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Abstract

The Photovoltaic (PV) Performance Modeling Collaborative (PVPMC) organized a

blind PV performance modeling intercomparison to allow PV modelers to blindly test

their models and modeling ability against real system data. Measured weather and

irradiance data were provided along with detailed descriptions of PV systems from

two locations (Albuquerque, New Mexico, USA, and Roskilde, Denmark). Participants

were asked to simulate the plane-of-array irradiance, module temperature, and DC

power output from six systems and submit their results to Sandia for processing. The

results showed overall median mean bias (i.e., the average error per participant) of

0.6% in annual irradiation and �3.3% in annual energy yield. While most PV perfor-

mance modeling results seem to exhibit higher precision and accuracy as compared

to an earlier blind PV modeling study in 2010, human errors, modeling skills, and

derates were found to still cause significant errors in the estimates.

K E YWORD S

blind comparison, modeling, performance, photovoltaic, yield modeling

1 | INTRODUCTION

Photovoltaic (PV) energy yield estimates are used to assign value to and

obtain financing for a PV plant. Such predictions inform power plant

designs, investor decisions, and cash flow in financial models and

therefore can affect the viability of a project.1 Although the perfor-

mance models used for these predictions are generally presumed to be

relatively simple, energy yield estimations are not straightforward
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because their accuracy depends on the analysis and modeling pipeline,

which commonly include irradiance transposition, module temperature,

and power output modeling. Different models and their combinations

may result in varying accuracies, and different assumptions for perfor-

mance loss factors (derates) will significantly affect the energy yield

estimations. These may also depend on the PV plant configuration,

module type and geographical location. Furthermore, the modeler's

skills and experience can affect the resulting accuracy.

New PV performance models are continuously being developed

whereas existing models are frequently updated. However, only a lim-

ited number of them have been evaluated independently from multi-

ple aspects against high-quality field datasets (e.g., in previous

studies2–7). When an approach is tested against known datasets, the

modeler might introduce a bias, which directly influences the

approach's validity, reproducibility, and applicability for different sys-

tems. In such cases, blind intercomparisons are useful for benchmark-

ing analysis pipelines and establishing the state of the art in PV

performance modeling. The PV Performance Modeling Collaborative

(PVPMC) was founded based on the outcomes of the blind PV model-

ing study in 2010.8,9

Previous intercomparisons of PV modeling approaches include

that of Friesen et al.,10 wherein time-series plane-of-array irradiance

(Gpoa) and module temperature (Tmod) data were circulated to eight

European institutions. These participants were asked to simulate the

module-level performance of five PV technologies in seven climates,

and it was found that the group's energy yield predictions agreed with

±5%. Moser et al. analyzed the long-term yield predictions of six

expert modelers for a PV system in an Italian and an Australian site.11

These modelers were required to independently obtain meteorologi-

cal data for their simulations, which, for the Italian site, led to 6% dif-

ferences in global horizontal irradiance (GHI), 20% differences in

Gpoa, and ultimately nearly 30% differences in AC energy. And most

recently, Vogt et al.12 conducted an intercomparison of energy rating

calculations per IEC 61853-313 with nine European institutes. Energy

rating differences of 14% were found in the first blind comparison

round. It took five rounds of calculations—and discussions among the

participants—for the nine participants' calculations to agree within

0.1%. Ultimately, Vogt et al.12 demonstrated how user-induced vari-

ability can be reduced when modelers have clear procedures for

implementing key steps of the PV model chain.

