi (zi )|
⎞

⎠

≤ Gkεγ k + Gk−1Ck
2

∑

Q⊂K
|Q|>1

(
εγ k + εmin[γ0,γ1/2](k−q) ε−θ1k−3αk

)

×
∫

dzi∗ ϕi∗

∫
dzQ\{i∗}χδ

Q
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≤ Gkεγ k + (GC2)
k
∑

Q⊂K
|Q|>1

(
εγ k + εmin[γ0,γ1/2](k−q) ε−θ1k−3αk

)

× (q − 1)!(4πδ3/3)q−1

≤ Gkεγ k + (GC24π/3)k
∑

Q⊂K
|Q|>1

(
εγ k + εmin[γ0,γ1/2](k−q) ε−θ1k−3αk

)

×ε(3θ−α′)(q−1), (4.131)

where i∗ is an arbitrary element in Q. In the last step, we used k < ε−α′ .
We choose

α′ < 7θ − 3/2. (4.132)

Then, by (4.101), we find 3θ −α′ −min[γ0, γ1/2] > 3θ − 7θ + 3/2− 1/2 =
−4θ + 1 > 0. In particular, using again (4.101) and reminding that θ3 = 1/5,
q ≥ 2,

(
3θ − α′ −min[γ0, γ1/2]

)
q − 3θ + α′ ≥ 6θ − 2α′ − 2+ 4θ

+(1/2)− 3θ + α′ = 7θ − α′ − 3/2 > 0.

Therefore, the q-dependent factors in (4.131) are very small. The final result
follows then from (4.37) for ε small enough. � 

4.8 Concluding remarks

4.8.1 Truncated functions

In this paper we studied the kinetic theory of expansion (1.14) for a dilute gas
of hard spheres. Similar expansions within the framework of kinetic theory
have been considered in [5,17,26,27]. Moreover, they are very familiar in
statistical mechanics. The standard example is given by the Ursell functions
in the classical analysis of the equilibrium state in a gas at low (finite) density,
chapter 4.4 of [33]. Typically, one expands in truncated functions

f ε
J =

∑

1≤m≤ j

∑

P1,...,Pm∪q Pq=J
Pq∩Ph=∅,q �=h

|Pq |≥1

∏

i

f ε,T
Pi

(4.133)

and focuses on the decay properties of f ε,T
j and on related physical quantities.

In connection to this, combinatorial methods have been intensively studied
under the name of “cluster expansion”, see e.g. [24].
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Note that (4.133) defines implicitly the truncated functions, as we did for
the correlation errors in Eqs. (1.11)–(1.14). The difference is that in (4.133)
the sum runs over all partitions of j elements. A direct comparison with (1.14)
yields:

E J =
∑

1≤m≤ j/2

∑

P1,...,Pm∪q Pq=J
Pq∩Ph=∅,q �=h

|Pq |≥2

∏

i

f ε,T
Pi

. (4.134)

In other words, E J is a “partially truncated correlation function” with respect
to clusters of size at least 2.

The interpretation of (4.134) should be now transparent. The f ε,T
j measures

events of j maximally correlated particles with at least j − 1 recollisions
connecting all the particles. The E j measures events of j minimally correlated
particles with at least ( j/2) recollisions, i.e. just one per particle. If εγ1 is the
size of one single recollision, one expects f ε,T

j ∼ εγ1( j−1) and E j ∼ εγ1( j/2).
During the revision of a first version of the present paper,6 a preprint

appeared by Bodineau, Gallagher and Saint-Raymond including a derivation
of the linearized Boltzmann equation for the two-dimensional hard disk gas
at equilibrium, global in time [5]. Here a similar notion of “cumulant expan-
sion” is introduced and the control of truncated functions is a crucial tool to
reach arbitrary times. The combinatorial problem and the estimates ofmultiple
recollisions are however different in this context.

4.8.2 Time of validity

Note that we did not optimize the time interval (0, t∗) for which the main the-
orem holds. In fact, in Sect. 4.3.5 we used t∗ < (eC1)

−1 which can be strictly
smaller than the value t̄ , appearing in Proposition 4.1 and ensuring Lanford’s
validity result. It is easy to extend our result up to t̄ by paying the price of worst
values of γ, α. It is enough to notice that in (4.36)we disregarded the truncation

on n, i.e.
∑log ε−θ2k

n=0 (see Lemma 4.5). Substituting t∗ by t̄ in (4.36) and using
log ε−θ2k
∑

n=0

(eC1 t̄)n ≤ ε−θ2 log(C̄1) k

for C̄1 > max(1, eC1 t̄), one obtains that condition (4.37) is replaced by
γ < min[γ0, γ1/2] − θ1 − 3α − θ2 log(C̄1). (4.135)

The final result follows for a different choice of the cutoff parameters.

6 arXiv:1405.4676, 2014.
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4.8.3 Canonical ensemble

The definition of “state” used in this paper includes the canonical W ε
0,n = 0

for all n �= N , N ∼ ε−2. Let us focus now on the BBGKY solution, (3.36), in
the case of a state of this form. Even if we ignore the dynamical correlations
(see the Remark in Sect. 3.4.2) and assume W ε

0,N = (wε)⊗N , the formula does
not exhibit complete factorization. The reason is twofold:

1. we work with r.c.f. f ε
j = ε2 j N (N − 1) · · · (N − j + 1) (wε)⊗ j ;

2. an additional correlation is present, given by the constraint
∑

ni ≤ N − j .

The main advantage of using a grand canonical formalism is to get rid of these
extra correlations.

