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Abstract

In this paper, a new mechanism for detecting population stagnation based on the anal-
ysis of the local improvement of the evaluation function and the infinite impulse re-
sponse filter is proposed. The purpose of this mechanism is to improve the population
stagnation detection capability for various optimization scenarios, and thus to improve
multi-population-based algorithms (MPBAs) performance. In addition, various other ap-
proaches have been proposed to eliminate stagnation, including approaches aimed at both
improving performance and reducing the complexity of the algorithms. The developed
methods were tested, among the others, for various migration topologies and various MP-
BAs, including the MNIA algorithm, which allows the use of many different base algo-
rithms and thus eliminates the need to select the population-based algorithm for a given
simulation problem. The simulations were performed for typical benchmark functions
and control problems. The obtained results confirm the validity of the developed method.
Keywords: multi-population-based algorithms, migration topologies, population stagna-
tion

1 Introduction

Population-based algorithms allow for iterative
processing of a population of solutions (called in-
dividuals) to find the most optimal solution. The

solutions are encoded by the parameters of the in-
dividuals, while their quality is determined by the
evaluation function associated with the problem un-
der consideration. The parameters encoded by indi-
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viduals are modified by various mechanisms (oper-
ators) that can be local (exploitation), global (ex-
ploration), or everything in between. In modifying
the parameters of one individual, only random or
auxiliary variables (e.g. mutation or momentum, re-
spectively) or parameters of other individuals (e.g.
crossover) may be used. The use of parameters of
other individuals, or the use of small changes in
parameters, can cause the whole population to be-
come very similar in terms of these parameters, and
the solutions converge to one area of the parameter
space (search space). Thus populations can often
stuck in the local optimum. Several mechanisms
can be used to prevent this, and one of them is the
simultaneous use of multiple populations, the ap-
proach considered in this paper.

Multi-population-based algorithms (MPBAs)
use multiple populations (also called islands or sub-
populations) that are usually processed indepen-
dently, while in certain situations individuals be-
tween them are exchanged (migrated). The meth-
ods of sub-populations processing are determined
by the training plans. The selection of the pop-
ulations for the exchange of individuals is deter-
mined by the topology of their connections (mi-
gration topology). The number of exchanged in-
dividuals and the method of their selection is de-
termined by the migration strategy, while the re-
placement period is determined by the frequency
of migration. Thus, many factors can affect the
performance of multi-population-based algorithms
(including selecting basic optimization parameters),
which makes the problem of their configuration
complicated and may lead to premature stagnation.
The more details on the problems associated with
MPBAs are described in the next section. In this
paper, an attempt was made to further improve MP-
BAs in various aspects, proposing more universal
solutions, and including using mechanisms that try
to prevent premature convergence.

1.1 Motivation

The high popularity of population-based and
multi-population-based algorithms has its advan-
tages and disadvantages. On the one hand, new and
better algorithms appear frequently, and algorithms
are adapted to more and more complex simulation
problems (see e.g. [14]). On the other hand, the
multitude of algorithms and their versions makes

it difficult to choose the best algorithm for a given
simulation problem (see e.g. [7, 15, 18, 43]). A
large number of population-based algorithms also
makes it difficult to compare them, and most of-
ten in the papers on a new version of an algo-
rithm, it is compared only with related algorithms
(or their modifications) or original versions of other
algorithms (see e.g. [24, 37]). This also applies
to various mechanisms used in multi-population-
based algorithms, such as the development of new
topologies and migration strategies, mechanisms to
prevent stagnation, etc., which are sometimes only
tested for one population-based algorithm or tested
for multiple algorithms but not compared with other
strategies. Such papers, however, then focus on
other aspects of the operation of the considered al-
gorithms (see e.g. [1, 17]). Of course, these prob-
lems arise mainly due to the difficulty of running
such complex simulations and keeping track of all
the latest versions of various population-based al-
gorithms, and thus they are practically inevitable.

In this paper, it was decided to focus on univer-
sality. Firstly, the MNIA algorithm is further de-
veloped, in which many sub-populations based on
different population-based algorithms can cooper-
ate. Secondly, new approaches were proposed for
stagnation detection and the dynamic changes in ac-
tive populations and the number of their individuals.
These solutions are designed to apply to most mi-
gration topologies and various MPBAs. Thirdly, the
proposed approaches, in addition to a comparison
with known mechanisms, will be tested for various
migration topologies and various sub-population al-
gorithms. Such assumptions, besides the proposal
of new mechanisms, should not only find more ef-
ficient configurations of algorithms that give bet-
ter optimization results but also determine the fur-
ther possible direction of development of such al-
gorithms.

1.2 Contribution

The contribution of this paper to the develop-
ment of population-based algorithms is as follows:
a) directing further development of more univer-
sal methods that allow to eliminate the problem of
selecting a specific population-based algorithm, in
particular, the development of the MNIA algorithm
[40]; b) proposing and applying known and new
mechanisms related to the dynamic change in the
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number of populations and their individuals, aimed
at improving the accuracy of population-based al-
gorithms; c) proposing and applying known and
new mechanisms related to the dynamic change in
the number of populations and their individuals,
aimed at improving the complexity of population-
based algorithms; d) development and testing of
a new criterion to determine the level of popula-
tion stagnation, in particular for use in a multi-
population-based algorithms; e) a detailed and com-
prehensive comparison of different methods for
changing the number of populations and the number
of individuals used with different migration topolo-
gies and for different multi-population-based algo-
rithms.

1.3 Paper Structure

The structure of the paper is as follows: Sec-
tion 2 presents a review of the literature, Section 3
describes the proposed method, Section 4 presents
considered simulation variants and obtained results,
and Section 5 draws final conclusions.