To provide an opportunity for PV modelers to test their

models and modeling ability against high-quality, real system data

and to help provide a baseline quantifying the variability of differ-

ent models and modelers, PVPMC organized a new blind PV per-

formance modeling comparison in 2021. Measured weather and

irradiance data and detailed descriptions of six PV systems from

two locations (Albuquerque, New Mexico, USA, and Roskilde,

Denmark) were provided. Participants were asked to simulate the

systems' plane-of-array irradiance, module temperature, and DC

power output and submit their results back to Sandia for proces-

sing. This work compares system-level performance modeling con-

sidering all DC-side loss factors. Rather than independently

obtaining meteorological data for the simulations, participants were

provided with measured meteorological and irradiance data as a

starting point. This provision enabled the propagation of sources of

uncertainty within the modeling pipeline instead of the results

being affected by the uncertainty of the input data. Furthermore,

this study was open to anyone (i.e., industry, research, and acade-

mia) to participate, rather than inviting specific individuals. As such,

this article presents the multidimensional data analysis of the

PVPMC blind modeling intercomparison, providing the results for

each modeling step. Finally, it summarizes the lessons learned and

areas where improvements are needed.

2 | METHODOLOGY

The blind PV modeling comparison was announced in July 2021

through the PVPMC email list (https://public.govdelivery.com/

accounts/USDOESNLEC/subscriber/new?topic_id=USDOESNLEC_

185). The data and document describing the exercise were down-

loaded >600 times. Sandia received 29 submissions from 28 partici-

pants with various modeling pipelines, including new commercial

software. This effort represents 26 institutions from 12 different

countries.

2.1 | Scenarios and data

For this comparison, six scenarios of practical interest to the commu-

nity were identified and included (a) fixed and tracking systems,

(b) monofacial and bifacial modules, (c) modules representative of the

current PV market and upcoming technologies, and (d) distinctively

different geographical locations/climates (see Table 1).

In Albuquerque (S1, S2), GHI was measured using a Kipp and

Zonen CMP-21 pyranometer. Kipp and Zonen CH1 and Eppley

normal incidence pyrheliometers (NIP) were used to measure DNI. To

measure the diffuse horizontal irradiance (DHI), two Eppley precision

spectral pyranometers (PSP) were used, one having a shade disk and

the other having a shade band. The Gpoa was measured using a Kipp

and Zonen CMP-11 pyranometer. Wind speed was measured at 10 m

above ground level using a Climatronics Wind Mark III Wind Sensor.

Air temperature was measured using two Climatronics Aspirated

Shield Temperature Sensors. Module temperature was measured

using back-of-module resistance temperature detectors (RTDs), on

one module of each string. Voltage and current were measured at the

string level for all systems using voltage dividers and Manganin

shunts. The Roskilde systems and measurements setup in scenarios

3–6 are described by Riedel-Lyngskær et al.14

The participants had access to general instructions, hourly

averaged weather data from the locations (Gpoa was not included),

module and inverter spec sheets, system designs, and test reports.

The test reports were only available for the systems in Albuquer-

que (i.e., S1 and S2) and included IEC 61853-115 matrix data, IEC

61853-216 incidence angle modifier (IAM), nominal module operat-

ing temperature (NMOT), and PAN (Panneau Solaire) files. A
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frequently asked questions (FAQs) section was regularly updated

on the PVPMC website to ensure everyone had access to the

same information. Modeling results were collected and handled by

Sandia, ensuring anonymity. The participants know their “partici-
pant number” only, and they had the option to exclude their name

from any publication. This paper's author numbers and order are

unrelated to the participant numbers in the figures.

The participants were asked to simulate Gpoa (in W/m2), module

temperature (in �C), and system DC power output (Pmp in W). Some

participants resubmitted their estimates to correct “minor” mistakes

such as modeling 48 modules instead of 12, submitting incorrect units

(e.g., kWh/kWp or kW instead of W), reporting direct irradiance

instead of global, and so forth.

To ensure non-physical irradiance values (i.e., sun below the hori-

zon, below/above physical minimum/maximum, static measurements,

and inconsistent irradiance components) are ignored, the datasets

were filtered based on version 2 of the Baseline Surface Radiation

Network (BSRN) Global Network-recommended quality control

tests.17 Furthermore, datapoints during days with snow were filtered

out from both locations. The data from Roskilde include additional fil-

ters to ensure the proper operation of single-axis tracking

(by comparing the tilt angles of neighboring trackers) and that the data

acquisition system is online. All values lower than 100 W/m2 in front-

side Gpoa, 50 W in output DC power, and beyond �5�C and 45�C in

ambient temperature were also filtered out.