Observe that the above effects have nothing to do with the dynamics and are
uniquely determined by the special structure of the initial data. Actually our
main result does cover a canonical state obeying the assumptions. However
we have not verified, in a canonical case, Hypothesis 2.2, for which a more
elaborate expansion than (A.7) seems to be necessary.

4.8.4 Spatial domain

Our results have been established in the whole space R3. A natural question
is how to extend the analysis to the case of a region � ⊂ R

3 with prescribed
boundary conditions. We discuss the major points in what follows.

Assumptions on the boundary conditions ensuring existence and uniqueness
of the n-particle flow have been studied in previous literature, e.g. [1,13,28].
Once the flow is well defined, the setting and the hierarchical formulas of
Sects. 2 and 3 can be easily adapted, see for instance [3,35,36]. Note that,
in the case of a bounded domain, all the sums over n (number of particles)
become finite, both in the definition of correlation functions and in the related
tree expansions (see also the states considered in Appendix A). Indeed, due to
the hard sphere exclusion, W ε

n = 0 for n > Ncp = close-packing number.
However this does not produce any change in the combinatorics of Step

1. The graph expansion (Eq. (4.22)) is applied, as written, to (4.21) even
when n > Ncp (i.e., to zero terms). This produces non-zero error terms with
overlapping trees and total number of created particles larger than Ncp. Such
terms are the “close-packing correlation” which is therefore automatically
taken into account by our method. Since Ncp ∼ ε−3 and α is certainly much
smaller than 3, this correlation is just a part of the first error term in Lemma 4.5,
related to the cutoff θ2 (truncation on the number of creations in a collection
of trees).

An extra difficulty comes from the geometrical estimates of recollisions,
Step 3 of the proof. The case of a vessel of arbitrary geometry with reflecting
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The Boltzmann–Grad limit of a hard sphere system… 1219

and/or diffusive boundary conditions eludes our techniques.7 On the other
hand, the analysis of this paper can be easily adapted to some simple situation
as the case of a gas contained in a parallelepiped with periodic or reflecting
boundary conditions. Let us discuss this point in some more detail.8

Consider the gas confined in �0 = (0, L1) × (0, L2) × (0, L3), Li > 0
and assume periodic boundary conditions for the free flow. After a moment of
thought, one realizes that the overlap condition appearing in Lemma 4.10, i.e.
infs |ξ(s)− ξε

k (s)| < ε, can be represented as follows:

1(inf
s
|ξ(s)− ξε

k (s)| < ε) ≤
∑

m∈Z3

1(inf
s
|ξ(m; s)− ξε

k (R3; s)| < ε) (4.136)

where m = (m1, m2, m3),

ξ(m; s) = ξ(R3; s)+ (m1L1, m2L2, m3L3) (4.137)

and ξ(R3; s), ξ ε
k (R3; s) are the trajectories in R3 computed with no boundary

conditions. In other words, if the bullet k hits the target ξ in the torus �0,
then the bullet k moving in the whole space hits some periodic copy of ξ , also
moving in the whole space.

Since the time is finite and the velocities are bounded, there is no serious
complication of the estimates of this paper. Reflecting boundary conditions are
treated in the same way, but the periodic translations in (4.137) are replaced
by reflections.

Acknowledgements Wewould like to thankRaffaele Esposito andHerbert Spohn for valuable
discussions and suggestions. S. Simonella has been supported by Indam-COFUNDMarie Curie
fellowship 2012, call 3 and by the German Research Foundation, DFG Grant 269134396.

Appendices

Appendix A: Chaotic states of hard spheres

Weconsider here themost natural construction of hard sphere states which fac-
torize in the Boltzmann–Grad limit, and show that they satisfy the hypotheses
stated in Sect. 2.3.

Let Wε
0 be the grand canonical state over M with system of densities

1

n!W
ε
0,n(zn) = 1

Zε

e−μεμn
ε

n! f ⊗n
0 (zn), (A.1)

7 Even an extension of Lanford’s original proof to themore general cases has not been provided.
8 A discussion similar to the one that follows appears in [4,15].
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where ε2με = 1,

Zε =
∑

n≥0

e−μεμn
ε

n! Zcan
n , (A.2)

and where the “canonical” normalization constant is

Zcan
n =

∫

Mn

dzn f ⊗n
0 (zn) =

∫

R6n
dzn f ⊗n

0 (zn)
∏

1≤i<k≤n

χ̄0
i,k, (A.3)

(Zcan
0 = 1) with χ̄0

i,k the indicator function of the set {|xi − xk | > ε}. The
function f0 can be any probability density overR3×R

3 satisfying f0(x, v) ≤
(h(x)/2)e−(β/2)v2 , for some h ∈ L1(R3;R+) with ess supx h(x) = z, and
z, β > 0.

Remark – The state introduced is a “maximally factorized state” in the sense
that the only correlations are due to the hard sphere exclusion. AGibbs state
in equilibrium statistical mechanics is of this form.

– The probability of finding n particles is pn = Zcan
n Z−1

ε (1/n!)e−μεμn
ε and

the distribution of the n particles (Zcan
n )−1 f ⊗n

0 .
– The asymptotic behaviour of the normalization constants can be proved to
be Zcan

n ∼ e−Cn2ε3 (n $ ε−2, C > 0) and Zε ∼ e−Cε−1
(see e.g. [30]).

Proposition A.1 The state of the system defined by (A.1)admits r.c.f. satisfying
Hypotheses 2.1, 2.2 and 2.3.

