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P H Y S I C S

Polarization-encoded photonic quantum-to-quantum 
Bernoulli factory based on a quantum dot source
Giovanni Rodari1, Francesco Hoch1, Alessia Suprano1, Taira Giordani1, Elena Negro1,  
Gonzalo Carvacho1*, Nicolò Spagnolo1, Ernesto F. Galvão2,3, Fabio Sciarrino1

A Bernoulli factory is a randomness manipulation routine that takes as input a Bernoulli random variable, output-
ting another Bernoulli variable whose bias is a function of the input bias. Recently proposed quantum-to-quantum 
Bernoulli factory schemes encode both input and output variables in qubit amplitudes. This primitive could be 
used as a subroutine for more complex quantum algorithms involving Bayesian inference and Monte Carlo meth-
ods. Here, we report an experimental implementation of a polarization-encoded photonic quantum-to-quantum 
Bernoulli factory. We present and test three interferometric setups implementing the basic operations of an alge-
braic field (inversion, multiplication, and addition), which, chained together, allow for the implementation of a 
generic quantum-to-quantum Bernoulli factory. These in-bulk schemes are validated using a quantum dot–based 
single-photon source featuring high brightness and indistinguishability, paired with a time-to-spatial demulti-
plexing setup to prepare input resources of up to three single-photon states.

INTRODUCTION
The so-called Bernoulli Factory (BF) problem was formally intro-
duced by Keane and O’Brien in (1), extending a riddle posed by Von 
Neumann in (2) regarding the possibility of obtaining an unbiased 
coin starting from a biased one. In its classical formulation, the goal 
of a BF is to construct an algorithm that, starting from independent 
and identically distributed samples drawn from a Bernoulli variable 
with unknown bias p, produces as output an exact realization of a 
Bernoulli variable with bias f(p), for a given well-defined function 
f : [0,1] → [0,1]. Since its original formulation, this BF problem has 
been extended (3) and has found application in the development of 
several fields, such as Monte Carlo methods (4, 5), Bayesian infer-
ence (6, 7), and mechanism design (8, 9).

Given the broad applicability of such a problem, in recent years, 
quantum counterparts to the BF problem were theoretically intro-
duced (10–12) and experimentally implemented (13–16). In the 
quantum-to-classical version of a BF (10, 11), the input classical coin 
is replaced by a quantum coin represented by a two-dimensional 
state ∣p⟩. In this mapping, the state ∣p⟩ is taken in such a way that if it 
is measured in the computational basis, it returns a Bernoulli ran-
dom variable with bias p. It was proven theoretically that with a 
quantum-to-classical BF, one can implement a strictly larger set of 
output functions f(p) than its classical counterpart, leading to a quan-
tum advantage in terms of resources needed to perform such a task 
(10, 13). Stemming from this, the so-called quantum-to-quantum BF 
(QQBF) concept was introduced (12). Here, both the inputs and the 
outputs of the protocol are quantum resources, and, while it was 
shown that the set of quantum-to-quantum and classical-to-classical 
simulable functions have no inclusion relationship with each other 
(12), the formal evaluation of any kind of advantage in terms of re-
sources is, to our knowledge, still an open problem. A direct com-
parison is made difficult exactly because of the lack of a proper 

inclusion relation between the classes of functions implementable by 
quantum and classical Bernoulli factories. Nonetheless, its fully 
quantum nature makes a QQBF suitable for use as an intermediate 
step within a broader quantum algorithm. With this in mind, a genu-
ine QQBF implementation should satisfy some requirements. First 
of all, the QQBF should be oblivious to the input bias p. That is, the 
scheme used should be able to map—upon suitable post-selection—
an arbitrary, unknown state ∣p⟩ into the state ∣f(p)⟩. Second, the im-
plementation should feature modularity, i.e., the ability of chaining 
together several QQBF or integrating them as a processing step in a 
more general algorithm. Most previous experimental demonstra-
tions of QQBF (14, 15) were essentially unable to fulfill these two 
requirements.

In this work, we design and implement a genuine QQBF exploiting 
polarization-encoded photonic qubits and manipulating them within a 
full in-bulk interferometric setup. With this objective, we exploit a near-
deterministic, high-brightness single-photon source (SPS) based on 
quantum dot (QD) technology, able to generate highly indistinguish-
able photons. Pairing it with a time-to-spatial demultiplexing setup 
(DMX), we can prepare the required three-photon states to be injected 
into a modular implementation of a photonic QQBF with up to two 
stages, each performing one of the basic operations over a complex 
field. The paper is organized as follows: We start by describing the main 
elements required for the construction of a genuine QQBF and our pro-
posed implementation using a photonic polarization–based encoding 
in a bulk optics setup. We validate the correct operation of the proposed 
modules by experimentally characterizing the output quantum state fi-
delity of the two primitive building blocks necessary for the construc-
tion of a general QQBF, implementing respectively the (anti-) product 
and the arithmetic (harmonic) mean functions. Last, we perform a 
three-photon experiment in which the proposed interferometers are 
concatenated together in a modular fashion. This allows us to construct 
a QQBF performing a more complex two-stage function, which can be 
seen as an instance of a programmable quantum device.

