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Abstract

In this thesis, a new model for the simulation of the breaking waves is proposed.

This model is based on the solution of the three-dimensional equations of motion

expressed in contravariant formulation. These equations are in integral form and

are expressed in terms of the conserved variables H and Hu⃗ (H is the total water

depth and u⃗ is fluid velocity vector).

The three-dimensional ensemble-averaged motion equations are solved by a

new high-order shock-capturing numerical scheme. The elements of novelty in this

new numerical scheme are two. The first element of novelty consists in the pro-

posal of a new reconstruction technique of the point values of the conserved vari-

ables on the cell faces of the computational grid (starting from the cell-averaged

values of the same variables). This reconstruction technique is named Wave-

Targeted Essentially Non-Oscillatory (WTENO) and it is specifically designed

for the three-dimensional simulation of breaking waves. The second element of

novelty consists in the use of an exact solution for the Riemann problem to ad-

vancing in time the point values of the conserved variables at the cell faces.

In this thesis, two turbulence models, which belong to the context of the

Unsteady Reynolds-Averaged Navier-Stokes Equations (URANS) models, k − l

and k − ω (k is the turbulent kinetic energy, l is the mixing length and ω is the

specific dissipation rate) are proposed.

In the new k−l turbulence model, the k-equation is expressed in a new integral

contravariant form on a generalized time-dependent curvilinear coordinate system.

In this model, the equations of motion are solved also in the buffer layer, while the

k-equation is solved starting from the buffer layer in the proximity of the viscous

sublayer. Outside the oscillating wave boundary layer, a new formula for the

mixing length is proposed as a function of the first and second spatial derivatives

of the local maximum water surface elevation. In the oscillating wave boundary

layer, the mixing length is calculated by the hypothesis of the balance between

production and dissipation of turbulent kinetic energy.

In the new k − ω turbulence model, the k and ω equations are written in

a new integral contravariant form on a generalized time-dependent curvilinear

coordinate system. The new k − ω turbulence model admits the possibility to

assign the boundary condition for the specific dissipation rate directly at the
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bottom. In this model, the equations of motion are solved starting from the

buffer layer and the k and ω-equations are solved in the buffer layer at the border

with the viscous sublayer. The production of turbulent kinetic energy in the

zone between the breaking wave fronts and the oscillating wave boundary layer is

reduced by introducing a dynamic coefficient for the dissipation of ω and a limiter

in the eddy viscosity.

In this thesis, the new k−ω turbulence model is used to directly simulate the

unsteady quasi-periodic vortex structures due to the interaction between breaking

waves and coastal works.

Keywords: three-dimensional model, shock-capturing numerical scheme,

WTENO reconstructions, turbulence models, URANS models, oscillating wave

boundary layer, Smagorinsky, new k − l turbulence model, new k − ω turbulence

model, boundary conditions, unsteady quasi-periodic vortex structures, wave-

structure interaction.





Contents

List of Figures viii

List of Tables xii

Nomenclature xiv

Acronyms xix

1 Introduction 1
1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Motion Equations 15
2.1 Conserved Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Poisson-like equation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Numerical scheme 24
3.1 Finite volume discretization . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Discretized equations of motion . . . . . . . . . . . . . . . . 26
3.1.2 Boundary conditions for the equations of motion . . . . . . 28

3.2 Numerical procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 WTENO Reconstructions . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Exact Riemann Solver . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Fractional step method . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Smagorinsky Turbulence Model under breaking waves 47
4.1 Smagorinsky Turbulence Model and near-wall treatment . . . . . . 48
4.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Ting and Kirby test case of a spilling breaker with a cnoidal
wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Stive test case of a spilling breaker with a monochromatic
wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



4.2.3 Stive test case of a spilling-plunging breaker with a monochro-
matic wave . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 k − l Turbulence Model under breaking waves 63
5.1 Equations of k − l Turbulence Model . . . . . . . . . . . . . . . . . 65
5.2 Standard k − l Turbulence Model (KLS) . . . . . . . . . . . . . . . 70
5.3 New k − l Turbulence Model (KLN) . . . . . . . . . . . . . . . . . 71
5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 Ting and Kirby test case of a spilling breaker with a cnoidal
wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.2 Stive test case of a spilling breaker with a monochromatic
wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.3 Stive test case of a spilling-plunging breaker with a monochro-
matic wave . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 k − ω Turbulence Model under breaking waves 89
6.1 Existing k − ω Turbulence Model . . . . . . . . . . . . . . . . . . . 93

6.1.1 Cross diffusion term . . . . . . . . . . . . . . . . . . . . . . 95
6.1.2 Stress-limiter . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 New k − ω Turbulence Model . . . . . . . . . . . . . . . . . . . . . 96
6.2.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.1 Ting and Kirby test case of a spilling breaker with a cnoidal

wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.2 Stive test case of a spilling breaker with a monochromatic

wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.3 Stive test case of a spilling-plunging breaker with a monochro-

matic wave . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Interaction between breaking waves and a coastal defence work 115
7.1 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 Conclusions 138

Bibliography 141

A Appendix A: Rankine-Hugoniot condition 148

B Appendix B: Riemann Invariants 150

C Appendix C: Derivation of ω -equation 152

D Appendix D: Q-method 155



List of Figures

2.1 Reference coordinate system. . . . . . . . . . . . . . . . . . . . . . 18

3.1 Control volume on which the Poisson-like equation is solved. . . . . 27
3.2 Grid cells of the computational domain. −−− ghost cells and

solid line computational grid cells. . . . . . . . . . . . . . . . . . . 30
3.3 Flowchart of the numerical scheme. . . . . . . . . . . . . . . . . . . 31
3.4 Stencil of contiguous cells for defining the polynomials P(p)i,j,k. . . 37
3.5 Complete solution of the Riemann problem to the left of the contact

wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Complete solution of the Riemann problem to the right of the con-

tact wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Oscillating wave boundary layer. . . . . . . . . . . . . . . . . . . . 49
4.2 Discretization of the vertical cells outside the buffer layer for the

Smagorinsky model. . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Breaker types [69]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Computational domain for Ting and Kirby [63] test case (in the

x-direction, only one line out every 10 is drawn). . . . . . . . . . . 56
4.5 Ting1: local minimum, average and maximum water surface eleva-

tions. Experimental measurements • [63] and numerical results −
with the Smagorinsky turbulence model and low-order numerical
scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Ting2: local minimum, average and maximum water surface eleva-
tions. Experimental measurements • [63] and numerical results −
with the Smagorinsky turbulence model and high-order numerical
scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Ting3: local minimum, average and maximum water surface eleva-
tions. Experimental measurements • [63]. Numerical results with
CS = 0.1 dashed line −−−, CS = 0.2 solid line − and CS = 0.3
dotted line · · · (Smagorinsky turbulence model and high-order nu-
merical scheme). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Computational domain for Stive [60, 61] test case (in the x-direction,
only one line out every 10 is drawn). . . . . . . . . . . . . . . . . . 59

4.9 Stive1: wave height. Experimental measurements • [60, 61]. Nu-
merical results with CS = 0.1 dashed line −−−, CS = 0.2 solid
line − and CS = 0.3 dotted line · · · (Smagorinsky turbulence model
and high-order numerical scheme). . . . . . . . . . . . . . . . . . . 59

ix



4.10 Stivesp1: wave height. Experimental measurements • [61]. Numer-
ical results with CS = 0.1 dashed line −−−, CS = 0.2 solid line −
and CS = 0.3 dotted line · · · (Smagorinsky turbulence model and
high-order numerical scheme). . . . . . . . . . . . . . . . . . . . . . 61

5.1 Definition of the zones. Zone 1: shoaling zone; Zone 2: zone around
the wave breaking point; Zone 3: surf zone with high slope of the
local maximum water surface elevations; Zone 4: surf zone. Zone
5: oscillating wave boundary layer. Experimental measurements ◦
of the local maximum water surface elevations. . . . . . . . . . . . 68

5.2 Grid1. Vertical discretization of the grid cells outside the buffer
layer for simulations carried out by the standard k − l turbulence
model (Standard k − l turbulence model (KLS)). . . . . . . . . . . 73

5.3 Grid2. Vertical discretization of the grid cells inside the buffer layer
and turbulent core for the simulations carried out by the new k− l
turbulence model (New k − l turbulence model (KLN)). . . . . . . 74

5.4 Ting4: local minimum, average and maximum water surface eleva-
tions. Experimental measurements • [63] and numerical results −
with the standard k − l turbulence model (KLS). . . . . . . . . . . 75

5.5 Ting4: time mean vertical distribution of the normalized turbulent
kinetic energy at (a) x = 7.27m, (b) x = 7.88m, (c) x = 8.5m, (d)
x = 9.07m and (e) x = 9.67m. Experimental measurements • [63]
and numerical results ▽ with the standard k − l turbulence model
(KLS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Ting4: time mean vertical distribution of the normalized horizontal
flow velocity at (a) x = 7.27m, (b) x = 7.88m, (c) x = 8.5m, (d)
x = 9.07m and (e) x = 9.67m. Experimental measurements • [63]
and numerical results ▽ with the standard k − l turbulence model
(KLS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Ting5: local minimum, average and maximum water surface eleva-
tions. Experimental measurements • [63] and numerical results −
with the new k − l turbulence model (KLN). . . . . . . . . . . . . . 78

5.8 Ting5: time mean vertical distribution of the normalized turbulent
kinetic energy at (a) x = 7.27m, (b) x = 7.88m, (c) x = 8.5m, (d)
x = 9.07m and (e) x = 9.67m. Experimental measurements • [63]
and numerical results ▽ with the new k− l turbulence model (KLN). 79

5.9 Ting5: time mean vertical distribution of the normalized horizontal
flow velocity at (a) x = 7.27m, (b) x = 7.88m, (c) x = 8.5m, (d)
x = 9.07m and (e) x = 9.67m. Experimental measurements • [63]
and numerical results ▽ with the new k− l turbulence model (KLN). 80

5.10 Ting5: (a) Instantaneous wave field with contours of turbulent
kinetic energy. (b) Instantaneous velocity field, one vectors every
two is drawn. (Ts = 150s) . . . . . . . . . . . . . . . . . . . . . . . 81

5.11 Stive2: wave height. Experimental measurements • [60, 61] and
numerical results solid line with the standard k−l turbulence model
(KLS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.12 Stive3: wave height. Experimental measurements • [60, 61] and
numerical results solid line with the new k − l turbulence model
(KLN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



5.13 Stive3: (a) Instantaneous wave field with contours of turbulent
kinetic energy. (b) Instantaneous velocity field, one vectors every
two is drawn. (Ts = 180s) . . . . . . . . . . . . . . . . . . . . . . . 84

5.14 Stivesp2: wave height. Experimental measurements • [61] and nu-
merical results solid line with the standard k− l turbulence model
(KLS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.15 Stivesp3: wave height. Experimental measurements • [61] and nu-
merical results solid line with the new k− l turbulence model (KLN). 85

5.16 Stivesp3: (a) Instantaneous field with contours of turbulent kinetic
energy. (b) Instantaneous velocity field, one vectors every two is
drawn. (Ts = 179s) . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Variation of βω as a function of the absolute value of the strain rate
tensor |S|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Vertical discretization of the grid cells inside the buffer layer and
turbulent core for the new k − ω turbulence model. . . . . . . . . . 101

6.3 Ting6: local minimum, average and maximum water surface eleva-
tions. Experimental measurements • [63] and numerical results −
with the new k − ω turbulence model. . . . . . . . . . . . . . . . . 102

6.4 Ting6: time mean vertical distribution of the normalized turbulent
kinetic energy at (a) x = 7.27m, (b) x = 7.88m, (c) x = 8.5m, (d)
x = 9.07m and (e) x = 9.67m. Experimental measurements • [63]
and numerical results ▽ with the new k − ω turbulence model. . . 103

6.5 Ting6: time mean vertical distribution of the normalized horizontal
flow velocity (undertow) at (a) x = 7.27m, (b) x = 7.88m, (c)
x = 8.5m, (d) x = 9.07m and (e) x = 9.67m. Experimental
measurements • [63] and numerical results ▽ with the new k − ω
turbulence model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6 Ting6: Instantaneous fields with contours of turbulent kinetic en-
ergy at (a) Ts = 160.2s, (b) Ts = 160.4s, (c) Ts = 160.6s, (d)
Ts = 160.8s, (e) Ts = 161.0s. (f) Instantaneous velocity field, one
vectors every two is drawn (Ts = 160.2s). . . . . . . . . . . . . . . 107

6.7 Stive4: wave height. Experimental measurements • [60, 61] and
numerical results − with the new k − ω turbulence model. . . . . . 107

6.8 Stive4: Instantaneous fields with contours of turbulent kinetic en-
ergy at (a) Ts = 180.0s, (b) Ts = 180.5s, (c) Ts = 181.0s, (d)
Ts = 181.5s and (e) Ts = 182.0s. (f) Instantaneous velocity field,
one vectors every two is drawn (Ts = 180s). . . . . . . . . . . . . . 109

6.9 Stivesp4: wave height. Experimental measurements • [61] and nu-
merical results − with the new k − ω turbulence model. . . . . . . 110

6.10 Stivesp4: Instantaneous fields with contours of turbulent kinetic
energy at (a) Ts = 179.0s, (b) Ts = 179.5s, (c) Ts = 180.0s, (d)
Ts = 180.5s and (e) Ts = 181.0s. (f) Instantaneous velocity field,
one vectors every two is drawn (Ts = 179s). . . . . . . . . . . . . . 112

7.1 Domain of a portion of coastal area. (a) Plan view; (b) vertical
section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Half domain of a portion of coastal area. Three-dimensional view. . 118



7.3 Computational domain. (a) Plan view; (b) vertical section (one
line every four is drawn in the horizontal directions and one line
every two is drawn in vertical direction). . . . . . . . . . . . . . . . 119

7.4 Instantaneous wave fields. (a) Ts = 95.9s; (b) Ts = 96.1s; (c)
Ts = 96.3s; (d) Ts = 96.5s; (e) Ts = 96.7s;(f) Ts = 96.9s; (g)
Ts = 97.1s; (h) Ts = 97.4s. . . . . . . . . . . . . . . . . . . . . . . . 122

7.5 Circulation pattern. (a) At the bottom; (b) intermediate depth;
(c) near the free surface. Only one out of every three vectors are
drawn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.6 Instantaneous vortex structures visualized using Q-criterion (three-
dimensional contours of the second invariant of the velocity gradi-
ent tensor). (a) Ts = 95.9s; (b) Ts = 96.1s; (c) Ts = 96.3s; (d)
Ts = 96.5s; (e) Ts = 96.7s; (f) Ts = 96.9s; (g) Ts = 97.1s; (h)
Ts = 97.4s. The emerged barrier is inside thin black lines. . . . . . 127

7.7 Vertical sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.8 Plan sections of instantaneous vortex structures visualized by Q-

criterion near the bottom at (a) Ts = 95.9s, (b) Ts = 96.3s, (c)
Ts = 96.9s and (d) Ts = 97.4s. . . . . . . . . . . . . . . . . . . . . 129

7.9 Plan sections of instantaneous vortex structures visualized by Q-
criterion at the intermediate water depth at (a) Ts = 95.9s, (b)
Ts = 96.3s, (c) Ts = 96.9s and (d) Ts = 97.4s. . . . . . . . . . . . . 131

7.10 Vertical sections of instantaneous vortex structures visualized by
Q-criterion at x = 7.60m: (a) Ts = 96.5s, (b) Ts = 96.9s and (c)
Ts = 97.4s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.11 Vertical sections of instantaneous vortex structures visualized by
Q-criterion at x = 7.70m: (a) Ts = 96.5s, (b) Ts = 96.9s and (c)
Ts = 97.4s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.12 Vertical sections of instantaneous vortex structures visualized by
Q-criterion at x = 7.78m: (a) Ts = 96.5s, (b) Ts = 96.9s and (c)
Ts = 97.4s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.13 Vertical sections of instantaneous vortex structures visualized by
Q-criterion at y = 0.31m: (a) Ts = 95.9s, (b) Ts = 96.7s and (c)
Ts = 97.4s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.14 Vertical sections of instantaneous vortex structures visualized by
Q-criterion at y = 0.98m: (a) Ts = 95.9s, (b) Ts = 96.7s and (c)
Ts = 97.4s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



List of Tables

4.1 Test cases with Smagorinsky turbulence models. . . . . . . . . . . . 53
4.2 Wave parameters: wave period, wave height in deep water, wave-

lenght, undisturbed water depth in deep water, beach slope, wave
breaking point, wave height at the breaking point. . . . . . . . . . 55

5.1 Test cases with k − l turbulence models. . . . . . . . . . . . . . . . 74

6.1 Test cases with the new k − ω turbulence model. . . . . . . . . . . 102

xiii



Nomenclature

α, αω, β, β
∗, βω, βω1, ζ, σ, σ

∗, σd, σd0, σk, σω, σω′ , σω′0, Bc, Clim, Cµ, Cω2, Cω, l2, k1, k2
Coefficients of the turbulence models [-]

( )∗ Predictor value of the conserved variable

( )c Conserved value of the conserved variable

( )
+/−
i+/− 1

2
,j,k

Point value of the conserved variables on the right and left side of
the computational grid cells in i-direction i, j, k = 1, 2, 3

( )i,j,k Generic value defined at the center of the computational cell i, j, k =
1, 2, 3

( ̂ ) Line-averaged value of a generic variable

( ˜ ) Surface-averaged value of a generic variable

α Beach slope [°]

βp Smoothness indicator [-]

· Scalar product

∆A(t) Boundary surface of the moving control volume [m2]

∆Aα+0 and ∆Aα−0 Control volume boundary surfaces of ∆V0 in the transformed
space (α = 1, 2, 3) [-]

∆Aα1 (τ) Surface boundary of the time-varying control volume in curvilinear co-
ordinate [m2]

∆V (t) Moving control volume [m3]

∆V0 Control volume in the transformed space [-]

∆V1(τ) Time-varying control volume in curvilinear coordinate [m3]

∆x,∆y,∆z Spatial discretization in x, y, z-direction [m]

∆xl Spatial discretization in transformed space l = 1, 2, 3 [-]

∆ Length scale [m]

δlm Kronecker symbol [-]

δp Cut-off functions p = −1, 0, 1 [-]

xiv



ω̇p Non-linear weights p = −1, 0, 1 [-]

η Free-surface elevation [m]

ηmax(ξ
1) Local maximum water surface elevation (over time) [m]

ηmin(ξ
1) Local minimum water surface elevation (over time) [m]

∂ηmax(ξ1)
∂ξ1

First spatial derivative of the local maximum water surface elevation [-]

∂η
∂t Local time rate of change of the free-surface elevation [ms−1]

∂2ηmax(ξ1)
∂(ξ1)2

Second spatial derivative of the local maximum water surface elevation
[-]

Γp Normalized regularity function p = −1, 0, 1 [-]

γp Regularity functions p = −1, 0, 1 [-]

n̂ outward-normal unit vector [-]

κ von Kàrmàn constant [m]

λm m− th covariant component of ˜⃗g(l) [m−1]

λmax(ξ
1) Local water height point [m](

∂η
∂t

)∗
Threshold value of ∂η/∂t

µ Dynamic viscosity [kgs−1m−1]

µ, ϵ, C, d,Bl, Bh WTENO coefficients [-]

∇ Nabla operator

ν Kinetic viscosity [m2s−1]

νT Eddy viscosity [m2s−1]

ω Dissipation of turbulent kinetic energy per unit of turbulent kinetic energy
or specific dissipation rate [s−1]

Ωlm Contravariant components of the vorticity tensor Ω (l,m = 1, 2, 3) [s−2]

⊗ Tensor product

Θ(t) Generic hydrodynamic quantity related to the time periodicity [−]

ui Cartesian Reynolds averaged components of the velocity vector u⃗(i=1,2,3)[ms−1]

Ψ Scalar potential [m2s−1]

ρ Fluid density [kgm−3]
√
g0 Factor of the Jacobian of the transformation [m2]

√
g Jacobian of the transformation [m3]



τ Time in curvilinear coordinate system [s−1]

τw Tangential stresses near the bottom [kgm−1s−2]

Θ′(t) Turbulent fluctuation of the generic hydrodynamic quantity [−]

Θ(t) Generic instantaneous hydrodynamic quantity [−]

θ, θ2 WTENO functions [-]

ω̃, ˜̃ω Comparison values of dissipation of turbulent kinetic energy per unit of
turbulent kinetic energy [s−1]

Θ̃(t) Generic hydrodynamic quantity related to the quasi-periodicity of the vor-
tex structures [−]

Ω Vorticity tensor [s−1]

E Surface forces [kgs−2m−1]

I Identity tensor [-]

R Viscous stress tensor [kgs−2m−1]

S Strain rate tensor [s−1]

T Turbulent stress tensor [kgm−1s−2]

ε Dissipation of turbulent kinetic energy [m2s−3]

λ⃗ Physical direction on which project the momentum balance equation [-]

f⃗ External body forces per unit of vector [kgs−2m−1]

g⃗l l − th contravariant component of the base vector (l = 1, 2, 3) [m−1]

g⃗l l − th covariant component of the base vector (l = 1, 2, 3) [m]

u⃗ Cartesian fluid velocity vector [ms−1]

w⃗g Cartesian velocity vector of the moving coordinate [ms−1]

∧ Vector product

ξl Curvilinear coordinates (l = 1, 2, 3) [-]

ξb Iribarren number [-]

a(p)i,j,k, b(p)i,j,k, c(p)i,j,k Coefficient of the polynomials p = −1, 0, 1; l, i, j, k =
1, 2, 3 [-]

Cp Linear weights p = −1, 0, 1, l, i, j, k = 1, 2, 3 [-]

CS Smagorinsky coefficient [-]

CT Dynamic threshold [-]

Fi,j,k(ξ
l) Polynomial functions defined at the center of the computational grid
cell Ii,j,k i, j, k, l = 1, 2, 3



G Acceleration due to the gravity [ms−2]

glm Contravariant metric tensor (l,m = 1, 2, 3) [m−2]

glm Covariant metric tensor (l,m = 1, 2, 3) [m2]

H Total water depth [m]

h Still water depth [m]

Hb Total water depth at the breaking point [m]

Hb Wave height at the breaking point [m]

Hs Wave height [m]

Hul Conserved variable [ms−1]

I
+/−
i+/− 1

2
,j,k

Faces of a generic hexahedral computational cell in i-direction i, j, k =

1, 2, 3 [-]

I lm Contravariant components of the identity tensor (l,m = 1, 2, 3) [-]

Ii,j,k Generic hexahedral computational cell i, j, k = 1, 2, 3 [-]

k Turbulent kinetic energy [m2s−2]

l Mixing length [m]

L0 Wavelenght [m]

n Exponent of the dynamic threshold

P Total pressure [kgs−2m−1]

Pk Production of turbulent kinetic energy [m2s−3]

P(p)i,j,k(ξ
l) Second-order polynomials p = −1, 0, 1, l, i, j, k = 1, 2, 3 [-]

pdyn Dynamic pressure [kgs−2m−1]

Q Second invariant of the velocity gradient [-]

Rlm Contravariant components of the viscous stress tensor R (l,m = 1, 2, 3)
[s−2]

Slm Contravariant components of the strain rate tensor S (l,m = 1, 2, 3)
[s−1m−2]

SC Bottom roughness [m]

S+
C Dimensionless bottom roughness [-]

T Wave period [s]

t Time in Cartesian coordinate system [s]

T devij Cartesian components of the deviatoric part of the turbulent stress tensor
(i, j = 1, 2, 3) [kgm−1s−2]



T lm Contravariant components of the turbulent stress tensor T (l,m = 1, 2, 3)
[s−2]

Ts Simulation time [s]

Tij Cartesian components of the turbulent stress tensor (i, j = 1, 2, 3) [kgm−1s−2]

tr( ) Trace of a square matrix

u′i Turbulent fluctuations of the velocity (i=1,2,3) [ms−1]

u, v, w Cartesian component of the fluid velocity vector [ms−1]

u∗ Friction velocity [ms−1]

ul Contravariant component of the fluid velocity (l = 1, 2, 3) [s−1]

uB Velocity boundary condition [ms−1]

vl Contravariant component of a generic vector v⃗ (l = 1, 2, 3) [-]

vl Covariant component of a generic vector v⃗ (l = 1, 2, 3) [-]

wlg Contravariant component of the velocity of the moving coordinate (l =
1, 2, 3) [s−1]

xl Cartesian coordinates (l = 1, 2, 3) [m]

y+ Dimensionless wall distance [-]

z Vertical distance from the wall [m]



Acronyms

KLN New k − l turbulence model

KLS Standard k − l turbulence model

MPI Message Passing Interface

PDEs partial differential equations

TENO Targeted Essentially Non-Oscillatory

TVD Total Variation Diminishing

URANS Unsteady Reynolds-Averaged Navier-Stokes Equations

VOF Volume of Fluid

WTENO Wave-Targeted Essentially Non-Oscillatory

xix



Chapter 1

Introduction

1.1

The hydrodynamic phenomena in the proximity of coastlines are very complex: in

particular, the interaction between waves and coastal works induces fully three-

dimensional velocity fields. One of the complex phenomena is the undertow, that

consists in a nearshore circulation current in which the velocities near the free

surface are onshore directed, while the velocities near the bottom are offshore

directed.