Proof For this particular state, it is convenient to check (2.16)–(2.17) first.
Since the only correlations are due to the exclusion, no combinatorial tools
are required and a simple expansion of the non-overlap constraint suffices to
reconstruct (2.16).

By definitions (2.7) and (2.11), the rescaled correlation functions are

f ε
0, j (z j ) = Fε(z j )

Zε

f ⊗ j
0 (z j ), (A.4)

where
Fε(z j ) =

∑

n≥0

e−μεμn
ε

n! F j+n
can (z j ) (A.5)

and

F j+n
can (z j ) =

∫

R6n
dz j,n f ⊗n

0 (z j,n)

⎛

⎝
j∏

i=1

j+n∏

k= j+1
χ̄0

i,k

⎞

⎠

⎛

⎝
∏

j+1≤i<k≤ j+n

χ̄0
i,k

⎞

⎠ (A.6)

(F j
can(z j ) = 1).
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For any j, n ≥ 1, we rewrite F j+n
can (z j ) by using

j∏

i=1

j+n∏

k= j+1

χ̄0
i,k =

j∏

i=1

(1− χ0
i,J c) (A.7)

where J c = { j + 1, . . . , j + n} and

χ0
i,J c =

⎛

⎝1−
j+n∏

k= j+1

χ̄0
i,k

⎞

⎠

= 1{z j+n | ∃ k∈J c such that |xi−xk |≤ε}.

Expanding the product in (A.7), we find

j∏

i=1

j+n∏

k= j+1

χ̄0
i,k =

∑

K⊂J

(−1)kχ0
K ,J c , (A.8)

with

χ0
K ,J c =

∏

i∈K

χ0
i,J c .

Inserting (A.8) into (A.6), we arrive to

f ε
0, j (z j ) =

∑

L⊂J

f ⊗L
0 (zL)EB,0

J\L(zJ\L), (A.9)

where EB,0
∅ = 1 and, for k ≥ 1,

EB,0
K (zk) = (− f0)

⊗k(zk)
1

Zε

∑

n≥1

e−μεμn
ε

n!
∫

dzk,n f ⊗n
0 (zk,n) χ0

K ,K c

∏

k+1≤i<h≤k+n

χ̄0
i,h . (A.10)

Let a be the maximum number of three-dimensional hard spheres that can
be simultaneously overlapped by a single one, and q = q(xk) the minimum
number of different spheres in K c necessary to satisfy the conditionχ0

K ,K c = 1
(any sphere in K is overlapped by at least one sphere in K c). Then k/a ≤ q ≤ k
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and
χ0

K ,K c ≤
∑

Q⊂K c

|Q|=q

χ0
Q,K . (A.11)

It follows that

|EB,0
K (zk)| ≤ (z/2)ke−(β/2)

∑
i∈K v2i

1

Zε

∑

n≥q

e−μεμn
ε

n!

×
∑

Q⊂K c

|Q|=q

∫
dzk,n f ⊗n

0 (zk,n) χ0
Q,K

∏

k+1≤i<h≤k+n

χ̄0
i,h . (A.12)

Note now that χ0
Q,K =∏

i∈Q χ0
i,K and, for all i ∈ Q,

∫
dzi f0(zi ) χ0

i,K ≤ (z/2)(2π/β)3/2 k B ε3 (A.13)

where B is the volumeof the unit ball. The remainingn−q integration variables
reconstruct Zcan

n−q , so that we get

|EB,0
K (zk)| ≤ (z/2)k e−(β/2)

∑
i∈K v2i

1

Zε

∑

n≥q

e−μεμn
ε

n!
(

n

q

)

kq (Cε3)q Zcan
n−q .

(A.14)
Here and below we indicate by C a positive constant, possibly changing from
line to line and depending on z, β, a, B.

Using 1
n!
(n

q

)
kq ≤ (ke)q

qq (n−q)! ≤ Cq/(n− q)! and reminding (A.2), we deduce

|EB,0
K (zk)| ≤ (z/2)ke−(β/2)

∑
i∈K v2i (Cε)q

≤ zke−(β/2)
∑

i∈K v2i Ck εk/a. (A.15)

This implies the estimate (2.17) by choosing γ ′0 < 1/a and ε small enough.9

Hypotheses 2.1 and 2.3 follow immediately.
Finally, observe that Hypothesis 2.2 and (2.16)–(2.17) are equivalent.

Indeed, starting from (2.16), setting f ⊗H
0 = ( f ε

0,1− EB,0
1 )⊗H and expanding,

one finds formula (2.13) with

9 The bad value of γ ′0 is due to the uniform estimate inMk(ε), which includes situations similar
to close-packing. If the mutual distance between the particles in K is order 1, then q = k and
the above computation gives γ ′0 < 1.
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E0
K =

∑

Q⊂K

(−1)q(EB,0
1 )⊗Q EB,0

K\Q, (A.16)

hence (2.17) implies |E0
K | ≤ 2kεγ ′0kzk e−(β/2)

∑
i∈K v2i < εγ0k zk e−(β/2)

∑
i∈K v2i

for any γ0 < γ ′0 (and ε small). The proof of the inverse statement is similar
(one finds γ ′0 < γ0). � 

We conclude this appendix with the proof of the properties presented in
Sect. 2.4.2.