Photonic QQBF
As briefly presented, the QQBF problem is an extension of its clas-
sical counterpart (1), in which both input and output coins are encoded 
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in quantum states (Fig. 1, A and B) (12). More specifically, given a 
generic complex number z ∈ ℂ, we can define the input state as

which is the stereographic projection of the Bloch sphere onto the 
complex plane. With this mapping, apart from an irrelevant phase 

factor, a state ∣z⟩ when measured in the computational basis returns 
a Bernoulli distribution with bias p ∈ ℝ given by:

The goal of a QQBF is to process a set of quantum coins in the same 
unknown initial state ∣z⟩ to return as the final state an output quan-
tum coin in the form:

∣ z⟩ =
z ∣0L⟩+ ∣1L⟩√

1+ ∣ z ∣2
(1)

p =
1

1+ ∣z∣2 (2)

A B

C

D

Fig. 1. Main properties of a BF construction. (A) Classical-to-classical BF (CCBF). A classical coin with bias p is converted into an output classical coin with bias f(p). 
(B) QQBF. A quantum coin ∣z⟩ is used as input and manipulated into a quantum state ∣f(z)⟩. (C) Modularity of a QQBF. A QQBF implementing a generic rational function f(z) 
on the complex field can be obtained by concatenating a set of the three primitive building blocks in a modular fashion: the multiplicative inversion, the product, and the 
sum. (D) Quantum programmability of a QQBF. Given an unknown input quantum coin state, a user can prepare particular quantum states to program the functional 
shape gαβ(z) of the transformation to be performed by the QQBF.
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where f(z) is a chosen function. In (12), the necessary and sufficient 
condition for the existence of a QQBF ∣z⟩ → ∣f(z)⟩ was found, name-
ly, that the function f belongs to the set of rational functions in the 
parameter z on the complex field. Note that it can be proven that 
each function f(z) belonging to the set of rational functions over the 
complex field can be obtained by simply concatenating the opera-
tions of a field, i.e., multiplicative inverse, product, and sum, as de-
picted in (Fig. 1C). This means that an arbitrary quantum-realizable 
QQBF can be constructed providing that each primitive field opera-
tion can be implemented on its own and concatenated in a modu-
lar fashion.

In a photonic formalism fully relying on linear-optical elements 
(17–19), practically speaking, the modularity requirement can be 
enforced in a bias-oblivious way, i.e., with no information on the 
input state parameters and by encoding both input and output states 
in a specific photonic degree of freedom, which can be manipu-
lated without affecting the others. We note that in such a modular 
implementation, a QQBF can also be understood as an instance of 
a programmable quantum device (20–23), a paradigm in which a 
transformation or a measurement performed upon a set of data 
quantum states is controlled via input program qubits provided 
by the user. Programmable quantum devices are at the core of del-
egated blind quantum computing schemes (24–25). Under this 
perspective, conceptually depicted in Fig. 1D, the transformation 
implemented by the QQBF can be chosen and controlled by an ex-
ternal user who provides to the QQBF a set of chosen program 
quantum registers {∣α1⟩, ∣α2⟩, …}. As an example, in this work, we 
implement a QQBF able to manipulate a single unknown input 
quantum coin ∣z⟩ into an output quantum coin gα1α2…(z)⟩, in such a 
way that the functional form of the bias g( · ) is determined by the 
parameters in the program states. That is, in a three-photon scenario 
given two program states ∣α⟩, ∣β⟩, one can implement a QQBF that 
transforms the bias of unknown input qubit ∣z⟩ according to any cho-
sen linear function:

A more general description of the space of functions achievable via 
a genuine implementation of a QQBF protocol is reported in the 
Supplementary Materials.

In literature, different experiments have attempted to realize a 
QQBF using photonic-based platforms, but they fail in proposing a 
general approach in which different operations can be concatenated 
without any knowledge about the input quantum state (14, 15). We 
note that recent advances in photonic technologies (26) have en-
abled the realization of system setups comprising several optical 
spatial modes and components, enabled by the properties and the 
encoding schemes of integrated platforms (27–30). However, spatial 
mode–based encoding schemes may be quite challenging to imple-
ment and stabilize for long-distance communication. Therefore, to-
ward a practical integration of a QQBF as a primitive within quantum 
networks, it is necessary to use a different noise-resilient encoding 
for long-distance transmission, such as the polarization degree of 
freedom. While conversion of spatial mode–encoded states to po-
larization states has been previously achieved on silicon-based on-
chip platforms (31, 32), in this context, another approach involves 

devising protocols that directly use polarization. With this in view, 
here, we propose an implementation of a genuine QQBF protocol 
based on in-bulk optical elements, which uses the polarization of 
distinct photons to encode the input quantum coins ∣z⟩. In particu-
lar, we propose and experimentally characterize the performance of 
a pair of versatile interferometric setups, which exploit bosonic in-
terference effects among photons to implement the set of primitive 
field functions ∣f(z)⟩ required for the construction of a general po-
larization–based QQBF.

