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ABSTRACT

In this paper, we propose a novel algorithm for energy-efficient,
low-latency, accurate inference at the wireless edge, in the context
of 6G networks endowed with reconfigurable intelligent surfaces
(RISs). We consider a scenario where new data are continuously
generated/collected by a set of devices and are handled through
a dynamic queueing system. Building on the marriage between
Lyapunov stochastic optimization and deep reinforcement learn-
ing (DRL), we devise a dynamic learning algorithm that jointly
optimizes the data compression scheme, the allocation of radio
resources (i.e., power, transmission precoding), the computation
resources (i.e., CPU cycles), and the RIS reflectivity parameters
(i.e., phase shifts), with the aim of performing energy-efficient edge
classification with end-to-end (E2E) delay and inference accuracy
constraints. The proposed strategy enables dynamic control of the
system and of the wireless propagation environment, performing a
low-complexity optimization on a per-slot basis while dealing with
time-varying radio channels and task arrivals, whose statistics are
unknown. Numerical results assess the performance of the pro-
posed RIS-empowered edge inference strategy in terms of trade-off
between energy, delay, and accuracy of a classification task.

Index Terms— Edge intelligence, inference, reconfigurable in-
telligent surfaces, Lyapunov optimization, reinforcement learning.

1. INTRODUCTION

The development of the next generation of wireless communication
systems, known as 6G, is still at its infancy. The main challenge of
6G is to provide an Artificial Intelligence (AI) and Machine Learning
(ML) native communication infrastructure. This concept is known
as Edge ML/Edge AI [1]. Edge AI comes with a twofold perspec-
tive, including both the benefits of AI/ML algorithms exploited for
network optimization and orchestration, and the benefit of a power-
ful and efficient communication platform to process and distill large
volumes of data collected by heterogeneous devices. The final aim
is to accurately perform learning tasks within low end-to-end (E2E)
delays, in the most efficient way from different perspectives entail-
ing energy, communication overhead, etc. Edge AI will strongly
benefit from Multi-access Edge Computing (MEC) [2], thanks to the
deployment of distributed computing resources close to end users,
namely in Mobile Edge Hosts (MEHs) that are, e.g. co-located with
radio Access Points (APs). This will allows mobile end devices
to access computing resources, albeit limited with respect to cen-
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tral clouds, in a fast, secure, reliable, and possibly sustainable man-
ner. In this work, we focus on both roles of edge AI in future sys-
tems, devising a resource allocation framework to enable dynamic
energy efficient edge classification on data collected by end devices,
with target E2E delays and inference reliability constraints. Besides
the paradigm of communications for AI, in this work, the twofold
role of edge AI is explored through the marriage between model-
based Lyapunov stochastic network optimization, and Deep Rein-
forcement Learning (DRL), with the latter playing the role of an
AI-based optimization algorithm, able to compensate the limitations
of model-based optimization, namely complexity and/or lack of sys-
tem modeling. Previous works successfully attempted to merge such
tools [3, 4], however never focusing on the edge AI use cases, i.e.
not taking into account application performance. Instead, the goal
of this paper is to focus on the performance (in terms of accuracy)
of an edge classification task, along with typical MEC performance
including End-to-End (E2E) delay and energy consumption.
Related works. As illustrated in the overview papers [1, 5], an ef-
ficient design of edge-inference hinges on several aspects, such as
memory footprint optimization [6], adaptive model selection [7], or
goal-oriented optimization, for instance adapting frame rate and res-
olution of video streaming for efficient inference [8], [9]. The au-
thors of [10] consider a video analytics task, maximizing the av-
erage accuracy under a frame rate and delay constraint. Also, the
work in [11] proposed a joint management of radio and computa-
tion resources for edge ML, hinging on data quantization to con-
trol the accuracy of several learning tasks. Finally, the closest refer-
ence [12] proposes a dyanmic joint optimization or radio, computing
resources, and JPEG data compression, fully based on Lyapunov op-
timization, assuming full knowledge of the system model.