Proof of Property 1 Hypothesis 2.2 is obtained from Property 1 in the case
S = J = J .
Let us show that Hypothesis 2.2 implies (2.29) for a generic partition of the

set S. In this case, (2.28) is a rougher truncation and E0
K takes into account

only correlations among particles of different clusters.
Inverting (2.28) we find

E0
K =

∑

Q⊂K
(−1)|Q|

⎛

⎝
∏

S∈Q
f ε
0,S

⎞

⎠ f ε
0,K\Q . (A.17)

We use the notation K = ∪i∈KSi , Q = ∪i∈QSi etc. By using (2.13), it follows
that

E0
K =

∑

Q⊂K
(−1)|Q|

∑

L1,...,L |Q|
Lr⊂Sir

|Q|∏

r=1

E0
Lr

∑

L0⊂K\Q

E0
L0

(
f ε
0,1

)⊗Lc

, (A.18)

where i1, . . . , i|Q| are the indices of the clusters in Q, and Lc = K\ ∪|Q|r=0 Lr .
Note that the first sum is over subsets of clusters, while the other sums run
over subsets of indices of particles. Setting L = ∪|Q|r=0Lr we notice that, for
given Q and L , one has Lr = L ∩ Sir and L0 = L ∩ (K\Q). Therefore we
rewrite (A.18) as

E0
K =

∑

L⊂K

(
f ε
0,1

)⊗K\L ∑

Q⊂K
(−1)|Q|E0

L∩(K\Q)

|Q|∏

r=1

E0
L∩Sir

. (A.19)

Observe that, in the above sum, L must be such that |L ∩ Si | > 0 for all
i ∈ K. Otherwise if L ∩ Si = ∅ for some i , setting S∗ = Si , since E0

L∩Si
= 1,
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∑

Q⊂K
S∗∈Q

(−1)|Q|E0
L∩(K\Q)

|Q|∏

r=1
E0

L∩Sir
+

∑

Q⊂K
S∗ /∈Q

(−1)|Q|E0
L∩(K\Q)

|Q|∏

r=1
E0

L∩Sir

= −
∑

Q⊂K\{S∗}
(−1)|Q|E0

L∩(K\Q)

|Q|∏

r=1
E0

L∩Sir
+

∑

Q⊂K\{S∗}
(−1)|Q|E0

L∩(K\Q)

|Q|∏

r=1
E0

L∩Sir

= 0. (A.20)

As a consequence, using (2.12) and (2.14) in (A.19), we deduce

|E0
K| ≤ 2|K| zk e−(β/2)

∑
i∈K v2i

∑

L⊂K
L∩Si �=∅ ∀i

εγ0|L|

≤ 4kεγ0|K| zk e−(β/2)
∑

i∈K v2i , (A.21)

so that (2.29) follows by reducing the values of γ0, α0. � 
Proof of Property 2 We rewrite (2.30) as

f ε
0,S =

∑

H⊂J
χ̄0
H,J

(
∏

i∈H
χ̄0

Si
f ε
0,Si

)

χ̄0
J\H E0

J \H (A.22)

where χ̄0
H,J = 1 if and only if all the particles in Si do not overlap with any

other particle in Sk for any choice of i ∈ H, k ∈ J , k �= i .
We expand now the exclusion constraint (using the ideas explained in

Sect. 4.2—Step 1 in the context of dynamical correlations). By virtue of
Lemma 4.4,

χ̄0
H,J =

∑

Q⊂H
R(Q, J \H) (A.23)

and then we get

|R(Q, J \H)| ≤ C |Q| |Q|!χ0
Q,Q∪(J \H). (A.24)

Inserting (A.23) in (A.22) we obtain (2.31) with

Ē0
K =

∑

H1,H2H1∪H2=K
H1∩H2=∅

R(H1, H2)

⎛

⎝
∏

i∈H1

χ̄0
Si

f ε
0,Si

⎞

⎠
(
χ̄0

H2
E0
H2

)
. (A.25)

The bound (2.32) follows from (A.24). � 
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Appendix B: Graph expansion

Weprove in this section the graph expansion Lemma. The strategy is explained
informally in Sect. 4.2—Step 1,where χ̄L ,L∪L0 is the non-recollision condition
of the trees in the set L (and χ is the overlap constraint).

Proof of Lemma 4.4 By addition/subtraction we find

χ̄L ,L∪L0 = 1−
∑

L1,L2
L1∪L2=L
L1∩L2=∅

l1≥1

χL1,L∪L0 χ̄L2,L∪L0

= 1−
∑

L1,L2
L1∪L2=L
L1∩L2=∅

l1≥1

χL1,L1∪L0 χ̄L2,L0∪L1∪L2 . (B.1)

Note that l1 = |L1| > 0 and χL1,L∪L0 = χL1,L1∪L0 , because any vertex in L2
is not connected. Iterating once,

χ̄L ,L∪L0 = 1−
∑

L1⊂L
l1≥1

χL1,L1∪L0

+
∑

L1,L2,L3
L1∪L2∪L3=L
Li∩L j=∅,i �= j

l1≥1,l2≥1

χL1,L0∪L1χL2,L0∪L1∪L2 χ̄L3,L0∪L1∪L2∪L3 .

(B.2)

Then, successive iterations yield the following expansion:

χ̄L ,L∪L0 =
|L|∑

r=0

(−1)r
∑

L1,...,Lr∪i Li⊂L
li≥1

Li∩L j=∅,i �= j

χL1,L0∪L1 · · ·χLr ,L0∪L1···∪Lr , (B.3)

where the r = 0 term has to be interpreted as 1. I.e.