The validation datasets are available online in open access at

two locations. The first is on the website of the PV Performance

Modeling Collaborative at https://pvpmc.sandia.gov/. The second is on

the Duramat Data Hub at https://datahub.duramat.org/dataset/pv-

performance-modeling-data (doi: https://doi.org/10.21948/1970772).18

2.2 | Statistics

Based on the participants' affiliations, they were grouped into the

following categories: (1) Commercial, (2) Research, (3) Software,

and (4) Student. The commercial category includes consulting and

engineering companies, independent engineers, owners, utilities, and

producers. Figure 1 shows the percentage breakdown per category.

Some models/software can reveal who the participant is when

only used once and other models did not achieve an adequate statisti-

cal sample. To ensure anonymity and focus on approaches with signif-

icant participation, the following categories were created:

1. “Other model” refers to known models used by a single participant

(e.g., pvlib-pvwatts from pvlib-python19);

2. “Custom model” refers to “in-house” customized models that are

not available to the public (these are models developed and used

by some independent engineers);

3. “Other software” includes software used by a single participant

(e.g., Archelios,20 PVSol,21 and Sisifo22);

4. “SDM” includes single-diode models (e.g., pvlib.pvsystem.calcpar-

ams_cec, pvlib.pvsystem.calcparams_pvsystmodels from pvlib-python).

Figure 2 shows statistics on the models used in this study. With

respect to the transposition models, the majority used the Perez

TABLE 1 Characteristics of the six scenarios used in this blind modeling intercomparison. These were selected to include (a) fixed and
tracking systems, (b) monofacial and bifacial modules, (c) modules representative of the current PV market and upcoming technologies, and (d)
distinctively different geographical locations/climates.

S1 S2 S3 S4 S5 S6

Resolution Hourlya Hourlya Hourlya Hourlya Hourlya Hourlya

Duration 1 year 1 year 1 year 1 year 1 year 1 year

Year of data 2020 2020 2019–2020 2019–2020 2019–2020 2019–2020

Capacity 3.9 kW 3.3 kW 26.84 kW 25.96 kW 26.84 kW 25.96 kW

Module type Monofacial Monofacial Monofacial Bifacial Monofacial Bifacial

Module manufacturer Panasonic Canadian Solar Trina Trina Trina Trina

Module technology Silicon hetero-

junction

Mono-crystalline Mono-crystalline

PERC

Mono-crystalline

PERC

Mono-crystalline

PERC

Mono-crystalline

PERC

Module nominal

power

325 W 275 W 305 W 295 W 305 W 295 W

Power temperature

coefficient

�0.258%/�C �0.41%/�C �0.39%/�C �0.39%/�C �0.39%/�C �0.39%/�C

DC/AC ratio 0.76 0.86 1.07 1.04 1.07 1.04

Tracking Fixed tilt Fixed tilt Single-axis

tracking

Single-axis

tracking

Fixed tilt Fixed tilt

Location Albuquerque,

NM, USA

Albuquerque,

NM, USA

Roskilde,

Denmark

Roskilde,

Denmark

Roskilde,

Denmark

Roskilde,

Denmark

Commissioning date June 2018 October 2017 August 2018 August 2018 August 2018 August 2018

Abbreviations: PERC, passivated emitter and rear contact.
aHourly averages reported at the end of the hour.
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model23 whereas in the case of temperature modeling, more than

60% of the participants used the PVsyst (Tcell),24 Sandia Array Perfor-

mance Model (SAPM),25 and the Nominal Operating Cell Temperature

(NOCT) model.26 It should be noted here that “PVsyst (Tmod)” refers

to the temperature model in PlantPredict27; this model is the same as

in PVsyst, but it then gets converted to module temperature using the

equation developed by Sandia.25 Finally, close to 50% of the partici-

pants used the PVsyst28 and System Advisor Model (SAM)26 software

packages for PV performance modeling.