All the aforementioned works enabled edge computing and/or
inference considering the presence of a suitable wireless propagation
environment. Moving toward millimeter wave communications (and
beyond), the performance of MEC-oriented systems can be severely
reduced due to poor channel conditions and blocking events. In this
context, a strong performance improvement can be obtained exploit-
ing Reconfigurable Intelligent Surfaces (RISs) [13–17], which are
programmable surfaces made of hundreds of nearly passive reflec-
tive elements controlled to realize dynamic transformations of the
wireless propagation environment, both in indoor and outdoor sce-
narios. The inclusion of RISs in MEH systems offer a two-fold bene-
fit: i) it alleviates the effect of blockages, which leads to low offload-
ing rates and poor performance; ii) it enables better exploitation of
the computing resources of the edge server thanks to the improved
offloading capabilities. Several works in the literature have already
exploited RISs to empower wireless communications [18–21]) and,
very recently, also for computation offloading [22, 23]. Finally, pre-
liminary results on edge learning empowered by RISs appear in [24],
which considered static resource allocation for edge inference, and
in the work [25] that instead focused on adaptive federated learning.
Contributions. In this paper, we focus on an edge inference task,
aimed at performing classification of data collected, distilled, and
processed at the edge of a wireless network endowed with MEC ca-IC
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pabilities and RISs. Our design aims at striking the minimum aver-
age power necessary by the system to perform low-latency inference
with accuracy constraints. To this aim, we propose an online method
based on the marriage of Lyapunov stochastic optimization DRL, to
dynamically optimize: i) data compression scheme; ii) users’ trans-
mission precoding and power; iii) RISs’ reflectivity parameters; iv)
MEC resources. Our method leads to the convergence of model-
based (i.e., Lyapunov) and data-driven (i.e., DRL) stochastic opti-
mization into a single holistic framework, thus paving the way to-
wards fully reconfigurable networks endowed with effective and ef-
ficient edge AI capabilities. The main novelties with respect to the
closest work [12] are the following: i) the function linking accuracy
and compression scheme is supposed to be unknown, and optimized
through a DRL-based approach; ii) the RIS is not present in [12],
and it is optimized here through the DRL-based approach, differ-
ently from [26], in which it is optimized though a projected gradient
descent method. The computation part is handled as in [12,26], thus
it does not represent a novelty in this paper. Finally, numerical re-
sults assess the performance of the proposed method.
Notation. Bold upper case letters denote matrices, Tr(·) denote the
trace operator, | · | denotes the determinant, and the superscript (·)H
denotes the hermitian operator; IN and 0N denote the N ×N iden-
tity matrix and the all-zeros matrix, respectively. Finally, given a
variable X(t), X = limT→∞

1
T

∑T
t=1 E{X(t)} if the sequence

converges, or X = lim supT→∞
1
T

∑T
t=1 E{X(t)} otherwise.

2. SYSTEM MODEL
Let us consider a wireless setup with a set K of Mobile Devices
(MDs), each one equipped with Nu antennas, an Na antennas
Access Point (AP), with a co-located MEH able to process tasks
through a pre-trained and pre-uploaded ML model (e.g. a deep
neural network). Finally, an RIS with M reflecting unit elements
is assumed to be available, and it can be dynamically reconfig-
ured to enhance MEC service performance. As in [12], we model
the inference process as a flow of request arrivals, which are first
buffered locally at each MD before transmission and, after trans-
mission, buffered remotely before computation. Time is organized
in slots t of equal duration τ . Each device has its own buffer and
all MDs compete for radio and computing resources. Then, uplink
communication, along with computation, is the focus of this work.

2.1. Channel model
An RIS-aided wireless channel can be modeled by two components:
i) a direct path from MD k to the AP, whose time-varying coeffi-
cient are the elements of a matrix Hk,d(t) ∈ CNa×Nu , and ii) an
indirect path, created by the reflection of the RIS. The latter includes
a channel matrix Hk,r(t) ∈ CM×Nu from MD k to the RIS, and
a channel matrix Hr,a(t) ∈ CNa×M from the RIS to the AP. Fi-
nally, the RIS is composed of passive elements, whose phases can
be dynamically and opportunistically reconfigured, and its response
can be written as a diagonal matrix Φ(t), with diagonal elements
{Φi,i(t) = ejϕi(t)}Mi=1, where ϕi(t) denotes the (reconfigurable)
phase shift of elements i. Then, the overall channel is [20]

Hk(t) = Hk,d(t) +Hr,a(t)Φ(t)Hk,a(t), ∀k ∈ K. (1)

We assume that, at each slot, every MD selects a transmit precod-
ing strategy, based on current connect-compute system conditions.
Then, denoting by Fk(t) the input covariance matrix of MD k, the
instantaneous data rate can be written as follows:

Rk(t) = W log2

∣∣∣∣INu +
1

σ2
Hk(t)Fk(t)H

H
k (t)

∣∣∣∣ , ∀k ∈ K (2)

where σ2 = N0W , with N0 the noise power spectral density, and
W bandwidth. All users are coupled by the RIS reflection.