2 Background

According to the no-free lunch theory [2], there
is no single population-based algorithm that is best
suited for all simulation problems. This, on the
one hand, causes a problem because a lot of new
population-based algorithms are being developed,
which is already criticized (see e.g. [7, 15, 43]). An
overview of various algorithms can be found e.g.
in [15, 23, 38, 45]. On the other hand, new algo-
rithms are developed in such a way as to improve
the search mechanisms and avoid premature con-
vergence of the algorithm (stagnation of the pop-
ulation at the local optimum), and therefore this is
the positive part. New algorithms have more config-
uration options, although there are exceptions, e.g.
[31]). Moreover, new algorithms can be more com-
putationally complex, which can be critical when
optimizing more complicated simulation problems
(e.g. control systems problems [25, 32], fuzzy sys-
tems [41, 47]). Moreover, the spectrum of appli-
cations of these algorithms is constantly increasing
(see e.g. [48]). At the same time, some algorithms
combine the advantages of different algorithms and
become universal, partially eliminating the problem
of choosing a specific population-based algorithm

for a specific simulation problem (see e.g. [40]).
Despite the rapid development of population-based
algorithms, the problem of premature convergence
(stagnation) still occurs and is crucial.

One way to prevent population stagnation in
population-based algorithms is to diversify the be-
havior of the population. In the simplest approaches
with one population individuals can be divided ac-
cording to certain criteria. Examples are Grey Wolf
Optimizer, in which three main individuals and the
rest of the herd are distinguished [31], Bison Al-
gorithm, in which there are individuals with two
different behaviors [21], or Termite Queen Algo-
rithm, in which there are as many as five differ-
ent types of individuals (queen, flying worker, for-
aging worker, serving worker, and soldier [9]). In
some cases, distinguished individuals can be mod-
ified using different methods of changing parame-
ters that originate from different population-based
algorithms, and thus hybridization occurs (see e.g.
[11, 14, 27]).

The advanced approach consists of dividing
the population into separated sub-populations (is-
lands) that exchange solutions in certain circum-
stances. Usually, islands operate based on the
same population-based algorithm, and the method
of modifying individuals on each island may be
identical (see e.g. [4]), or depending on the param-
eters of a given island (see e.g. [36]). There are also
solutions where the behavior of each island can be
based on different operators or different population
algorithms (see e.g. [40]). When only two or three
sub-populations are used and a different population-
based algorithm is used for each of them, such so-
lutions are also called hybrid (see e.g. [33]). In the
case of a larger number of sub-populations, it be-
comes crucial to select the topology of their connec-
tions determining the way of exchanging individu-
als and other mechanisms described later in this sec-
tion, broken down into topologies, migration strate-
gies, parameters, adaptive mechanisms, and hy-
bridizations with other, non-population-based, al-
gorithms. Each of these mechanisms can have a
significant impact on the algorithm’s effectiveness
and thus is important from the point of view of this
paper.
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2.1 Migration topologies

There are many ways to improve the perfor-
mance of multi-population-based algorithms. The
first one is the selection of the appropriate migra-
tion topology. Different topologies have different
effects on population diversification and search in-
tensification. The selection of the appropriate topol-
ogy can affect the balance between exploration and
exploitation and also affect it differently depending
on the simulation problem under consideration.

Figure 1. Efficient migration topologies according
to [12]: a) inverted star with the best population in

the middle (ISBM), b) ladder with a down-top
connection (LDTC), c) topology with two random

connections for each population (TTRC), d)
inverted star as in a) combined with ring (IRBM)

e) ring with additional connections between
neighbors (RWAC), f) ring with additional random

connections, also called small world (SMWD).
Where: rectangles stand for populations, dark

rectangles stand for populations that are
conditionally replaced with best population, arrows

stand for migration directions, and dotted arrows
stand for random connections.

The most common topologies according to [19]
are star and ring, while others worth noting are torus
and lattice. Some topologies also change dynam-
ically, examples are randomly changed topologies
(see e.g. [8]) or topologies where the best or worst
population is placed in a specific location (see e.g.
[12]). Moreover, different approaches, such as a

fitness-based Migration Policy designed to promote
the maintenance of diversity through a mechanism
that combines groups of individuals to alternate be-
tween exploration and exploitation proposed in [6],
can be used instead.

An interesting overview and performance tests
of 36 different migration topologies is presented in
[12]. The best topologies, regardless of other con-
figurations and simulation problems used, turned
out to be: an inverted star with a mechanism for
setting the best population in the middle of topol-
ogy (see Figure 1.a)), a ladder with a down-top con-
nection (see Figure 1.b)), and a topology in which
each population has two random connections with
others (see Figure 1.c)). Due to their universality,
these topologies will be used in the simulations in
this paper.

2.2 Migration strategies

Sub-populations migration is a key element of
island algorithms. This mechanism may relate to
the frequency of migration, the number of individ-
uals to be exchanged, and the method of selection
of individuals for exchange. Not only does popula-
tion diversification depend on these configurations,
but also the accuracy of the search. In addition
to the standard configuration described above and
specifying methods for selecting and replacing in-
dividuals, other solutions are also used. In [35] the
individuals of the two populations are mixed ran-
domly at each iteration of the algorithm, and in [13]
individuals are moved into a dynamic number of
sub-populations instead. In [49] a grouping mecha-
nism is used to divide the population into two sub-
swarms. In the [30] the authors use a superior pop-
ulation from which they send non-dominated solu-
tions to subpopulations.

The paper [12] shows the influence of migra-
tion parameters on a given migration topology. The
best parameters turned out to be the frequency of re-
placement every 10 iterations of the algorithm, and
the selection of an individual for replacement us-
ing the roulette wheel method. With such parame-
ters, the following topologies turned out to be worth
nothing: an inverted star with a ring and placing the
best population in the middle (see Figure 1.d)), a
ring with additional connections between neighbor-
ing populations (see Figure 1.e)) and a ring with two
additional random connections (see Figure 1.f)).
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These topologies were also considered in this pa-
per’s simulations.