The numerical models used for the simulations of free-surface flows that solve

the three-dimensional equations of motion and take into account the dynamic

pressure component, are able to simulate the velocity field in deep water, in

intermediate water and in the surf zone. These models, differently from the

depth-averaged models based on the Boussinesq equations [11, 16, 24, 53, 66],

can simulate the wave breaking without using an a priori criterion to localize the

point where the breaking zone starts.

1.2

Several models present in the literature [3, 6, 28] use Volume of Fluid (VOF)

methodology for the three-dimensional simulations of free-surface flows.

This methodology is based on the simulations of a two-phase flow (air-water):

the simulation of the fluid motion uses continuity equations for the two phases
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1.3.

and a momentum balance equation for the mixture. The volume fraction of the

air is calculated by a continuity equation for the above-mentioned fraction, while

the continuity equation for the fluid phase is the null divergence of the velocity. In

the cells occupied by the water, the volume fraction of the air phase is null, while

the volume fraction of the water is one; it is vice-versa for the cells occupied by

air. The location of the free surface is in the cells where the volume fraction of the

water changes from zero to one. The free surface does not correspond with a cell

boundary and, therefore, it is difficult to correctly assign the pressure boundary

condition and the kinematic condition exactly at the free surface [43]. By using

this methodology, a small spatial discretization step and a considerable number

of grid points (that limits the applicability for real-scale numerical simulations)

is needed to correctly simulate the wave breaking.

An alternative numerical procedure (for the three-dimensional simulation of

wave motion), which overcomes the above-mentioned VOF drawbacks, is defined

in the context of the shock-capturing numerical schemes and is based on a vertical

coordinate (called σ [55]) which varies in time in order to follow the free-surface

evolution [7, 8, 47]. By using this σ-coordinate transformation, the time-varying

physical domain is transformed in a regular, fixed and prismatic computational

domain whose upper boundary corresponds to the free surface. By this approach,

the zero pressure condition can be imposed exactly on the free surface, without

any approximation. In the σ-coordinate models present in the literature, the hori-

zontal coordinates are the Cartesian ones and the motion equations are expressed

in terms of Cartesian-based variables.

1.3

The study of the three-dimensional wave motion in domains characterized by

complex geometries can be carried out by models that are a generalization of

the σ-coordinate models. The above-mentioned generalization was carried out

by Ogawa et al [50] and Luo et al [46] which proposed a complete contravari-

ant formulation of the differential Navier-Stokes equations in a time-dependent

curvilinear coordinate system.
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The numerical integration of the differential motion equations for the simula-

tion of a shock wave can produce numerical solution with shock waves that have

erroneous propagation speeds. An erroneous propagation speed of the shock does

not allow to correctly determine the position of the discontinuity at a given time.

In the numerical simulation of shock waves, the numerical scheme should be able

to preserve the properties of the continuum system, as the conservation of global

quantities and the conservation of the invariants across a discontinuity.

As underlined by Toro [67], in the numerical integration of the differential

equations of motion, the convective terms that are not written in the divergence

form do not allow the formulation of the equations of motion in conservative form.

The discretization of a non-conservative form of the equations of motion does not

guarantee the convergence of the numerical schemes to the correct weak solution

in presence of discontinuities and does not guarantee the correct simulation of

the shock propagation speed. The use of the conservative form of the equations

of motion is a necessary but not sufficient condition for the convergence of the

numerical scheme to the correct weak solution.

The equations of motion expressed in contravariant form include the covariant

derivatives of the contravariant vector components. These covariant derivatives

involve the presence of the Christoffel symbols which, as known [1], are due to the

space variability of the base vectors. The discretization of these symbols intro-

duces computational errors associated with the non-uniformities of the calculation

grid cells that can compromise the accuracy of the numerical solution. Moreover,

the presence of the Christoffel symbols does not allow the convective terms of the

equations of motion to be expressed in conservative form. The numerical meth-

ods for the simulation of the conservation laws, in which the convective terms

are expressed in non-conservative form, do not guarantee, as already written, the

convergence to the correct weak solution [67].

As emphasized by Toro [67], the equations of motion written in conservative

form, but expressed in terms of primitive variables (H, total water depth and

u⃗, Cartesian vector of fluid velocity), can produce shock waves with erroneous

propagation speeds. The integral form of the equations of motion expressed in

terms of conservative variables (H and Hu⃗) allows the formulation of conservative
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numerical schemes that can converge to the correct weak solution.

In this thesis, a new numerical model for the simulation of the breaking waves

is presented. This model is based on the solution of the three-dimensional equa-

tions of motion expressed in integral contravariant form. These equations are

collocated in a context of complete generality, are devoid of the Christoffel sym-

bols and are expressed in terms of conservative variables, H and Hu⃗

1.4

Some considerations on the numerical methods for the solution of the equations of

motion in breaking wave simulations should be done. The wave breaking increases

the turbulent agitations and, consequently, produces an increment of the dissi-

pation of the kinetic energy of the ensemble-averaged motion, in which only the

complete spectrum of the stochastic turbulent motion is not directly simulated.

In [9, 11, 12, 20, 23, 25, 31, 33, 47, 52], the breaking waves are simulated

as shock waves and the three-dimensional equations of motion are numerically

integrated by a finite-volume shock-capturing numerical scheme that adopt a

2nd-order Total Variation Diminishing (TVD) reconstruction technique and an

approximate Riemann solver.

In the above models, the adopted low-order shock-capturing numerical schemes

take the task of dissipating most of the kinetic energy of the ensemble-averaged

motion in the surf zone, although this task should be performed by the turbulence

models.

It has been demonstrated by [13, 26, 51] that the breaking wave simulation

carried out by such low-order numerical scheme (2nd-order TVD reconstructions

and approximate Riemann solver) are affected by some drawbacks: the increase of

the wave height during shoaling is underestimated, the wave breaking point is not

correctly evaluated and the decrease of the wave height in the surf zone is not well

predicted. The latter drawback produces an underestimation of the wave-induced

currents in the surf zone. The above-mentioned drawbacks can be overcome (even

by using TVD numerical schemes and approximate Riemann solvers) by adopting

fine grids (especially in the horizontal direction) with small spacial discretization
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steps. The use of the fine grids limits the application of these schemes mainly to

laboratory-scale case studies.

In this thesis, in order to overcome the above-listed drawbacks of the low-order

shock-capturing numerical schemes, a new high-order shock-capturing numerical

scheme for the solution of the three-dimensional ensemble-averaged motion equa-

tions is presented. The elements of novelty in this new numerical scheme are

two. The first element of novelty consists in the proposal of a new reconstruc-

tion technique of the point values of the conserved variables on the cell faces

of the computational grid (starting from the cell-averaged values of the same

variables). This reconstruction technique is named Wave-Targeted Essentially

Non-Oscillatory (WTENO) and it is specifically designed for three-dimensional

simulations of breaking waves. The second element of novelty consists in the use

of an exact solution for the Riemann problem to advance in time the point values

of the conserved variables at the cell faces.

1.5

As mentioned above, the low-order shock-capturing numerical schemes [6, 20, 47]

leave to the numerical scheme the task of dissipating the kinetic energy of the

ensemble-averaged motion in the surf zone: indeed, in the above-mentioned shock-

capturing numerical schemes, a Smagorinsky turbulence model (with low value

of the Smagorinsky coefficient) is used to introduce a minimal dissipation of the

kinetic energy of the ensemble-averaged motion, in order to remove the spurious

oscillations that can arise in the numerical solution. Instead, by using high-

order shock-capturing numerical schemes, the dissipation of the kinetic energy

of the ensemble-averaged motion introduced by the numerical scheme is limited

and the task of dissipating this energy is left to a turbulence model. For this

reason, it is necessary to develop more innovative turbulence models that are able

to adequately represent the turbulent phenomena at the wave breaking, at the

bottom and in the proximity of the walls of coastal works.
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1.6

In presence of coastal works, their interaction with the waves produces hydro-

dynamic fields characterized by unsteady quasi-periodic vortex structures and

stochastic turbulent fluctuations. The quasi-periodic vortex structures are un-

steady phenomena that arise from the interaction between the fluid and the coastal

works. The stochastic turbulent fluctuations are superimposed on the unsteady

quasi-periodic motion of the vortex structures.

By following the suggestion of Bosh and Rodi [5], the generic instantaneous

hydrodynamic quantity Θ(t) is separated into three components. The first com-

ponent is represented by the value of the hydrodynamic quantity Θ(t), whose time

periodicity is related only to the wave periodicity. The second component Θ̃(t) is

related to the quasi-periodicity of the vortex structures produced by the interac-

tion between fluid and coastal works. The third component Θ′(t) is the turbulent

fluctuation. In accordance with Bosh and Rodi [5], the sum of Θ(t), related to the

periodicity of the wave, and Θ̃(t), related to the quasi-periodicity of the vortex

structures, gives rise to the ensemble-averaged component, which is calculated by

numerically solving the ensemble-averaged motion equations. In this context, the

complete spectrum of the stochastic turbulent motion is represented by a turbu-

lence model. The numerical models coherent with the above-mentioned approach

are named, in the literature, URANS (Unsteady Reynolds-Averaged Navier-Stokes

Equations) models.

It is necessary recalling the fact that the product between the ensemble-

averaged velocity and the divergence of the Reynolds stress tensor represents the

dissipation of kinetic energy of the ensemble-averaged motion. An overestimation

of the Reynolds stress tensor (that is the unknown tensor of the ensemble-averaged

Navier-Stokes equations) produces an excess of dissipation of the kinetic energy

of the ensemble-averaged motion.

In the literature, the turbulent closure relations for the Reynolds stress tensor

in breaking wave simulations are expressed by different turbulence models, like

the Smagorinsky model, one-equation or two-equation turbulence models.

In recent papers [44, 47, 73], the Smagorinsky turbulence model is calibrated

for three-dimensional numerical simulations of wave propagation from deep-water
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to the coastline.

It should however be recalled that the existing numerical models, that use the

Smagorinsky turbulence model [47], are collocated in the context of low-order of

accuracy shock-capturing numerical schemes. In these schemes, the reconstruc-

tions of point values of the conserved variables are made by a 2nd order TVD

scheme and the Riemann problem is solved by an approximate Riemann solver.

These models leave the task of dissipating the kinetic energy of the ensemble-

averaged motion in the surf zone to the shock-capturing numerical scheme and

use the Smagorinsky turbulence model with low values of the Smagorinsky coef-

ficient, in order to eliminate some spurious oscillations. In the cases in which 2nd

order shock-capturing numerical schemes are used, the breaking wave height is

underestimated and the wave breaking point is shifted offshoreward.

In order to reduce the dissipation of the kinetic energy of the ensemble-

averaged motion introduced by the low-order numerical schemes and leave the

task of dissipating this kinetic energy only to the turbulence model, it is nec-

essary to develop a new high-order numerical scheme and adequate turbulence

models.

Some considerations should be done about the use of the Smagorinsky tur-

bulence model with high-order shock-capturing numerical schemes. As it is well

known, in these models, the turbulent stress tensor is related to the strain rate

tensor through the Smagorinsky coefficient and the spatial discretization step of

the calculation grid. As it is demonstrated in this thesis, by using high-order

numerical schemes, high values of the Smagorinsky coefficient can produce an

overestimation of the eddy viscosity in the shoaling zone, in the region around

the wave breaking point and in the surf zone. The same overestimation can be

produced by adopting too large spatial discretization steps. High values of this

geometrical parameter increment the eddy viscosity and thus overestimate the

dissipation of the kinetic energy of the ensemble-averaged motion in the region

around the wave breaking point and in the surf zone. The strong influence of

the Smagorinsky coefficient and the grid dimension on the numerical solution

can produce numerical results very different from each other. Furthermore, the

Smagorinsky turbulence model does not give any information about the turbu-

lent kinetic energy distribution in the domain; for this reason, it is not possible
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to validate the model in terms of turbulent kinetic energy.

1.7

To overcome the Smagorinsky turbulence model drawbacks, many authors [6, 18,

19] used a one-equation turbulence model called k− l (k is the turbulence kinetic

energy and l is the mixing length), in which a partial differential equation for the

turbulent kinetic energy is solved and the closure relation for the turbulent stress

tensor is a function of the turbulent kinetic energy and the mixing length.

Some synthetic considerations should be done about the turbulent structures

in the surf zone. The turbulent structures in the surf zone are very complex.

Outside the surf zone, the production of turbulent kinetic energy is limited to

the oscillating bottom boundary layer, called oscillating wave boundary layer;

inside the surf zone, the production of turbulent kinetic energy is mainly located

in the oscillating wave boundary layer and near the breaking wave fronts. A

part of the turbulent kinetic energy produced at the wave breaking point and

in the oscillating wave boundary layer is dissipated in the intermediate zone,

between the oscillating wave boundary layer and the wave fronts. In the existing

k − l turbulence models [6, 18, 19], the dissipation of turbulent kinetic energy

is represented in the same way both before and after the wave breaking point.

In particular, these models do not take into account the differences between the

turbulent phenomena in the shoaling zone, the region around the wave breaking

point and the surf zone. In the papers present in the literature [6, 18, 19, 47]

concerning breaking wave simulations that adopt the Smagorinsky or the k − l

turbulence model, the equations of motion are not solved in the zone nearest to

the bottom.

As it is known, the oscillating wave boundary layer can be divided into three

regions: the viscous sublayer, the buffer layer and the turbulent core. In order to

simulate the turbulent phenomena and their effects on turbulent kinetic energy in

the oscillating wave boundary layer (inside the turbulent core and the buffer layer)

and in the proximity of the free surface inside the breaking zone, it is necessary

implement an adequate k − l turbulence model.
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1.8

In order to reduce the dissipation of the kinetic energy of the ensemble-averaged

motion due to the numerical scheme and leave the task of dissipating this en-

ergy only to the turbulence model, in this thesis (as already written above), a

new 5th-order shock-capturing numerical scheme is used. In this thesis, two tur-

bulence models, k − l and k − ω (ω is the dissipation of the turbulent kinetic

energy per unit of turbulent kinetic energy, hereinafter called specific dissipation

rate), are proposed. These models are collocated in the context of the URANS

models and intervene in the ensemble-averaged momentum equation, in order to

directly simulate the unsteady quasi-periodic vortex structures, leaving the task

of dissipating the complete spectrum of the stochastic turbulent motion to the

turbulence model.

In order to take into account the turbulent phenomena that occur before and

after the wave breaking point and in the oscillating wave boundary layer, a new

k − l turbulence model is proposed. The k-equation is written in a new integral

contravariant form on a generalized time-dependent curvilinear coordinate system.

In this model, a new formula of the mixing length outside the oscillating wave

boundary layer is proposed. The mixing length is calculated as a function of the

first and second spatial derivatives of the local maximum water surface elevation.

In the oscillating wave boundary layer, the mixing length is calculated by assuming

the hypothesis of balance between production and dissipation of turbulent kinetic

energy in all the turbulent core. The first calculation point in which the equations

of motion are solved is placed in the buffer layer, while the first calculation point

in which the turbulent kinetic energy equation is solved is placed in the buffer

layer, in the proximity of the viscous sublayer.

In order to obtain an adequate representation of the turbulent phenomena

both in the oscillating wave boundary layer and on the wave breaking fronts, it

is necessary take into account the considerable variability of the production and

dissipation of the turbulent kinetic energy along the water column and in the surf

zone. For this reason, it is clear that it is necessary an adequate and laborious

calibration of the mixing length with the k− l turbulence model. The definition of
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the mixing length in the oscillating wave boundary layer leads to the assumption

that the balance between production and dissipation of turbulent kinetic energy

holds true in all the turbulent core. The above-mentioned balance strictly holds

true at the interface between the turbulent core and the buffer layer [10]. Given

the need to scrupulously represent the effects that the turbulent phenomena have

in the dissipation of the kinetic energy of the ensemble-averaged motion in the

proximity of the bottom, in the definition of the mixing length, it is necessary

to remove the hypothesis of the balance between production and dissipation of

turbulent kinetic energy in all the turbulent core. Hence, it is necessary to develop

a more general two-equation turbulence model (k−ω), which is able to overcome

the drawbacks of the new k− l turbulence model and take into account the effects

of the turbulent phenomena in the oscillating wave boundary layer, till the border

between the buffer layer and the viscous sublayer.

1.9

In the direct simulation of the quasi-periodic vortex structures, mainly due to

the interaction between the waves and coastal works, it is necessary to solve

the equations of motion also inside the turbulent core and the buffer layer (with

small spatial discretization steps in the proximity of the obstacle walls) and to

adequately represent the turbulent phenomena in the proximity of the walls.

Franke and Rodi [21] have shown that the occurrence and quality of the vor-

tex structures prediction depend strongly on the used turbulence model. From

a general point of view, traditionally, one-equation and two-equation turbulence

models [6, 18–20, 41, 42, 44, 45, 47, 58, 72, 73] were found to severely underpre-

dict the strength of the vortex structures, mainly because of excessive production

of turbulent kinetic energy. When the production of turbulent kinetic energy is

too high, the Reynolds stress tensor is overestimated. The product between the

ensemble-averaged velocity and the divergence of the stress tensor represents the

dissipation of the kinetic energy of the ensemble-averaged motion. An overes-

timation of the Reynolds stress tensor produces an excess of dissipation of the

kinetic energy of the ensemble-averaged motion. Consequently, by using turbu-
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lence models that produce an excessive production of turbulent kinetic energy, the

unsteady quasi-periodic vortex structures (beside all of the stochastic turbulent

fluctuations) are expelled from the direct simulations of the ensemble-averaged

motion.

From the previous considerations, it is necessary to develop turbulence mod-

els that is collocated in the context of the URANS model and intervene in the

ensemble-averaged momentum equation in order to expel from the simulation of

the fluid velocity field just the stochastic turbulent fluctuations. In this way, it

is possible to properly evaluate, without overestimate, the Reynolds stress tensor

and adequately and directly simulate the wave breaking, the wave fields, the veloc-

ity fields and the unsteady quasi-periodic vortex structures due to the interaction

between waves and coastal works.

In the context of the URANS model, two-equations k − ω turbulence model

[49, 70, 71], is able to represent the turbulent phenomena, so that the numerical

models can directly simulate the unsteady quasi-periodic vortex structures, is also

able to give correct boundary conditions at the bottom and does not need to define

a specific mixing length. The turbulent kinetic energy dissipation ε (in the k − ε

turbulence model [20, 41, 42, 45, 58, 72]) does not admit boundary conditions

at the bottom; the specific dissipation rate ω admits bottom boundary condition

[49, 70, 71].

One of the first k − ω turbulence model present in the literature is the one

proposed by Wilcox [70] and it is used to simulate compressible flow around a

airfoil. Wilcox proposed a boundary condition for the specific dissipation rate ω

that incorporates the effects of the surface roughness. As underlined by several

authors [49, 71], the Wilcox model has the tendency to overestimate the eddy

viscosity when the production of turbulent kinetic energy is significantly increased

and the specific dissipation rate is not able to reduce the growth of turbulent

kinetic energy.

Wilcox proposed a new k − ω model [71] in which the eddy viscosity is lim-

ited. Furthermore, a cross-diffusion term is added in ω-equation to enhance ω

production in order to increase the dissipation of turbulent kinetic energy.
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Mayer and Madsen [48] have used the Wilcox k − ω turbulence model [70] in

the simulation of the breaking waves. They have demonstrated that this k − ω

turbulence model produces an excessive production of turbulent kinetic energy in

the zone between the breaking wave fonts and the oscillating wave boundary layer.