RESULTS
Polarization-based implementation of a QQBF
In this section, we demonstrate how the basic operations of a 
QQBF—inversion, product, and sum—can be implemented using 
polarization of single-photon qubits in an in-bulk, photonic linear-
optical inteferometric setup. As commonly done in a polarization-
based encoding, we identify the horizontal/vertical basis {∣H⟩, ∣V⟩} 
of the photon polarization as the computational basis {∣0L⟩, ∣1L⟩}. Con-
sequently, the generic state of a quantum coin ∣z⟩ can be written as:

With this parameterization, the primitive field operations can be 
implemented using the interferometers depicted in Fig. 2A, which 
we now briefly describe.
Multiplicative inversion operation
The inversion operation, defined as ∣ z⟩→ ∣

1

z
⟩ , is performed via a 

half-wave plate (HWP) with the optical axis placed at an angle of π/4 
radians with respect to the horizontal axis. This is the only operation 
in the protocol that is deterministic and acts on only one photon.
Product operation
The implementation of the product operation, defined as ∣z1⟩∣z2⟩ → 
∣z1z2⟩, requires two photons, with states ∣z1⟩ and ∣z2⟩, entering into 
the two input ports of a polarizing beam splitter (PBS). Post-selecting 
only the events with a single output photon per PBS output mode, we 
then measure the state of the trigger photon to select the target pho-
ton’s correct state. Acting on the trigger photon with an HWP hav-
ing an optical axis rotated by an angle of π/8 and a PBS, if its polarization 
is found to be ∣V⟩ (+ output), the state of the target photon is the 
product between z1 and z2 (∣z1z2⟩), while if the polarization is found 
to be  ∣H⟩ (− output), the target output state is the antiproduct 
(∣−z1z2⟩). In principle, it is possible to always produce the product 
output ∣z1z2⟩ by applying a fast polarization rotation, e.g., by means 
of an electro-optical modulator, acting conditioned upon a detec-
tion on the “−” output to recover the correct phase relation. In our 
implementation, the experiment is performed under post-selection 
conditions, meaning that the probability of success of the product P+ 
and the probability of the antiproduct P− are given respectively by

whose maximum Pmax
+∕−

= 0.5 is attained for input quantum coins sat-

isfying ∣z1∣2 = ∣z2∣2 = 0. Moreover, as discussed in the Supplementary 
Materials, we have that the success probability becomes null when 
one has ∣z1⟩ → 0 and ∣z2⟩ → ∣∞⟩, corresponding to a point where the 
product operation takes an indefinite form.

∣ f (z)⟩ =
f (z) ∣0L⟩+ ∣1L⟩√

1+ ∣ f (z) ∣2
(3)

∣ z⟩⊗ ∣ α⟩ ∣ β⟩ → ∣ αz + β⟩ ≡ ∣ g𝛼𝛽(z)⟩ (4)

∣ z⟩ = z ∣H⟩+ ∣V⟩
√
1+ ∣z∣2

(5)

P+(z1, z2)=P−(z1, z2)=
1+∣z

1
∣2 ∣z

2
∣2

2(1+∣z
1
∣2 )(1+∣z

2
∣2 )

(6)
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Sum operation
To implement the sum operation, defined as ∣ z1⟩ ∣ z2⟩⇒ ∣

z1 + z2
2

⟩ , a 
pair of photons in states ∣z1⟩ and ∣z2⟩ enter the two input ports of a 
50:50 beam splitter (BS). Only the events in which the two photons 
exit from the same output port are selected. Subsequently, this pair 
of photons is eventually split in two optical modes through a second 
BS, and the polarization of the photon exiting the trigger output is 
measured in the computational basis. If the polarization is found to 
be ∣V⟩ (S output), then the output state of the target photon is the 
arithmetic mean ( ∣ z1 + z2

2
⟩ ). Conversely, if the trigger’s polarization is 

found to be ∣H⟩ (I output), the output state is the harmonic mean 
( ∣ 2z1z2

z1 + z2
⟩ ). The exact sum operation ∣f(z1, z2)⟩ = ∣z1 + z2⟩, i.e., without 

the additional factor two, can be retrieved simply by concatenating 
with this setup a product block multiplying the output state by this 
factor. Again, because of the post-selection process, the success prob-
ability of the arithmetic mean PS is given by

while the probability of the harmonic mean PI is expressed as

whose maximum is analytically found to be Pmax
S∕I

= 0.25 . Again, we 
have some critical points where PS/I becomes null: (z1, z2) = ( ∞ , ∞ ) 
for the sum operation and (z1, z2) = (0,0) for the harmonic mean 
operation, as discussed in more detail in the Supplementary Materials.
Concatenation
To devise an optical setup implementing a more complex function, 
i.e., a generic rational function defined over the complex field, it is 
essential to be able to concatenate the basic operations. The fact that 
both input and output photonic qubits are encoded in polarization 
facilitates this concatenation.