χ̄L ,L∪L0 =
∑

Q⊂L

R(Q, L0), (B.4)
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with

R(Q, L0) :=
q∑

r=1

(−1)r
∑

L1,...,Lr∪i Li=Q
li≥1

Li∩L j=∅,i �= j

χL1,L0∪L1 · · ·χLr ,L0∪L1···∪Lr , (B.5)

and R(∅, L0) = 1.
From this expression it follows that

|R(Q, L0)| ≤
q∑

r=1

∑

L1,...,Lr∪i Li=Q
li≥1

Li∩L j=∅,i �= j

χQ,Q∪L0

≤ χQ,Q∪L0

q∑

r=1

∑

l1,...,lr
li≥1

q!
l1! · · · lr !

≤ χQ,Q∪L0 q!Cq . (B.6)

� 

Appendix C: Reduction to energy functionals

In this appendixweprove the technical result stated inSect. 4.3.3.Wedivide the
proof in three parts wherewe truncate respectively number of particles, energy,
and cross-sections. The truncation errors are controlled by slight variants of
Lanford’s short time estimate.

Proof of Lemma 4.5 (a) We first use the bound (4.23) and the assumptions on
the initial state (see (4.28)) to estimate EK as given by (4.27). Notice that (4.28)
can be applied for k + n < ε−α0 , which is ensured by k < ε−α , n ≤ log ε−θ2k

for arbitrary positive θ2 and α < α0, as soon as ε is small enough. We deduce:

∫
dvK |EK (t)| ≤ zk Ck

∑

L0,Q,B
⊂ K
disjoint

q! b!
log ε−θ2k
∑

n=0
zn

∑

�(k,n)

∫
dvkd�

×
∏

|Bε|χrec
L0

χov
Q,K χ0

B,K εγ0(k−q−l0−b)e−(β/2)HK

+zk Ck
∑

L0,Q
⊂ K
disjoint

q! (k − q − l0)!
∑

n>log ε−θ2k

zn
∑

�(k,n)

∫
dvkd�

∏
|Bε| e−(β/2)HK .

(C.1)
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The symbol C is always used for pure positive constants. Note that, in the
error produced by the truncation on n, the last line of (4.27) has been estimated
simply by zk+nCke−(β/2)HK (k − q − l0)!, as follows from (2.32), (A.17) and
Hypothesis 2.1.

Proceeding exactly as in the proof of Lemma 4.2 (case a = 1), the last term
in (C.1) is bounded, for t < t̄ (see (4.8)), by

Ck k! (4π/β)
3
2 k (C(z, β)e)k

∑

n>log ε−θ2k

(t̄ C(z, β)e)n

≤ (C ′)k kk εθ2 log(t̄C(z,β)e)−1k

≤ (C ′)k εθ2 log(t̄C(z,β)e)−1k−αk ≤ εγ k/4, (C.2)

for a suitable C ′ = C ′(z, β) > 0. In the last line we used k < ε−α ,

γ < θ2 log(t̄C(z, β)e)−1 − α (C.3)

and ε small enough.
Since χov

Q,K χ0
B,K ≤ χov

Q∪B,K (overlap at time zero implies overlap in [0, t]),
renaming Q ∪ B → Q, (C.1) yields

∫
dvK |EK (t)|

≤ zkCkk!
∑

L0,Q
⊂ K

disjoint

log ε−θ2k
∑

n=0

zn
∑

�(k,n)

∫
dvkd�

×
∏

|Bε|χrec
L0

χov
Q,K εγ0(k−q−l0)e−(β/2)HK + εγ k

4
. (C.4)

(b) Next we truncate the integration domain to the sphere of energy smaller
than 2ε−θ3 , for arbitrary θ3 > 0. The corresponding error is bounded by

Ck k!
∑

L0,Q
⊂ K

disjoint

log ε−θ2k
∑

n=0

zk+n
∑

�(k,n)

∫
dvkd�

∏
|Bε| e−(β/2)HK 1HK >ε−θ3

≤ e−(β/4)ε−θ3 Ck k!
∑

L0,Q
⊂ K

disjoint

log ε−θ2k
∑

n=0

zk+n
∑

�(k,n)

∫
dvkd�

∏
|Bε| e−(β/4)HK
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≤ e−(β/4)ε−θ3 Ck k! 4k (8π/β)3k/2 (eC(z, β/2))k
log ε−θ2k
∑

n=0

(eC(z, β/2)t̄)n

≤ (C ′′)k e−(β/4)ε−θ3 kk (C ′′)log ε−θ2k
(C.5)

for a suitable C ′′ = C ′′(z, β) > 1. From second to third line we repeated
the proof of Lemma 4.2 with a = 1 and β → β/2. Note that (C.5) is in
turn bounded, for k < ε−α , by (C ′′)k e−(β/4)ε−θ3+ε−α log ε−α+ε−α log ε−θ2 logC ′′

,
which is smaller than εγ k/4 if θ3 > α and ε is small enough.

Remembering (4.29), it follows that
∫

dvK |EK (t)|

≤ zkCkk!
∑

L0,Q
⊂ K
disjoint

log ε−θ2k
∑

n=0

zn
∑

�(k,n)

∫
dvkd�

×
∏

|Bε|χrec
L0

χov
Q,K εγ0(k−q−l0)Fθ3(K )+ 2εγ k

4
. (C.6)

(c) Finally, we introduce a truncation of the cross-section factors
∏ |Bε|. We

want actually to eliminate these factors from (C.6). Such a simplification of
formulas will be very useful for the recollision estimates. (This procedure was
already applied in [30].)

To this purpose we apply the following corollary of Lanford’s short time
estimate, Lemma 4.2, of which we adopt here the notation.