2.3 Parameter adjustment

The selection of parameters for MPBAs is the
third important factor in fine-tuning these algo-
rithms. This includes, among others, the selec-
tion of the number of islands and the number of
individuals in these islands. Choosing the num-
ber of individuals is not an easy task, because each
population-based algorithm works differently for
different numbers of individuals (some algorithms
need fewer individuals and more iterations, and vice
versa). The parameters of specific islands are also
important, which may be the same for each island or
different. What is more, the operation of each island
can be based on mechanisms from other population-
based algorithms.

Parameter tuning can be done offline (selec-
tion of parameters before applying the algorithm)
or online where parameters are changed or adapted
during the simulations [16]. In the case of of-
fline parameter selection, they can be set by trial
and error to static values, or values depending on
a given step of the algorithm (see e.g. [11]). In
the case of MPBAs, different parameters can be set
for each population and thus increase the chance of
adapting the algorithm to a given problem (see e.g.
[40]). Another parameter optimization idea is meta-
optimization, which is the optimization of parame-
ters for some underlying optimizer using a different
algorithm [16, 26]. This approach is also used in
multi-criteria algorithms, where, for example, algo-
rithm parameters are optimized in such a way as to
obtain the best results of multi-criteria performance
metrics [26].

The paper [12] shows that, regardless of the mi-
gration topology and the simulation problem under
consideration used, a good configuration is a topol-
ogy with 8 islands composed of 32 individuals each,
while the paper [40] shows that algorithms in which
islands operate based on different population algo-
rithms allow obtaining better and more stable re-
sults.

2.4 Adaptive mechanisms

Adaptive mechanisms mean dynamic adjust-
ment of the algorithm operation through all configu-

rations (migration topology, migration strategy, and
algorithm parameters). Modification of the above
settings is most often done based on the detection
of population stagnation and optimization progress
analysis. Some of these mechanisms are also used
for common single-population-based algorithms.

In [46] Differential Evolution parameters are
adaptively adjusted according to the statistical in-
formation learned from the previous searches in
generating improved solutions. In [5] fuzzy sys-
tem is used to control population diversity at de-
cision variable space by self-adapting the crossover
rate control parameter. In [22] an adapted crossover
rate value is assigned to each individual according
to individual fitness value. It is also worth men-
tioning the adaptive mechanisms of re-initializing
the population (or part of it), which allow one to
search subsequent areas of search space and thus to
improve the results (see e.g. [29]). Adaptive mech-
anisms can be focused also on the complexity of
the optimization - e.g. by dynamically changing the
number of populations or individuals, as well as a
dynamic selection of surrogate solutions (see e.g.
[11]).

In the [28], individual island training plans
(both population algorithms and their parameters)
are changed based on the optimization progress,
which brought a significant improvement. In the
paper [29], when stagnation was detected, various
mechanisms were used to re-initialize those popu-
lations that performed the worst. In this case, the
best solution turned out to be re-initialization in-
volving the creation of new individuals based on the
mechanisms of differential evolution and the use for
re-initialization the individuals from other popula-
tions. In this paper, it is planned to test the use of
different approaches to adaptive changes in the MP-
BAs.

2.5 Hybridizations

In addition to the aforementioned hybridiza-
tion consisting of the simultaneous use of differ-
ent population-based algorithms or operators de-
rived from them, it is worth mentioning that the
literature is full of methods in which population-
based algorithms are combined with other families
of algorithms. Hybridizations worth mentioning
are the combination of population-based algorithms
with memetic algorithms, which are also evolution-
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ary algorithms but focused on local search (see e.g.
[34, 44]) or algorithms based on backpropagation
(see e.g. [3, 20]). This shows how important the
population-based methods are and that there is still
a huge potential for their development. Such ap-
proaches will not be considered in this paper due to
their complexity, however, it is possible to explore
such an interesting topic in the future.

3 Proposed approach

Section 2 shows how many different approaches
can be used to improve the performance of MPBAs,
how many parameters influence the performance of
these algorithms, and what approaches allow them
to obtain promising results. This section describes
the proposed approach and its configuration with its
division into the mechanisms of changing the num-
ber of populations and the number of individuals
within the populations, mechanisms of preventing
population stagnation, and a complete description
of the proposed algorithm. The proposed approach
has been developed in such a way that it is as univer-
sal as possible and can be used for many topologies,
algorithms, and problems.

3.1 Dynamic number of populations and
individuals within populations

There are many approaches for changing pop-
ulation and individual numbers (see also Section
2.2). The purpose of such changes may be to in-
crease the number of individuals in more promising
populations, remove less promising populations or
add new populations, increase the diversity of indi-
viduals, or reduce computational complexity, all to
improve the performance of MPBAs. Some meth-
ods are typical for specific algorithms and do not al-
low their use in different topologies. For example,
the ICA [4] algorithm has individuals grouped into
empires with an imposed migration topology, in
which the best population gains an individual from
the worst population, thus the number of groups in
the population may slowly decrease and thus it is
not possible to apply other topologies directly.

In this paper, the use of the following univer-
sal approaches is proposed allowing for their use
in most migration topologies: a) disabling or en-
abling of specified populations - in this case, the

disabled populations are not iterated, but to ensure
compliance with the migration topology, they may
continue to participate in the transfer of individuals,
b) dynamic changes in the number of individuals of
selected populations - if there is a need to reduce
the number of individuals, the worst solutions in
terms of adopted evaluation function are removed,
and if there is a need to increase the number of indi-
viduals, new ones are created based on tournament
selection of individuals from other populations and
the use of a mutation operator derived from the ge-
netic algorithm (to maintain population diversity).
The above mechanisms can be used in any combi-
nation (see Table 1) and when certain conditions oc-
cur (e.g. stagnation detection). The idea of their
use is as follows: populations are sorted accord-
ing to the evaluation function of the best individu-
als, the number of population individuals is checked
against the number of individuals resulting from the
adopted strategy (see Table 1), if individuals need
to be added, removed or a given population needs
to be disabled or enabled, the approaches described
above are used.