The output from each single building block operation can be used 
as the input of the next operation, with a clear distinction between 
post-selected and output modes of each building block. While the 
success probability will decrease exponentially with the number of 
building blocks used, it can be proven that any complex operation 
can be implemented with a finite number of steps. More precisely, to 
implement a rational function of degree n, the number of required 
steps is upper bounded by 4n (see the Supplementary Materials for 
a formal demonstration). Furthermore, we remark that finite suc-
cess probabilities are a feature of general Bernoulli processes and not 
a limitation that is specific to our proposal.

Experimental verification of the polarization-based QQBF
In this section, we provide a description of the complete experimen-
tal apparatus that we used for the verification of the proposed 
polarization-based modular QQBF scheme. As we briefly summarize 
in Fig. 2B, the full experimental setup can be divided into three stages: 
state preparation, operation, and measurement. As described in 
the figure, we use a QD (33–37) as a highly efficient, near-deterministic 
source of single photons. At the output of the QD source, which we 
operate in the so called nonresonant longitudinal acoustic (LA) 
phonon-assisted scheme (33) at a repetition rate of 79 MHz, we 
measure a single-photon emission rate of around ~3.5 MHz on ava-
lanche photodiodes. We can assess the quality of the single-photon 
emission via a standard Hanbury-Brown-Twiss setup, measuring a 
second-order autocorrelation of around g(2)(0) ∼ 2%, while the in-
distinguishability between subsequently emitted photons evaluated 
in a Hong-Ou-Mandel interference experiment (38) is measured 
to be VHOM ∼ 92%, as shown in the Supplementary Materials. The 
output of the QD source is connected via a single-mode fiber to a 
time-to-spatial DMX, similar to the one described in (39, 40), to dis-
tribute the single-photon stream toward three output modes. To 
achieve up the three-photon resource states used in the present 
QQBF implementation, time synchronization among photons in the 
three modes is obtained via in-fiber delay loops of different lengths.

The emission properties of the QD source, characterized by two 
degenerate energy levels each emitting H/V polarized photons in a 

PS(z1, z2) =
∣
z1+z2
2

∣2 + 1

4(1+∣z
1
∣2 )(1+ ∣ z

2
∣2 )

(7)

PI (z1, z2) =
∣ z1+z2 ∣

2 + ∣2z1z2 ∣
2

16(1 + ||z1||
2
)(1 + ||z2||

2
)

(8)

A B

Fig. 2. Polarization-encoded QQBF. (A) Primitive building blocks of a polarization-based QQBF: three full in-bulk interferometers implementing the primitive field op-
erations required for a generic QQBF. The input modes of the interferometers are labeled I1 or I2. These modules can be concatenated to construct more general functions 
in a modular approach visualized here as puzzle pieces. (B) Full experimental apparatus: We use a QD single-photon source kept in a cryostation at 4 K and operated 
nonresonantly in the so-called LA phonon–assisted configuration (38). The output of the QD source is connected to a time-to-spatial DMX, which distributes the single-
photon stream in bunches of ~180 ns toward three output modes: Here, temporal synchronization is achieved via finely tuned in-fiber delay loops. The three-photon re-
source states are then input to the modular QQBF setup: At its output, the set of projective measurements required for state reconstruction is performed with a sequence 
of QWPs, HWPs, and PBS. Photon counting events recorded with avalanche photodiodes are processed in a time-to-digital converter where two- or threefold coincidence 
events with the trigger outputs, denoting that the protocol have succeeded, are suitably post-selected. Legend: PBS, polarizing beam splitter; BS, balanced beam splitter; 
HWP, half-wave plate; QWP, quarter-wave plate; +/− and S/I, single-photon detectors used, respectively, for product/antiproduct and arithmetic mean/harmonic mean.
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sligthly asymmetric microcavity (37), prevent us from achieving a 
fully polarized single-photon signal at the output of the source. Be-
cause of this fact, to achieve full control on the input state prepara-
tion, we first select the horizontally polarized component by means 
of a PBS. Subsequently, we use a pair of HWP and quarter-wave 
plate (QWP) to encode arbitrary states in the polarization of single 
photons, as in the mapping given by Eq. 5. After preparing the po-
larization of the photon states as ∣zi⟩, we use them as input in the 
desired interferometer implementing a primitive QQBF function, as 
introduced in the previous section. Practically, we note that we had 
to introduce either an additional HWP or a liquid crystals retarder 
to compensate for optical phases introduced upon reflection by 
the mirrors and PBS/BS used in the interferometric setup. As men-
tioned previously, we post-select only events in which one of the two 
input photons is collected in the trigger path and the other in the 
output path. Performing the appropriate measurements on the trig-
ger photon, we ensure that the state of the other photon—the one in 
the output arm—has been mapped into the desired QQBF result. 
Upon this post-selection process, in the last stage of the apparatus, 
we are able to perform quantum state tomography of the output 
photons’ state by means of polarization projections implemented via 
a QWP, an HWP, and a PBS. Last, to demonstrate the approach’s 
modularity, we concatenate the two setups: The output of the sum 
block becomes one of the inputs of the product block, while the 
third photonic resource is taken from the previously unused chan-
nel of the DMX. In this setup, exploiting the high intrinsic bright-
ness of the single-photon source paired with the time-to-spatial 
DMX, data acquisition is carried out on three-photon coincidence 
events. In this case, the set of three projective measurements (σx, σy, 
σz) required to perform quantum state tomography and verify that 
the state of the output photon is the desired one by computing quan-
tum state fidelity must be post-selected upon detection of two pho-
tons on a given combination of two trigger outputs.
Validation of the product building block
We first consider the primitive building block implementing the 
product operation as a QQBF. In our implementation, exploiting the 
polarization degree of freedom manipulated via in-bulk optical ele-
ments, two main noise-inducing effects must be accounted for: (i) 
the optical phase introduced by reflection through mirrors and the 
first PBS, which can be corrected by introducing a controlled phase 
shift between the ∣H⟩ and ∣V⟩ polarizations before the heralding 
measurement; and (ii) the imperfect indistinguishability between 
the used single photons, i.e., in degrees of freedom different than the 
polarization, which introduces a degree of impurity in the product/
antiproduct density matrix. It can be shown that given a degree of 
indistinguishability V, the final density matrix of the product/anti-
product operations will respectively be