This excessive production of turbulent kinetic energy induces an overestimation of

the Reynolds stress tensor. In the numerical simulations of the wave and velocity

fields, the overestimation of the Reynolds stress tensor produces an excessive

reduction of the wave height and the wave breaking point is shifted offshoreward.

In this thesis, a new k − ω turbulence model is proposed for the simulation

of the breaking waves and the interaction between waves and coastal works at

the wave breaking. The k and ω equations are formulated in a new integral

contravariant form on a generalized time-dependent curvilinear coordinate system.

It is necessary to recall that, in k − ω turbulence model, the eddy viscosity is

the ratio of turbulent kinetic energy to specific dissipation rate. In order to limit

the production of the turbulent kinetic energy in the zone between the breaking

wave fronts and the oscillating wave boundary layer, in the new k−ω turbulence

model, the denominator of the eddy viscosity is calculated as the maximum value

between three terms: the first one is directly calculated by the ω-equation; the

second one is a function of absolute value of the strain rate tensor and the absolute

value of the vorticity tensor; the third value is calculated by the product between

the absolute value of the strain rate tensor and a coefficient that is activated as

a function of the zone in which it is calculated. This coefficient is determined by

the local maximum water depth and is increased in the surf zone, where the local

maximum water depth is reduced. In such a way, the behaviour of the model

before and after the wave breaking point is differentiated.

In order to further reduce the production of the turbulent kinetic energy in the

zone between the breaking wave fronts and the oscillating wave boundary layer, in

the new k − ω turbulence model, a dynamic coefficient for the dissipation of ω is

added by following the line proposed by Yakhot [72]. In the new k−ω turbulence

model proposed in this thesis, a dynamic procedure (which is a function of the

strain rate tensor) to calculate this coefficient is introduced. For high values of the

strain rate tensor, the coefficient that multiplies the dissipation of ω decreases,

by further reducing the production of turbulent kinetic energy.
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The velocity boundary condition is calculated without using logarithmic laws

and it is placed at the border between the buffer layer and the viscous sublayer.

The boundary condition for the turbulent kinetic energy is null directly at the

bottom. The boundary condition for the dissipation rate is placed at the bottom

and it is a function of the bottom roughness and the friction velocity (the fric-

tion velocity is calculated by the viscous stress at the border between the viscous

sublayer and the buffer layer). The k and ω equations are solved starting from

the border between the viscous sublayer and the buffer layer. Since the turbulent

equations are solved near the bottom, it is possible to directly simulate the un-

steady quasi-periodic vortex structures due to the interaction between breaking

waves and coastal works.

In summary in this thesis, a new model for the simulation of breaking waves

is presented. In this model, the three-dimensional equations of motion, expressed

in terms of conserved variables H and Hu⃗, are written in integral contravariant

form on a time-dependent curvilinear coordinate system. These equations are

solved by using a 5th-order shock-capturing numerical scheme that employs a new

method for the reconstructions of the point values of the conserved variables at

the center of the cell faces, called WTENO and an exact Riemann solver.

Two turbulence models collocated in the context of the URANS are proposed

in this thesis.

In the new k − l turbulence model, a new k-equation is proposed in con-

travariant formulation. In this model, the equations of motion are solved also

in the buffer layer, while the turbulent kinetic energy equation is solved also in

the buffer layer, in the proximity of the viscous sublayer. In the oscillating wave

boundary layer, the mixing length is calculated by the hypothesis of the balance

between production and dissipation of turbulent kinetic energy. Outside the os-

cillating wave boundary layer, a new formula for the mixing length is proposed as

a function of the first and second spatial derivatives of the local maximum water

surface elevation. In this way, the turbulence model is able to take into account

the different turbulent phenomena that occur before and after the wave breaking

point.
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In the new k − ω turbulence model, two new equations for k and ω in con-

travariant formulation are proposed. This model gives the possibility to assign

the bottom boundary condition for ω directly at the bottom. By using the new

turbulence model, the production of turbulent kinetic energy in the zone between

the breaking wave fronts and the oscillating wave boundary layer is reduced, be-

cause the eddy viscosity is limited and a dynamic coefficient for the dissipation

of ω is introduced. By using the new k − ω turbulence model, it is possible to

directly simulate the unsteady quasi-periodic vortex structures due to the inter-

action between breaking waves and coastal works.

The thesis is organized as follow: in Chapter 2, the integral form of the con-

travariant equations of motion on a time-dependent generalized curvilinear co-

ordinate system is presented; in Chapter 3, the new 5th-order shock-capturing

numerical scheme is presented; in Chapters 4, 5 and 6, the existing Smagorinsky,

k − l and k − ω turbulence models and the new two k − l and k − ω turbulence

models, proposed in this thesis, are presented; in Chapter 7, the numerical results

of the interaction between breaking waves and an emerged barrier, obtained by

the new k − ω turbulence model, are presented.
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Chapter 2

Motion Equations

In this Section the three-dimensional equations of motion written in integral

contravariant form on a time-dependent curvilinear coordinate system and the

Poisson-like equation (that is the Laplacian of a scalar potential) are presented.

The equations of motion and the Poisson-like equation are written in terms of

conserved variables (the total water depth H and the product between the total

water depth and the fluid velocity vector Hu⃗).

2.1 Conserved Variables

The propagation speed of a shock wave produced by a numerical simulation can

be incorrect. An erroneous propagation speed of the shock wave do not allow

to correctly locate the position of the discontinuities. In the simulation of the

shock waves, the numerical schemes should be able to preserve the properties

of the continuum system, as the conservation of the global quantities and the

conservation of the invariants across a discontinuity.

In the numerical integration of the differential equations of motion, the dis-

cretization of the convective terms do not allow the formulation of a conservative

schemes, if these terms are not written in the form of the divergence, as under-

lined by Toro [67]. Non conservative numerical schemes do not to guarantee the

convergence to the correct weak solution with discontinuity and do not allow to

correctly simulate the propagation speed of the shock wave. The use of conserva-

tive schemes is necessary but not sufficient so that the numerical scheme converges

to the correct weak solution with discontinuity. Indeed, conservative numerical
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2.2. Equations of motion

schemes in which the convective terms are written in divergence form, if applied to

equations of motion expressed in terms of primitive variables (total water depth H

and fluid velocity vector u⃗), can produce shock waves with erroneous propagation

speed. On the contrary, the integral form of the equations of motion in which the

conserved variables (H and Hu⃗) are used allows the formulation of conservative

schemes that can converge to the correct weak solution.

For this reason, in this thesis, the equations of motion and the Poisson equation

are written in terms of the conserved variables (H and Hu⃗).

2.2 Equations of motion

The three-dimensional integral contravariant form of the incompressible Navier-

Stokes equations written in a time-dependent curvilinear coordinate system are

the equations of motion of the proposed numerical model. These equations are

derived from the integral form of the mass conservation and momentum balance

equations expressed on a moving control volume.

In the Cartesian the coordinate system (x1, x2, x3, t), the integral form of the

mass conservation equation on a moving control volume for an incompressible

flow reads
d

dt

∫
∆V (t)

dV +

∫
∆A(t)

(u⃗− w⃗g) · n̂dA = 0 (2.1)

where ∆V (t) and ∆A(t) are the moving control volume and its boundary surface;

u⃗ and w⃗g are the Cartesian fluid velocity vector and the velocity vector of bound-

ary surface control volume; n̂ is the outward-normal unit vector; the symbol · is

the scalar product between vectors and between vectors and second-order tensor.

The equations of motion in contravariant form contain covariant derivatives

of contravariant vectors. These derivatives involve the presence of the Christof-

fel symbols due to the variability of the base vectors. The discretization of the

Christoffel symbols introduces computational errors related to the non uniform

grid cells that can compromise the accuracy of the numerical solution. Further-

more the presence of the Christoffel symbols do not allow that the convective

terms of the equations of motion are expressed in conservative form. As stated

in Section 2.1 and in [1, 67], the numerical schemes do not guarantee the conver-

gence to the correct weak solution with discontinuity, if the convective terms in
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2.2. Equations of motion

the conservation laws are expressed in non conservative form.

In order to avoid the Christoffel symbols, the integral form of the momentum

balance equation must be projected onto a physical direction λ⃗. This physical

direction is the direction of a constant and parallel vector field: in the Cartesian

coordinate system, this vector field has constant and uniform components; while

in curvilinear coordinate systems, its covariant components are not uniform, but

space-varying along the curvilinear coordinates. In the Cartesian coordinate sys-

tem, the projection of the integral form of the momentum balance equation in the

physical direction λ⃗ reads

d

dt

∫
∆V (t)

λ⃗ · u⃗dV +

∫
∆A(t)

λ⃗ · (u⃗⊗ (u⃗− w⃗g) · n̂)dA

+

∫
∆A(t)

(
Gη +

pdyn
ρ

)
λ⃗ · (I · n̂)dA−

∫
∆A(t)

1

ρ
λ⃗ · (R · n̂)dA = 0

(2.2)

where G is the acceleration due to the gravity, ρ is the fluid density, the tensors

I and R are the identity tensor and the viscous stress tensor (R = 2νS in which

S is the strain rate tensor) that does not take into account the dynamic pressure

pdyn. H is the total water depth and it is given by the sum of the undisturbed

water depth h and the free-surface elevation η: H = h + η (see Fig. 2.1); the

symbol ⊗ is the tensor product between vectors. The total pressure P is given by

the sum of the dynamic pressure pdyn and the hydrostatic pressure ρG(η − x3)

P = pdyn + ρG(η − x3) (2.3)

In order to write the Navier-Stokes equations in contravariant form on a

time-dependent curvilinear coordinate system (ξ1, ξ2, ξ3, τ), a particular time-

dependent coordinate transformation is chosen. The particular time-dependent

transformation from the Cartesian coordinate system to a curvilinear one is

ξ1 = ξ1(x1, x2, x3) ξ2 = x2(x1, x2, x3) ξ3 =
x3 + h(x1, x2)

H(x1, x2, t)
τ = t (2.4)

ξ1 and ξ2 are the horizontal coordinates and are chosen to obtain a lateral bound-

ary conforming grid. ξ3 is the vertical coordinate that varies over time as a

function of H; ξ3 = 1 at the moving free surface and ξ3 = 0 at the bottom. The
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2.2. Equations of motion

Figure 2.1: Reference coordinate system.

covariant and contravariant base vectors are given by

g⃗(l) =
∂x⃗

∂ξl
g⃗(l) =

∂ξl

∂x⃗
(l = 1, 2, 3) (2.5)

The covariant and contravariant metric tensors are given by

glm = g⃗(l) · g⃗(m) glm = g⃗(l) · g⃗(m) (2.6)

For this particular transformation, the Jacobian of the transformation is given

by √
g = H

√
g0 where √g0 = g⃗(1)·(g⃗(1)∧g⃗(2)) (the symbol ∧ is the vector product).

The Cartesian components of a generic vector v⃗ are related to the correspond-

ing covariant and contravariant components in the curvilinear coordinate system

[1] by

vl = g⃗(l) · v⃗ v⃗ = vlg⃗
(l) vl = g⃗(l) · v⃗ v⃗ = vlg⃗(l) (2.7)

In this coordinate transformation, the Cartesian components of the velocity

vector of the moving coordinates is given by

w⃗g =
∂x⃗

∂τ
(2.8)

In order to determine the l − th contravariant component of vector w⃗g, let start

from the time partial derivative of the generic curvilinear coordinate

∂ξl

∂τ
=

∂ξl

∂t
+

∂ξl

∂x⃗
· ∂x⃗
∂τ

(2.9)

In Eq. 2.9 the derivative ∂ξl/∂τ = 0, because ξl is not a function of τ (ξl =
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2.2. Equations of motion

ξl(x1, x2, x3, t)). By considering Eq. 2.6, ∂ξl/∂x⃗ = g⃗(l) and that the scalar prod-

uct in Eq. 2.8 produces wlg, the l − th contravariant components of the moving

coordinate velocity vector reads

wlg = −∂ξl

∂t
(2.10)

By using Eqs. 2.3 - 2.9, Eqs. 2.1 and 2.2 can be expressed in integral con-

travariant form as follow

d

dτ

∫
∆V1(τ)

dV +

∫
∆A1(τ)

(um − wmg )nmdA = 0 (2.11)

d

dτ

∫
∆V1(τ)

ulλldV +

∫
∆A1(τ)

ul(um − wmg )λlnmdA

+

∫
∆A1(τ)

(
Gη +

Pdyn
ρ

)
I lmλlnmdA− 1

ρ

∫
∆A1(τ)

RlmλlnmdA = 0

(2.12)

In Eqs. 2.11 and 2.12, ∆V1(τ) is the time-varying control volume which at every

instant τ coincides with the fluid material volume and ∆A1(τ) is the boundary

surface of this control volume.

In this thesis, vector λ⃗ is given by the l − th contravariant base vector at the

center of the control volume, indicated by ˜⃗g(l). The m− th covariant component

of ˜⃗g(l), in Eq. 2.12, is given by

λm = ˜⃗g(l) · g⃗(m) (2.13)

The identity tensor I lm can be expressed by the contravariant metric coeffi-

cients as follow

I lm = glm (2.14)

In curvilinear coordinate system, the time-varying control volume and its

boundary surface, that lies on the coordinate surface in which ξα is constant,

are expressed by

∆V1(τ) =

∫
∆V0

√
gdξ1dξ2dξ3

∆Aα1 (τ) =

∫
∆Aα

0

|⃗g(β) ∧ g⃗(γ)|dξβdξγ
(2.15)

where ∆V0 indicates the corresponding volume in the transformed space and ∆Aα0

is the corresponding area in the transformed space, which is defined as ∆Aα0 =
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2.2. Equations of motion

∆ξβ∆ξγ (α, β, γ = 1, 2, 3). Both the quantities are not time dependent.

The m−th covariant component of the product between the unit vector which

is normal to the infinitesimal surface on which ξα is constant and its area is given

by

nmdA = g⃗(m) · g⃗(α)H
√
g0dξ

βdξγ (2.16)

where α, β, γ are cyclic.

It is possible to write the Eqs. 2.11 and 2.12 in terms of conserved variables.

(Hum) and (H) (2.17)

By using Eqs. 2.13-2.17 in Eqs. 2.11 and 2.12, the mass conservation equation

and the momentum balance equation expressed in integral contravariant form on

a time-dependent curvilinear coordinate system in terms of conserved variables

H and Hum become

d

dτ

∫
∆V0

H
√
g0dξ

1dξ2dξ3

+

3∑
α=1

{∫
∆Aα+

0

(Huα −Hωαg )
√
g0dξ

βdξγ −

∫
∆Aα−

0

(Huα −Hωαg )
√
g0dξ

βdξγ

}
= 0

(2.18)
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2.2. Equations of motion

d

dτ

∫
∆V0

˜⃗g(l) · g⃗(m)Hum
√
g0dξ

1dξ2dξ3

+
3∑

α=1

{∫
∆Aα+

0

˜⃗g(l) · g⃗(m)

[
Hum

(
Huα

H
− ωαg

)]
√
g0dξ

βdξγ −

∫
∆Aα−

0

˜⃗g(l) · g⃗(m)

[
Hum

(
Huα

H
− ωαg

)]
√
g0dξ

βdξγ

}

+
3∑

α=1

{∫
∆Aα+

0

˜⃗g(l) · g⃗(m)

[
gmα

(
Gη +

pdyn
ρ

)]
H
√
g0dξ

βdξγ −

∫
∆Aα−

0

˜⃗g(l) · g⃗(m)

[
gmα

(
Gη +

pdyn
ρ

)]
H
√
g0dξ

βdξγ

}

−1

ρ

3∑
α=1

{∫
∆Aα+

0

˜⃗g(l) · g⃗(m)R
αmH

√
g0dξ

βdξγ −

∫
∆Aα+

0

˜⃗g(l) · g⃗(m)R
αmH

√
g0dξ

βdξγ

}
= 0

(2.19)

In Eq. 2.19, Rαm = 2µSαm are the contravariant components of the stress

tensor without the pressure term: Sαm are the contravariant components of the

strain rate tensor and µ is the dynamic viscosity.

Let define the cell-averaged values in the transformed space

H =
1

∆A3
0
√
g0

∫
∆A3

0

H
√
g0dξ

1dξ2

Hul =
1

∆V0
√
g0

∫
∆V0

˜⃗g(l) · g⃗(m)Hum
√
g0dξ

1dξ2dξ3
(2.20)

By using Eqs. 2.20 and by substituting η(x1, x2, t) = H(x1, x2, t)− h(x1, x2)

in Eq. 2.19, Eqs. 2.18 and 2.19 become

∂H

∂τ
=

− 1

∆A3
0
√
g0

{∫ 1

0

∫
∆ξ1+0

Hu1dξ2dξ3 −
∫ 1

0

∫
∆ξ1−0

Hu1dξ2dξ3

+

∫ 1

0

∫
∆ξ2+0

Hu2dξ1dξ3 −
∫ 1

0

∫
∆ξ2−0

Hu2dξ1dξ3

+

(∫ ∫
∆A3

0

(Hu3 −Hw3
g)
√
g0dξ

1dξ2

)
ξ3=1

−

(∫ ∫
∆A3

0

(Hu3 −Hw3
g)
√
g0dξ

1dξ2

)
ξ3=0



(2.21)
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2.2. Equations of motion

∂Hul

∂τ
=

− 1

∆V0
√
g0

3∑
α=1

{∫
∆Aα+

0

˜⃗g(l) · g⃗(m)

[
Hum

(
Huα

H
− ωαg

)]
√
g0dξ

βdξγ −

∫
∆Aα−

0

˜⃗g(l) · g⃗(m)

[
Hum

(
Huα

H
− ωαg

)]
√
g0dξ

βdξγ

}

− 1

∆V0
√
g0

3∑
α=1

{∫
∆Aα+

0

˜⃗g(l) · g⃗(α)G(H − h)H
√
g0dξ

βdξγ −

∫
∆Aα−

0

˜⃗g(l) · g⃗(α)G(H − h)H
√
g0dξ

βdξγ

}

− 1

ρ∆V0
√
g0

3∑
α=1

{∫
∆Aα+

0

˜⃗g(l) · g⃗(α)pdynH
√
g0dξ

βdξγ −

∫
∆Aα−

0

˜⃗g(l) · g⃗(α)pdynH
√
g0dξ

βdξγ

}

+
1

ρ∆V0
√
g0

3∑
α=1

{∫
∆Aα+

0

˜⃗g(l) · g⃗(m)R
αmH

√
g0dξ

βdξγ −

∫
∆Aα+

0

˜⃗g(l) · g⃗(m)R
αmH

√
g0dξ

βdξγ

}

(2.22)

In Eq. 2.21, w1
g and w2

g are zero, because lateral surfaces of the control volume

are fixed; u3 −w3
g is zero because the bottom (ξ3 = 0) is a fixed closed boundary

and the free surface (ξ3 = 1) moves with the same normal velocity of the water.

Eqs. 2.21 and 2.22 are respectively the governing equations for the conserved

variables in integral contravariant form on a time-dependent curvilinear coordi-

nate system.

The advancing in time of the numerical solution is obtained by a predictor-

corrector method, that takes into account the dynamic component of the pressure.

In the predictor step, the momentum balance equation expressed in terms of

the conserved variables (Hul) is solved by a conservative scheme devoid of the

dynamic pressure component. The divergence of the predictor field (Hul)∗ is used

as the known term of a Poisson-like equation by which it is possible to define the

scalar potential Ψ. In this way, a corrector field expressed in term of the conserved

variable is directly obtained, (Hul)c.
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2.3. Poisson-like equation

2.3 Poisson-like equation

A Poisson-like equation is used to find a scalar potential Ψ, by which takes into

account the dynamic pressure and correct the predictor field. Eq. 2.22 is solved

neglecting the dynamic pressure term and gives rise to the conserved predictor

variable, Hul
∗
. This predictor field is not divergence free. The gradient of the

scalar potential Ψ gives rise to the corrected conserved variable, Hul
c
.

The Poisson-like equation expressed in contravariant form on a time-dependent

curvilinear coordinate system is given by

∂[g
ls∂Ψ
∂s H

√
g0]

∂ξl
= −

∂(Hul)∗
√
g0

∂ξl
(2.23)

Eq. 2.23 can be expressed in integral contravariant form as follow

3∑
α=1

{∫
∆Aα+

0

∂Ψs

∂ξm
gαmH

√
g0dξ

βdξγ −
∫
∆Aα−

0

∂Ψs

∂ξm
gαmH

√
g0dξ

βdξγ

}

=

3∑
α=1

{∫
∆Aα+

0

(Hu
α(s)

)∗
√
g0dξ

βdξγ −
∫
∆Aα−

0

(Hu
α(s)

)∗
√
g0dξ

βdξγ

} (2.24)

Once Eq. 2.24 is solved, the corrector field can be calculated as follow

Hul
c
= H

gls∂Ψ

∂s
(2.25)
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Chapter 3

Numerical scheme

In this thesis the equations of motion are solved by using a new finite-volume

shock-capturing numerical scheme, which use a Riemann solver.

In recent three-dimensional free-surface models [9, 14, 20, 47], the wave break-

ing is simulated as a shock wave, i.e. a discontinuity of the equations of motion

solution. It is known that the numerical simulation of a shock wave presents con-

siderable difficulties. The numerical approximation of a shock wave may have a

strong strength (i.e. erroneous ratio between the value of the quantities before

and after the shock wave) and an erroneous propagation speed, and thus it can

mistake the position of the discontinuity at a given time.

As demonstrated by [13, 26] the numerical models present in the literature

[9, 14, 20, 47] are affected by some drawbacks: during the shoaling process the

wave height increase is underestimated, the initial wave breaking point is not

correctly located and the wave height decrease in the surf zone is not correctly

evaluated, with consequent underestimation of the wave-induced currents. The

main cause of these drawbacks is due to the excess of the kinetic energy dissipation

of the ensemble-averaged motion in the numerical solution that is not introduced

by the adopted turbulence model, but by the low order shock-capturing numerical

scheme. [9, 14, 20, 47] use shock-capturing finite-volume numerical scheme that

adopts 2nd order Total Variation Diminishing (TVD) reconstructions technique

and approximate Riemann solvers. In order to overcome these drawbacks and

correctly represent the wave height evolution, wave breaking dynamics in the surf

zone, and wave-induced coastal currents, the authors use fine grids, especially in

the horizontal directions, that limit their application mainly to laboratory-scale
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Chapter 3. Numerical scheme

case studies.