As mentioned in subsection 2.1, the S1 and S2 systems included

PAN files, IEC 61853-1 matrix, IAM, and NMOT data. As seen in

Figure 3, most participants used the PAN files, mainly due to the high

percentage of PVsyst users. Only 24.6% of the participants used the

provided IEC 61853-1 data. The IAM and NMOT data were used by

half of the participants. The percentages in Figure 3 are also catego-

rized as a function of individual models and categories.

3 | RESULTS

To rank the participants, the mean absolute percentage error (MAPE)

was used to compare the annual irradiation (Figure 4A) and energy

yield (Figure 4B) estimates. The median MAPE in annual irradiation

and energy yield estimations were close to 2% and 5.5%, respectively.

Interestingly, the participants with the lowest MAPE (<<1%) in the

annual irradiation estimation (i.e., P23, P2, and P22) exhibited high

MAPE in annual energy yield estimation (ranging from 8.2% to 68.7%;

the y-axis limits were truncated to 7% for clarity). Note that not all

participants modeled all six scenarios.

3.1 | Irradiance modeling

A PV performance modeling pipeline always begins with irradiance. In

this study, the participants had the measured global horizontal, direct

normal, and diffuse horizontal irradiances and were asked to apply

transposition models to estimate Gpoa.

Figure 5 shows the diurnal front (top row) and rear (bottom row)

Gpoa estimates by all participants. One of the participants in S3

appears to have simulated a fixed tilt system instead of tracking. As

expected, front Gpoa is not as difficult to predict whereas problems

arise when modeling the rear Gpoa, where minimum and maximum

differences above 100% were observed. It is worth mentioning that

despite these high differences in rear Gpoa, this component repre-

sents <10% of the total irradiance.

Another observation is an apparent time-shift in the estimates of

some participants. It seems that there is confusion between instanta-

neous and time-averaged measurements especially when involving

sun position. This study reported the hourly averaged irradiance data

at the end of the hour. Therefore, most models should assume a sun

position calculated 30 min before the hourly timestamp as being the

most representative. On the other hand, other data sources com-

monly place timestamps at the beginning of the interval. As such,

some software properly account for this by calculating the solar posi-

tion and other time sensitive values at the center of the interval

(i.e., +30 min). Modeling software, such as PVsyst, make an exception

for timestamps that span sunrise or sunset to pick a sun position half-

way between the horizon and the sun position at the neighboring day-

light timestamp. In this study, some participants seemed to adjust by

shifting their time-series by 30 min back, while others kept it at the

end of the hour. This is clearly an area where procedures could be

standardized.

Empirical cumulative distribution functions (ECDF) present

residuals in an ascending order to observe how they are distributed

across the datasets. The ECDF plots in Figure 6 show the residuals

between modeled and measured Gpoa grouped by the transposi-

tion models. The off-pink lines are the individual participants, and

the black dashed lines indicate the median residuals per model. A

steep rise near zero suggests that there are mostly small model

errors and relatively few large ones. Most models except the iso-

tropic indicated good accuracy (median values close to zero). The

isotropic model underestimated Gpoa by 11.25 W/m2. Although

the distributions of residuals for most Perez users cluster together,

some outlying distributions still exist indicating errors in the imple-

mentation of solar position algorithms, system configuration, and

the possibility of applying different Perez model coefficient sets,

other than the coefficients of the most commonly used set “All
sites composite 1990.”29 When comparing residuals against system

configuration, there was a slight over-estimation in the single-axis

tracking system in S3 (median residual of 6.5 W/m2) as compared

to the fixed tilt systems in S1 and S5 with �1.7 W/m2 and

0.77 W/m2, respectively.

3.2 | Module temperature modeling

First, it should be mentioned that although the accuracy of resis-

tance temperature detector (RTD) sensors is typically within 0.1�C,

F IGURE 1 Categorization of participants. It includes commercial
entities, researchers, software companies, and students. Commercial

entities have the following subcategories: consulting and engineering,
independent engineer, owner, utility, and producer. [Colour figure can
be viewed at wileyonlinelibrary.com]
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it is still not possible to know what the representative temperature

for a PV array is, unless an array is equipped with multiple sensors

(e.g., one for each solar cell). This is practically and economically not

feasible. Therefore, although this study compares with an average

module temperature value from four different sensors, the differ-

ences reported in this work should not be taken in a strictly quanti-

tative manner.