as discussed in the Supplementary Materials. To validate the experi-
mental apparatus implementing the product operation, we per-
formed tomography measurements of the states resulting from the 

product and antiproduct operation between states ∣z1⟩ and ∣z2⟩ ran-
domly sampled from a uniform distribution of states defined over 
the Bloch sphere (see Supplementary Materials). We then evaluated 
the state fidelity (41)

between the experimentally obtained output state ρexp and the ex-
pected output state ∣σth⟩. In Fig. 3, we report the results more than 
737 pairs of states, obtaining mean fidelities with the expected out-
put states ∣z1z2⟩ and ∣−z1z2⟩ of

These values can be further processed to take into account the im-
perfect indistinguishability between the used photons. In particular, 
performing an Hong-Ou-Mandel experiment between the pairs of 
DMX output photons, we measured a pairwise two-photon visibility 
of around V ∼ 0.84. Comparing the obtained experimental data 
with the expected output density matrices obtained from an ideal 
operation with input photons having this amount of partial indistin-
guishability, we find an output average fidelity of

Validation of the sum building block
Analogously to what has been discussed for the product operation 
and also in the sum operation, we have to account for the presence 
of a polarization-dependent optical phase introduced by reflection 
on the BSs. Again, this effect can be corrected by placing an HWP in 
the first preparation arm and a variable phase retarder in the output 
arm. Similarly to the product operation, we performed a quantum 
state tomography reconstruction of the states resulting from the 
arithmetic and harmonic mean operations between state pairs ∣z1⟩ 
and ∣z2⟩ randomly sampled from a uniform distribution of states 
defined over the Bloch sphere (see the Supplementary Materials). 
We report in Fig. 3 the results more than 1007 pairs of states, obtain-
ing average fidelities with the expected states ∣z1 + z2

2
⟩ and ∣ 2z1z2

z1 + z2
⟩ of

respectively. Again, this result can be further processed to take into 
account the imperfect indistinguishability V in the expected output 
state, where the formal dependence of the output density matrices 
with V is reported in the Supplementary Materials. By considering a 
two-photon visibility of around V ∼ 0.84, we obtain the following 
average fidelities

We note that when considering the fidelities of the experimentally 
obtained states with respect to the theoretical model assuming per-
fect indistinguishability, for around 3% of the output states, we ob-
tain values lower than 0.75: This is due to the fact that, with the used 

ρprod =
1

1+ ∣ z1z2∣
2

(
∣z1z2∣

2 Vz1z2

Vz∗
1
z∗
2

1

)
(9)

ρantiprod=
1

1+∣−z1z2∣
2

(
∣−z1z2∣

2 −Vz1z2

−Vz∗
1
z∗
2

1

)
(10)

ℱ = Tr

��√
ρexpσth

√
ρexp

�2

(11)

Fprod=0.931±0.040

Fantiprod=0.927±0.043
(12)

F
Exp

prod
=0.983±0.014,

F
Exp

antiprod
=0.979±0.019

(13)

Fsum=0.934±0.070

Famean=0.946±0.057
(14)