To reduce the kinetic energy dissipation of the ensemble-averaged motion,

that is introduced in the numerical solution by the low-order numerical scheme

Cannata et al [13, 26] increased the order of accuracy of the numerical scheme en-

suring good non-oscillatory properties. By using this high-order numerical scheme

it is possible to leave the task of dissipating the kinetic energy of the ensemble-

averaged motion to the turbulence model. The new numerical scheme proposed

by [13, 26, 51] solves the three-dimensional Navier-Stokes equations written in

integral contravariant form expressed in a generalized time-dependent curvilin-

ear coordinate system, in which the vertical coordinate moves following the free

surface. This numerical model is based on two elements of novelty. The first

element of novelty is related to the reconstruction technique for the point values

of the conserved variables on the cell faces. The numerical scheme is based on a

new fifth-order reconstruction technique, called Wave-Targeted Essentially Non-

Oscillatory (WTENO). This reconstruction technique uses different polynomials

defined on contiguous cells, and also uses a so-called cut-off function (which varies

in space and time) that depends on the polynomial regularity, and on the defi-

nition of a dynamic threshold (which also varies in space and time), which is a

function of the steepness of the wave fronts. This reconstruction technique en-

sures high-order of accuracy, good non-oscillatory properties and avoids excessive

dissipation of the kinetic energy of the ensemble-averaged motion due to the TVD

reconstruction technique. The second element of novelty is the use of an exact

solution of the Riemann problem for the time advancing of the point values of

the conserved variables on the cell faces. By using the new high-order numerical

scheme, it is possible to leave the task of dissipating the kinetic energy of the

ensemble-averaged motion to the turbulence model.

The chapter is organized as follow: in Section 3.1, the finite volume discretiza-

tion of the motion equations is introduced; in Section 3.2, the numerical scheme is

presented; in Section 3.3, the new high-order WTENO reconstruction technique

is presented; in Section 3.4 the exact solution for the Riemann problem is shown;

in Section 3.5 the fractional step methods procedure is shown.
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3.1 Finite volume discretization

3.1.1 Discretized equations of motion

The physical domain is divided into N × M × O hexahedral cells Ii,j,k (where

i = 1 − N , j = 1 − M and k = 1 − M), bounded by cell faces that lie on

curvilinear coordinate surfaces (defined by indexes i± 1
2 , j ±

1
2 and k ± 1

2). The

conserved variables are defined at the center of each cell. By integrating Eq. 2.21

over the water column and discretizing over space the obtained equation, the rate

of change of the cell-averaged water depth, (H)i,j,k, reads

(H)i,j = − 1

(∆ξ1∆ξ2
√
g0)i,j{[

(Hu1
√
g0∆ξ2∆ξ3)i+ 1

2
,j,k − (Hu1

√
g0∆ξ2∆ξ3)i− 1

2
,j,k

]
+
[
(Hu2

√
g0∆ξ1∆ξ3)i,j+ 1

2
,k − (Hu2

√
g0∆ξ1∆ξ3)i,j− 1

2
,k

]} (3.1)

By discretizing over space Eq. 2.22, the rate of change of the cell-averaged

conserved variable (Hul)i,j,k reads

(Hul)i,j
∂t

= −

(
˜⃗g(l)

∆ξ1∆ξ2∆ξ3
√
g0

)
i,j,k{[(

Hum
Hu1

H
+

(
GH −Gh+

pdyn
ρ

)
Hgm1√g0

)
∆ξ2∆ξ3

]
1+ 1

2
,j,k

−
[(

Hum
Hu1

H
+

(
GH −Gh+

pdyn
ρ

)
Hgm1√g0

)
∆ξ2∆ξ3

]
1− 1

2
,j,k

+

[(
Hum

Hu2

H
+

(
GH −Gh+

pdyn
ρ

)
Hgm2√g0

)
∆ξ1∆ξ3

]
1,j+ 1

2
,k

−
[(

Hum
Hu2

H
+

(
GH −Gh+

pdyn
ρ

)
Hgm2√g0

)
∆ξ1∆ξ3

]
1,j− 1

2
,k

+

[(
Hum

(
Hu3

H
− ω3

g

)
+

(
GH −Gh+

pdyn
ρ

)
Hgm3√g0

)
∆ξ1∆ξ2

]
1,j,k+ 1

2

−
[(

Hum
(
Hu3

H
− ω3

g

)
+

(
GH −Gh+

pdyn
ρ

)
Hgm3√g0

)
∆ξ1∆ξ2

]
1,j,k− 1

2

−1

ρ

[(
Rm1H

√
g0∆ξ2∆ξ3

)]
i+ 1

2
,j,k

−
[(
Rm1H

√
g0∆ξ2∆ξ3

)]
i− 1

2
,j,k

−1

ρ

[(
Rm2H

√
g0∆ξ1∆ξ3

)]
i,j+ 1

2
,k
−
[(
Rm2H

√
g0∆ξ1∆ξ3

)]
i,j− 1

2
,k

−1

ρ

[(
Rm3H

√
g0∆ξ1∆ξ2

)]
i,j,k+ 1

2
−
[(
Rm3H

√
g0∆ξ1∆ξ2

)]
i,j,k− 1

2

}
(3.2)
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3.1. Finite volume discretization

The integral form of the Poisson-like equation, Eq. 2.24, is solved on a control

volume ∆Vi,j,k+ 1
2
, as shown in Fig. 3.1. This control volume is defined at the

center of the upper faces of each grid cells, while the velocity field is calculated

at the center of a control volume ∆Vi,j,k.

By discretizing over space Eq. 2.23, the Poisson-like equation can be rewritten

as

(∂Ψ(s)

∂ξm
gm1√g0∆ξ2∆ξ3

)
i+ 1

2
,j,k+ 1

2

−

(
∂Ψ(s)

∂ξm
gm1√g0∆ξ2∆ξ3

)
i− 1

2
,j,k+ 1

2


+

(∂Ψ(s)

∂ξm
gm2√g0∆ξ1∆ξ3

)
1,j+ 1

2
,k+ 1

2

−

(
∂Ψ(s)

∂ξm
gm2√g0∆ξ1∆ξ3

)
1,j− 1

2
,k+ 1

2


+

(∂Ψ(s)

∂ξm
gm3√g0∆ξ1∆ξ2

)
1,j,k+1

−

(
∂Ψ(s)

∂ξm
gm3√g0∆ξ1∆ξ2

)
1,j,k

 =

−
{[(

Hu1(s)
)∗√

g0∆ξ2∆ξ3
]
i+ 1

2
,j,k+ 1

2

−
[(

Hu1(s)
)∗√

g0∆ξ2∆ξ3
]
i− 1

2
,j,k+ 1

2

+
[(

Hu2(s)
)∗√

g0∆ξ1∆ξ3
]
i,j+ 1

2
,k+ 1

2

−
[(

Hu2(s)
)∗√

g0∆ξ1∆ξ3
]
i,j− 1

2
,k+ 1

2

+
[(

Hu3(s)
)∗√

g0∆ξ1∆ξ2
]
i,j,k+1

−
[(

Hu3(s)
)∗√

g0∆ξ1∆ξ2
]
i,j,k

}
(3.3)

Figure 3.1: Control volume on which the Poisson-like equation is solved.
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3.1. Finite volume discretization

The contravariant components of the conserved corrector variables on the left

hand side of Eq. 3.3,
(
∂ψ(s)

∂ξm gm
)
i,j,k+ 1

2

, are discretized in order to obtain a system

of equations, where the matrix of coefficient has nineteen non-null diagonals

a1Ψ
(s)
i,j−1,k−1 + a2Ψ

(s)
i−1,j−1,k−1 + a3Ψ

(s)
i,j,k−1 + a4Ψ

(s)
i+1,j,k−1

+a5Ψ
(s)
i,j+1,k−1 + a6Ψ

(s)
i−1,j−1,k + a7Ψ

(s)
i,j−1,k + a8Ψ

(s)
i+1,j−1,k

+a9Ψ
(s)
i−1,j,k + a10Ψ

(s)
i,j,k + a11Ψ

(s)
i+1,j,k + a12Ψ

(s)
i−1,j+1,k

+a13Ψ
(s)
i,j+1,k + a14Ψ

(s)
i+1,j+1,k + a15Ψ

(s)
i,j−1,k+1

+a16Ψ
(s)
i−1,j,k+1 + a17Ψ

(s)
i,j,k+1 + a18Ψ

(s)
i+1,j,k+1

+a19Ψ
(s)
i,j+1,k+1 = Qi,j,k+ 1

2

(3.4)

where the term Qi,j,k+ 1
2

is the divergence of the predictor conserved velocity

(changed in sign).

3.1.2 Boundary conditions for the equations of motion

The kinematic condition at the free surface is given by

(u3 − ω3
g)i,j,O+ 1

2
= 0 (3.5)

This boundary condition is imposed on the upper faces Ii,j,O+ 1
2

(where O is the

number of the computational cells in vertical direction) of the last computational

grid cells. At the free surface, the zero-value condition of the Ψ potential is

imposed

(Ψ(s))i,j,O+ 1
2
= 0 (3.6)

No slip-condition is imposed as the bottom boundary condition and it can

be assigned by imposing null velocity contravariant components at the center of

the first grid cell. The bottom boundary is defined at the center of the grid

cells Ii,j,1. For the Poisson-like equation, the bottom boundary condition is given

by imposing zero-value condition of the Ψ(s) potential derivative in the direction

normal to the bottom. (
∂Ψ(s)

∂ξm
gm3

)
i,j,1

= 0 (3.7)

Such condition is equivalent to imposing the contravariant corrector velocity
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3.2. Numerical procedure

component u
3(s)
c to be null at the bottom. Consequently, the bottom bound-

ary conditions for the velocity normal to the bottom are those assigned in the

prediction field calculation

(
u3(s)

)
i,j,1

=
(
u∗3(s)

)
i,j,1

(3.8)

At the lateral boundaries of the domain, a ghost cell is used. When the closed

boundaries are used, a null derivative in the normal direction is assigned for the

free-surface elevation and a null flux is imposed through the boundary. When the

opened boundaries are used, a null derivative in the normal direction is imposed

for the free-surface elevation and velocity components. The lateral boundaries for

the Poisson-like equation are in the center of the grid cells of the lateral ghost

cells of the momentum equation computational grid. The lateral boundary for

the Poisson-like is obtained by imposing the Ψ(s) potential derivative as null in

the direction normal to the boundary.(
∂Ψ(s)

∂ξm
gm1

)
1
2
,j,k

= 0 (3.9)

For the other lateral boundary, the same condition in Eq. 3.8 is given.

In Fig. 3.2, the computational domain is shown. The dashed line indicates

the ghost cells, while the solid line indicates the calculation grid cells. At the

center of each cell, the equations of motion are solved; at the upper faces of each

cell the Poisson-like equation is solved. The bottom boundary is at the center of

the grid cells (I)i,j,1. The free-surface boundary is on the upper faces of each grid

cells, (I)i,j,O+ 1
2
.

3.2 Numerical procedure

The numerical procedure can be divided into ten steps. In Fig. 3.3 the flow

chart that describes the numerical procedure for the resolution of the integral

contravariant form of the Navier-Stokes equations is shown.

1. The domain is divided into hexahedral grid cells. For each grid cell, Ii,j,k,

the indexes i, j and k vary along the coordinate lines ξ1, ξ2 and ξ3. Each

cells are bounded by faces that lie on curvilinear coordinate surface, defined
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3.2. Numerical procedure

Figure 3.2: Grid cells of the computational domain. −−− ghost cells and solid line
computational grid cells.

by indexes i± 1
2 , j ±

1
2 , k ± 1

2 . Let be (H)i,j and (Hul)i,j,k the cell average

values of the conserved variables H and Hul. The point value of a generic

conserved variable defined at the centre of the computational cell face be-

tween the cells Ii,j,k and Ii+1,j,k is identified by ( )i+ 1
2
,j,k. The point value

of a generic conserved variable defined at the center of the opposite compu-

tational cell face between the cells Ii,j,k and Ii−1,j,k is identified by ( )i− 1
2
,j,k

(analogously for the other faces). To determine the point values at the cen-

tre of the computational cell faces, a high-order reconstruction technique is

used starting from the cell average values of the same conserved variables

known at time step t.

On a generic cell face Ii− 1
2
,j,k, there are two point values of the conserved

variables, ( )+
i− 1

2
,j,k

and ( )−
i− 1

2
,j,k

, one coming from a polynomial centered

in Ii,j,k and the other coming from a polynomial centered in Ii−1,j,k.

2. The two point values of the conserved variables on each face of the cell Ii,j,k,

given by the reconstructions, are the initial conditions for a local Riemann

problem defined on each face. In order to solve a local Cartesian Riemann
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3.2. Numerical procedure

WTENO Reconstructions
( )i+ 1

2
,j,k, ( )i− 1

2
,j,k

Orthonormalization

Exact Riemann Solver
( )+

i+ 1
2
,j,k

, ( )−
i+ 1

2
,j,k

De-Orthonormalization

Predictor velocity
(Hul)∗

Poisson-like equation
∂

[
gls∂Ψ

∂s
H

√
g0

]
∂ξl

= − ∂(Hul)∗
√
g0

∂ξl

Corrector velocity
(Hul)c = H gls∂Ψ

∂s

Final flow velocity field
Hul = (Hul)∗ + (Hul)c

Free-surface elevation
H

Updating of the contravarinat
velocity component of the moving

curvilinear vertical coordinate
w1

g = w2
g = 0 w3

g = ξ3

H
∂H
∂t

Figure 3.3: Flowchart of the numerical scheme.
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3.3. WTENO Reconstructions

problem, an orthonormalization procedure is made to transform the system

of covariant and contravariant base vectors to a system of local orthonormal

base vectors. The point values are expressed in terms of this system.

3. All the Riemann problems are solved by an exact procedure and the updated

point values of the conserved variables are given on the cell faces.

4. The inverse transformation (de-orthonormalization procedure) is made to

have the updated conserved variables expressed in terms of contravariant

base vectors.

5. A predictor field of the cell average conserved variable (Hul)∗ is calculated

by solving the momentum balance equation in which the dynamic pressure

is not taken into account. This predictor field is not divergence-free and is

used to calculate the known term of a Poisson-like equation.

6. The Poisson-like equation expressed in terms of the conserved variable (Hul)∗

is solved by a iterative multigrid method that use a combination of the four-

colour Zebra and Gauss-Seidel line-by-line as a smoother.

7. The gradient of the scalar potential Ψ, obtained by solving the Poisson-like

equation, is used to correct the field of conserved variables at the center of

the computational grid cell and also at the center of the cell faces.

8. The sum of the predictor field (Hul)∗ and the corrector one (Hul)c gives

the final cell average field of the conserved variable Hul. This final field

takes into account the dynamic pressure and is divergence-free.

9. The integration of the continuity equation over the water depth gives the

updated cell averaged value of the water depth H.

10. The contravariant velocity component of the moving curvilinear vertical

coordinate is calculated once the free-surface position is updated.

3.3 WTENO Reconstructions

The shock-capturing numerical schemes used in the literature [9, 14, 20, 47] for

the simulation of the hydrodynamic fields are based on the assumption that the
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3.3. WTENO Reconstructions

breaking wave can be represented by a discontinuity in the numerical solution

(shock wave). In the proximity of the discontinuity, spurious oscillations can be

generated and can propagate in the solution. The first−order numerical schemes,

as demonstrated by Toro [67], ensure good non-oscillatory properties.

Many authors [9, 14, 20, 47] solve the three-dimensional motion equations

by using shock-capturing finite volume numerical schemes that adopt (2nd order)

TVD reconstructions to reduce the spurious oscillations in the numerical solution.

The 2nd order TVD reconstructions ensure the maximum order of accuracy (2nd

order) where the solution is regular, while prevent the spurious oscillations where

the solution is irregular by reducing the order of accuracy (1st order) in the prox-

imity of the discontinuity. It has been demonstrated by Cannata et al [13, 26]

that the use of the TVD reconstructions introduces high numerical dissipation

in the simulations and that, for this reason, the wave height is underestimated

during the shoaling, the breaking point and the reduction of the wave height in

the surf zone are not correctly evaluated.

To correctly simulate breaking waves and overcome the drawbacks introduced

by the use of the low-order numerical schemes, the integral contravariant form of

the Navier-Stokes equations is solved by using a new (5th order) shock-capturing

numerical technique [13, 26] for the reconstructions of the point values of the

conserved variables at the centre of the computational cell faces. This technique

starts form the Targeted Essentially Non-Oscillatory (TENO) technique, but is

specifically designed for the three-dimensional simulation of the breaking waves

and it is called WTENO by [13, 26].

The breaking waves are characterized by steep wave fronts where the tur-

bulence phenomena are dominant. In correspondence of such wave fronts it is

necessary that the reconstruction technique introduces low numerical energy dis-

sipation to leave the task of dissipating the adequate amount of kinetic energy

to the turbulence model. On the other hand in the surf zone on the wave tail

(the part behind the wave front) the turbulence is negligible and the turbulence

model should not dissipate kinetic energy. In this part of the wave it is necessary

that the numerical scheme prevents the spurious oscillations produced on the free

surface by introducing numerical energy dissipation.

In WTENO scheme the reconstruction of the point values of the conserved
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3.3. WTENO Reconstructions

variables at the centre of the computational cell faces of the generic computa-

tion grid cell Ii,j,k is based on three elements. The first element consists in the

definition of three different (2st order) polynomials that are candidates for ap-

proximate the point value of the conserved variables in the computational grid

cell Ii,j,k. The second element consists in the definition of a regularity function

for each polynomial, which depends on the smoothness of the polynomials. The

last element is the definition of a dynamic threshold, common to the three poly-

nomials, that varies as a function of the smoothness and the steepness of the wave

fronts. By comparing at every instant of the simulation and in each points of the

domain the value of the regularity function with the dynamic threshold it can be

deduced if one, two or three polynomials can be used to reconstruct the point

values of the conserved variables. If just one or two polynomials participates to

the reconstruction, the spatial order of accuracy is reduced and consequently the

kinetic energy dissipation due to the numerical scheme increases.

The shock-capturing numerical scheme used in this thesis is based on a re-

construction procedure that is dynamically modified in every point and at every

instant of the numerical simulations. On the steep wave fronts the numerical

energy dissipation is reduced (in order to give the task of dissipating the kinetic

energy to the turbulence model), while on the wave tails and the non-breaking

wave fronts (where the kinetic energy dissipation is mainly located at the bottom,

in the oscillating wave boundary layer) the adequate numerical energy dissipation

is ensured.

The reconstruction procedure consists in calculating the point values of each

conserved variable at the center of every computational cell face, starting from

the integral of a given conserved variable over the cell volume. In the transformed

space, used in this numerical model, the integral of the conserved variables over the

cell volume is defined by three consecutive one-dimensional reconstructions, each

one relative to a single coordinate line (dimension-by-dimension reconstruction).

The generic computational grid cell Ii,j,k, in the transformed space, denoted by

ξ1, ξ2 and ξ3 coordinates, has a regular and fixed shape and volume (∆ξ1∆ξ2∆ξ3).

The cell average conserved variable Hul can be indicated by this triple integral

Hul =
1

∆ξ1∆ξ2∆ξ3

∫ ξ3
k+1

2

ξ3
k− 1

2

∫ ξ2
j+1

2

ξ2
j− 1

2

∫ ξ1
i+1

2

ξ1
i− 1

2

Huldξ1dξ2dξ3 (3.10)
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3.3. WTENO Reconstructions

Let (Hul)i+ 1
2
,j,k and (Hul)i− 1

2
,j,k be the point values of the conserved variable

at the centre of the cell faces on which the ξ1 coordinate is constant (placed at

the side on which ξ1 increases and decreases respectively). The reconstruction

procedure is made up three different steps.

• Step 1: starting form the cell average values of the conserved variable

(Hul)i,j,k, the surf averaged value (H̃ul)i,j,k, along the ξ3 direction is given

by

(H̃ul)i,j,k =
1

∆ξ2

∫ ξ2
j+1

2

ξ2
j− 1

2

[
1

∆ξ1

∫ ξ1
i+1

2

ξ1
i− 1

2

Hul(ξ1, ξ2, ξ3)dξ1
]
dξ2 (3.11)

• Step 2: starting from the surf averaged values (H̃ul)i,j,k, the line averaged

value (Ĥul)i,j,k, along the ξ2 direction is given by

(Ĥul)i,j,k =
1

∆ξ1

∫ ξ1
i+1

2

ξ1
i− 1

2

H̃ul(ξ1, ξ2, ξ3)dξ1 (3.12)

• Step 3: starting form the line averaged values (Ĥul)i,j,k, the point values

on the cell faces, (Hul)i+ 1
2
,j,k and (Hul)i− 1

2
,j,k, are reconstructed along the

ξ1 direction.

The value (H̃ul)i,j,k is reconstructed by a polynomial function Fi,j,k(ξ
3) (where

the indexes (i, j, k = 1, 3) indicate the cell Ii,j,k in which the polynomial is de-

fined); in the other two directions the values are reconstructed by others polyno-

mial functions

(H̃ul)i,j,k = Fi,j,k(ξ
3)

(Ĥul)i,j,k = Fi,j,k(ξ
2)

(Hul)1+ 1
2
,j,k = Fi,j,k(ξ

1
i+ 1

2

)

(Hul)1− 1
2
,j,k = Fi,j,k(ξ

1
i− 1

2

)

(3.13)

Each polynomial function is obtained by three different second-order poly-

nomials defined on contiguous cells; for example the polynomial function for re-

construct the surface values is given by using these second-order polynomials
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3.3. WTENO Reconstructions

P(p)i,j,k(ξ
3) (where p = −1, 0,+1)

Fi,j,k(ξ
3) = ω̇−1P(−1)i,j,k(ξ

3) + ω̇0P(0)i,j,k(ξ
3) + ω̇1P(1)i,j,k(ξ

3) (3.14)

In Eq. 3.14 the second-order polynomials are given by

P(p)i,j,k(ξ
3) = a(p)i,j,k(ξ

3)2 + b(p)i,j,k(ξ
3) + c(p)i,j,k (3.15)

The coefficients a(p)i,j,k, b(p)i,j,k and c(p)i,j,k are determined by solving a linear

system of three equations. Coming back to the Eq. 3.14 the coefficients ω̇p (with

p = −1, 0,+1) are the non-linear weights and they are defined by

ω̇p =
δp∑1

p=−1 δpCp
(3.16)

where Cp are the linear weights.