Figure 7 shows the ECDF plots of the module temperature

residuals for three out of six scenarios (due to availability), grouped

by all models. It should be noted that some models, such as the

one from PVsyst, calculate only cell but not module temperature.

The SAPM and PVsyst (Tcell) models exhibited median residuals

relatively close to zero. In contrast, the PVsyst (Tmod), NOCT, and

“Other model” underestimated the module temperature over 2�C.

To put this into perspective, for a module with a typical tempera-

ture coefficient of power of �0.4%/�C, a 2�C error leads to a

0.8% error in output power. The median underestimation exhibited

by PVsyst (Tmod) was due to the wrong U values the participants

used: Instead of the PVsyst U values, the Faiman U0 and U1

values were used; it is speculated that one PVsyst (Tcell)

F IGURE 2 Frequency plots
displaying the models and
categories usage in
(A) transposition, (B) temperature,
and (C) power modeling. “Other
model” refers to known models,
which were only used once
(e.g., PVWatts); “Custom model”
refers to “in-house” customized

models that are not available to
the public (these are models
developed and used by
independent engineers); “Other
software” includes software only
used once (e.g., Archelios, PVSol,
Sisifo); “SDM” includes single-
diode models (e.g., pvlib-cec and
pvlib-pvsyst). [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 3 Percentage of participants that used (A) PAN file data, (B) IEC 61853-1 matrix data, and (C) IAM + NMOT data in S1 and S2.
[Colour figure can be viewed at wileyonlinelibrary.com]
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participant made the same mistake. It is worth noticing that all but

one of the PVsyst (Tcell) users exhibit nearly identical distributions

demonstrating consistent calculations within the most popular soft-

ware. However, it should be noted that while the median bias of

this model is small, the comparison is against module temperatures,

while PVsyst (Tcell) only calculates cell temperature.

3.3 | PV performance modeling

Figure 8 shows the ECDF plots of the normalized power residuals for

all scenarios, grouped by all model categories. The power residuals

were normalized by the system's nominal capacities to allow a mean-

ingful comparison among the different scenarios. Overall, all models

F IGURE 4 Mean (of scenarios) absolute percentage error (MAPE) of annual (A) irradiation and (B) energy yield estimates by each participant
in ascending order. The red dashed horizontal lines display the overall median MAPE. The y-axis limits were truncated to 7% for clarity. The
absolute percentage error is calculated as 100 � j(model � measurement)/measurementj. [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Diurnal plane-of-array irradiance measurements against all simulations submitted by the participants during a clear sky day in
Albuquerque (April 14: S1) and Roskilde (March 25: S3–S6). The top row shows the front plane-of-array irradiance while the bottom row shows
the rear plane-of-array irradiance. The black dashed vertical lines represent the measurements whereas the different colors are the participants'
estimations. Minimum and maximum percentage differences from the measured front Gpoa at noon ranged from �11% (S5) to +61.3% (S3); the
latter was due to a participant who simulated fixed tilt rather than tracked Gpoa. If this participant is excluded, the minimum and maximum
differences would range from �11% to 1.99%. Minimum and maximum percentage differences from the measured rear Gpoa at noon ranged
from �99.7% (S4) to +149.4% (S6). [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE 6 Empirical cumulative distributions of the plane-of-array irradiance residuals (in W/m2) for all scenarios, grouped by the different
transposition models. Participants are displayed in different colors, and the dashed black lines indicate the median residuals within the same
modeling category. “Other” and “Custom” categories include models that differ within the same category. [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 7 Empirical cumulative distributions of the module temperature residuals (in �C) for all scenarios, grouped by the different
temperature models. Participants are displayed in different colors, and the dashed black lines indicate the median residuals within the same
modeling category. “Other” and “Custom” categories include models that differ within the same category. [Colour figure can be viewed at
wileyonlinelibrary.com]
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underestimated the normalized power by up to 43.3 W/kWp

(or 4.33%), whereas the SDM category demonstrated superior perfor-

mance with a bias close to zero (�1.07 W/kWp). PVsyst users, who

comprise 33% of the participants, group well together except in one

instance. This mass underestimation raises the question of whether

this is because of a modeling issue, input selection, or any other

assumptions involved within the pipeline. This is further examined in

Section 4.