2.2. Communication and computation queuing models
Similarly to [12], buffers are intended as units of patterns (or data
unit). At each slot, a generic MD k accepts Ak(t) new patterns into
its communication buffer, while transmitting previously buffered
patterns through the (RIS-aided) wireless connection with the AP, at
a rate Rk(t) (cf. (2)). Then, denoting by Ql

k(t) the buffer size at
time t, the communication queue evolves as follows:

Ql
k(t+ 1) = max

(
0, Ql

k(t)−
⌊

τRk(t)

nk,b(ck(t))

⌋)
+Ak(t), (3)

where nk,b(ck(t)) is the number of bits encoding all patterns trans-
mitted at time t, which is a function of the data compression level
ck(t) ∈ Ck at time slot t. The transmitted patterns join a remote
computation queue, which is drained by the MEH’s processing, i.e.
the issuing of inference results. Then, denoting by fk(t) the MEH’s
CPU cycle frequency assigned to user k, the queue evolves as:

Qr
k(t+ 1) = max

(
0, Qr

k(t)−
⌊
τfk
wk

⌋)
+min

(
Ql

k(t),

⌊
τRk(t)

nk,b(ck(t))

⌋)
, (4)

where wk is the computation load, i.e. the number of CPU cycles
needed to output one inference result.

2.3. Inference performance indicators
Effective and efficient edge inference entails timing (i.e., the delay
from request issuing at the device until its treatment at the MEH),
accuracy (e.g., correctly classified patterns), and energy. The aver-
age delay entails communication and computation phases. Also, if
the queues are strongly stable, i.e. Q

l(r)

k < ∞, the average E2E de-
lay is finite and can be written in closed form thanks to Little’s law:
Dk = τ(Q

l

k + Q
r

k)/Ak, where Ak denotes the average number of
arrivals per slot. In this paper, we consider a generic metric Gk(ck)
of inference reliability, which we mildly assume to be a function of
the employed compression scheme ck. Such generic function could
be the accuracy of a classification/regression/estimation task, or any
other measure reflecting effective operation of an ML model running
in the MEH (e.g., classification confidence). The aim will be to keep
the long-term average of the accuracy metric Gk(ck) above a prede-
fined threshold, set a priori as an application requirement. Finally,
as source of MDs’ power consumption we consider the long-term
average transmit power, which can be expressed as

∑
k∈K Tr(Fk).

3. PROBLEM FORMULATION
In this work, our aim is to guarantee energy-efficient edge inference
with a minimum level of accuracy and a given E2E delay. The prob-
lem is formulated as follows:

min
{F(t)}k,t,{fk(t)}k,t,{ϕ(t)}i,t,{ck(t)}k,t

∑
k∈K

Tr(Fk) (5)

subject to

(a) Q
l

k < ∞, ∀k ∈ K (b) Q
r

k < ∞, ∀k ∈ K
(c) Gk(ck) ≥ Gk,th, ∀k ∈ K (d) Fk(t) ≽ 0, ∀k ∈ K
(e) Tr(Fk(t)) ≤ Pk, ∀k ∈ K (f) ck ∈ Ck, ∀k ∈ K
(g) ϕi(t) ∈ [0, 2π], i = 1, . . .M

(h) fk(t) ≥ 0 (i)
∑

k∈K
fk(t) ≤ fmax
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Besides queues’ stability in (a) and (b), the constraints of (5) have
the following meaning: (c) the average accuracy is higher than a
predefined threshold; (d) the covariance matrix of each user is posi-
tive semidefinite; (e) the instantaneous transmit power of each user
is lower than a threshold; (f) the compression scheme belongs to a
discrete set Ck; (g) the RIS elements’ phases are chosen between 0
and 2π; (h) the CPU cycle frequency assigned to each MD is non
negative; (i) the sum of the CPU cycle frequencies assigned to all
MDs does not exceed the maximum MEH’s frequency.