Lemma C.1 Let F ≤ 1 be any positive measurable function of the variables
z j , tn, ωn, v j,n. Let N > 0 and θ1 > 0. There exists C̄ ′ > 0 such that, for any
t < t̄ ,

∫
dv j

N∑

n=0

z j+n
∑

�( j,n)

∫
d�(tn, ωn, v j,n)

(∏
|Bε|

)
e−(β/2)

∑
i∈S(J )(η

ε
i (0))2 F

≤ (C̄ ′) jεθ1 j + ε−θ1 j
N∑

n=0

z j+n
∑

�( j,n)

∫
dv j d�(tn, ωn, v j,n)

×e−(β/2)
∑

i∈S(J )(η
ε
i (0))2

n∏

i=1

1{|ξε
j+i (ti )−ξε

k (ti )|>ε ∀k �=ki } F. (C.7)

The result holds also when Bε, ζ ε are replaced by BE , ζ E (Enskog flow) or
B, ζ (Boltzmann flow).
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Note that the last integral does not contain any more cross-section factors,
the only residual being the characteristic function that prohibits overlaps at
creation times.

To deduce the corollary, it is enough to observe that the integral on the l.h.s.,
when restricted to the set such that

∏ |Bε| > ε−θ1 j , is bounded by εθ1 j times
the integral with respect to dv j of the left hand side in (4.1) with a = 2.
Applying Lemma 4.2, we obtain the result by taking C̄ ′ = C̄(4π/β)3/2.

Computing the l.h.s. in Lemma C.1 via the mixed flow (4.18) instead of
the IBF causes, of course, no modification, except for the expression of the
characteristic function in (C.7). Therefore we may apply the result to (C.6),
which produces an error Ckk!(C̄ ′)kεθ1k ≤ (C ′′′)kkkεθ1k for a suitable C ′′′ =
C ′′′(z, β) > 0 and arbitrary θ1 > 0. This is, in turn, smaller than εγ k/4 for
k < ε−α , γ < θ1 − α and ε small enough.

We conclude that, for any t < t̄ ,

∫
dvK |EK (t)| ≤ 3εγ k

4

+ zkCkk! ε−θ1k
∑

L0,Q
⊂ K

disjoint

log ε−θ2k
∑

n=0

zn
∑

�(k,n)

∫
dvkd�1L0

×1̃K\L0 χrec
L0

χov
Q,K εγ0(k−q−l0)Fθ3(K ), (C.8)

where the characteristic functions 1 are those defined after (4.19). � 
Remark (Choice of parameters) If we choose the parameters as in (4.32), then
(4.34) ensures that all the conditions in the proof above are satisfied. In fact,
in part (a) of the proof we just need to check (C.3) which reads γ < (1/2)−α

and follows from γ < a(γ0) − 3α < 1/4 − 3α. In part (b), the condition
α < θ3 = 1/5 follows from α < (1/3)a(γ0) < 1/12. Finally in part (c) the
condition γ < θ1 − α = a(γ0)− α is guaranteed by γ < a(γ0)− 3α.

Appendix D: Estimate of internal recollisions

Proof of Lemma 4.12 It is convenient to use the Enskog backwards flow ζ E

introduced in Sect. 3.5.2. For any given value of the variables (x1, �(1, n1),

vn1+1, ωn1, tn1), if the IBF ζ ε delivers an internal recollision, then the EBF
ζ E delivers an internal overlap (two particles of the flow having a distance
smaller than ε). That is,

χ int ≤ χ i.o.(ζ E ), (D.1)

where
χ i.o. = χ i.o.(ζ E ) = 1 (D.2)
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if and only if the EBF associated to the 1-particle tree exhibits at least one
overlap between two particles. Therefore in what follows we shall focus on
the proof of the estimate

∑

�(1,n1)

∫
dv1d�χ i.o. e−(β/2)

∑
i∈S(1) v2i ≤ εγ1

2
(Dt)n1 . (D.3)

Remind that d� = d�(tn1, ωn1, v1,1+n1) and �(1, n1) = (k1, . . . , kn1).
We start with

χ i.o. ≤
n1∑

s=2

∑

h=ks ,s+1

∑

i=1,...,s
i �=ks ,s+1

χ i.o.
(i,h),s, (D.4)

where χ i.o.
(i,h),s = χ i.o.

(i,h),s(ζ
E ) = 1 if and only if:

(i) going backwards in time, the first overlap between particles i and h takes
place at a time τ ∈ (0, ts];

(ii) particles i and h move freely in (τ, ts);
(iii) at time ts

ηE
h (t−s ) �= ηE

ks
(t+s ). (D.5)

Notice that particle h is involved in the creation process at time ts . See
Fig. 8 below for a scheme of the possible situations and observe that, by
virtue of (iii), we are excluding case 2 for incoming collision configura-
tions at the creation time ts .

From (D.3) to (D.4) one gets

∑

�(1,n1)

∫
dv1d�χ i.o. e−(β/2)

∑
i∈S(1) v2i

≤
∑

�(1,n1)

n1∑

s=2

∑

h=ks ,s+1

∑

i=1,...,s
i �=ks

∫
dv1d�χ i.o.

(i,h),s e−(β/2)
∑

i∈S(1) v2i .