FExp
sum

=0.973±0.025,

FExp
amean

=0.978±0.022. (15)
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scheme, the corresponding input pairs {∣z1〉, ∣z2〉} appear to be more 
sensitive to both an imperfect compensation of the polarization-
dependent phase shift introduced by the first BS and imperfect 
indistinguishability. When accounting for the latter effect, the 
corrected visibility for such states lies in all cases in the interval 
(0.75,0.9), i.e., the tail of the overall distribution reported in Fig. 3. 
Considering both the sum-block and the product-block, we obtain 
a high average fidelity with respect to randomly chosen input pairs 
{z1, z2}. We obtain an average fidelity with respect to the expected 
pure output states of F = (0.933 ± 0.024) , certifying the correct be-
havior of the overall implementation of the QQBF building blocks 
without accounting for sources of experimental noise of the present 
implementation, i.e., nonideal optical elements and imperfect pho-
tonic indistinguishability. Accounting for the latter effect in terms of 
a correction applied to the expected output density matrices, we ob-
tain an average fidelity of FExp = (0.978 ± 0.020) , which is a bench-
mark of how we could expect the proposed optical setups to perform 
with the use of ideal photonic resources.
Polarization-based QQBF as a modular programmable setup
As the natural next step, we then experimentally tested whether the 
implemented in-bulk interferometers, discussed in the previous sec-
tions, could be chained together in a modular fashion via redirect-
ing the output of a given block to the input of the subsequent one, an 
essential requirement toward the implementation of a photonic-
based QQBF implementing a generic function ∣f(z)⟩. By chaining 
together the sum and product modules depicted in Fig. 2A, one 
obtains a QQBF implementing, upon post-selection on the corre-
sponding pair of trigger outputs, one of four possible functions ∣f(z1, 
z2, z3)⟩ among the three unknown input quantum coins {∣z1⟩, ∣z2⟩, 
∣z3⟩}: sum-product, harmonic mean-product, sum-antiproduct, and 
harmonic mean-antiproduct. From another perspective, we note 
that such a scenario, featuring two concatenated modules and three 
input photons, can be interpreted as the photonic realization of a 

programmable setup implementing the linear transformation of 
Eq. 4. As a specific example, we identify the state ∣z1⟩ of one input 
photon as the data state ∣z⟩ and treating the other two inputs {∣z2⟩, 
∣z3⟩} as program states provided by the user. One can then realize 
both linear transformations given by

In our implementation, these functions are realized by choosing

since it can be easily shown that after the linear optical transforma-
tion obtained by chaining together the sum and product modules, 
the overall output state will be either in the state

or in the state

upon the post-selection process conditioned on the detection of one 
photon in the state ∣S⟩ at the sum trigger output together with a 
photon at the product trigger output respectively in state ∣+⟩ or in 
state ∣−⟩.

To experimentally test the feasibility of this approach, we real-
ized the interconnection between the two optical interferometers 
via a single-mode fiber, linking the sum output port to the input I1 
of the product interferometer in Fig. 2A. To compensate both for 
unwanted phases introduced by reflections in the product and sum 
setup, as well as the unchanged polarization state at the output of 

∣ z⟩⊗ ∣ α⟩ ∣ β⟩→ ∣±αz ± β⟩ (16)

∣ z
1
⟩ =∣ z⟩; ∣ z

2
⟩ =

�����

β

α

�
; ∣ z

3
⟩ =∣2α⟩ (17)

�����

z + β∕α

2
⋅ (2α)

�
=∣αz + β⟩ (18)

�����
−

z + β∕α

2
⋅ (2α)

�
=∣−αz − β⟩ (19)

Fig. 3. Fidelity of the output states from the basic operation interferometers. On the left side, histograms of the fidelity for product and antiproduct operation evalu-
ated more than 737 random pairs of states ∣z1⟩ and ∣z2⟩ uniformly drawn from the Bloch sphere. On the right, histograms of the fidelity for the arithmetic and harmonic 
mean operation evaluated ,more than 1007 random pairs of states ∣z1⟩ and ∣z2⟩ uniformly drawn from the Bloch sphere. The fidelities are shown both with respect to the 
ideal output pure state ∣f(z)⟩ and with respect to the state expected when taking into account the estimated imperfect photonic indistinguishability.
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the sum setup, we introduce a set of paddles to compensate for the 
unknown unitary induced by the single-mode fiber on the po-
larization space. Encoding different polarization states ∣z1〉, ∣z2〉 as 
input of the sum setup and ∣z3〉 as the free input in the product 
setup, we first evaluated the outcome of each of the four possible 
function combinations: sum-product, harmonic mean-product, sum-
antiproduct, and harmonic mean-antiproduct. The crucial use of a 
QD-based bright SPS paired with a highly efficient time-to-spatial 
DMX enabled us to experimentally perform a threefold quantum 
state tomography for each combination. In particular, we consid-
ered 30 different sets {∣z1〉, ∣z2〉, ∣z3〉} of input states, and for each of 
these, we computed the fidelity associated with the four expected 
ideal output states, represented as black outlined bars in Fig. 4A. As 
briefly discussed in the previous sections and also in this scenario, 
it is necessary to account for the noise introduced by the finite 
degree of indistinguishability. As indicated by the shaded bars in 
Fig. 4A, the output state fidelity—our figure of merit for the experi-
ment—generally improves when we consider the expected output 
states corrected for the limited degree of indistinguishability among 
the interfering single-photon states—assumed to be approximately 
V ∼ 0.84, as reported in the Supplementary Materials. Note that 
there are triples of inputs {∣z1〉, ∣z2〉, ∣z3〉} for which the resulting 
density matrices do not depend on the visibility V, thus resulting in 
an output fidelity that is unaffected by this correction. Empty re-
gions at the center of each bar plot indicate input choices for which 
the resulting function succeeds with null probability. In Table 1, 
we report the average fidelities, computed more than the 30 in-
put sets {∣z1〉, ∣z2〉, ∣z3〉}, with respect to each possible combination 