4. LYAPUNOV-DRIVEN DRL: THE CONVERGENCE OF
MODEL-BASED AND DATA-DRIVEN OPTIMIZATION

Due to the lack of knowledge of channels and arrivals statistics, we
now apply Lyapunov stochastic optimization tools to decouple the
long-term problem in (5) into a sequence of simpler per-slot prob-
lems, whose solution only requires the instantaneous observation of
such context parameters. As it will be explained in the sequel, part
of the per-slot problem can be solved with closed-form expressions
and fast algorithms, while part of it is solved through DRL, which
can efficiently handle the inherent complexity and the lack of knowl-
edge of the involved functions. First of all, to handle constraint (c),
we introduce a virtual queue Zk(t), ∀k ∈ K, whose scope is to de-
tect instantaneous violations of the constraint, and take consequent
actions to guarantee the long-term desired performance (i.e. the ac-
curacy above a threshold). In particular, the virtual queue evolves as
follows:

Zk(t+1) = max(0, Zk(t)− ϵ(Gk(ck(t))−Gk,th)), ∀k ∈ K. (6)

By definition, virtual queue Zk grows whenever the constraint is not
met instantaneously, and it is drained otherwise. Also, if the mean
rate stability of Zk is guaranteed, i.e. limT→∞ E{Z(T )}/T = 0,
constraint (c) is guaranteed [27]. To guarantee physical queue and
virtual queue stability, we first introduce the Lyapunov Function, a
scalar measure of the system’s congestion state [27]:

L((t)) =
1

2

∑
k∈K

[
Ql

k(t)
2 +Qr

k(t)
2 + Z2

k(t)
]
, (7)

with Λ(t) = [{Ql
k(t)}∀k∈K, {Qr

k(t)}∀k∈K, {Zk(t)}∀k∈K]. From
(7), we can define the drift-plus-penalty function, i.e. the condi-
tional expected variation of the Lyapunov function over two succes-
sive time slots, penalized by the objective function of problem (5):

∆p(Λ(t)) = E{L((t+1))−L((t))+V
∑
k∈K

Tr(Fk(t))|Λ(t)}. (8)

Now, based on the theoretical findings in [27], our method proceeds
by instantaneously minimizing a suitable upper bound of (8) at each
slot, based on instantaneous observations of time-varying context
parameters, and state variables (physical and virtual queues). The
proposed upper bound (whose derivations are omitted due to the lack
of space), built using [27, Eq. (4.46),(4.47)] reads as follows:

∆p(Λ(t)) ≤ B + E
{∑

k∈K

(
(Qr

k(t)−Ql
k(t))

τRk(t)

nk,b(ck(t))

−Qr
k(t)τfk(t)/wk − Zk(t)(Gk(ck(t))− G th

k )

)∣∣∣∣Λ(t)

}
, (9)

where B > 0 is a finite constant, whose expression is omitted due
to the lack of space. Minimizing (9) in a per-slot basis leads to two
sub-problems involving communication and computation variables,
respectively, whose solution is illustrated in the next paragraphs.

4.1. Computation sub-problem

As already mentioned in the introduction, the computation sub-
problem is the same as [26, section III.B, problem (10)], i.e. it does
not represent a novelty in this work. The formulation involves the
variables {fk}k∈K, and its solution consists on iteratively assign-
ing computing resources to the users with the highest computation
buffer load. The novelty consists in the formulation and solution of
the communication sub-problem that follows.

4.2. Communication sub-problem

The communication sub-problem involves: i) users’ covariance ma-
trices Fk, ∀k ∈ K, ii) RIS reflectivity parameters ϕi, i = 1, . . . ,M
and iii) the compression scheme ck. The problem is formulated as
follows (the time index t is omitted to ease the notation):

min
{Fk}k,{ϕ}i,{ck}k

J (10)

subject to
(a) Fk ≽ 0, ∀k ∈ K (b) Tr(Fk(t)) ≤ Pk, ∀k ∈ K
(c) ck ∈ Ck, ∀k ∈ K (d) ϕi ∈ [0, 2π], i = 1, . . .M

where J =
∑

k∈K

[
(Qr

k −Ql
k)

τRk
nk,b(ck)

+V Tr(Fk)−ZkGk(ck)

]
.