4 | OBSERVATIONS AND LESSONS
LEARNED

For the systems in Albuquerque (i.e., S1 and S2), the participants had

module information that is not commonly available. PAN files might

be available in databases but, in this study, the PAN files were specific

to the modules in S1 and S2, that is, not generic representative PAN

files. The objective here is to observe how the various assumptions or

usage of additional information affected the results and to describe

the lessons learned from this study.

It should be expected that as module temperature increases, effi-

ciency will decrease. To examine whether this holds true for all partici-

pants' temperature coefficient inputs, these trends were reverse

calculated. This was done by taking a subset of data for modeled

Gpoa from 800 to 1200 W/m2 and wind speed lower than 10 m/s

and fitting a regression model for modeled power against the module

temperature by each participant (see Figure 9). Qualitatively, it can be

observed that some participants assumed lower temperature depen-

dency, while others assumed positive temperature coefficients. The

latter might be due to an error in applying the sign in the equation;

another speculation could be that the participant(s) may have used

the temperature coefficient for current, instead of power. Further-

more, some participants miscalculated the system size by either over-

or under-sizing the number of PV modules. Therefore, human errors

are not uncommon in PV performance modeling. Another common

confusion observed during this blind PV modeling comparison was

that many participants interchangeably used the U0 and U1 values of

the Faiman model with the Uc and Uv values of the PVsyst (Tcell)

model. Although these models are similar, they are not the same, and

therefore, the U parameters should not be used interchangeably.

Methods for parameter translation between temperature models

(e.g., translate U0, U1 to Uc, Uv) have been recently published

elsewhere,30 and functions are available in pvlib-python under the

pvlib.temperature. GenericLinearModel.

The modeled temperature rise (i.e., the difference between

modeled module temperature and measured ambient temperature)

F IGURE 8 Empirical cumulative distributions of the normalized power residuals for all scenarios, grouped by the different models. The power
residuals are normalized by the systems' nominal capacities (i.e. W/kWp). Participants are displayed in different color whereas the dashed black
lines indicate the median residuals within the same modeling categories. “Other” and “Custom” categories include models/software that differ
within the same category. [Colour figure can be viewed at wileyonlinelibrary.com]
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as a function of modeled Gpoa is shown in Figure 10. Robust

regression31 (colored dashed lines) was used to de-weight outliers.

The black dashed lines correspond to module temperature measure-

ments (only available for S1–S3) for wind speed <2 m/s and module

temperature >0�C. Negative temperature differences were measured

in Albuquerque where low sky temperatures led to significant radia-

tive cooling of the modules. Only one custom model separately

accounts for radiative losses and correctly predicts such negative

values. All other models lump radiative losses together with convec-

tive losses and represent the combined heat loss with one or two

empirical heat loss coefficients. In Driesse et al.,30 it was shown that

all of the named models in Figures 7 and 10 are essentially equiva-

lent; therefore, underprediction of module temperature in the simu-

lations is a clear indication that the heat loss coefficients for the

F IGURE 9 Regression model fits for modeled power versus module temperature. The scatter was removed to improve clarity. The regression
model fits considered datapoints for modeled Gpoa from 800 to 1200 W/m2 and wind speed <10 m/s. Participants are shown in different colors.
[Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 10 Modeled temperature rise (i.e., the difference between modeled module temperature and measured ambient temperature) as a
function of modeled Gpoa. Robust regression was used to de-weight outliers (dashed lines). The black dashed lines correspond to module
measurements (only available for S1–S3) for wind speed <2 m/s and module temperature >0�C. [Colour figure can be viewed at
wileyonlinelibrary.com]
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respective models were frequently set too high. This resulted in