obtainable by cascading together the sum and the product-building 
blocks. The average overall fidelity accounting for the visibility cor-
rection is found to be

which shows that the proposed polarization-based encoding and 
the fully in-bulk experimental schemes can be indeed chained to-
gether in a fashion that is both modular and oblivious about the 
input biases {∣z1〉, ∣z2〉, ∣z3〉}, two essential requirements for the im-
plementation of a genuine version of a photonic QQBF.

As briefly discussed at the beginning of this section, we can in-
terpret the photonic concatenation of two QQBF primitive modules 
as an instance of a device implementing the family of linear func-
tions ∣±gαβ(z)⟩ = ∣± αz ± β⟩. This perspective has one of the input 
photons interpreted as a data qubit ∣z⟩, possibly unknown to the 
experimenter and provided by an external user, while the other two 
can be fixed by the experimenter to be ∣β/α⟩ and ∣2α⟩ so as to choose 
the parameters of the implemented function gαβ in a programmable 
fashion. In Fig. 4B, we focus on the results obtained for the QQBF 
implementing the function ∣gαβ(z)⟩ = ∣αz + β⟩, recovered when 
post-selecting upon the detection of a photon in the S-output of the 
sum module and on the ∣+⟩-output of the product module. In par-
ticular, we report the experimentally obtained fidelities with respect 
to the (non) corrected output states for three different choices of 
programmable parameters (α, β), corresponding to (α = β = 1/2), 
(α = 1/2, β = 0), and (α = − i/2, β = 0). A comparison between the 
experimentally obtained density matrices and the expected ones is 

F
Exp

3−fold
= 0.931 ± 0.017

(20)

BA

Fig. 4. Performance of the concatenated QQBF primitive modules as a programmable device. (A) Circular bar plot of the output quantum state fidelities, comparing 
the theoretical state with the one reconstructed via quantum state tomography, for each possible combination of concatenated operations. The black outlined bars rep-
resent the fidelities obtained with respect to the theoretically predicted pure output state; on top, the shaded bars represent the fidelity with respect to the state cor-
rected for imperfect photonic indistinguishability. The absence of a bar corresponds to a null post-selection probability. (B) Interpretation of the results obtained by 
concatenating the sum and product primitive building blocks to implement a programmable QQBF producing the family of linear transformations ∣±gαβ(z)⟩ = ∣±α ± βz⟩. 
The three-bar plots depict the experimentally obtained fidelities when computing the output function ∣gαβ(z)⟩ = ∣αz + β⟩ for different choices of the input data states z, 
namely {z1, z2, z3, z4, z5, z6} = {1,0, −0.27 −i0.74, −0.27 +i0.74, −i, ∞}, and pairs of parameters (α, β). The program states at the input of the sum module and the product 
module, respectively, were chosen as ∣β/α⟩ and ∣2α⟩, so the pair of programming parameters are (α, β) = {(1/2,1/2), (1/2,0), (−i/2,0)} in the function gαβ(z). The darker and 
lighter blue bars show the quantum state fidelity between the experimentally reconstructed state and, respectively, the output state corresponding to completely indis-
tinguishable input photons, and the state expected from an ideal operation with the experimentally characterized imperfect photonic indistinguishability.
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provided in the Supplementary Materials. Furthermore, by consider-
ing all the 30 chosen input triplets, we obtain an overall average cor-
rected fidelity of F̂αz+β = 0.951 ± 0.024 and F̂−αz−β = 0.945 ± 0.030 , 
showing that with our proposed polarization-encoded photonic 
setups, we can provide a proof-of-principle realization of a pro-
grammable QQBF implementing the linear transformations ∣±gαβ(z)⟩ = 
∣±αz ± β⟩.