Despite the dramatic complexity reduction with respect to the orig-
inal problem (5), (10) is challenging for two main reasons: i) it is
a mixed-integer non-convex program, and ii) the function Gk(ck) is
generally unknown. However, once {ϕi}∀i and {ck}∀k are fixed,
the problem boils down to a convex problem that can be efficiently
solved through a water-filling procedure that is presented in [26].
Therefore, we propose to first select RIS parameters and compres-
sion schemes through a DRL-based algorithm, to get rid of the
complexity introduced by discrete non-convex function and lack
of model. Then, once RIS parameters and compression schemes
have been set, we solve the remaining part, which only involves the
transmit covariance matrices, using a model-based approach and
classical tools from convex optimization [28].

4.2.1. DRL-based selection of RIS reflectivity and compression

Reinforcement Learning aims to learn a parameterized policy func-
tion (i.e. a neural network) that maps from environmental obser-
vations to available actions, so that the expected cumulative reward
signal r(t) is maximized. For the communication sub-problem, the
agent being trained at time t observes a vector containing the sys-
tem’s past state variables and current channels in vectorized forms:

s(t) =[{Ql
k(t− 1)}, {Qr

k(t− 1)}, {Zk(t− 1)}, {Gk(ck(t− 1))},
{fk(t− 1)}, {Hk,d(t)}, {Hr,a(t)}, {Hk,a(t)}] (11)

of dimensionality 5K + 2KNaNu + 2KMNu2NaM for which
the real and imaginary parts of the channel vectors are received
separately. Based on s(t), the agent selects the action a(t) =
[{ck(t)}∀k, {ϕm(t)}∀m], which fixes the current compression and
RIS profiles, allowing for the optimal values for {Fk(t)}∀k to be
computed (see below) and consequently, for the objective value
of (10) to be calculated. Since the RL problem is posed as max-
imization, we simply set r(t) = −J (t) to attain the equivalent
optimization problem of (10). The system’s state then proceeds to
t+ 1.

It is important to note that all component variables of s(t) ap-
pearing in (11), as well as the objective value of (10) at time t
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depend exclusively on the values of s(t − 1) and a(t). This re-
mark ensures that the system evolves as a Markov Decision Process
(MDP) [20], allowing for theoretically optimal policies to be derived
without the need for knowledge of its evolution from t−2 and back-
ward. Besides, the DRL formulation is algorithmic-agnostic, which
allows for a wide-variety of DRL agents to be applied with different
component mechanisms. Our methodology involves the use of the
well-established Proximal Policy Evaluation (PPO) algorithm [29],
although we omit its detailed description due to space restrictions.
To make PPO applicable to the system’s mechanics, we configure
its policy network to output a(t) as vectors of continuous values in
[0, 1]K+M and we then construct ck(t) by discretizing each of the
first K elements to the allowed compression levels and ϕm(t) by
multiplying the remaining elements by 2π, as proposed in [30].

4.2.2. Water-filling for covariance matrix optimization

Once RIS reflectivity and compression schemes are fixed, the prob-
lem to find the optimal covariance matrix can be solved optimally.
Indeed, first of all, once the RIS parameters are fixed, the prob-
lem can be decoupled across different users. Then, for all users
k ∈ K̃ = {k̃ ∈ K : Ql

k̃
≤ Qr

k̃
}, the optimal solution is F = 0Nu ,

a the first two terms in (10) are non-decreasing functions of the user
transmit power, as in [12, 26]. Also, for all users k ∈ K \ K̃, the
problem is convex and can be solved through the water-filling pro-
cedure described in [26, Algorithm 2]. The overall solution seeks
to balance between data rate (weighted by physical queues, i.e. de-
lay), accuracy (weighted by virtual queues), and objective function
(weighted by the trade-off parameter V ).