The proposed approaches were divided into two
categories: focused on improving accuracy (IA) and
focused on reducing complexity (RC). Their combi-
nations are presented in Table 1. The first approach
involved increasing individuals in Nchg populations
while extinguishing individuals in other Nchg pop-
ulations (for the details see DBDSW and DSDSB in
Table 1). The next goal is just to extinguish individ-
uals in Nchg populations and thus reduce complex-
ity (see DSBST and DSWRS in Table 1). Then,
the use of a solution was proposed in which there
are no disabled populations but only changes in the
number of individuals - increasing the number of
individuals in the 2 ·Nchg populations and reducing
them in the second 2 ·Nchg populations (see LWIBS
and LBIWR in Table 1). This variant was also
presented similarly in the version with complexity
reduction (see LWRWR and LWRBS in Table 1).
The latest variants were designed with a more lin-
ear change in the number of individuals in the anal-
ogous matter (see LDFBW, LDFWB, LDRBW, and
LDRWB in Table 1). The above changes were de-
signed so that the number of individuals in the IA
approach is constant, while in the RC approach, it
was reduced by 25% compared to the variant aimed
at improving accuracy. It is worth noting, that de-
spite assumptions about how to add or remove indi-
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sal as possible and can be used for many topologies,
algorithms, and problems.

3.1 Dynamic number of populations and
individuals within populations

There are many approaches for changing pop-
ulation and individual numbers (see also Section
2.2). The purpose of such changes may be to in-
crease the number of individuals in more promising
populations, remove less promising populations or
add new populations, increase the diversity of indi-
viduals, or reduce computational complexity, all to
improve the performance of MPBAs. Some meth-
ods are typical for specific algorithms and do not al-
low their use in different topologies. For example,
the ICA [4] algorithm has individuals grouped into
empires with an imposed migration topology, in
which the best population gains an individual from
the worst population, thus the number of groups in
the population may slowly decrease and thus it is
not possible to apply other topologies directly.

In this paper, the use of the following univer-
sal approaches is proposed allowing for their use
in most migration topologies: a) disabling or en-
abling of specified populations - in this case, the

disabled populations are not iterated, but to ensure
compliance with the migration topology, they may
continue to participate in the transfer of individuals,
b) dynamic changes in the number of individuals of
selected populations - if there is a need to reduce
the number of individuals, the worst solutions in
terms of adopted evaluation function are removed,
and if there is a need to increase the number of indi-
viduals, new ones are created based on tournament
selection of individuals from other populations and
the use of a mutation operator derived from the ge-
netic algorithm (to maintain population diversity).
The above mechanisms can be used in any combi-
nation (see Table 1) and when certain conditions oc-
cur (e.g. stagnation detection). The idea of their
use is as follows: populations are sorted accord-
ing to the evaluation function of the best individu-
als, the number of population individuals is checked
against the number of individuals resulting from the
adopted strategy (see Table 1), if individuals need
to be added, removed or a given population needs
to be disabled or enabled, the approaches described
above are used.

The proposed approaches were divided into two
categories: focused on improving accuracy (IA) and
focused on reducing complexity (RC). Their combi-
nations are presented in Table 1. The first approach
involved increasing individuals in Nchg populations
while extinguishing individuals in other Nchg pop-
ulations (for the details see DBDSW and DSDSB in
Table 1). The next goal is just to extinguish individ-
uals in Nchg populations and thus reduce complex-
ity (see DSBST and DSWRS in Table 1). Then,
the use of a solution was proposed in which there
are no disabled populations but only changes in the
number of individuals - increasing the number of
individuals in the 2 ·Nchg populations and reducing
them in the second 2 ·Nchg populations (see LWIBS
and LBIWR in Table 1). This variant was also
presented similarly in the version with complexity
reduction (see LWRWR and LWRBS in Table 1).
The latest variants were designed with a more lin-
ear change in the number of individuals in the anal-
ogous matter (see LDFBW, LDFWB, LDRBW, and
LDRWB in Table 1). The above changes were de-
signed so that the number of individuals in the IA
approach is constant, while in the RC approach, it
was reduced by 25% compared to the variant aimed
at improving accuracy. It is worth noting, that de-
spite assumptions about how to add or remove indi-
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Table 1. Mechanisms for changing the number of populations and individuals within populations used to
improve accuracy or complexity (see Section 3.1). Examples are given for N pop=8,Nind=32,Nchg=2.

strategy aim description examples of population sizes
ordered from best to worst

processed
individuals

DBDSW IA
disable Nchg best populations,

double size of Nchg worst populations
-, -, 32, 32, 32, 32, 64, 64 100%

DWDSB IA
disable Nchg worst populations,

double size of Nchg best populations
64, 64, 32, 32, 32, 32, -, - 100%

DSBST RC
disable Nchg

best populations
-, -, 32, 32, 32, 32, 32, 32 75%

DSWRS RC
disable Nchg

worst populations
32, 32, 32, 32, 32, 32, -, - 75%

LWIBS IA
lower 2 ·Nchg worst,

increase size of 2 ·Nchg best
48, 48, 48, 48, 16, 16, 16, 16 100%

LBIWR IA
lower 2 ·Nchg worst,

increase size of 2 ·Nchg best
16, 16, 16, 16, 48, 48, 48, 48 100%

LWRWR RC
lower 2 ·Nchg

worst individuals
32, 32, 32, 32, 16, 16, 16, 16 75%

LWRBS RC
lower 2 ·Nchg

best individuals
16, 16, 16, 16, 32, 32, 32, 32 75%

LDFBW IA
linear individuals distribution,

from best to worst
60, 52, 44, 36, 28, 20, 12, 4 100%

LDFWB IA
linear individuals distribution,

from worst to best
4, 12, 20, 28, 36, 44, 52, 60 100%

LDRBW RC
half-linear distribution with reduction,

from best to worst
32, 32, 32, 32, 28, 20, 12, 4 75%

LDRWB RC
half-linear distribution with reduction,

from worst to best
4, 12, 20, 28, 32, 32, 32, 32 75%
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viduals, the proposed general approach does not de-
termine a rigid definition of these mechanisms and
any other approaches can be used instead.