(D.6)

Note that χ i.o.
(i,h),s depends actually only on ζ E

1+s , hence we can immediately
integrate out the node variables

ts+1, . . . , tn1, ωs+1 . . . , ωn1, vs+2, . . . , v1+n1

and sum over the tree variables ks+1, . . . , kn1 . Applying (4.7),

∑

ks+1,...,kn1

∫
dts,n1−s = (s + 1)(s + 2) · · · (n1)t

n1−s/(n1 − s)! ≤ en1 tn1−s,
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1 2

i i

t

ts

ts−1

Fig. 8 Case 1: h = s + 1, ks = �. Case 2: h = ks , � = s + 1

thus we infer that

∑

�(1,n1)

∫
dv1d�χ i.o. e−(β/2)

∑
i∈S(1) v2i ≤ en1

n1∑

s=2

(D′t)n1−s
∑

�(1,s)

∑

h=ks ,s+1

×
∑

i=1,...,s
i �=ks

·
∫

dv1d�(ts, ωs, v1,1+s) χ i.o.
(i,h),s e−(β/2)

∑1+s
i=1 v2i , (D.7)

where D′ = 4π (2π/β)3/2 and, in the last line, we are left with integrals
associated to 1-particle, s-collision trees.

If χ i.o.
(i,h),s = 1, then there are two possibilities: either h = s + 1 (h is

created at ts) or ks = h (h is the progenitor of s + 1), see Fig. 8. Let us resort
to the notation of virtual trajectories, to deal with both cases simultaneously
(Definition 4.11, applied to ζ̄ = ζ E ). We set

W = ηE
h (t−s )− ηE

i (ts), W0 = ηE ,h(t+s )− ηE
i (ts)

and

Y = ξEh (t−s )− ξEi (ts), Y0 = ξE ,h(t−s−1)− ξEi (ts−1).

We remind that t+, t− denote the limit from the future (post-collision) or from
the past (pre-collision) respectively. Note that (D.5) is, in this notation,

ηE ,h(t−s ) �= ηE ,h(t+s ), (D.8)

namely the virtual trajectory of particle h changes velocity at time ts .
The overlap-condition implies

inf
τ∈(0,ts)

|Y − Wτ | ≤ ε. (D.9)
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Put Ŵ = W
|W | if W �= 0 and W = (1, 0, 0) otherwise. Eq. (D.9) implies in

turn

|Y ∧ Ŵ | ≤ ε,

i.e.
|(Y0 − W0ts−1) ∧ Ŵ + (W0 ∧ Ŵ )ts | ≤ 2 ε, (D.10)

where the factor 2 takes into account the jump in position in the virtual trajec-
tory of particle h at time ts , case 1. Therefore, we may bound the last line in
(D.7) by replacing χ i.o.

(i,h),s with the indicator function of the events (D.10) and
W �= W0 (which takes into account (D.8)).

By definition of the Enskog flow, Y0 and W0 do not depend on ts (since they
concern the previous history). Moreover, the velocities in (0, ts), which we
denote

(η−1 , . . . , η−s+1) = (ηE
1 (t−s ), . . . , ηE

s+1(t
−
s )), (D.11)

are also independent of the times t1, . . . , ts : they depend only on previous
velocities and impact vectors. In particular, W does not depend on ts , so that
in (D.10) a linear relation in ts appears. On the other hand, the integral in ts
over the condition (D.10) is bounded by min(t, 4ε|W0∧ Ŵ |−1). Hence, for an
arbitrary γ1 ∈ (0, 1),

∑

�(1,s)

∑

h=ks ,s+1

∑

i=1,...,s
i �=ks

∫
dv1d�(ts, ωs, v1,1+s) χ i.o.

(i,h),s e−(β/2)
∑1+s

i=1 v2i

≤ (4/t)γ1 t εγ1
∑

�(1,s)

∑

h=ks ,s+1

∑

i=1,...,s
i �=ks

×
∫

dv1d�′(ts−1, ωs, v1,1+s)
1

|W0 ∧ Ŵ |γ1 e−(β/2)
∑1+s

i=1 v2i , (D.12)

where d�′(ts−1, ωs, v1,1+s) is the measure d�(ts, ωs, v1,1+s) deprived of dts
andmultiplied, in case 2 of Fig. 8, by the characteristic function ofωs ·(v1+s−
ηE ,h(t+s )) > 0 (coming from the condition W �= W0).

It remains to prove that the integral of the singular function |W0 ∧ Ŵ |−γ1

converges. To do so, let us first express W0 in terms of the pre-collisional
variables (D.11). Applying the elastic collision rule (2.3), one finds

W0 =
(
ηE ,h(t+s )− ηE ,h(t−s )

)
+ W

= Ps W� + W,
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where

W� = η−� − η−h

and

Ps X :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P⊥
ωs

X := X − ωs(ωs · X) case1, outgoingcollision

X case1, incomingcollision

P‖
ωs

X := ωs(ωs · X) case2, outgoingcollision

0 case2, incomingcollision

. (D.13)

Cases 1, 2 are those in Fig. 8, while we remind that the incoming/outgoing
collisions are depicted inFig. 2 (here corresponding respectively to the negative
/ positive sign of the scalar productωs ·(v1+s−ηE ,h(t+s ))).Moreover, the “case”
depends only on the structure of the chosen tree �(1, s). It follows that

1

|W0 ∧ Ŵ | =
1

|Ps W� ∧ Ŵ | (D.14)

which we may insert into (D.12).
Next, we change variables according to v1, v2, . . . , vs+1 → η−1 , . . . , η−s+1.