5. NUMERICAL EVALUATION

System parameters. To illustrate the effectiveness our proposed
methodology we conceive an edge inference scenario of image
recognition, in the presence of an RIS, and an AP. A ResNet32 [31]
model is deployed on a MEH machine and trained to classify
CIFAR-10 images, after being trained to approximately 92% ac-
curacy (over the uncompressed images), offering a reasonable com-
promise between performance and E2E delay. For the shake of
clarity of the results, we consider a single mobile user with no direct
wireless link to the AP. The UE performs image compression on
device using the JPEG protocol, so that ck values correspond to
the compression quality. In terms of inference reliability metric,
we consider the average accuracy in order to provide interpretable
thresholds and performance evaluations. While indeed, the accuracy
of the network in unlabelled images cannot be known by definition,
we have numerically quantified its average metric values for all
possible JPEG compression levels of dataset’s test set, to be used
for performance evaluation. The rest of the parameter values are
presented next: Classifier parameters: 4.7 · 105, wk = 5.6GHz,
Āk = 4 arrivals per time step, ck ∈ {1, . . . , 100}, fmax = 3.6
GHz, Pk = 100 mW, τ = 0.01 s, W = 100 MHz, Gk,th = 0.85,
Rice factor: 25 dB, σ2 = −120 dB, operating frequency: 5 GHz,
UE-RIS attenuation: 62.60 dB, AP-RIS attenuation: 66.34 dB,
Maximum user movement displacement: 5 m. A frequency-division
multiplexing transmission scheme is employed, where the power
allocation among the narrowband frequency bins is kept equal and
is not treated as part of the optimization problem. This assumption
is necessary to integrate a realistic transmission paradigm without
increasing the complexity of the problem.
Evaluation: To solve the problem (5), we jointly apply the partial
methodologies presented in Section 3. The water-filling and CPU
scheduling optimization routines solve their respective sub-problems

2×10−2 3×10−2 4×10−2
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Lyapunov & Random φm & No compression

Fig. 1. Evaluation of the achieved system objectives for different
trade-off values of V .

optimally at every time step. Therefore, to assess the overall formu-
lation we numerically evaluate performance of the DRL’s selections
of RIS reflections and compression schemes. As baselines, we intro-
duce the policies of always performing (i) maximum compression
(which offers the minimum delay), (ii) no compression (offering
maximum accuracy) and (iii) compression at a uniformly random
level, while employing the rest of the optimization components and
controlling the RIS reflections at random. Upon fixing a trade-off
value for V from {1 ·105, 2 ·105, 3 ·105, 4 ·105, 5 ·105, 3 ·106}, we
train a PPO instance with 5 layers of 32 neurons for its policy and
value networks for 106 time steps, resetting the system at random-
ized episodes of length 1500, using the final episode as evaluation.

The training phases resulted in objective values orders of magni-
tudes lower than the baselines, although the scales of each objective
instance is heavily influenced by the choice of V . The resulting ac-
curacy offered by PPO ranges from 0.85 to 0.91 denoting that the
DRL component always satisfies the desired constraint. The max-
imum and random compression schemes offer accuracy scores of
0.20 and 0.69, respectively. Fig. 1 presents the achieved delay and
mean transmit power offered by each method. Compared to the no-
compression approach, DRL can achieve up to 47% reduction in
the average UE power consumption and up to 59% reduction in the
maximum E2E delay. At the same time, it results from 45% to up to
2.5 times (in the most delay-sensitive cases) higher power consump-
tion and 5− 8ms added delay in comparison to the full compression
policy, but the latter falls extremely short of any practical accuracy
constraints. Clearly, the system endowed with they Lyapunov-based
techniques and DRL is able to automatically offer a balance between
performance (accuracy and E2E delay) and power consumption.

6. CONCLUSION

In this paper, the problem of accurate, fast, and low-power edge in-
ference has been investigated. A RIS-empowered MEC system has
been proposed and a power minimization problem under E2E delay
and accuracy constraints was formulated. The problem was solved
through a combination of Lyapunov-driven optimization and DRL
tools, showing how edge AI will play the twofold role of an efficient
optimization tool and a service enabled by edge computing resources
in 6G. A numerical evaluation in a RIS-empowered wireless scenario
illustrated the capabilities of the methodology of achieving desired
thresholds between accuracy, delay, and power consumption, strik-
ing typical the trade-off of edge AI native wireless networks.
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