3.2 Prevention of population stagnation

The mechanisms presented in Section 3.1 can
be used in various situations. In this paper, it was
assumed that their main purpose was to improve
MPBAs and to prevent stagnation. Therefore, it is
crucial to determine at what point in the optimiza-
tion they should be used.

In the basic approach (STA), dynamic change
mechanisms are triggered after a certain number of
iterations of the algorithm. In more advanced ap-
proaches, various mechanisms for detecting stagna-
tion can be used. One of them is detecting whether
there has been an improvement in the evaluation
function over the Nimp iterations (SFF). In addi-
tion to detecting stagnation, it is also possible to use
population convergence techniques that are based
on the similarity of individuals. However, all of the
mentioned mechanisms may be disturbed, because
even a small improvement in accuracy results in the
lack of use of given mechanisms. The solution is
to check the improvement above a certain thresh-
old or to calculate the average fitness of the popu-
lation, thus the problem of determining the thresh-
old for a given simulation problem and the prob-
lem of disturbance of the average fitness by migra-
tions arise, respectively. In addition, in the case
of multi-population-based algorithms, it is neces-
sary to choose whether these mechanisms should
be used separately for each population or whether
to test the general stagnation of all populations. In
the first approach, it is not possible to use some ap-
proaches to prevent stagnation (e.g. in the case of a
change in the number of individuals of all popula-
tions), thus it is not used in this paper.

To prevent the above problems, a new criterion
for stagnation detection, resistant to both minor and
abrupt changes in the improvement of the evalua-
tion function, was proposed in this paper. The use
of standard improvement is difficult due to, for ex-
ample, the possibility of the fitness value falling
below zero (thus logarithmic approaches do not al-
ways apply) as well as the aforementioned problem
of analysis of a given simulation benchmark (it is
required that it works equally well at the beginning
of the simulations when the changes in the fitness

function values are large, as well as in the final stage
of optimization, and regardless of the range of val-
ues of a given simulation problem). To solve that,
first, a flexible percentage improvement in fitness
values between iterations is used as a basis. The
proposed flexible percentage is calculated for Nels
of the last iterations of each population and checks
the level of improvement of the evaluation function
relative to the improvement from Nels optimization
steps:

impi(iter) =
ffbst

i (iter−1)− ffbst
i (iter)

ffbst
i (iter−Nels)− ffbst

i (iter)
, (1)

where ffbst
i (iter) is the best fitness function value

of individual from i-th population for iter iteration
step (i = 1, ...,N pop, N pop is the number of sub-
populations), Nels is the adopted time window. It
is worth noting that in the case of the above equa-
tion, if ffbst

i (iter − st p)− ffbst
i (iter) = 0, the result

should be equal to zero, and if iter < st p, the default
value of the improvement γ should be used. To im-
munize the above improvement factor to small and
large fluctuations in the improvement of the evalua-
tion function, an infinite impulse response filter was
used (see [10]). In this case, the general formula for
proposed stagnation detection for single population
is defined as follows:

stgi(iter)=α·stgi(iter−1)+(1−α)·stgi(iter), (2)

where α is a coefficient determining how much the
value from the previous iteration step has an impact
on the proposed criterion. In the case of a first iter-
ation step stgi(1), the value is set to the coefficient
γ value. The stagnation in the proposed approach
can be detected by checking if the stgi(iter) value
has dropped below a certain β value. Examples of
the calculated ratio are shown in Figure 2. As can
be seen in Figure 2, the proposed value stgi(iter)
works well in both presented cases. It is worth not-
ing that in case Figure 2.a) there is often a small
improvement in the population, making the SFF ap-
proach ineffective and detects stagnation only to-
wards the end, while in case of Figure 2.b) there is
more downtime during optimization, sometimes af-
ter a big improvement - in this case, using the stan-
dard approaches may be too frequent. The proposed
approach (ELA) is new in the literature, in partic-
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used (see [10]). In this case, the general formula for
proposed stagnation detection for single population
is defined as follows:

stgi(iter)=α·stgi(iter−1)+(1−α)·stgi(iter), (2)

where α is a coefficient determining how much the
value from the previous iteration step has an impact
on the proposed criterion. In the case of a first iter-
ation step stgi(1), the value is set to the coefficient
γ value. The stagnation in the proposed approach
can be detected by checking if the stgi(iter) value
has dropped below a certain β value. Examples of
the calculated ratio are shown in Figure 2. As can
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Figure 2. Example of population stagnation detection: area marked in a dark color - standard approach,
area marked in a light color - proposed approach, stg stands for proposed criterion (see equation (2)), and

nni stands for the number of iterations without improvement: a) slow and steady improvement in the
middle of the optimization, b) more dynamic but stable changes in the fitness values.

ular in terms of performance evaluation of multi-
population algorithms.

3.3 Proposed algorithm

The approach proposed in this paper has been
designed universally so that most migration topolo-
gies, stagnation repair mechanisms, or population-
based algorithms can be used.