maximum temperature difference between participants and field

data of up to �15�C at 1000 W/m2 in Albuquerque and �10�C in

Roskilde, which would produce an error in simulated module power

reaching �6% at those times. Recent work32 shows that all these

named temperature models can be improved to account for radia-

tive losses, and a modified Faiman model was made available in the

open-source pvlib-python library as pvlib.temperature.faiman_rad

(after this study took place). Nevertheless, the improved models still

require the appropriate empirical heat loss coefficients for the sys-

tem being simulated.

The relative efficiency across the modeled Gpoa plots (see

Figure 11) can provide information on the electrical modeling assump-

tions made by the participants based on whether the provided module

data were used or not. The relative efficiency was calculated by taking

the ratio of modeled efficiency and each participant's “nominal” effi-

ciency. This was calculated by taking a subset of modeled Gpoa from

950 to 1050 W/m2 and assuming the median temperature corrected

(to 25�C) efficiency as the “nominal” efficiency for each participant.

The plots in Figure 11 were categorized based on the participants'

responses on PAN or IEC 61853-1 matrix data usage; the top and bot-

tom rows correspond to S1 and S2, respectively, while the red circles

are the measured values. The data in Figure 11 represent conditions

where the AOI < 70� and the modeled Tmod is from 20�C to 30�C.

IEC 61853-1 data for all modules show lower efficiencies at low irra-

diance. Many participants' results matched these data trends, whereas

others calculated flat efficiencies with Gpoa or showed higher

efficiency at lower irradiance values or did not consider temperature

effects.

The plots in Figure 12 show the bias in annual irradiation (A) and

energy yield (B) for all participants. Although the irradiation bias for

most participants was positive (i.e., showing overestimation) and the

overall median was very close to zero (see red dashed lines), the

energy yield was underestimated by most of the participants with a

median value of �3.3%. This behavior raised the question about the

derate assumptions made by the participants. Quantifying or setting

the derates is a critical step in PV performance modeling. Derates

(or performance loss factors) describe the losses that can occur within

a system, for example, due to conductor resistance, soiling, module

degradation, and so forth. After comparing derate assumptions by

individual participants, it was found that the highest underestimations

were exhibited by participants that over-budgeted for derates. In con-

trast, the participants applying modest derate assumptions achieved

biases much closer to zero. This is interesting because the modeling

community is often concerned with the accuracy of model equations

and their parameter values,33,34 whereas in this study, the errors were

driven largely by the initial assumptions made by the modelers. It

should be mentioned, however, that these scenarios include data from

lab-scale systems that were built for research purposes. As such, these

are likely to experience lower losses than utility scale power plants.

To further examine the impact of the derate assumptions, the annual

bias by each participant, for each scenario (i.e., Figure 12B), was

applied as an adjustment to their corresponding hourly time-series

(i.e., by multiplying the hourly modeled power time-series by one

F IGURE 11 Relative efficiency (normalized to median efficiency for modeled Gpoa from 950 to 1050 W/m2) across modeled plane-of-array
irradiance in S1 (top row) and S2 (bottom row). The participants are grouped by whether they have used any of the provided module data
(i.e., IEC 61853-1 matrix data or PAN files) or not or have not responded. The red circles represent the measured values, and the participants are
shown in different colors. The data represent conditions where AOI < 70� and the modeled Tmod is from 20�C to 30�C. [Colour figure can be
viewed at wileyonlinelibrary.com]
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minus bias). The adjusted annual energy yield bias is then plotted in

Figure 12C, where the overall median bias is nearly zero indicating

that the majority of bias errors in Figure 12B were indeed linear. This

reinforces the potential conclusion that input assumptions matter

more than the model, at least for the climates and systems investi-

gated in this study.