This is an invertible andmeasure-preserving transformation, for anyfixedvalue
ofω1, . . . , ωs , (since the single hard-sphere collision (2.3) is so).Moreover, by

the conservation of energy at collisions, e−(β/2)
∑1+s

i=1 v2i = e−(β/2)
∑1+s

i=1 (η−i )2 .
From (D.7), (D.12) and (D.14), we thus obtain

∑

�(1,n1)

∫
dv1d�χ i.o. e−(β/2)

∑
i∈S(1) v2i ≤ en1

n1∑

s=2

(D′t)n1−s (4/t)γ1 t εγ1 s! 2s

× t s−1

(s − 1)!
∫

dωs

∫
dη−s+1

×
(

e−(β/2)
∑1+s

i=1 (η−i )2

|P⊥
ωs

W1 ∧ Ŵ |γ1 + e−(β/2)
∑1+s

i=1 (η−i )2

|W1 ∧ Ŵ |γ1 + e−(β/2)
∑1+s

i=1 (η−i )2

|P‖
ωs W1 ∧ Ŵ |γ1

)

,

(D.15)

where we renamed 1, 2, 3 particles �, h, i respectively (hence W1 = η−1 −
η−2 , W = η−2 − η−3 ).

Let us now give a bound of the explicit integral
∫

dη−s+1
e−(β/2)

∑1+s
i=1 (η

−
i )2

|P̃s W1∧Ŵ |γ1 ,

where P̃s W1 = P⊥
ωs

W1, W1 or P‖
ωs W1. Since W 2+W 2

1 ≤ 2(η−1 )2+ 4(η−2 )2+
2(η−3 )2, applying the translations (η−1 , η−2 ) → (W1 = η−1 − η−2 , W = η−2 −
η−3 ), we find
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∫
dη−s+1

e−(β/2)
∑1+s

i=1 (η−i )2

|P̃s W1 ∧ Ŵ |γ1 ≤
∫

dη−s+1e−(β/2)
∑

i>3(η−i )2

× e−(β/4)(η−3 )2 e−(β/8)(W 2
1+W 2)

|P̃s W1 ∧ Ŵ |γ1

=
∫

dη−2,s−1 e−(β/2)
∑

i>3(η−i )2 e−(β/4)(η−3 )2
∫

dW1dW
e−(β/8)(W 2

1+W 2)

|P̃s W1 ∧ Ŵ |γ1

≤ Cs
β

∫
dW1

e−(β/8)W 2
1

|P̃s W1|γ1
≤ Cs

β Cβ,γ1, (D.16)

for suitable constants Cβ, Cβ,γ1 > 0 and for any γ1 < 1 (with Cβ,γ1 diverging

in the case P̃s W1 = P‖
ωs W1 as γ1 → 1).

Inserting (D.16) into (D.15) and performing the sums, we obtain the final
result. � 

Appendix E: Proof of Corollary 4.14

The result follows from minor modifications in the proof of Theorem 2.4.
First of all, by Property 2, case S = J = J , applied to the state with r.c.f. f ε

j

and correlation errors Ēk ≡ Ek ,

|EK | ≤
∑

H⊂K

(
Ch h!χ0

H,K

(
f ε
1

)⊗H
) (

χ̄0
K\H |EK\H |

)

=
∑

H⊂K\Q′

(
Ch h!χ0

H,K

(
f ε
1

)⊗H
) (

χ̄0
K\(Q′∪H)|EK\H |

)
. (E.1)

Remind thatχ0
H,K = 1 if and only if any particle with index in H overlapswith

a different particle in K , which implies H ⊂ K\Q′. Moreover, χ̄0
K\H = 1

if and only if all particles in K\H do not overlap among themselves, which
implies χ̄0

K\H = χ̄0
K\(Q′∪H)

. In particular,

∫

R3q′
dvQ′ |EK (t)| ≤

∑

H⊂K\Q′

(
Ch h!χ0

H,K

(
f ε
1 (t)

)⊗H
)

χ̄0
K\(Q′∪H)

×
∫

R3q′
dvQ′ |EK\H (t)| (E.2)
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and we are allowed to insert expression (4.27) into (E.2). Note that this prepa-
ration is necessary, since (4.27) does apply only when the particles in K\H
are sufficiently far from each other.

The estimate of the integral on the r.h.s. differs from that of themain theorem
from the fact that we integrate only with respect to a subset of velocities
Q′ ⊂ K . Furthermore, we know that particles in Q′ are at distance larger than
δ from any other particle in K , but we have no information on the relative
distance of particles in K\Q′. We shall not repeat here the proof of Sects. 4.3–
4.5, which applies unchanged, except for the following modifications.

1. In Lemma 4.5, one integrates only over dvQ′ . However the integral over
velocities is never used in the reduction to energy functionals (seeAppendix
C). Therefore one gets the same result apart from an overall (const.)k . This
produces the first term in (4.128).

2. In Proposition 4.6, one integrates only over dvQ′ and εγ1
q+l0
2 = εγ1

|Q∪L0|
2

has to be replaced by εγ1
|(Q∪L0)∩Q′|

2 . Indeed in the proof of the proposition,
Sect. 4.4.2.c, when the bullet αi is outside Q′, Lemma 4.10 cannot be
applied. Instead of estimate (4.51), one uses then the simple estimate

∑

�αi

∫
d�αi χ(αi ,βi ) Fθ3(αi ) ≤ (D′t)nαi . (E.3)

3. In (4.36), one integrates only over dvQ′ and, by virtue of the previous two
points, one gets εmin[γ0,γ1/2]q ′ instead of εmin[γ0,γ1/2]k . This produces the
second term in (4.128). � 
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