DISCUSSION
In this work, we devised and experimentally verified a solution to 
the quantum counterpart of the so-called BF problem, i.e., a ran-
domness manipulation protocol which generates, starting from quan-
tum coins in a state ∣z⟩ ∝ z∣0⟩ + ∣1⟩, an output state ∣f(z)⟩ where f(z) 
is a rational function defined on the complex field. In the present 
scheme, the primitive field functions from which arbitrary QQBF 
can be constructed have been implemented by using two fully in-
bulk interferometric schemes, in which the required operations are 
realized as probabilistic gates acting on polarization-encoded 
photonic qubits. In particular, we experimentally tested the perfor-
mance of the proposed interferometric setups both in the single-
operation scenario and when two modules are concatenated, verifying 
not only the obliviousness of our schemes to the input state bias 
but also the modularity of our approach, both requirements for 
a genuine implementation of a QQBF. Moreover, we show how a 
QQBF where two or more modules are cascaded together can be 
interpreted as a programmable platform to perform an operation 
gα1α2…(z) on an unknown input state ∣z⟩, parameterized by a set of 
auxiliary program states ∣α1, α2, …⟩, and presented an implementa-
tion of the function ∣αz + β⟩ as an example. Our QQBF is imple-
mented in a state-of-the-art hybrid photonic platform, composed of 
a high-brightness SPS based on the QD technology interfaced with 
an active time-to-spatial DMX, tailored for the efficient generation 
of multiphoton resource states. This enables us to validate the pres-
ent polarization-based photonic QQBF implementation via a recon-
struction of the output state even in the more complex three-photon 
scenario. Moreover, even if the proposed scheme relies on bosonic 
interference effects and measurement post-selection thus being in-
trinsically probabilistic, one could take advantage of the near-
deterministic properties of the QD emission to increase the final 
success probability of the protocol via the addition of a feedback-
controlled active modulation system. This approach would pro-
vide an essential element toward the scalability of the proposed 
modular implementation of QQBF to perform complex functions 
requiring a higher number of modules chained together since the 

implementation of n modules requires n + 1 single-photon states. 
Given its probabilistic nature, a thorough analysis of the resource 
overhead of the protocol would be of interest to assess a practical 
application of our protocol and is left as future work. Recent techno-
logical advances have shown the capability of moving photonic 
experiments toward regimes with larger photon numbers (30, 42, 
43). Hence, given the maturity of photonic quantum technologies 
and considering that polarization encoded photonic qubits are a 
naturally suitable and resilient resource when transmitted over long 
distances, our results could pave the way toward the use of a QQBF, 
or similar randomness manipulation schemes, as a subroutine in a 
distributed computation over a complex quantum network.

MATERIALS AND METHODS
Our QD emitter is a single self-assembled InGaAs QD embedded at 
the center of an electrically controlled microcavity surrounded by 
two Braggs reflectors made of GaAs/Al 0.95Ga 0.05As λ/4 layers with 
36 (16) pairs for the bottom (top) (36) to enhance the spontaneous 
emission via Purcell effect and enabling collection in a single-mode 
fiber atop of the source. We use a nonresonant emission geometry 
known as LA phonon-assisted configuration (33): upon being excited 
with a 79-MHz–pulsed laser source at a wavelength of 927.2 nm, 
photons are emitted nonresonantly at a wavelength of 927.8 ± 0.2 nm 
and separated from the residual pump laser through a sequence 
of three narrow band-pass filters. The QD source is housed on a 
commercially available solution—Quandela e-Delight chip—and 
the SPS is kept at 4 K in a low-vibration closed-cycle He cryostat 
Attocube Attodry 800. Pulse shaping of the 79-MHz–pulsed pump 
laser is obtained through a commercial 4f to select the required 
excitation central wavelength of 927.2 nm and achieve an ~100-pm 
spectral bandwidth. As stated in the section “Experimental verifica-
tion of the polarization-based QQBF”, the typical count rate at the 
output of the SPS is around 3.5 MHz when measured with ava-
lanche photodiodes featuring a quantum efficiency of ~35%, corre-
sponding to a first-lens brightness of ~24%. The stream of single 
photons emitted by the QD is then sent to the time-to-spatial 
DMX. Here, we have an optical setup that, by means of the spatial 
diffraction induced by an acousto-optical modulator, divides the 
input signal in bunches of ~180 ns sequentially and periodically 
redirected toward three output channels, akin to the scheme used in 
(29, 40). As stated in the main text, the signals from these outputs 
are collected in single-mode fibers, which are delay loops of 
different lengths, to temporally synchronize the photon bunches 
exiting each of the three output channels, rendering them tempo-
rally indistinguishable.

Table 1. Threefold fidelity. Average fidelities computed more than 30 input triplets {∣z1〉, ∣z2〉, ∣z3〉} for each of the four operation combinations (sum-product, 
harmonic mean-product, sum-antiproduct, and harmonic mean-antiproduct). The reported values refer to the ideal case in which perfect indistinguishability is 
considered (V = 1) and to the experimental indistinguishability scenario (V = 0.84). The first two table columns also represent the average fidelities for the 
photonic QQBF interpreted as a programmable setup, implementing the transformation ∣±gαβ(z)⟩ = ∣±αz ± β⟩.

V FSP FMP FSA FMA

1 0.865 ± 0.055 0.851 ± 0.061 0.866 ± 0.059 0.849 ± 0.058

0.84 0.951 ± 0.024 0.916 ± 0.061 0.945 ± 0.030 0.913 ± 0.059
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