The algorithm consists of the following steps:

Step 1. Initialization of N pop populations and for
each of them an equal number of Nind individu-
als. Both the initialization method and the choice
of population processing algorithms can be com-
pletely arbitrary. In the case of the MNIA ap-
proach, each population can be processed by a dif-
ferent algorithm with different parameters. In this
step, individuals are also evaluated and the base
number of individuals and population status (dis-
abled/enabled) are changed according to the rules
defined by Table 1 and the optimization parame-
ters. After initialization, the populations are set up
according to the adopted migration topology (see
Fig 1). Setting the iter variable to 0.

Step 2. In this step, the processing of individu-
als of each population is triggered by the adopted

population-based algorithm. This step can be pro-
cessed a certain number of iterations (Niter) or un-
til a certain optimization fitness function value error
threshold is reached. At the end of a single iteration,
the iter variable is incremented and the following
conditions are checked:

– Checking whether the migration topology needs
to be changed, e.g. in the case of the ISBM
topology, the best solutions are transferred to
the central point of the topology. Changes are
checked and applied in each iteration of the al-
gorithm.

– Checking if Nmig iterations have elapsed. If so,
the exchange of individuals between populations
is by the adopted topology and migration strat-
egy.

– Checking the conditions determining the need to
change the number of active populations or the
number of individuals within them according to
the proposed mechanism of reducing and adding
individuals (see Section 3.1). If the conditions
are met for at least Nwar of the sub-populations,
the strategies presented in Table 1 apply. The
examples of such changes are shown in Table 2.
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Table 2. An example of changes in populations after stagnation is detected and the populations are sorted
according to the evaluation function of their best individuals for the DWDSB case, N pop = 8, Nind = 32

and Nchg = 2 (see Table 1). The number of individuals and population statuses results from previous
changes where the populations may have been sorted in a different order, ’-’ stands for disabled population.

population (i) number of individuals new number of individuals action
1 32 64 add individuals
2 64 64 do nothing
3 32 32 do nothing
4 32 32 do nothing
5 64 32 remove individuals
6 - 32 enable population
7 - - do nothing
8 32 - disable population

Step 3. Checking if the stop condition is reached,
if not return to step 2. If so, present the best-found
solution in terms of the adapted fitness function.

The algorithm considered in this paper does not
require a specific approach to encoding solutions
and their evaluation and these issues will not be
considered in detail. However, the algorithm can
be easily adapted, to solving hybrid-type problems
(consisting of finding the solution structure and its
parameters), etc. Then, the method of encoding so-
lutions may be analogous to that presented in the
papers [25, 40].

4 Simulations

The simulations were carried out in such a way
as to test both the strategies from Table 1 and com-
pare different approaches to preventing stagnation
(including the proposed one), all for different mi-
gration topologies, different population algorithms,
and various simulation problems.

The assumptions and parameters of the sim-
ulation are as follows: topologies tested: ISBM,
LDTC, TTRC, IRBM, RWAC, SMWD (see Fig-
ure 1), all strategies tested from Table 1, for the mi-
grations one worst individual from one population
is replaced by one individual selected by roulette
wheel from other randomly selected population.
Used multi-population-based algorithms: island al-
gorithms with same population-based in all popula-
tions MPGA, MPDE, MPCS, MPGWO (with con-
secutively base algorithms: GA, DE, CS, GWO
with default parameters from the literature), MNIA
(GA+DE+CS+GWO). Base number of populations

being changed after stagnation detection Nchg =
2, number of iterations for STA approach Nsta =
25, number of iterations without improvements for
SFF approach Nimp = 6, parameters for proposed
method ELA: α = 0.9, Nst p = 10, β = 0.06, γ = 0.2,
number of populations with stagnation to apply pre-
vention mechanisms Nwar = 2, number of islands
N pop = 8, based number of individuals in islands
Nind = 32, number of iterations Niter = 1000, num-
ber of simulation repetitions Nrep = 50, migration
interval Nmig = 10. The mentioned parameters of
the above approaches were determined by trial and
error method (see also Figure 3) or based on the
values suggested in the literature, however, in the
future, it is possible to test the meta-optimization
approach, in which the parameters will be selected
automatically.

Figure 3. Influence of parameters of ELA and SFF
approaches on fitness function values improvement

(ffimp). In the case of a), b) and c), parameters
other than those tested were set as follows: α = 0.9,

β = 0.06, γ = 0.2.

a)

c) d)

α0.84 0.96

185%

105%

ffimp

b)

β0.02 0.10

185%

105%

ffimp

γ0.1 0.3

185%

105%

ffimp

Nimp2 10

135%

105%

ffimp
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Table 3. Results averaged across all benchmark functions and all multi-population-based algorithms. The
results show the improvement in results (in percent) relative to the same methods without the use of

stagnation detection and prevention mechanisms. SM stands for stagnation mechanisms, SS stands for
stagnation strategy. The best results for the accuracy approach are in bold, and for the complexity reduction

approach are underlined.

SM SS ISBM LDTC TTRC IRBM RWAC SMWD AVG

STA

DBDSW 147 173 143 243 254 199 193
DWDSB 216 118 120 150 -154 69 86
DSBST 33 41 50 50 52 47 46
DSWRS 52 49 62 77 59 85 64
LWIBS 185 148 139 222 201 244 190
LBIWR 773 337 282 -111 -94 39 204
LWRWR 111 96 94 141 123 129 116
LWRBS 160 129 90 154 142 147 137
LDFBW 74 173 150 252 281 181 185
LDFWB 259 233 241 407 640 338 353
LDRBW 122 113 90 162 124 125 123
LDRWB 132 107 117 152 134 113 126

SFF

DBDSW 118 140 130 147 145 144 137
DWDSB 86 69 89 96 87 88 86
DSBST 46 42 47 51 57 89 55
DSWRS 118 57 75 64 66 53 72
LWIBS 152 137 125 193 183 165 159
LBIWR 181 203 520 269 257 -26 234
LWRWR 114 105 86 160 117 108 115
LWRBS 107 115 100 180 156 149 134
LDFBW 187 161 131 269 190 194 189
LDFWB 173 288 -579 286 301 215 114
LDRBW 111 114 86 146 132 114 117
LDRWB 155 148 115 166 159 262 168