How do these results compare to the original PVPMC blind

modeling study in 20108,9? Figure 13 (left) shows the bias in annual

energy yield from the 2010 blind modeling study, whereas the plot on

the right exhibits the bias from this study; these are categorized by

the models. Overall, there is a large shift from overestimating energy

yield (as high as �20% in 2010), to being very conservative with the

derates resulting in significant underestimation of energy yield (as low

as �16%). This strongly indicates that the derate factors are still being

guessed by the modelers introducing considerable uncertainty. On the

other hand, the individual models, such as the popular PVsyst, seem

to be more precise in this study (the maximum difference in energy

yield among PVsyst participants was �33% in 2010 whereas now the

difference is �6%) and tightly clustered. However, the accuracy still

depends on the modeler's skill.

To examine whether there are differences among sectors,

Figure 14 shows boxplots of the annual energy yield prediction bias

grouped by the participants' affiliation category. Software companies

exhibited the lowest errors with a median value close to zero. This

F IGURE 12 Percentage error or bias observed in annual (A) irradiation, (B) energy yield, and (C) energy yield after adjusting the bias. The
percentage error is calculated as 100 � (model � measurement)/measurement. Dashed horizontal lines indicate median values. Participants that
assumed low derates achieved higher accuracies than those that over-budgeted for derates. Overall, all derate assumptions were applied in a
linear manner since the bias in (C) was minimized after adjusting the time-series. [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 13 Comparing bias in
annual energy yield predictions from
Sandia's 2010 blind modeling study

(left) against a scenario from this
study (right). A shift from
overestimation to underestimation is
observed with a much tighter cluster
among models indicating
improvements in precision. Accuracy
still depends on the modeler's skill.
[Colour figure can be viewed at
wileyonlinelibrary.com]
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could be expected since software companies know their products bet-

ter than anyone else. It is also worth noting that the commercial sec-

tor, which deals mostly with larger power plants, assumed higher

derate values resulting in a higher bias spread (see orange boxplot).

This is another indication that modeling different system sizes will

require appropriate derate budgeting. The adjusted annual energy

yield bias shows that all sectors but the student category exhibited

distributions very close to zero.

5 | CONCLUSIONS

PVPMC's blind PV modeling intercomparison found that:

1. The irradiance transposition models seem to perform well, except

the isotropic one.

2. Modeling the rear Gpoa is still challenging with errors exceeding

�±100%. However, it should be mentioned that rear Gpoa repre-

sents �10% or less of the total irradiance.

3. Standardization is needed for handling sun position calculations

when using time-averaged irradiance measurements.

4. Incorporating a radiative loss term in module temperature model-

ing appears to improve accuracy.

5. There is confusion around the U values for Faiman and PVsyst

temperature models. Uc and Uv (PVsyst) values should not be used

in place of U0 and U1 (Faiman) values.

6. Most software and models showed similar results indicating good

reproducibility among participants, especially when compared with

the 2010 blind modeling study. For example, the spread in esti-

mated energy yield among PVsyst participants is now �6% com-

pared with �33% in 2010.

7. Uncertainty and large variation in derate factors between partici-

pants appear to explain most of the differences; it was observed

that modelers overestimated the derates resulting in significant

power underestimation.

8. Human errors are not uncommon. The intercomparison highlighted

several errors related to the temperature coefficients and the effi-

ciency across irradiance. There is an opportunity to develop

screening tests that can detect such errors, thus assuring stake-

holders of the accuracy of the modeling results.

9. Modeler skill at understanding, choosing, and using the models and

their parameter correctly, and accumulated experience observing

various derate mechanisms in operational systems seems to be

more important than the PV model itself (see 7 and 8 above).

Unfortunately, the bifacial PV time-series in this study con-

tained only a handful of rear Gpoa days. As such, no further analysis

has been conducted to investigate the impact of their variations.

Depending on data availability, future PVPMC blind modeling inter-

comparisons will include larger systems, subhourly time-series,

investigations on rear Gpoa, and an iterative submission process

that would enable a more detailed determination of the uncer-

tainties involved at each step of a PV performance modeling

pipeline.
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