C0 = 0.1 C1 = 0.6 C2 = 0.3 (3.17)

The linear weights are calculated in such a way that the reconstruction in Eq. 3.14,

obtained by three different second-order polynomials, is equal to a single fourth-

order polynomials defined on 5 contiguous cells. The stencil made by these five

contiguous cells is shown in Fig 3.4. Each second-order polynomial, shown in Fig.

3.4 is defined on a stencil of three contiguous cells.

δp are the cut-off functions adopted in TENO schemes [22, 54] and determine

if one, two or three polynomials participate in the reconstruction (if all three

polynomials are used the maximum order of accuracy (5th) is reached)

δp =

{
0 Γp < CT

1 Γp ≥ CT
(3.18)

In Eq. 3.18 Γp is the regularity function and CT is the dynamic threshold. At

every instant of the simulation and at every point of the computational domain,

the comparison between Γp and CT determines how many polynomials are used

Benedetta Iele 36



3.3. WTENO Reconstructions

Figure 3.4: Stencil of contiguous cells for defining the polynomials P(p)i,j,k.

in the reconstruction. Γp is defined as follow

Γp =
γp∑1

p=−1 γp
(3.19)

γp depends on the smoothness indicator βp of each polynomial and on the global

smoothness indicator τp

γp =

(
C +

τp
βp + ϵ

)µ
(3.20)

in which ϵ = 1e−40 is used just to prevent zero in the denominator, τp =
∣∣β1−β−1

∣∣
as adopted by [4], µ = 6 and C = 1. βp are computed by [36] and are related to

the first and second derivative of the polynomial P(p)i,j,k(ξ
3); the value of βp is

high when the polynomial is irregular.

βp =

∫ ξ3
k+1

2

ξ3
k− 1

2

∆ξ3
(
∂P(p)i,j,k

∂ξ3

)2

dξ3 +

∫ ξ3
k+1

2

ξ3
k− 1

2

(∆ξ3)2

(
∂2P(p)i,j,k

(∂ξ3)2

)2

dξ3 (3.21)

By using the polynomials (Eq. 3.11) in Eq. 3.21, the smoothness indicators are

given by
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β0 =
13

12

(
ulHi−2 − 2ulHi−1 + ulHi

)2
+

1

4

(
ulHi−2 − 4ulHi−1 + 3ulHi

)2
β1 =

13

12

(
ulHi−1 − 2ulHi + ulHi+1

)2
+

1

4

(
ulHi−1 − ulHi+1

)2
β2 =

13

12

(
ulHi − 2ulHi+1 + ulHi+2

)2
+

1

4

(
3ulHi − 4ulHi+1 + 3ulHi+2

)2
(3.22)

The dynamic threshold CT in WTENO reconstructions varies with space and

time and is also a function of the regularity of the polynomials and the steepness

of the wave front.

CT = 10−n

n = Bl + (θ + θ2)(Bh −Bl)
(3.23)

where Bl = 1 and Bh = 7 determine the minimum and maximum values of the

exponent n. The parameter θ is the regularity function of each polynomial and is

defined as follow

θ =
1

1 + 1
dmax

τp
βp+ϵ

d = 10 (3.24)

θ2 in Eq. 3.23 is the parameter introduced in WTENO scheme to take into account

the steepness of the wave front in order to increase the order of accuracy of the

reconstructions on the breaking wave fronts and limit the spurious oscillations

that can arise on the wave tails. Both the parameters influence the value of the

exponent n: if n assumes low values the propensity of the technique to cut off one

or two polynomials increases. θ2 is given by

θ2 =


∂η
∂t −

(
∂η
∂t

)∗
+
∣∣∣∂η∂t − (∂η∂t)∗∣∣∣

2
∣∣∣∂η∂t − (∂η∂t)∗∣∣∣


 ∂η

∂t(
∂η
∂t

)∗ − 1

 (3.25)

in which ∂η/∂t is the local time rate of change of the free-surface elevation,

(∂η/∂t)∗ is a threshold value of ∂η/∂t used to distinguish the breaking wave

fronts from the wave tails. The portion of the temporal variation of the free-

surface characterized by positive values of ∂η/∂t is a wave front, on the other

hand the negative values individuate the wave tails. Larger values of ∂η/∂t indi-
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3.4. Exact Riemann Solver

cate a higher steepness of the wave front and for this reason it possible to compare

∂η/∂t with the threshold (∂η/∂t)∗ to determine if a wave front is a breaking wave

front. Kennedy et al [37] defines a wave breaking front for (∂η/∂t)∗ = 0.3
√
gh.

The first term of the Eq. 3.25 has the task to activate θ2


∂η
∂t −

(
∂η
∂t

)∗
+
∣∣∣∂η∂t − (∂η∂t)∗∣∣∣

2
∣∣∣∂η∂t − (∂η∂t)∗∣∣∣

 =


0 ∂η

∂t ≤
(
∂η
∂t

)∗
1 ∂η

∂t >
(
∂η
∂t

)∗ (3.26)

The second term of the Eq. 3.25 gives the magnitude to θ2. θ2 is activated

on the breaking wave fronts ∂η/∂t > (∂η/∂t)∗ and for this reason θ2 differs from

zero; on the wave tails and on the non-breaking fronts θ2 is equal to zero.

Higher values of θ2 produce increment the exponent n in Eq. 3.23, so CT is

reduced. For low values of CT the propensity to cut off one or two polynomials is

reduced. Consequently on the wave breaking fronts the numerical energy dissipa-

tion is reduced, because the high-order is reached. On non-breaking wave fronts

and on the wave tails the reconstruction technique guarantees an adequate numer-

ical dissipation to limit the spurious oscillations that can arise in the numerical

solutions.

3.4 Exact Riemann Solver

The WTENO reconstructions presented in Section 3.3 give the point values of the

conserved variables on the cell faces. On each cell face, there are two values of the

conserved variables, one right and one left (H+, H−, Hul+, Hul−, Hvl+, Hvl−,

Hwl+ and Hwl− where the symbols + and − indicate respectively the right and

left values of the conserved variables). To updating in time the point values of the

conserved variables at the center of the cell faces an exact local Riemann solver

is used. The two values on the cell faces that represent the discontinuity are the

initial conditions for the Riemann problem.

In the literature [9, 14, 20, 47] the authors use an approximate Riemann solver.

The main difference between the approximate and the exact Riemann solvers

is the resolution of the contact wave in addition to the shock and rarefaction

waves. By using the complete solution of the Riemann problem (and the 5th-order

reconstructions), it is possible to further limit the numerical energy dissipation.
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3.4. Exact Riemann Solver

In the following part the complete solution of the Riemann problem is explained.

The vector of the conserved variables is expressed with respect to a local

Cartesian system of a base vectors (the horizontal coordinates, x1 and x2, are

Cartesian and the vertical coordinate, ξ3, varies overtime according to the σ-

coordinate transformation). The integral contravariant form of the Navier-Stokes

equations can be transformed in a conservative differential form on the local sys-

tem of base vectors.

∂H

∂t
+

∂Hu

∂x1
+

∂Hv

∂x2
+

∂H(u3 − w3
g)

∂ξ3
= 0

∂Hu

∂t
+

∂Huu

∂x1
+

∂Huv

∂x2
+

∂ 1
2GH2

∂x1
−GH

∂b

∂x1
+

∂Hu(u3 − w3
g)

∂ξ3
= 0

∂Hv

∂t
+

∂Hvu

∂x1
+

∂Hvv

∂x2
+

∂ 1
2GH2

∂x2
−GH

∂b

∂x2
+

∂Hv(u3 − w3
g)

∂ξ3
= 0

∂Hw

∂t
+

∂Hwu

∂x1
+

∂Hwv

∂x2
+

∂Hw(u3 − w3
g)

∂ξ3
= 0

(3.27)

In Eqs. 3.27 the local Cartesian components of the vector of conserved variables

are expressed by H, Hu, Hv and Hw; the contravariant component of the fluid

velocity and the contravariant component of the moving coordinate are given

respectively by u3 and w3
g . It is possible to rewrite the above system as follow

∂U
∂t

+
∂F(U)

∂x1
+

∂G(U)

∂x2
+

∂H(U)

∂ξ3
= S (3.28)

where

U =


H

Hu

Hv

Hw

 , F(U) =


Hu

Huu+ 1
2GH2

Huv

Huw

 , G(U) =


Hv

Hvu

Hvv + 1
2GH2

Hvw

 ,

H(U) =


0

Hu(u3 − w3
g)

Hv(u3 − w3
g)

Hw(u3 − w3
g)

 , S =


−∂H(u3−ω3)

∂ξ3

GH ∂h
∂x1

GH ∂h
∂x2

0


(3.29)

Three different exact Riemann problems each one relative to a single coordi-

nate direction can be solved to obtain the solution of Eqs. 3.28, as indicated by
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3.4. Exact Riemann Solver

Toro [67]. In the following part the solution for the x1-spit Riemann problem is

shown.

The initial value problem is given by
∂W
∂t + ∂F(W)

∂x1
= 0

W(x, 0) =


WL if x1 < 0

WR if x1 > 0

(3.30)

where

WL =


HL

HLuL

HLvL

HLwL

 , WR =


HR

HRuR

HRvR

HRwR

 , F(W) =


Hu

Huu+ 1
2GH2

Huv

Huw


(3.31)

where WL and WR are the vectors of the initial conditions (W = (H,u, v, w)) on

the left and right side of the cell face which in the local system of coordinates is

places at x = 0; F(W) is the vector of the fluxes in x1 direction. It is possible to

define four constant state (WL, WstL, WstR and WR) determined by the three

eigenvalues (e1 = u − a, e2 = u, e3 = u + a where a =
√
Gh by recalling

that h is the still water depth) that is associated to three waves. The solution

is unknown in the star region (indicated by the subscript st) that is the region

between the left and right waves and it is influenced by the interaction of WL

and WR. Across the left and right waves, H and u change, while v and w remain

constant; across the middle wave v and w change discontinuously, while H and

u remaining constant. The left and right waves are determined according to the

following conditions

Hst > HL left shock wave

Hst ≤ HL left rarefaction wave

Hst > HR right shock wave

Hst ≤ HR right rarefaction wave

(3.32)

The values of Hst and ust are not influenced by the tangential velocity com-
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3.4. Exact Riemann Solver

ponents, because the left and right waves are not influenced too. Obtaining a

non-linear algebraic equation for Hst is the first step of the procedure, for this

reason ust should be connected to the left and right values of H by two func-

tion: fL(H,HL) and fR(H,HR). The solution for Hst is given by the root of the

following non-linear algebraic equation

fun(Hst) ≡ funL(Hst, HL) + funR(Hst, HR) + uR − uL = 0 (3.33)

where funL(Hst, HL) and funR(Hst, HR) are functions defined by using the

Rankine-Hugoniot conditions1 for a shock wave and Riemann invariants2 for a

rarefaction wave

funL =


2(
√
GHst −

√
GHL), if Hst ≤ HL (rarefaction wave)

(Hst +HL)
√

1
2G

(Hst−HL)
HstHL

, if Hst > HL (shock wave)

funR =


2(
√
GHst −

√
GHR), if Hst ≤ HR (rarefaction wave)

(Hst +HR)
√

1
2G

(Hst−HR)
HstHR

, if Hst > HR (shock wave)

(3.34)

Only for the following conditions Hst < Hmin; Hmin ≤ Hst ≤ Hmax; Hst >

Hmax (where Hmin = min(HL, HR) and Hmax = max(HL, HR)), the solution for

Hst has physical meaning, because Hst > 0. The solution for Eq. 3.33 depends

on ∆u = uR − uL. If the following depth positive condition is fulfilled, Hst will

be positive: 2(aL + aR) > uR − uL where a =
√
Gh.

If f(Hmin) > 0, the left and right waves are rarefaction waves and f(Hst)

becomes

2(ast − aL) + 2(ast − aR) + uR − uL = 0 (3.35)

The solution for ast and ust

ast =
1

2
(aL + aR)−

1

4
(uR − uL)

ust =
1

2
(uL + aR) + aL − aR

(3.36)

Newton-Raphson iterative scheme is used to numerically solve the other cases

of Eq. 3.33 for Hst.

1see AppendixA
2see AppendixB
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3.4. Exact Riemann Solver

The solution for ust in the star region is calculated by using Hst as follow

ust =
1

2
(uL + uR) +

1

2
[fR(Hst, HR)− fL(Hst, HL)] (3.37)

By comparing Hst with hL and hR it is possible to understand if the wave is

a shock wave or rarefaction wave as shown in Eq. 3.32 and so find the complete

solution of the problem.

• If Hst > HL, the left wave is a shock wave with speed SL given by

SL = uL − aLqL

qL =

√
1
2(Hst +HL)Hst

H2
L

(3.38)

• If Hst ≤ HL, the left wave is a rarefaction wave, for which the speed of the

head SHL and tail STL of the wave are

SHL = uL − aL

STL = ust − ast

(3.39)

In this case the solution inside the rarefaction wave is given by

WLfan =


a = 1

3

(
uL + 2aL − x1

t

)
u = 1

3

(
uL + 2aL − 2x1

t

) (3.40)

In Fig. 3.5 the structure of the complete solution is shown for the two pos-

sible waves on the left side of the shear wave x/t = ust (that is the middle

wave across which the tangential velocity components change discontinu-

ously): in the first figure the left wave is a shock wave and in the second

figure the left wave is a rarefaction wave.

• If Hst > HR the right wave is a shock, with speed SR

SR = uR + aRqR

qR =

√
1
2(Hst +HR)Hst

H2
R

(3.41)

• If Hst ≤ HR the right wave is a rarefaction wave for which the speed on the
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3.4. Exact Riemann Solver

(a) Solution for a shock left wave Hst > HL. (b) Solution for a rarefaction left waveHst ≤
HL.

Figure 3.5: Complete solution of the Riemann problem to the left of the contact wave.

head and tail are

SHR = uR + aR

STR = ust + ast

(3.42)

In this case the solution inside the righ rarefaction wave is given by

WRfan =


a = 1

3

(
−uR + 2aR − x1

t

)
u = 1

3

(
uR − 2aR − 2x1

t

) (3.43)

In Fig. 3.6 the structure of the complete solution is shown for the two

possible waves on the right side of the shear wave x/t = ust: in the first

figure the right wave is a shock wave and in the second figure the right wave

is a rarefaction wave.

(a) Solution for a shock right wave Hst >
HR.

(b) Solution for a rarefaction right
waveHst ≤ HR.

Figure 3.6: Complete solution of the Riemann problem to the right of the contact wave.

The remaining components are easily obtained as a function of the celerity of
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3.5. Fractional step method

a contact wave, once Hst and ust are calculated

ust > 0


v = vL

w = wL

ust < 0


v = vR

w = wR

(3.44)

3.5 Fractional step method

The fractional step methods is used to produce a non-hydrostatic divergence-free

velocity field and update the water depth. The predictor field (Hul)∗, obtained

by solving the momentum balance equation without considering the dynamic

pressure, is associated to a non-divergence free velocity field. This approximated

velocity field should be corrected by the gradient of the scalar potential Ψ. The

scalar potential is calculated by a Poisson-like equation expressed in terms of the

conserved variable Hul. The known right-hand side of the Poisson-like equation

is the divergence of the predictor field

∂[g
ls∂Ψ
∂s H

√
g0]

∂ξl
= −

∂(Hul)∗
√
g0

∂ξl
(3.45)

in which gls with l, s = 1, 2, 3 is contravariant metric tensor. The corrector field

is obtained by the gradient of the scalar potential Ψ

(Hul)c = H
gls∂Ψ

∂s
(3.46)

The sum of the predictor field and the corrector field gives the final non-hydrostatic

divergence-free velocity field

Hul = (Hul)∗ + (Hul)c (3.47)

Knowing the final velocity field it is possible to update the free-surface el-

evation by solving the continuity equation and it is possible to determine the
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3.5. Fractional step method

contravariant velocity components of the moving curvilinear vertical coordinate.

v1 = v2 = 0 v3 =
ξ3

H

∂H

∂t
(3.48)

The Message Passing Interface (MPI) is used to parallelised the calculation

code to save computational time.
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Chapter 4

Smagorinsky Turbulence Model

under breaking waves

In the literature, the turbulence closure relations for the Reynolds stress tensor

in breaking wave simulations are made by different turbulence models like the

Smagorinsky model, one-equation or two-equation turbulence models.

In recent papers [9, 11, 12, 20, 23, 25, 31, 33, 44, 47, 52, 73], the Smagorinsky

turbulence model is calibrated for three-dimensional numerical simulations of wave

propagation from deep-water to the coastline.

It should be noted however that the existing numerical models that use the

Smagorinsky turbulence model [47] are collocated in the context of low-order ac-

curate shock-capturing numerical schemes. In these schemes, the reconstructions

of point values of the conserved variables are made by 2nd order TVD schemes and

the Riemann problem is solved by an approximate Riemann solver. As just men-

tioned in Chapter 3, these models leave the task of dissipating the kinetic energy

of the ensemble-averaged motion (in which the complete spectrum of the turbulent

stochastic motion is not directly simulate) in the surf zone to the shock-capturing

numerical scheme and use the Smagorinsky turbulence model with coefficients

significantly underestimated in order to eliminate some spurious oscillations. In

the cases in which the 2nd order shock-capturing numerical schemes are used, the

breaking wave height is underestimated and the wave breaking point is shifted

offshoreward.

In order to reduce the dissipation of the kinetic energy of the ensemble-

averaged motion introduced by the numerical schemes and leave the task of dissi-
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4.1. Smagorinsky Turbulence Model and near-wall treatment

pating the kinetic energy of the ensemble-averaged motion only to the turbulence

model, it is necessary to use the new high-order numerical scheme, presented in

Chapter 3 and adequate turbulence models. This new shock-capturing numerical

scheme uses conserved variables, 5th-order WTENO reconstructions and an exact

Riemann solver.

In the first section (Section 4.1) of this chapter, the Smagorinsky turbulence

model and some considerations about the oscillating wave boundary layer are

presented. In the second section (Section 4.2), the comparison between the nu-

merical results obtained by using the new high-order scheme, presented in Chapter

3, and the numerical results obtained by using the low-order scheme are also pre-

sented, in order to validate the new high-order numerical scheme. In the last

section (Section 4.3), some conclusive considerations are made about the use of

the Smagorinsky turbulence model.

4.1 Smagorinsky Turbulence Model and near-wall treat-

ment

One of the most popular turbulence models largely used in the literature for the

simulation of breaking waves [44, 47, 73] is the Smagorinsky turbulence model.

In this turbulence model, the deviatoric part of the turbulent stress tensor is

modeled as follow

T devij = Tij −
1

3
Tkkδij = −2νTSij (4.1)

where T devij (i, j = 1, 2, 3) are the Cartesian components of the deviatoric part of

the turbulent stress tensor Tij ; δij is the Kronecker symbol; Sij are the Cartesian

components of the strain rate tensor. The eddy viscosity νT is given by

νT = (CS∆)2|Sij | (4.2)

in which ∆ =
3
√
∆x1∆x2∆x3 represents the turbulence length scale related to the

grid size, CS is the Smagorinsky coefficient, usually ranged between 0.1− 0.3 and

|Sij | is the norm of the strain rate tensor Sij .

The above Smagorinsky turbulence model is used outside the oscillating wave
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4.1. Smagorinsky Turbulence Model and near-wall treatment

boundary layer, while inside the oscillating wave boundary layer a specific near-

wall treatment is assumed for the turbulent quantities.

The eddy viscosity in the oscillating wave boundary layer is deduced by fol-

lowing the line indicated by Liu and Lin [45].

According to the oscillating wave boundary layer theory, the zone close to the

bottom can be divided into three main regions characterized by different types of

stresses. Let be y+ the dimensionless wall distance defined as follow

y+ =
zu∗

ν
(4.3)

where z is the vertical distance from the wall, u∗ is the bottom friction velocity

and ν = 10−6m2s−1 is the kinematic viscosity.

• Viscous sublayer (y+ ≤ 5): this region is the lower part of the boundary

layer characterized by the dominance of the viscous stresses;

• Buffer layer (5 < y+ ≤ 30): in this region viscous stresses and turbulent

stresses coexist;

• Turbulent core (y+ > 30): here the turbulent stresses dominate and the

viscous stresses can be neglected.

Figure 4.1: Oscillating wave boundary layer.

In this thesis, the equations of motion that include the Smagorinsky turbulence

model are solved in the turbulent core, where the turbulent stresses are dominant,

and the velocity boundary condition u⃗B is placed on the border between the buffer
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4.1. Smagorinsky Turbulence Model and near-wall treatment

layer and the turbulent core. The eddy viscosity near the bottom and the velocity

boundary condition are deduced by the theory of the oscillating wave boundary

layer [45] that is outlined below.

The Reynolds averaged momentum balance equation in the Cartesian coordi-

nate system is given by

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂P

∂xi
+Gi +

1

ρ

∂τij
∂xj

−
∂u′iu

′
j

∂xj
− ∂P ′

∂xi
+

1

ρ′
∂τ ′ij
∂xj

(4.4)

in which i, j = 1, 2, 31; the symbol ( ) indicates a Reynolds averaged quantity,

the symbol ( )′ indicates the turbulent fluctuations, P is the total pressure, Gi

is the i − th component of the gravity acceleration and τij is the viscous stress

tensor.

Let us consider an oscillating turbulent free-surface flow produced by the prop-

agation of the wave train over the rigid bottom, in which z is the coordinate nor-

mal to the bottom and x is the coordinate in the wave propagation direction. By

invoking the boundary layer approximation, close to the bottom, Eq. 4.4 reduces

to

ν
∂2u

∂z2
− ∂u′w′

∂z
= 0 (4.5)

in which u and w are the Reynolds averaged Cartesian velocity components in

the direction of x and z axis respectively, and u′ and w′ are their turbulent

fluctuations.

By integrating Eq. 4.5 along the vertical direction, from the wall (z = 0m) to

z outside the viscous sublayer where the viscous stresses can be neglected, it is

obtained the following expression

−
∫ z

0
ν
∂2u

∂z2
dz = −

∫ z

0

∂u′w′

∂z
dz

−ν
∂u

∂z

∣∣∣∣
z︸ ︷︷ ︸

0

+ ν
∂u

∂z

∣∣∣∣
0︸ ︷︷ ︸

visc.str.