ELA

DBDSW 649 261 142 709 207 250 370
DWDSB 287 136 -59 259 147 111 147
DSBST 34 33 129 46 58 49 58
DSWRS 62 66 52 259 70 63 95
LWIBS 204 155 152 121 220 199 175
LBIWR 201 589 313 32 165 238 256
LWRWR 109 97 83 146 136 108 113
LWRBS 121 138 113 165 146 145 138
LDFBW 98 172 169 279 290 203 202
LDFWB 312 664 362 -188 557 576 381
LDRBW 135 120 95 153 145 128 130
LDRWB 221 114 106 147 211 154 159

AVG 173 162 116 168 166 153 156
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Table 4. Results for the proposed stagnation method ELA averaged across all multi-population-based
algorithms and stagnation strategies for all benchmark functions. The results show the improvement in
results (in percent) relative to the same methods without the use of stagnation detection and prevention

mechanisms. SP stands for simulation problem, BASE stands for averaged normalized results, and allows
comparing which topology is best (lower values stand for better results). The best results are in bold.

SP ISBM LDTC TTRC IRBM RWAC SMWD AVG
C01 184 220 30 -20 26 -6 72
C02 87 27 34 -20 102 70 50
C03 103 111 72 182 163 171 133
C04 217 188 39 439 176 158 203
C05 179 180 226 235 220 195 206
C06 321 361 328 -108 505 545 325
C07 44 93 49 58 87 82 69
C08 526 566 348 650 323 273 448
C09 164 163 119 180 163 180 162
C10 205 202 35 218 108 79 141
C11 123 104 120 102 169 124 124
C12 198 227 201 40 309 366 224
C13 136 128 46 226 122 123 130
C14 379 347 309 407 292 218 325
C15 236 280 206 39 343 354 243
C16 119 157 41 131 97 78 104
C17 346 366 246 370 264 190 297
C18 172 184 172 108 233 283 192
C19 188 167 43 236 120 105 143
C20 236 230 214 266 212 158 219
C21 217 231 213 38 336 345 230
C22 120 150 41 191 109 96 118
C23 274 353 302 72 306 291 266
C24 280 213 125 148 156 241 194
C25 152 155 41 343 52 82 138
C26 114 151 40 148 105 74 105
C27 211 222 188 78 290 238 204
C28 145 165 42 199 118 95 127
AVG 203 212 138 177 197 186 185

BASE 0.03 0.71 0.41 0.00 1.00 0.93

Table 5. Results for the proposed stagnation method ELA averaged across all multi-population-based
algorithms and stagnation strategies for the control problems. The results show the improvement in results

(in percent) relative to the same methods without the use of stagnation detection and prevention
mechanisms. SP stands for simulation problem. The best results are in bold.

SP ISBM LDTC TTRC IRBM RWAC SMWD AVG
MSD 5 4 1 0 0 2 2
WTT 3 2 2 -2 4 3 2
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The considered methods were tested using
the CEC2013 benchmark functions (improved
CEC2005 benchmark set as used in [42]), here-
inafter referred to as C01-C28 [39]. In addition,
problems of selecting the parameters of control sys-
tems based on PID elements: MSD, WTT (see de-
tails in [25]) were also considered.

4.1 Simulation results

For a clearer presentation of the results and to
show the capabilities of the mechanisms used, all
results are shown as a percentage improvement over
the case where no stagnation detection and preven-
tion mechanisms were used. For example, a value
of 100% means an improvement in error value from
1.0 to 0.5, a value of 200% from 1.0 to 0.25, and a
value of -100% a deterioration from 1.0 to 2.0 (all
problems concerned the minimization of the value
of the evaluation function).

Results detailing all simulation cases are shown
in Table 3, results detailing simulation problems for
the proposed ELA stagnation detection method are
shown in Table 4, results detailing various multi-
population-based algorithms are shown in Table 6,
and general summary of the individual methods is
presented in Table 7. In addition, Figure 3 presents
the impact of the α, β, γ, and Nimp values on
the results obtained for the ELA method and SFF
method respectively. Results for control problems
are shown in Table 5.

4.2 Simulation conclusions

The best results in terms of fitness function
values were achieved for the proposed stagnation
detection strategy (ELA) and the LDFWB and
DBDSW stagnation prevention mechanisms, while
the proposed LDFWB mechanism also performed
very well in the standard approach (STA) - see bold
values in Table 3. For variants with less computa-
tional complexity, the best mechanism is LDRWB,
but in this case, the stagnation detection approach
based on the lack of improvement of the evaluation
function (SFF) worked slightly better (see LDRWB
on SFF and ELA in Table 3. For each migration
topology a satisfactory improvement over the lack
of stagnation detection mechanisms was achieved,
the only exception is the TTRC topology - see Ta-
ble 3.

According to the no-free lunch theory, differ-
ent degrees of improvement were achieved for each
simulation problem using the ELA mechanism and
the stagnation prevention mechanisms. For some
configurations, there was no improvement in the re-
sults (see negative values in Table 4). The ELA
mechanism improved the performance of the opti-
mization for each of the topologies considered, with
the best topology (IRBM) improving by 177%, and
the next topology (ISBM) improving by 203%, thus
giving the best results overall - see Table 4. The
ELA approach also improved the results for control
problems (see Table 5). In the case of non-synthetic
tests, the improvement was significantly smaller, as
expected, but for the PID control problems, even a
few percent improvement means a significant im-
provement for the system (depending on the se-
lected evaluation function). Details of the tested
control systems can be found, e.g. in [25].

The best base results were achieved for the
MNIA algorithm, and the proposed mechanisms al-
lowed for an additional improvement of 152%. The
greatest improvement of results by the stagnation
detection and prevention mechanisms was achieved
for the MPGWO algorithm - 217% improvement
compared to the base approach - see Table 6. Nev-
ertheless, the use of the MNIA algorithm with dif-
ferent population-based algorithms as islands gives
very satisfactory results and at the same time elimi-
nates the need to choose a specific population-based
algorithm - thus it is a more universal solution.
Stagnation detection improved most of the simu-
lation variants, with the worst improvement being
achieved for the MPCS algorithm, with an average
improvement of 107% - see Table 6.

Regardless of the approach, algorithm, and
strategy, the proposed stagnation detection criterion
achieved the best results (see ELA in Table 7). In
the case of the best-accuracy strategy (IA), LDFWB
worked best (see LDFWB in Table 7), while the
complexity-oriented strategy (RC) also achieved an
improvement in accuracy - in this case, the LDRWB
mechanism turned out to be the best (see LDRWBin
Table 7).

The influence of the parameters α, β, and γ of
the proposed ELA approach and Nimp of the SFF
approach may be of key importance for various sim-
ulation problems and is a topic worth addressing in
future research - see Figure 3. Research on other
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Table 6. Results averaged across all benchmark functions and migration topologies. The results show the
improvement in results (in percent) relative to the same methods without the use of stagnation detection
and prevention mechanisms. SM stands for stagnation mechanisms, SS stands for stagnation strategy,

BASE stands for averaged normalized results, and allows comparing which topology is best (lower values
stand for better results). The best results for the accuracy approach are in bold, and for the complexity

reduction approach are underlined.

SM SS MNIA MPGA MPDE MPCS MPGWO AVG

STA

DBDSW 364 6 83 107 407 193
DWDSB 101 25 76 50 180 86
DSBST 88 -69 62 26 122 46
DSWRS 111 -36 79 20 145 64
LWIBS 139 357 179 66 207 190
LBIWR 53 337 256 119 257 204
LWRWR 87 150 178 37 126 116
LWRBS 115 142 205 60 163 137
LDFBW 177 346 128 86 188 185
LDFWB 464 283 112 195 712 353
LDRBW 101 167 152 48 145 123
LDRWB 95 153 166 72 143 126

SFF

DBDSW 142 29 109 184 222 137
DWDSB 117 30 70 76 136 86
DSBST 89 -44 75 30 126 55
DSWRS 116 -22 98 23 146 72
LWIBS 84 337 111 134 130 159
LBIWR 125 376 324 217 127 234
LWRWR 99 143 145 56 133 115
LWRBS 97 145 203 109 119 134
LDFBW 92 360 127 221 143 189
LDFWB 82 241 24 112 110 114
LDRBW 85 174 139 79 109 117
LDRWB 96 148 317 137 140 168

ELA

DBDSW 773 28 86 151 811 370
DWDSB 157 24 75 76 403 147
DSBST 82 -71 73 33 173 58
DSWRS 194 -42 79 22 224 95
LWIBS 144 268 126 120 217 175
LBIWR 9 412 263 549 48 256
LWRWR 79 148 164 55 119 113
LWRBS 116 146 165 98 165 138
LDFBW 203 215 191 184 216 202
LDFWB 374 461 277 88 704 381
LDRBW 109 170 143 80 145 130
LDRWB 96 150 292 121 136 159

AVG 152 158 149 107 217 156
BASE 0.00 1.00 0.47 0.89 0.18
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DBDSW 773 28 86 151 811 370
DWDSB 157 24 75 76 403 147
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LWIBS 144 268 126 120 217 175
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Table 7. Summary of tested mechanisms averaged for all benchmark functions. The results show the
improvement in results (in percent) relative to the same methods without the use of stagnation detection

and prevention mechanisms. SM stands for stagnation mechanisms, SS stands for stagnation strategy. The
best results are in bold.

SM/SS ISBM LDTC TTRC IRBM RWAC SMWD AVG
STA 189 143 132 158 147 143 152
SFF 129 132 77 169 154 130 132
ELA 203 212 138 177 196 185 185

DBDSW 305 191 139 366 202 198 233
DWDSB 196 108 50 169 27 89 106
LWIBS 180 146 139 178 201 203 175
LBIWR 385 377 371 63 109 83 232
LDFBW 119 169 150 267 254 193 192
LDFWB 248 395 8 169 500 376 283
DSBST 37 39 75 49 56 62 53
DSWRS 77 57 63 133 65 67 77
LWRWR 111 99 88 149 125 115 115
LWRBS 129 127 101 166 148 147 136
LDRBW 123 116 90 154 134 123 123
LDRWB 170 123 113 155 168 176 151

stagnation detection mechanisms, in particular hy-
brid mechanisms, is also worth considering and is
not excluded in the future.

5 Conclusions

Mechanisms of stagnation detection and pre-
vention allow for achieving better results in the
case of multi-population-based algorithms in most
cases. In particular, the best results in averaging
the tested topologies, algorithms, simulation prob-
lems, and stagnation prevention mechanisms were
achieved for the proposed stagnation detection ap-
proach (ELA). This approach is based on the analy-
sis of the local improvement of the evaluation func-
tion and the infinite impulse response filter. The
considered mechanisms for the appropriate man-
agement of populations and their sizes also con-
tributed to the improvement of results and addi-
tionally enabled the simultaneous reduction of com-
putational complexity. A significant improvement
in the results was also achieved for the MNIA al-
gorithm, which uses different baseline population
algorithms within the islands. The achieved re-
sults point to the possibility of developing multi-
population-based algorithms without the use of new

ideologies, which is criticized, and at the same time
provide a further field for the development of re-
search in which other similar solutions can be used.
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