= u′w′
∣∣
z︸ ︷︷ ︸

turb.str.

+u′w′
∣∣
0︸ ︷︷ ︸

0

ν
∂u

∂z

∣∣∣∣
0

= u′w′
∣∣
z

(4.6)

1In this thesis the Einstein notation is used. The notation conventional implies summation
over a set of indexed terms in a formula. When an index variable appears twice in a single
term, it implies summation of that term over all the values of the index. y =

∑3
i=1 cix

i =
c1x

1 + c2x
2 + c3x

3 is simplified by the convention to y = cix
i. The upper indices are not

exponents but are indices of coordinates, coefficients or basis vectors.
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The first term on the left-hand side of Eq. 4.6 is equal to zero because outside

the viscous sublayer the viscous stresses can be neglected; the second term on

the right-hand side of the equation is null because the turbulent stresses can be

neglected inside the viscous sublayer.

The viscous stress at the bottom τw can be expressed in terms of the so-called

friction velocity u∗ as follow

ν
∂u

∂z

∣∣∣∣
0

=
τw
ρ

= u∗2 (4.7)

The turbulent stresses can be expressed as follow

τij = −u′iu
′
j = νT

∂u′i
∂xj

(4.8)

By assuming that the eddy viscosity is proportional to square of mixing length

νT ∝ l2 (4.9)

and by assuming that the mixing length can be proportional to the wall distance

through a coefficient κ [56]

l ∝ κz (4.10)

the eddy viscosity can be expressed by the mixing-length model

νT = l2
∣∣∣∣∂u∂z

∣∣∣∣ = (κz)2
∣∣∣∣∂u∂z

∣∣∣∣ (4.11)

Introducing Eqs. 4.7 and 4.8 in Eq. 4.6 it can be obtained

u∗2 = νT
∂u′

∂z
(4.12)

By using Eq. 4.11, Eq. 4.12 becomes

u∗2 = (κz)2
∣∣∣∣∂u∂z

∣∣∣∣∂u∂z (4.13)

from which it is possible to obtain

∂u

∂z
=

u∗

κz
(4.14)
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The eddy viscosity in the oscillating boundary layer outside the viscous sub-

layer can be obtained by introducing Eq. 4.14 in Eq. 4.11

νT = κu∗z (4.15)

in which κ = 0.41 is the von Kàrmàn constant.

The integration of Eq. 4.14 in the turbulent core (for hydraulically rough

regime) produces the well-known logarithmic law

u(z)

u∗
=

1

κ
ln

(
z

SC/30

)
(4.16)

in which SC is the bottom roughness and u(z) is the velocity in the turbulent

core.

By assuming the above logarithmic law for the distribution of the velocity

in the wall region, the friction velocity is calculated by introducing in Eq. 4.16

the value of the velocity in the first calculation point, that is placed inside the

turbulent core, u(z), and its coordinate z. The resulting logarithmic law is used

to calculate the velocity boundary condition, that is placed at the border between

buffer layer and turbulent core.

4.2 Results and discussion

Three breaking wave test cases are numerically reproduced by using Smagorinsky

turbulence model and the above-mentioned near-wall treatment. The numerical

simulations are carried out by two different numerical schemes: the low-order

numerical scheme (2nd order TVD reconstructions, Approximated Riemann solver

and primitive variables used for the equations of motion) and the high-order

numerical scheme (5th order WTENO reconstructions, Exact Riemann solver and

conserved variables for the equations of motion).

In Fig 4.2 the discretization of the vertical cells are shown. The first computa-

tional grid cell in which the equations of motion are solved is indicated by number

1 in Fig. 4.2 and it is placed in the turbulent core. At the distance zB from the

bottom, the parallel to the bottom velocity boundary condition uB is determined

by using Eq. 4.16 (in which u∗ is previously calculated by introducing the veloc-
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Figure 4.2: Discretization of the vertical cells outside the buffer layer for the Smagorin-
sky model.

ity u(1) and its coordinate z1 in the logarithmic law). The lower face of the first

computational grid cell is at y+ = 30, at the border between the buffer layer and

the turbulent core. The eddy viscosity inside the oscillating wave boundary layer

(y+ ≤ 90) is calculated by Eq. 4.15; outside the oscillating wave boundary layer

(y+ > 90) the eddy viscosity is calculated by the Smagorinsky model (Eq. 4.2).

The test cases reproduced in this thesis are three: Ting and Kirby test case

for spilling breaker [63], Stive test case for spilling breaker [60, 61] and Stive test

case for a spilling/plunging breaker [61]. A synthetic description of these tests is

given in Tab. 4.1.

Test Name Turb. model Numerical Scheme Note

Ting and Kirby [63] Ting1 Smagorinsky 2nd-order (TVD
+ Approx. Riemann S.) CS = 0.2

Ting and Kirby [63] Ting2 Smagorinsky 5nd-order (WTENO
+ Exact Riemann S.) CS = 0.2

Ting and Kirby [63] Ting3 Smagorinsky 5nd-order (WTENO
+ Exact Riemann S.)

CS = 0.1
CS = 0.2
CS = 0.3

Stive spilling [60, 61] Stive1 Smagorinsky 5nd-order (WTENO
+ Exact Riemann S.)

CS = 0.1
CS = 0.2
CS = 0.3

Stive spilling-plunging [61] Stivesp1 Smagorinsky 5nd-order (WTENO
+ Exact Riemann S.)

CS = 0.1
CS = 0.2
CS = 0.3

Table 4.1: Test cases with Smagorinsky turbulence models.

Iribarren number [34] is used to describe and classify periodic waves breaking
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on sloping beaches. This dimensionless parameter is determined [2, 34] as follow

ξb =
tan(α)√

Hb
L0

=


ξb < 0.4 spilling breaker

0.4 < ξb < 2.0 plunging breaker

ξb > 2.0 surging or collapsing

(4.17)

where α is the beach slope, Hb is the wave height at the breaking point and

L0 = gT 2/(2π) is the wavelenght in deep water (T is the wave period). The four

types of breaking waves are described below and are represented in Fig. 4.3.

- Spilling breakers: these breaking waves move along gradually sloping beach.

The crest spills gradually down the wave face. The time spent to break is

long.

- Plunging breakers: these breaking waves move toward a steep beach or a

bottom with sudden depth changes. The base of the wave slows down while

the crest forms upward and continues to spin. The wave fronts become

concave as the trough and the crest curls over and breaks on the trough.

There is a lot of air compressed in this breaker. This kind of breaking waves

are common in offshore wind conditions.

- Surging breakers: these breaking waves are characterized by long-period and

rush up a very steep beach without dissipating much kinetic energy. The

base of the wave moves fast and does not allow the crest to evolve. This

breaker does not break.

- Collapsing breakers: these breaking waves is a mix of the surging and plung-

ing waves. The crest does not break and the bottom face of the wave gets

vertical and collapses.

In Tab. 4.2 a schematic summary of the wave parameters for each test cases

are reported.

4.2.1 Ting and Kirby test case of a spilling breaker with a cnoidal

wave

The first test case is Ting and Kirby [63] laboratory test. The authors [63] ex-

perimentally reproduce spilling breaking waves by using cnoidal waves that have
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Figure 4.3: Breaker types [69].

Test case Waves type T
[s]

Hs

[m]
L
[m]

h
[m]

Slope
[−]

xB
[m]

HB

[m]

Ting [63] Spilling 2.00 0.125 6.35 0.4 1:35 6.25 0.156
Stive [60, 61] Spilling 1.79 0.159 4.96 0.85 1:40 35.5 0.178
Stive [61] Spilling/Plunging 2.99 0.142 7.30 0.85 1:40 33.5 0.226

Table 4.2: Wave parameters: wave period, wave height in deep water, wavelenght,
undisturbed water depth in deep water, beach slope, wave breaking point, wave height
at the breaking point.

wave height Hs = 0.125m, wavelength L = 6.35m and wave period T = 2s. The

wave tank has an undisturbed water depth of h = 0.40m and a seabed slope of

1 : 35. The used computational grid has 512 nodes in the wave propagation direc-

tion, with grid spacing of ∆x = 0.05m, and 13 non uniform layer in the vertical

direction.

On the west side of the computational domain, a cnoidal wave [68] is generated

by imposing the velocity components and the free-surface elevation. On the east

side of the computational domain a wet and dry technique is adopted. At the

bottom of the computational domain the no-slip condition is imposed. In Fig. 4.4

the computational domain is represented. In the zone near the coastline (about

x > 11.0m), the computational grid cells are much smaller than the ones before,

for this reason the adopted time step is ∆t = 0.0001s.
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Figure 4.4: Computational domain for Ting and Kirby [63] test case (in the x-direction,
only one line out every 10 is drawn).

In Fig. 4.5 the maximum, average and minimum water surface elevation ob-

tained by the low-order numerical scheme are shown. The Smagorinsky coefficient

used in this numerical simulation is CS = 0.2. From the figure it is possible to

notice that the local maximum water surface elevation is underestimated and the

wave breaking point is shifted forward with respect to the experimental mea-

surements. The main reason of the difference between the numerical and the

experimental measurements in terms of the location of the wave breaking point is

due to the use of the primitive variables (H and ul) in the Poisson equation. From

the Fig. 4.5 it can be notice that the use of the primitive variables produces an an-

ticipated wave breaking point, due to incorrect velocity propagation of the shock

waves [67], as already underlined in Chapter 3. Furthermore, the underestimation

of the local maximum water surface elevations is due to the use of the low-order

shock-capturing numerical scheme. In the adopted numerical scheme, the task of

dissipating the kinetic energy of the ensemble-averaged motion is entrusted to the

reconstruction technique and the approximate Riemann solver. By this way the

numerical model underestimates the wave height around the wave breaking point,

shifts offshoreward the wave breaking point and produces an excess of dissipation

of kinetic energy of the ensemble-averaged motion.

In order to overcome all the drawbacks introduced by the use of the low-order

numerical scheme the new high-order numerical scheme is used. In general, high-

order numerical schemes introduce less numerical dissipation and allow to leave

the turbulence model the task of dissipating the right quantity of kinetic energy

of the ensemble-averaged motion.

In Fig. 4.6 the numerical results obtained with the new numerical scheme,
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Figure 4.5: Ting1: local minimum, average and maximum water surface elevations.
Experimental measurements • [63] and numerical results − with the Smagorinsky tur-
bulence model and low-order numerical scheme.

presented in Chapter 3, are shown. The new shock-capturing scheme adopts

conserved variables, 5th-order WTENO reconstructions and an exact Riemann

solver. The Smagorinsky coefficient used in this numerical simulation is CS = 0.2.

Figure 4.6: Ting2: local minimum, average and maximum water surface elevations.
Experimental measurements • [63] and numerical results − with the Smagorinsky tur-
bulence model and high-order numerical scheme.

The location of the wave breaking point is slightly shifted offshoreward with

respect to the one obtained by the experimental measurements. The local maxi-

mum water surface elevation is slightly underestimated around the wave breaking

point and is overestimated in the surf zone. By comparing the results obtained by

the two numerical models (Figs. 4.5 and 4.6), it is evident that the high-order nu-

merical model limits the excessive numerical dissipation of the ensemble-averaged
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motion introduced by the low-order numerical scheme.

In order to understand how the Smagorinsky coefficient can influence the nu-

merical results, three different numerical simulations has been made with three

different values of the Smagorinsky coefficient. In Fig. 4.7 the three numeri-

cal results are shown in comparison with the experimental measurements. The

numerical simulations are carried out with the new shock-capturing numerical

scheme.

Figure 4.7: Ting3: local minimum, average and maximum water surface elevations.
Experimental measurements • [63]. Numerical results with CS = 0.1 dashed line −−−,
CS = 0.2 solid line − and CS = 0.3 dotted line · · · (Smagorinsky turbulence model and
high-order numerical scheme).

The dashed line represents the numerical results obtained by using CS = 0.1,

the solid line represents the same numerical results shown in Fig. 4.6 obtained

with CS = 0.2 and dotted line represents the ones obtained by CS = 0.3. It

is possible to notice that high values of the Smagorinsky coefficient reduce the

local maximum water surface elevations in the shoaling zone and around the wave

breaking point. As a consequence, the wave breaking point is shifted offshoreward.

The local maximum water surface elevation in the surf zone is overestimated in

all the three simulations.

4.2.2 Stive test case of a spilling breaker with a monochromatic

wave

The second test case that is numerically reproduced is a laboratory test by Stive

[60, 61]. The author experimentally reproduced a spilling breaking waves that
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have wave height Hs = 0.159m, wavelenght L = 4.96m and wave period T =

1.79s. The wave tank has an undisturbed water depth of h = 0.85m at the

beginning, length of 55m and a seabed slope 1 : 40. The used computational grid

has 960 nodes in the wave propagation direction, with grid spacing of ∆x = 0.05m

and 13 non uniform layer in vertical direction. A monochromatic and regular

wave is generated on the west side and a wet and dry technique is adopted on

the east side of the computational domain. At the bottom, no-slip condition is

imposed. The computational domain is represented in Fig. 4.8. In the zone near

the coastline (about x > 36.0m), the computational grid cells are much smaller

than the ones before, for this reason the adopted time step is ∆t = 0.0001s.

Figure 4.8: Computational domain for Stive [60, 61] test case (in the x-direction, only
one line out every 10 is drawn).

In Fig. 4.9, the numerical results (in terms of wave height) obtained by the new

high-order numerical scheme (presented in Chapter 3), for three different values

of the Smagorinsky coefficient, are shown in comparison with the experimental

measurements. In Fig. 4.9, the solid line is obtained by using Cs = 0.2, the

Figure 4.9: Stive1: wave height. Experimental measurements • [60, 61]. Numerical
results with CS = 0.1 dashed line −−−, CS = 0.2 solid line − and CS = 0.3 dotted line
· · · (Smagorinsky turbulence model and high-order numerical scheme).
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dotted line is obtained by using Cs = 0.3 and the dashed line is obtained by using

Cs = 0.1. In all the three results, the wave breaking point is shifted offshoreward.

The highest value of the Smagorinsky coefficient produces an underestimation

of the wave height around the wave breaking point; while the lowest value one

produces an overestimation of the breaking-point wave height. In the surf zone, all

the three numerical simulations produce the overestimation of the wave heights.

4.2.3 Stive test case of a spilling-plunging breaker with a monochro-

matic wave

The third test case that is numerically reproduced is another laboratory test

by Stive [61]. In this case the author experimentally reproduced spilling/plung-

ing breaking waves, i.e. waves characterized by almost plunging wave breaking.

In this case, the Iribarren number is ξb = 0.4, which is the upper limit of the

spilling breaking wave (beyond which the waves are considered as plunging break-

ing waves).

The wave tank used by Stive [61] for this particular breaking wave is the same

used for test Stive1 in Subsection 4.2.2: the tank is 55m long, the undisturbed

water depth in deep water is h = 0.85m and the slope is 1 : 40. For this test, the

wave height is Hs = 0.142m, the wavelenght is L = 7.3m and the wave period

is T = 2.99s. The computational grid adopted for the numerical simulation of

this test is the same of the one used to simulate Stive1 test: 960 nodes in the

wave propagation direction (∆x = 0.05m) and 13 non uniform layer in vertical

direction. On the west side of the computational domain, monochromatic and

regular waves are generated, while a wet and dry technique is adopted on the

opposite side. At the bottom, no-slip conditions are imposed. The computational

domain is represented in Fig. 4.8.

In Fig. 4.10, the numerical results (in terms of wave height) obtained with

three different values of the Smagorinsky coefficient are compared with the ex-

perimental measurements. The numerical model used for the simulations are the

one presented in Chapter 3 (high-order WTENO reconstructions and exact Rie-

mann solver). The numerical simulation obtained with a Smagorinsky coefficient

Cs = 0.1 overestimates the wave breaking height. Furthermore, the location of

the wave breaking point is shifted forward with respect to the measured one (as
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Figure 4.10: Stivesp1: wave height. Experimental measurements • [61]. Numerical
results with CS = 0.1 dashed line −−−, CS = 0.2 solid line − and CS = 0.3 dotted line
· · · (Smagorinsky turbulence model and high-order numerical scheme).

it is possible to see from dashed line in Fig. 4.10). By using Cs = 0.2 (solid line

in Fig. 4.10), the wave breaking height is well predicted, but the wave breaking

point is shifted forward. The numerical results obtained with Cs = 0.3 (dotted

line in Fig. 4.10) show both an underestimation of the wave breaking height and

a wave breaking point that is shifted forwards. In the surf zone, all the numerical

results overestimate the wave height. From the Fig. 4.10, it is possible to notice

that high values of the Smagorinsky coefficient underestimate the wave height

around the wave breaking point, without significantly improving the wave height

prediction in the surf zone.

4.3 Conclusions

In this chapter, it has been demonstrated that the low-order shock-capturing nu-

merical scheme underestimates the wave height around the wave breaking point,

gives an erroneous wave breaking point (shifted offshoreward) and produces an

excess of dissipation of kinetic energy of the ensemble-averaged motion. In the

simulations carried out by the above-mentioned numerical scheme, the Smagorin-

sky turbulence model is used just to eliminate the spurious oscillations.

It has been demonstrated that the new high-order shock-capturing numeri-

cal scheme limits the numerical dissipation, leaving the task of dissipating the

kinetic energy of the ensemble-averaged motion to the turbulence model. The

numerical results obtained by this numerical model (with the Smagorinsky turbu-
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lence model) are in better agreement with the experimental measurements than

the ones obtained by the low-order numerical model. For the same value of the

Smagorinsky coefficient, the high-order scheme gives a more onshore located wave

breaking point and a higher breaking wave height than the ones obtained by the

low-order scheme.

In the high-order shock-capturing numerical schemes for breaking waves, the

Smagorinsky turbulence model is not adequate to correctly represent the wave

height evolution in the surf zone. Indeed, the numerical results show that the

wave breaking point is shifted onshoreward and the local maximum water surface

elevations are overestimated in all the surf zone. In addition, the Smagorinsky

model is significantly influenced by the choice of the coefficient Cs, as demon-

strated by the results.

From a general point of view, high values of the Smagorinsky coefficient (with

high-order numerical schemes) can produce an overestimation of the eddy viscosity

in the shoaling zone, in the region around the wave breaking point and in the surf

zone. The same overestimation can be produced by the choice of the spatial

discretization step: high values of the spatial discretization step increment the

eddy viscosity and thus overestimate the dissipation of the kinetic energy of the

ensemble-averaged motion in the region around the wave breaking point and in

the surf zone. The strong influence of the Smagorinsky coefficient and the grid

dimension on the eddy viscosity can produce numerical results very different from

each other.

Furthermore, the Smagorinsky model does not give any information about

the turbulent kinetic energy distribution in the domain, for this reason it is no

possible to validate the model in terms of turbulent kinetic energy.
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Chapter 5

k − l Turbulence Model under

breaking waves

Some considerations should be replied about the use of the Smagorinsky turbu-

lence models with high-order shock-capturing numerical schemes. The solution of

the equations of motion with high-order shock-capturing numerical scheme and

with the Smagorinsky turbulence model is not able to correctly represent the

wave height, the wave breaking point, as well as the effects of the turbulent phe-

nomena on the dissipation of kinetic energy of the ensemble-averaged motion in

the surf zone. The ability of the Smagorinsky turbulence model to dissipate the

kinetic energy of the ensemble-averaged motion is directly influenced by the value

of the Smagorinsky coefficient and the adopted spatial discretization step. After

choosing the spatial discretization step, a laborious calibration of the Smagorin-

sky coefficient could improve the results regarding the wave breaking point, but

could not guarantee an adequate reduction of the wave height in the surf zone.

Furthermore by using Smagorinsky model, it is not possible to have any informa-

tion about the turbulent kinetic energy distribution in the domain, which can be

useful to validate the model in terms of turbulent kinetic energy.

To overcome the Smagorinsky turbulence model drawbacks, many authors

[6, 18, 19] used a one-equation turbulence model called k − l (k is the turbulent

kinetic energy and l is the mixing length) in which a partial differential equation

for the turbulent kinetic energy k is solved and a closure relation for the turbulent

stress tensor is used as a function of the turbulent kinetic energy and the mixing
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length.

Some synthetic considerations should be done about the turbulent structures

in the surf zone. The turbulent structures in the surf zone are very complex.

Outside the surf zone, the production of turbulent kinetic energy is limited to the

oscillating wave boundary layer; inside the surf zone, the production of turbulent

kinetic energy is mainly located in the oscillating wave boundary layer and near

the breaking wave fronts. A part of the turbulent kinetic energy produced at

the wave breaking point and in the oscillating wave boundary layer is dissipated

in the intermediate zone, between the oscillating wave boundary layer and the

wave fronts. In the existing k − l turbulence model [6, 18, 19], the dissipation

of turbulent kinetic energy is represented in the same way both before and after

the wave breaking point. In particular, this model does not take into account the

differences of dissipation due to the turbulent phenomena in the shoaling zone,

in the region around the wave breaking point and in the surf zone. In the papers

present in the literature [6, 18, 19, 47] concerning breaking wave simulations that

adopt the Smagorinsky or the k − l turbulence model, the equations of motion

are not solved in the zone nearest to the bottom.

As is known, the oscillating wave boundary layer can be divided into three

regions: the viscous sublayer, the buffer layer and the turbulent core. In order to

simulate the turbulent phenomena and their effects on turbulent kinetic energy

in the oscillating wave boundary layer (in the turbulent core and in the buffer

layer) and in the proximity of the free surface in the breaking zone, it is necessary

implement an adequate k − l turbulence model.

The new k − l turbulence model proposed in this thesis is presented in this

Chapter. This new model is proposed to simulate the turbulent phenomena that

occur in the surf zone and in the oscillating wave boundary. The k-equation

is written in integral contravariant form on generalized curvilinear coordinate

system.

Two different k−l turbulence models are presented in this thesis: the standard

k− l model, hereinafter called KLS, and new k− l model, hereinafter called KLN.

In the first model, KLS, the mixing length is easily calculated as proportional

to the undisturbed water depth (as suggested by [6, 63]). The first point nearest
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to the bottom, where the equations of motion are solved, is placed in the turbulent

core of the oscillating wave boundary layer, while the equation of the turbulent

kinetic energy is solved outside the oscillating wave boundary layer. The eddy

viscosity in the oscillating wave boundary layer is calculated by the hypothesis

between production and dissipation of turbulent kinetic energy in all the turbulent

core and it is a function of the friction velocity.

In order to correctly take into account the effects that the turbulent phenom-

ena (associated with wave propagation) have on the dissipation of the kinetic

energy of the ensemble-averaged motion, it is necessary to distinguish the be-

haviour of the turbulence model before and after the wave breaking point. For

this reason, in the second model, KLN, outside the oscillating wave boundary

layer, a new formula for the mixing length is proposed as a function of the first

and second spatial derivatives of the local maximum water surface elevation. In

the oscillating wave boundary layer, the mixing length is calculated by the hy-

pothesis of the balance between production and dissipation of turbulent kinetic

energy.

The first point, nearest to the bottom, in which the equations of motion are

solved, is placed in the buffer layer. The velocity boundary condition is placed in

the buffer layer at the border with the viscous sublayer. The fist point, nearest

to the bottom, in which the k-equations is solved, is in the buffer layer in the

proximity to the viscous sublayer.

In the first section, Section 5.1, the equations for the k − l turbulence model

are presented in integral contravariant form on a time-dependent curvilinear co-

ordinate system. In Section 5.2 and Section 5.3 the standard k − l model (KLS)

and the new k − l model (KLN) are presented. In Section 5.4, some laboratory

tests are numerically reproduced and compared by using both turbulence models.

In the last section, Section 5.5, some conclusive considerations are made about

the use of the new k − l turbulence model.

5.1 Equations of k − l Turbulence Model

The equation for the turbulent kinetic energy in the present thesis is written in

integral contravariant form in a time-dependent curvilinear coordinate system as
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follow
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(5.1)

where Pk and ε are respectively the production and dissipation of turbulent kinetic

energy and σk is a coefficient and in this thesis is assumed equal to 1. In Eq. 5.1,

it is possible to identify the different terms that make up the turbulent kinetic

energy transport equation [71].

• Unsteady term: this term is the first term on left-hand side of Eq. 5.1.

• Advection: in Eq. 5.1, the advection term is identified by the first two terms

on the right-hand side of the k-equation. Advection is the transport of a

quantity by bulk motion of a fluid. The sum of the unsteady term and the

advection gives the rate of change of the turbulent kinetic energy following

a fluid particles.

• Molecular and turbulent diffusion: these quantities are summed in the third

and fourth terms of Eq. 5.1. The molecular diffusion takes place for the

random impacts of the molecules due to the thermal agitation. The molec-

ular diffusion represents the diffusion of turbulence energy caused by fluid’s

natural molecular transport process. The turbulent diffusion (represented

by the triple correlation of the velocity) is analogous to the molecular diffu-

sion, but it does not have a true physical meaning, being dependent on the

flow conditions and it is not a property of the fluid. The turbulent diffusion

enhances the transfer of mass, momentum and energy

• Production and dissipation: is indicated by the last term on the right-hand
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side of Eq. 5.1. The production represents the rate at which kinetic energy

is transferred from the mean flow to the turbulence. The dissipation is the

rate at which turbulence kinetic energy is converted into thermal internal

energy. This term is equal to the mean rate at which work is done by the

fluctuating part of the strain rate against the fluctuating viscous stresses.

The production of turbulent kinetic energy is given by

Pk =
T lm

H
(Hul),m (5.2)

where (ul),m is the covariant derivative of the covariant component of the velocity

[1]. The dissipation of turbulent kinetic energy is given by

ε = Cµ
k

3
2

l
(5.3)

where Cµ = 0.09. The closure relation for the turbulent stress tensor is given by

T lm = −2νTS
lm +

2

3
kglm (5.4)

in which the eddy viscosity is a function of k and l

νT = Cµ
√
kl (5.5)

The mixing length is usually assumed proportional to the undisturbed water

depth, h, [6, 56]

l = ϕh (5.6)

In the numerical simulations of breaking waves, the coefficient ϕ is usually assumed

equal to 0.1 [6], according to the experimental measurements by Ting and Kirby

[64, 65] that estimated a range of ϕ between 0.1 and 0.2 for breaking waves.

In the wave propagation from deep water to the coastline, five different zones

can be identified in order to simplify the representation of the different charac-

teristics of turbulence. The five zones are synthetically defined in the graph of

the distribution of the local maximum water surface elevations, shown in Fig.

5.1. From this graph, Zone 1 is located before the wave breaking point, where

the shoaling phenomenon takes place; in this zone, the production of turbulent
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kinetic energy is mostly located near the bottom. Zone 2 is located around the

wave breaking point where there is the maximum wave height. In this zone, the

waves get steeper until they reach a limit value beyond which they break. When

the wave breaking starts, there is a strong production of turbulence both at the

bottom and at the wave breaking fronts. In the surf zone there are two different

zones, as shown in Fig. 5.1. The first one, defined as Zone 3, is characterized by

a strong reduction of wave height and, consequently, a large gradient of the local

maximum water surface elevations. In the graph of the local maximum water

surface elevations, this zone is characterized by the maximum negative slope. In

the second part of the surf zone, named Zone 4, the wave continues to break with

lower negative slope of the water surface elevation, compared to the one in Zone 3.

In this zone, there is also a production of turbulent kinetic energy at the bottom

and at the free surface, until the wave is completely dissipated in the wet and dry

zone. Zone 5 is in proximity of the bottom, where most production of turbulent

kinetic energy takes place inside the oscillating wave boundary layer.

Figure 5.1: Definition of the zones. Zone 1: shoaling zone; Zone 2: zone around the wave
breaking point; Zone 3: surf zone with high slope of the local maximum water surface
elevations; Zone 4: surf zone. Zone 5: oscillating wave boundary layer. Experimental
measurements ◦ of the local maximum water surface elevations.

In order to correctly take into account the effects that the turbulent phenom-

ena (associated with wave propagation) have on the dissipation of the kinetic

energy of the ensemble-averaged motion, it is necessary to distinguish the be-
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haviour of the turbulence model in the different above-mentioned zones.

In this thesis, a new k − l model is proposed to increase (in accordance with

the experimental results) the slope (in absolute value) of the maximum water

surface elevations in Zone 3. In this model, a new formulation for the mixing

length is proposed; it is proportional to the undisturbed water depth through a

coefficient that is a function of the spatial variation of the local maximum water

surface elevation ∂ηmax(ξ
1)/∂ξ1 (first derivative) and ∂2ηmax(ξ

1)/(∂ξ1)2 (second

derivative). The new equation for the mixing length proposed in this thesis reads

l = l2 · h =
λmax(ξ

1)

4HB

k1 + k2

 ∂ηmax(ξ1)
∂ξ1

−
∣∣∣∂ηmax(ξ1)

∂ξ1

∣∣∣∣∣∣∂ηmax(ξ1)
∂ξ1

∣∣∣


ηmax(ξ
1)

max ηmax(ξ1)

∣∣∣∣∣∣
∂2ηmax(ξ1)

(∂ξ1)2
−
∣∣∣∂2ηmax(ξ1)

(∂ξ1)2

∣∣∣∣∣∣∂2ηmax(ξ1)
(∂ξ1)2

∣∣∣
∣∣∣∣∣∣
 · h (5.7)

where l2 = A1{k1 + k2[A2 A3 A4]} is the multiplier of the undisturbed water

depth, ηmax(ξ1) = maxt η(ξ1, t) and ηmin(ξ
1) = mint η(ξ1, t) are, respectively,

the local maximum and minimum (over time) water surface elevations; λmax(ξ1) =

ηmax(ξ
1)+ηmin(ξ

1) is the local wave height; HB = (ηmax+h)B is the total water

depth at the wave breaking point (k1 = 1 and k2 = 0.3). The coefficient l2 varies

along the wave propagation direction and does not vary over the water depth.

The spatial variations of the local maximum water surface elevation allow

to find the first four zones previously described: Zone 1 and Zone 2 (before

the wave breaking point) are characterized by positive values of the derivative

∂ηmax(ξ
1)/∂ξ1, Zone 3 and Zone 4 are characterized by negative values of the

same derivative. 
∂ηmax

∂ξ1
> 0 : Zone 1 and Zone 2

∂ηmax

∂ξ1
< 0 : Zone 3 and Zone 4

(5.8)

By using these derivatives, it is possible to differentiate the behavior of the mixing

length before and after the wave breaking point. The mixing length undergoes a

reduction in Zone 3 by modifying the production of turbulent kinetic energy.

The two different k − l turbulence models are presented below.
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5.2 Standard k − l Turbulence Model (KLS)

In this thesis, in the numerical simulations of breaking waves carried out by the

Standard k− l turbulence model (KLS), the same spatial discretization and near-

wall treatment used in the numerical simulations carried out by the Smagorinsky

turbulence model (described in Section 4.1) are adopted. According to [6, 20,

45, 47], the calculation point nearest to the bottom, in which the equations of

motion are solved, is located inside the turbulent core. The velocity boundary

condition is calculated by the logarithmic law, Eq. 4.16 and it is placed at the

border between the buffer layer and the turbulent core. The eddy viscosity in

the oscillating wave boundary layer, outside the viscous sublayer, is calculated

by Eq. 4.15 and it is a function of the friction velocity, that it is determined by

introducing in Eq. 4.16 the value of the velocity in the first calculation point.

Outside the oscillating wave boundary layer, the turbulent kinetic energy equa-

tion is solved, the eddy viscosity is calculated by the KLS turbulence model and

the closure relation for the mixing length is the one proposed by [6, 63], l = 0.1h.

The turbulent kinetic energy boundary condition is imposed outside the oscil-

lating wave boundary layer, where, according to [45], k is calculated by assuming

the simplifying hypothesis of balance between production and dissipation of tur-

bulent kinetic energy. The production of turbulent kinetic energy in the Cartesian

coordinate system reads

Pk = −u′iu
′
j

∂ui
∂xj

= ε (5.9)

in which i, j = 1, 2, 3.

By using Eqs. 4.12 and 4.13, Eq. 5.9 becomes

Pk = u∗2
u∗

κz
= ε (5.10)

Introducing Eq. 5.10 in Eq. 5.3, we obtain

ε = Cµ
k3/2

l
=

u∗3

κz
(5.11)

and

k =
u∗2

Cµ
(5.12)
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Eq. 5.12 is used as a turbulent kinetic energy boundary condition, which is

placed just outside the turbulent core.

5.3 New k − l Turbulence Model (KLN)

In the buffer layer and in the turbulent core of the oscillating wave boundary

layer, there is a significant production of turbulent kinetic energy and a strong

variability of this along the vertical direction. The balance between production

and dissipation of turbulent kinetic energy strictly holds true at the border be-

tween the buffer layer and the turbulent core [10, 45]. The above-mentioned

production of turbulent kinetic energy in the buffer layer and in the turbulent

core influences the distribution of the turbulent kinetic energy along the vertical

direction. In order to adequately represent the effects of the turbulent phenomena

and the distribution of turbulent kinetic energy in the proximity of the bottom,

it is necessary to solve the equations of motion and the turbulent kinetic energy

equation both in the turbulent core and in the buffer layer (differently from the

standard KLS turbulence model).

In the New k− l turbulence model (KLN), the equations of motion are solved

up to the buffer layer (y+ = 20). The velocity boundary condition is placed in

the buffer layer in the proximity of the viscous sublayer (at y+ = 10) and it is

calculated by the logarithmic law, Eq. 4.16.

The k-equation is solved up to the buffer layer in the proximity of the viscous

sublayer, y+ = 10 and its boundary condition is placed at the bottom, where k is

zero.

Outside the oscillating wave boundary layer, the mixing length is a function

of the first and second spatial derivative of the local maximum water surface

elevation (5.7). In the oscillating wave boundary layer, the mixing length is defined

by

l =
κu∗z

Cµ
√
k

(5.13)

It is possible to obtain Eq. 5.13 by combining Eqs. 4.15 and 5.6. This relation

arises by the hypothesis of the balance between production and dissipation of

turbulent kinetic energy in all the turbulent core. This hypothesis strictly holds

true at the border between the buffer layer and the turbulent core [10]. In Eq.
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5.13, the friction velocity u∗ is determined by introducing in the logarithmic law

(Eq. 4.16) the flow velocity at the first calculation point, that is placed inside the

buffer layer, at y+ = 20.

5.4 Results and discussion

Three breaking wave test cases are numerically reproduced by using the two k− l

turbulence models. All the numerical simulations are carried out by using the

new high-order shock capturing numerical scheme.

In the first model (KLS turbulence model), the mixing length is a function

of the undisturbed water depth (l = 0.1h) as proposed by [6, 63]; the coefficient

that multiplies the undisturbed water depth does not vary. The discretization

of the vertical grid cells (called Grid1) adopted in the simulations carried out by

the KLS turbulence model (presented in Section 5.2) is shown in Fig. 5.2. The

motion equations are solved by starting from the turbulent core, where the first

calculation grid cell is indicated by the number one in Fig. 5.2. At the lower

face of this cell, placed at the border between the buffer layer and the turbulent

core, the velocity boundary condition is calculated by the logarithmic law Eq.

4.16. At the lower and upper faces of the first calculation grid cell, the eddy

viscosity is given by Eq. 4.15 (νT = κu∗z). At y+ = 90, the turbulent kinetic

energy boundary condition, given by Eq. 5.12, is imposed. The turbulent kinetic

energy is calculated at the upper faces of each grid cell; the first face in which the

turbulent kinetic energy equation is solved is the upper face of the cell indicated

by number two in Fig. 5.2.

The spatial discretization step in the wave propagation direction is ∆x =

0.05m, while 13 non uniform layers are adopted along the vertical direction.

In the simulations carried out by the second k−l turbulence model (KLN), the

oscillating wave boundary layer is discretized by using one grid cell in the buffer

layer and two grid cells in the turbulent core. In this way, it is possible to solve the

equations of motion and the turbulent kinetic energy equation also in the buffer

layer, to adequately take into account the effects of the turbulent phenomena on

the dissipation of the kinetic energy of the ensemble-averaged motion and the

distribution of the turbulent kinetic energy along the vertical direction.
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Figure 5.2: Grid1. Vertical discretization of the grid cells outside the buffer layer for
simulations carried out by the standard k − l turbulence model (KLS).

In Fig. 5.3, the vertical discretization (called Grid2) adopted in the simu-

lations carried out by the KLN turbulence model (presented in Section 5.3) is

shown. The lower face of the first computational grid cell is placed in the buffer

layer at y+ = 10, in the proximity of the viscous sublayer. Consequently, the

equations of motion are solved also in the buffer layer (y+ = 20). The velocity

boundary condition uB is placed at the lower face of the first computational grid

cell (indicated with the number one in Fig. 5.3) and is calculated by the logarith-

mic law, Eq. 4.16. In the oscillating wave boundary layer (cells indicated with

one, two and three in Fig. 5.3), the mixing length is given by Eq. 5.13. Outside

the oscillating wave boundary layer, by starting from y+ = 80, the mixing length

is given by Eq. 5.7. The k-equation is solved by starting from the buffer layer,

in the proximity of the viscous sublayer (y+ = 10), to take into account the ef-

fects that turbulent phenomena have on the dissipation of the kinetic energy of

the ensemble-averaged motion inside the oscillating wave boundary layer. The

turbulent kinetic energy boundary condition is set equal to zero at the bottom

(z = 0m). Outside the oscillating wave boundary layer, the eddy viscosity is given

by Eq. 5.6.

The spatial discretization step in the wave propagation direction is ∆x =

0.05m, while 18 non uniform layers are adopted along the vertical direction.

In Tab. 5.1, a synthetic description of the test cases of this chapter are de-

scribed.
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Figure 5.3: Grid2. Vertical discretization of the grid cells inside the buffer layer and
turbulent core for the simulations carried out by the new k− l turbulence model (KLN).

Test Name Turb. model Numerical Scheme Discret. Note

Ting and Kirby [63] Ting4 Standard k − l KLS 5nd-order (WTENO
+ Exact Riemann S.) Grid1 l = 0.1h

Ting and Kirby [63] Ting5 New k − l KLN 5nd-order (WTENO
+ Exact Riemann S.) Grid2 l = l2 · h

Stive spilling [60, 61] Stive2 Standard k − l KLS 5nd-order (WTENO
+ Exact Riemann S.) Grid1 l = 0.1h

Stive spilling [60, 61] Stive3 New k − l KLN 5nd-order (WTENO
+ Exact Riemann S.) Grid2 l = l2 · h

Stive spilling-plunging [61] Stivesp2 Standard k − l KLS 5nd-order (WTENO
+ Exact Riemann S.) Grid1 l = 0.1h

Stive spilling-plunging [61] Stivesp3 New k − l KLN 5nd-order (WTENO
+ Exact Riemann S.) Grid2 l = l2 · h

Table 5.1: Test cases with k − l turbulence models.

5.4.1 Ting and Kirby test case of a spilling breaker with a cnoidal

wave

In this Section, a Ting and Kirby test case for a spilling breaking wave [63] is

numerically reproduced. The description of the laboratory test is in Section 4.2.

Figs. 5.4, 5.5 and 5.6 show the numerical results obtained by the standard k−l

turbulence model (KLS) on Grid1. As showed by Fig. 5.4, the local maximum

water surface elevation at the wave breaking point is slightly underestimated and

the wave breaking point is shifted offshorward. In the KLS turbulence model, the

mixing length is a function of the undisturbed water depth (l = 0.1h) and the

coefficient that multiplied h does not vary. Consequently, the mixing length does

not take adequately into account the different turbulent phenomena that occur

in the distinct zones shown in Fig. 5.1.
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Figure 5.4: Ting4: local minimum, average and maximum water surface elevations.
Experimental measurements • [63] and numerical results − with the standard k − l
turbulence model (KLS).

The time mean vertical distribution of the normalized turbulent kinetic energy

and horizontal flow velocity (undertow) are shown in Figs. 5.5 and 5.6, respec-

tively. In both figures, letters (a)-(e) refers to the results relative to x = 7.27m,

x = 7.88m, x = 8.5m, x = 9.07 and x = 9.67m, respectively. In all figures, the

values of the time mean turbulent kinetic energy and horizontal flow velocity are

normalized as a function of the time mean quantity
√
gH as follow

k′′ =

√
k

gH
, u′′ =

u√
gH

, z′′ =
z − η

H
(5.14)

As can be notice from Figs. 5.5(a)-(d), the normalized turbulent kinetic energy

is overestimated with respect to the experimental measurements. Only at x =

9.67m the normalized turbulent kinetic energy is well predict, as shown in Fig.

5.5(e). The normalized horizontal flow velocity distributions are overestimated

until x = 8.50m (Figs. 5.6(a)-(c)); at x = 9.06m and x = 9.67m (Figs. 5.6(d)-

(e)), the normalized horizontal flow velocity distributions are underestimated near

the bottom and overestimated near the free surface.

Under breaking waves, the time mean horizontal flow velocity is characterized

by onshore directed velocities, near the free surface and offshore directed velocities

near the bottom; this phenomenon is usually defined undertow.

The reason why this KLS turbulence model is not able to correctly predict the

wave height and the distribution of the turbulent kinetic energy and flow velocity
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(a) (b)

(c) (d)

(e)

Figure 5.5: Ting4: time mean vertical distribution of the normalized turbulent kinetic
energy at (a) x = 7.27m, (b) x = 7.88m, (c) x = 8.5m, (d) x = 9.07m and (e) x = 9.67m.
Experimental measurements • [63] and numerical results ▽ with the standard k − l
turbulence model (KLS).

can be attributed to three different reasons: a too simplified representation of the

turbulent kinetic energy dissipation; the fact that the turbulent kinetic energy

is calculated only outside the oscillating wave boundary layer; the fact that the

equations of motion are not solved in the zone nearest to the bottom (viscous

and buffer layers). By using the same coefficient for the mixing length in all the

domain, the turbulence model is not able to differ the behaviour of the turbulent

kinetic energy dissipation in the distinct zones. In this model, the equations

of motion are solved by starting from the turbulent core (y+ = 60) and the

turbulent kinetic energy equation is solved by starting from outside the turbulent

core (y+ > 90). Furthermore (as already said), a simplified formulation for the
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(a) (b)

(c) (d)

(e)

Figure 5.6: Ting4: time mean vertical distribution of the normalized horizontal flow
velocity at (a) x = 7.27m, (b) x = 7.88m, (c) x = 8.5m, (d) x = 9.07m and (e)
x = 9.67m. Experimental measurements • [63] and numerical results ▽ with the standard
k − l turbulence model (KLS).

eddy viscosity is used in the turbulent core of the oscillating wave boundary layer.

The vertical distribution of the turbulent kinetic energy is strongly influenced

by its production in the turbulent core and the buffer layer of the oscillating wave

boundary layer (as well as on the breaking wave fronts). For this reason, it is

necessary to solve the equations of motion and also the turbulence kinetic energy

equation inside the oscillating wave boundary layer.

In conclusion, as shown by the numerical results, the standard k−l turbulence

model, in which the mixing length is the one proposed in the literature [6] and the

near bed discretization is the one described in Section 5.2, is not able to correctly

predict the wave height at the wave breaking point and in the surf zone and is

not able to take into account the different turbulent phenomena that occur in the

distinct zones of the domain.
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From what has been written before, comes the need to verify if, by solving

the equations of motion and the turbulent kinetic energy equation in the turbu-

lent core and in the buffer layer of the oscillating wave boundary layer and by

modifying the closure relation for the mixing length, it is possible to improve

the numerical results with respect to the ones produced by the standard KLS

turbulence model.

In order to take into account the considerable variability of the production

and dissipation of turbulent kinetic energy in the zone before the wave breaking

point, around the wave breaking point, in all the surf zone and at the bottom (5

zones shown in Fig. 5.1), in the new k − l turbulence model KLN, the mixing

length is calculated as a function of the spatial first and second derivative of the

local maximum water surface elevation. The turbulent kinetic energy equation is

solved also in the buffer layer and in the turbulent core. In Figs. 5.7, 5.8 and 5.9,

the results obtained with the new k − l turbulence model (KLN) on Grid2 are

shown.

Figure 5.7: Ting5: local minimum, average and maximum water surface elevations.
Experimental measurements • [63] and numerical results − with the new k− l turbulence
model (KLN).

Form Fig. 5.7, it is possible to notice that by this model the local maximum

water surface elevation is well predicted, the wave breaking point is correctly

located and the decrease of the wave height in the surf zone is quite in good

agreement with the experimental measurements.

As shown in Fig. 5.8, the time mean vertical distribution of the normalized
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(a) (b)

(c) (d)

(e)

Figure 5.8: Ting5: time mean vertical distribution of the normalized turbulent kinetic
energy at (a) x = 7.27m, (b) x = 7.88m, (c) x = 8.5m, (d) x = 9.07m and (e) x = 9.67m.
Experimental measurements • [63] and numerical results ▽ with the new k− l turbulence
model (KLN).

turbulence kinetic energy is quite in good agreement with the experimental mea-

surements at x = 7.27m, x = 7.88m, x = 9.07m (Figs. 5.8(a), (b) and (d)).

At x = 8.5m, the above quantity is overestimated, similarly to the result ob-

tained by the KLS turbulence model (see Fig. 5.5(c)); while at x = 9.67m (Fig.

5.8(e)), the turbulent kinetic energy is slightly underestimated with respect to the

experimental measurements.

The numerical results in terms of the normalized horizontal flow velocity agree

well with the experimental measurements at x = 7.27m (Figs. 5.9(a)); in the

following two points (Figs. 5.9(b) and (c)) the numerical results overestimate the

experimental values; in the last two points (Figs. 5.9(d) and (e)) the experimental
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(a) (b)

(c) (d)

(e)

Figure 5.9: Ting5: time mean vertical distribution of the normalized horizontal flow
velocity at (a) x = 7.27m, (b) x = 7.88m, (c) x = 8.5m, (d) x = 9.07m and (e)
x = 9.67m. Experimental measurements • [63] and numerical results ▽ with the new
k − l turbulence model (KLN).

values are overestimated at the free surface and are underestimated near the

bottom.

In Fig. 5.10(a), an instantaneous field of the turbulent kinetic energy ob-

tained by the proposed KLN turbulence model is shown. In Fig. 5.10(b), an

instantaneous velocity field is shown in which one vector every two is drawn.

These snapshots are taken after 75 subsequent waves, when the results reach a

quasi-steady state (Ts = 150s).

The turbulent kinetic energy reaches maximum values in correspondence of the

breaking wave fronts, in particular at x = 7.0m and x = 10.5m, as shown in Fig.

5.10(a). The turbulent kinetic energy is produced mainly at the wave breaking

fronts and minimally at the bottom in correspondence of the wave breaking fronts.

This produced quantity is transported and diffused in the surf zone.
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(a)

(b)

Figure 5.10: Ting5: (a) Instantaneous wave field with contours of turbulent kinetic
energy. (b) Instantaneous velocity field, one vectors every two is drawn. (Ts = 150s)

5.4.2 Stive test case of a spilling breaker with a monochromatic

wave

In this Section, an experimental test of a spilling breaker by Stive [60, 61] is

numerically reproduced by the high-order numerical scheme presented in Chapter

3. The description of the laboratory test is presented in Section 4.2.2.

In Fig. 5.11, the numerical results obtained by the KLS turbulence model

on Grid1 is compared against the experimental measurements in terms of wave

height.

As shown in Fig. 5.11, the wave breaking point obtained by the numerical

simulation is shifted offshoreward and the wave height is underestimated. In the

KLS turbulence model, the mixing length is a function of the undisturbed water

depth (l = 0.1h) and the coefficient that multiplied h does not vary. Consequently,

the mixing length does not take into account the different way to produce and
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Figure 5.11: Stive2: wave height. Experimental measurements • [60, 61] and numerical
results solid line with the standard k − l turbulence model (KLS).

dissipate turbulent kinetic energy before the wave breaking point, around the

wave breaking point and after the wave breaking point in the surf zone (Zones

1-4 in Fig. 5.1). Furthermore, the equations of motion are solved by starting

from the turbulent core (y+ = 60) and the k-equation is solved out the oscillating

wave boundary layer (y+ > 90). For this reason, this model does not consider the

effects that the turbulent phenomena have in the dissipation of the kinetic energy

of the ensemble-averaged motion and production of turbulent kinetic energy in

the oscillating wave boundary layer.

The KLS turbulence model does not correctly represent the wave height and

the location of the wave breaking point, because the mixing length defined in the

literature [6, 63] is not able to differ the behaviour of the turbulence model before

the wave breaking point, around the wave breaking point and in the surf zone.

In the new k− l turbulence model (KLN), the equations of motion are solved

also in the buffer layer (y+ = 20) and the k-equation is solved by starting from

the buffer layer, in the proximity of the viscous sublayer (y+ = 10). Furthermore,

the mixing length is a function of the first and second spatial derivative of the

local maximum water surface elevation.

In Fig. 5.12, the wave height obtained with the KLN turbulence model on

Grid2 is shown and compared with the experimental measurements.

The wave breaking point is correctly evaluated and the wave height at the wave

breaking point is slightly overestimated. In the surf zone, the wave height correctly

decreases. By comparing Fig. 5.11 and Fig. 5.12, it can be remarked that the

(KLN) turbulence model gives numerical results that are in better agreement with
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Figure 5.12: Stive3: wave height. Experimental measurements • [60, 61] and numerical
results solid line with the new k − l turbulence model (KLN).

the experimental measurements that the ones obtained by the KLS turbulence

model.

In Fig. 5.13(a), instantaneous field of turbulent kinetic energy is shown. In

Fig. 5.13(b), an instantaneous velocity field is shown in which one vector every

two is drawn. These snapshots are taken after about 100 subsequent waves, when

the results reach quasi-steady state (Ts = 180s).

The maximum value of the turbulent kinetic energy is just in the surf zone,

in correspondence of the breaking wave fronts. In the oscillating wave boundary

layer in correspondence of the wave breaking fronts, there is very little production

of turbulent kinetic energy.

(a)
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(b)

Figure 5.13: Stive3: (a) Instantaneous wave field with contours of turbulent kinetic
energy. (b) Instantaneous velocity field, one vectors every two is drawn. (Ts = 180s)

5.4.3 Stive test case of a spilling-plunging breaker with a monochro-

matic wave

In this Section, an experimental test of a spilling/plunging breaker by Stive [61] is

numerically reproduced with the high-order numerical scheme presented in Chap-

ter 3. The description of the laboratory test is presented in Section 4.2.3.

In Fig. 5.14, the numerical results obtained by the KLS turbulence model

on Grid1 is compared against the experimental measurements in terms of wave

height.

Figure 5.14: Stivesp2: wave height. Experimental measurements • [61] and numerical
results solid line with the standard k − l turbulence model (KLS).

The wave height shown in the Fig. 5.14 is underestimated before the wave

breaking point and the position of the wave breaking point is shifted offshoreward

with respect to the one obtained by the laboratory test. Before the wave breaking
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point, the wave height is slightly overestimated. Through this model it is not

possible to take into account the different turbulent phenomena that occur before

and after the wave breaking point and near to the bottom.

In Fig. 5.15, the wave height obtained by the new k − l turbulence model

(KLN) on Grid2 is presented and compared with the experimental measurements.

Figure 5.15: Stivesp3: wave height. Experimental measurements • [61] and numerical
results solid line with the new k − l turbulence model (KLN).

In this case, the breaking point is correctly located. The wave height at the

breaking point is correctly evaluated, while it is slightly overestimated before and

after the wave breaking point.

In Fig. 5.16(a)-(b), instantaneous fields of turbulent kinetic energy and an

instantaneous velocity field are shown. These snapshots are taken after about 60

subsequent waves, when the results reach quasi-steady state (Ts = 179s).

The turbulent kinetic energy assumes the maximum values on the breaking

waves, at x = 33.5m and x = 38.5m (see Fig. 5.16(a)). The production of

turbulent kinetic energy in the oscillating wave boundary layer is very small.

5.5 Conclusions

In the Subsection 5.4, the results obtained by numerically reproducing three dif-

ferent test cases with the two k− l turbulence models (the KLS turbulence model

and the KLN turbulence model).

In KLS turbulence model, the first point, nearest to the bottom, in which

the equations of motion are solved, is located in the turbulent core (y+ = 60),
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(a)

(b)

Figure 5.16: Stivesp3: (a) Instantaneous field with contours of turbulent kinetic energy.
(b) Instantaneous velocity field, one vectors every two is drawn. (Ts = 179s)

while the turbulent kinetic energy equation is solved outside the oscillating wave

boundary layer (y+ > 90). The velocity boundary condition is placed at the bor-

der between the buffer layer and the turbulent core (y+ = 30) and it is calculated

by the logarithmic law (Eq. 4.17). The boundary condition for the turbulent

kinetic energy is placed in the turbulent core (y+ = 90) and it is calculated by

assuming the balance between production and dissipation of turbulent kinetic en-

ergy. The mixing length is a function of the undisturbed water depth through a

constant coefficient. The eddy viscosity in the oscillating wave boundary layer as

a function of the friction velocity and it is calculated by assuming true the balance

between production and dissipation of turbulent kinetic energy in all the turbu-

lent core. In the KLN turbulence model, the first point nearest to the bottom

in which the equations of motion is solved is in the buffer layer (y+ = 20). The

velocity boundary condition is placed in the buffer layer, in the proximity of the
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viscous sublayer (y+ = 10). The turbulent kinetic energy equation is solved by

starting from the buffer layer, in the proximity of the viscous sublayer (y+ = 10).

Outside the oscillating wave boundary layer, a new formula for the mixing length

is proposed as a function of the first and second spatial derivatives of the local

maximum water surface elevation. In the oscillating wave boundary layer, the

mixing length is calculated as a function of the friction velocity (according to Eq.

5.13), by assuming true the hypothesis of the balance between production and

dissipation of turbulent kinetic energy in all the turbulent core.

It has been demonstrated by the numerical simulations that the standard k− l

turbulence model (KLS), in which the equations of motion are solved by starting

from the buffer layer and the turbulent kinetic energy equation is solved outside

the oscillating wave boundary layer (Section 5.2), is not able to correctly predict

the wave height at the wave breaking point and in the surf zone and is not able

to take into account the different turbulent phenomena that occur in the water

column as the wave propagates.

The numerical results demonstrated that the new k − l turbulence model

(KLN) is able to represent in different way the turbulence phenomena before

and around the wave breaking point and in the surf zone. In particular, it has

been demonstrated that by solving the equations of motion in the buffer layer

and the k-equation in the proximity of the viscous sublayer, it is possible to

better take into account the effects that the turbulent phenomena have in the

dissipation of the kinetic energy of the ensemble-averaged motion in the oscillating

wave boundary layer [32]. In this model, the hypothesis of the balance between

production and dissipation of turbulent kinetic energy is assumed valid in all the

turbulent core. The mixing length is calculated in two different ways inside and

outside the oscillating wave boundary layer. Indeed, inside the oscillating wave

boundary layer it is calculated by the above-mentioned hypothesis, while outside

the oscillating wave boundary layer the mixing length is calculated as a function

of the spatial first and second derivative of the local maximum water surface

elevation.

From the comparison between the numerical results obtained by the standard

k − l turbulence model and the new k − l turbulence model, it is evident the
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necessity of adequately represent the different turbulent phenomena that take

place before and after the wave breaking point. It is also clear that the turbulent

phenomena should be represented differently in the distinct zones. In addition,

the numerical results show that the equations of motion and the turbulent kinetic

energy equation must be necessary solved also in the buffer layer of the oscillating

wave boundary layer.
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Chapter 6

k − ω Turbulence Model under

breaking waves

In order to have an adequate representation of the turbulent phenomena both

in the oscillating wave boundary layer and on the wave breaking fronts, it is

necessary take into account the considerable variability of the production and

dissipation of the turbulent kinetic energy along the water column and in the surf

zone. For this reason, it is clear that it is necessary an adequate and laborious

calibration of the mixing length with the k− l turbulence model. The definition of

the mixing length in the oscillating wave boundary layer leads to the assumption

that the balance between production and dissipation of turbulent kinetic energy

holds true in all the turbulent core. The above-mentioned balance strictly holds

true at the interface between the turbulent core and the buffer layer [10]. In

the previous Chapter (Chapter 5), it has been demonstrated the importance of

represent scrupulously the effects that the turbulent phenomena have in the dis-

sipation of the kinetic energy of the ensemble-averaged motion in the proximity

of the bottom. It is necessary to remove the hypothesis of the balance between

production and dissipation of turbulent kinetic energy in all the turbulent core

for the definition of the mixing length. Hence, the need to develop a more general

two-equations turbulence model (k−ω) which is able to overcome the drawbacks

of the new k − l turbulence model and take into account the effects of the tur-

bulent phenomena in the oscillating wave boundary layer, till the border between

the buffer layer and the viscous sublayer.
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Chapter 6. k − ω Turbulence Model under breaking waves

In presence of coastal works, their interaction with the waves produces hy-

drodynamic fields characterized by unsteady quasi-periodic vortex structures and

stochastic turbulent fluctuations. The quasi-periodic vortex structures are un-

steady phenomena that arise from the interaction between the fluid and the coastal

works. The stochastic turbulent fluctuations are superimposed on the unsteady

quasi-periodic motion of the vortex structures.

By following the suggestion of Bosh and Rodi [5], the generic instantaneous

hydrodynamic quantity Θ(t) is separated into three components. The first com-

ponent is represented by the value of the hydrodynamic quantity Θ(t), whose time

periodicity is related only to the wave periodicity. The second component Θ̃(t) is

related to the quasi-periodicity of the vortex structures produced by the interac-

tion between fluid and coastal works. The third component Θ′(t) is the turbulent

fluctuation. Always in accordance with Bosh and Rodi [5], the sum of Θ(t), re-

lated to the periodicity of the wave, and Θ̃(t), related to the quasi-periodicity of

the vortex structures, gives rise to the ensemble-averaged component, which is cal-

culated by numerically solving the ensemble-averaged motion equations. In this

context, the complete spectrum of the stochastic turbulent motion is simulated

by a statistical turbulence model. The models coherent with the above-mentioned

approach are named, in the literature, Unsteady Reynolds-Averaged Navier-Stokes

Equations (URANS) models.

It is necessary recalling the fact that the product between the ensemble-

averaged velocity and the divergence of the Reynolds stress tensor represents the

dissipation of kinetic energy of the ensemble-averaged motion. An overestimation

of the Reynolds stress tensor (that occurs in the ensemble-averaged Navier-Stokes

equations) produces an excess of dissipation of the kinetic energy of the ensemble-

averaged motion.

In the direct simulation of the quasi-periodic vortex structures, mainly due

to the interaction between the waves and coastal works, it is necessary to solve

the equations of motion also inside the turbulent core and the buffer layer (with

small spatial discretization steps in the proximity of the obstacle walls) and to

adequately represent the turbulent phenomena in the proximity of the walls.

Franke and Rodi [21] have shown that the occurrence and quality of the vor-

tex structures prediction strongly depend on the turbulence model used. From
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a general point of view, traditionally one-equation and two-equation turbulence

models [6, 18–20, 41, 42, 44, 45, 47, 58, 72, 73] were found to severely underpredict

the strength of the vortex structures, mainly because of the production of turbu-

lent kinetic energy. When the production of turbulent kinetic energy is too high,

the Reynolds stress tensor is overestimated. The product between the ensemble-

averaged velocity and the divergence of the stress tensor represents the dissipation

of the kinetic energy of the ensemble-averaged motion. An overestimation of the

Reynolds stress tensor produces an excess of dissipation of the kinetic energy of

the ensemble-averaged motion. Consequently, by using turbulence models that

produce an excessive production of turbulent kinetic energy, the unsteady quasi-

periodic vortex structures (beside all of the stochastic turbulent fluctuations) are

expelled from the direct simulations of the ensemble-averaged motion.

In the context of the URANS model, two-equations k − ω turbulence model

[49, 70, 71], is able to represent the turbulent phenomena, so that the numerical

models can directly simulate the unsteady quasi-periodic vortex structures, and

is able to also give correct boundary conditions at the bottom and does not need

to define a specific mixing length. The turbulent kinetic energy dissipation ε (in

the k − ε turbulence model [20, 41, 42, 45, 58, 72]) does not admit boundary

conditions at the bottom; the specific dissipation rate ω admits bottom boundary

condition [49, 70, 71].

One of the first k − ω present in the literature is proposed by Wilcox [70]

and it is used to simulate compressible flow around an airfoil. Wilcox proposed a

boundary condition for the specific dissipation rate ω that incorporates the effects

of the surface roughness. As underlined by several authors [49, 71] the Wilcox

model has the tendency to overestimate the eddy viscosity when the production

of turbulent kinetic energy is significantly increased and the specific dissipation

rate is not able to reduce the growth of turbulent kinetic energy.

Wilcox [71] proposed a k−ω model in which the eddy viscosity is limited. Fur-

thermore, a cross-diffusion term is added in ω-equation to enhance ω production

in order to increase the dissipation of turbulent kinetic energy.

Mayer and Madsen [48] have used the Wilcox k − ω turbulence model [70] in

the simulation of the breaking waves. They have demonstrated that this k − ω
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turbulence model produces an excessive production of turbulent kinetic energy in

the zone between the breaking wave fonts and the oscillating wave boundary layer.

This excessive production of turbulent kinetic energy induces an overestimation of

the Reynolds stress tensor. In the numerical simulations of the wave and velocity

fields, the overestimation of the Reynolds stress tensor produces an excessive

reduction of the wave height and the wave breaking point is shifted offshoreward.

In this thesis, a new k−ω turbulence model is proposed for the simulation of

the breaking waves and the interaction between waves and coastal works in the

breaking waves. The k and ω equations are formulated in integral contravariant

form on a generalized curvilinear coordinate system.

It is necessary to recall that in k − ω model the eddy viscosity is the ratio

of turbulent kinetic energy to specific dissipation rate. In order to limit the

production of the turbulent kinetic energy in the zone between the breaking wave

fronts and the oscillating wave boundary layer, in the new k−ω turbulence model,

the denominator of the eddy viscosity is calculated as the maximum value between

three terms: the first one is directly calculated by the ω-equation; the second one

is a function of absolute value of the strain rate tensor and the absolute value

of the vorticity tensor; the third value is calculated by the product between the

absolute value of the strain rate tensor and a coefficient that is activated as a

function of the zone in which it is calculated. This coefficient is determined by

the local maximum water depth and is increased in the surf zone, where the local

maximum water depth is reduced. In such a way, the behaviour of the model

before and after the wave breaking point is differentiated.

In order to further reduce the production of the turbulent kinetic energy in the

zone between the breaking wave fronts and the oscillating wave boundary layer,

in the new k−ω model, a dynamic coefficient for the dissipation of ω is added by

following the line proposed by Yakhot [72]. In the new k − ω turbulence model

proposed in this thesis, a dynamic procedure (which is a function of the strain

rate tensor) for calculating this coefficient is introduced. For high values of the

strain rate tensor, the coefficient that multiplies the dissipation of ω decreases,

by further reducing the production of turbulent kinetic energy.

The velocity boundary condition is calculated without using logarithmic laws

and it is placed at the border between the buffer layer and the viscous sublayer.
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The boundary condition for the turbulent kinetic energy is null directly at the

bottom. The boundary condition for the specific dissipation rate is placed at the

bottom and it is a function of the bottom roughness and the friction velocity

(the friction velocity is calculated by the viscous stress at the border between the

viscous sublayer and the buffer layer). The k and ω-equations are solved starting

from the border between the viscous sublayer and the buffer layer. Since the tur-

bulent equations are solved near the bottom, it is possible to directly simulate the

unsteady quasi-periodic vortex structures due to the interaction between breaking

waves and coastal works.

This Chapter is organized as follow: in Section 6.1 the existing k − ω is

presented; in Section 6.2 the new k − ω proposed in this thesis and the new

boundary conditions for the turbulent kinetic energy and the specific dissipation

rate are presented; in Section 6.3 some numerical tests are reproduced by using

the new k − ω turbulence model; in Section 6.4, some conclusive considerations

are made about the use of the new k − ω turbulence model.

6.1 Existing k − ω Turbulence Model

Kolmogorov [40] proposed the first two-equation turbulence model. He chose the

turbulent kinetic energy k as the first turbulence parameter and the dissipation

rate of k per unit k, indicated by ω, as the second one (hereinafter called specific

dissipation rate). He related ω to the length scale l as follows

ω = c
k

1
2

l
(6.1)

where c is a constant. The unit of measurement of ω is [1/t], where t is the

time. The reciprocal of ω is the time scale on which dissipation of turbulence

kinetic energy occurs. Wilcox [71] underlined that, while the actual processes of

dissipation (ε) take place in the smallest eddies, the specific dissipation rate (ω) is

the transfer rate of turbulence kinetic energy to the smallest eddies. Consequently,

ω is indirectly associated with dissipative processes.
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The relation between ω and ε is

ω =
ε

Cµk
(6.2)

where Cµ is a constant. Kolmogorov understood that there is a fairly small num-

ber of physical processes observed in the fluid motion: unsteadiness, convection,

diffusion, dissipation, dispersion and production.

In the last decades, many authors proposed several k − ω turbulence models

applied to the compressible flow around a airfoil [59, 70, 71]. These models are

more computationally robust than the k − ε models for the integration of the

turbulent flows to a solid boundary. As underlined by several authors [49, 71], the

first and more used Wilcox model [70] has the tendency to overestimate the eddy

viscosity when the production of turbulent kinetic energy exceeds its dissipation.

The new version of the k − ω turbulence model proposed by Wilcox [71] is the

most famous model and limits the growth of the turbulent kinetic energy and the

eddy viscosity. The Cartesian equations for the model [71] are

∂k

∂t
+

∂ujk

∂xj
= τij

∂ui
∂xj

− β∗kω +
∂

∂xj

[
(ν + σ∗νT )

∂k

∂xj

]
(6.3)

∂ω

∂t
+

∂ujω

∂xj
=

α

νT
τij

∂ui
∂xj

− βω2 +
σd
ω

∂k

∂xj

∂ω

∂xj
+

∂

∂xj

[
(ν + σνT )

∂ω

∂xj

]
(6.4)

All the closure coefficients and the auxiliary relations are given by

α =
13

25
β = 0.0708 β∗ = 0.09 σ =

1

2
σ∗ =

3

5
σd0 =

1

8

σd =


0 ∂k

∂xj
∂ω
∂xj

≤ 0

σd0
∂k
∂xj

∂ω
∂xj

> 0

νT =
k

ω̃
ω̃ = max

{
ω, Clim

√
2SijSij

β∗

}
Clim =

7

8

(6.5)

In Eqs. 6.3-6.4, τij and Sij are, respectively, the Cartesian components of the

turbulent stress tensor and strain rate tensor. τij
∂ui
∂xj

and α
νT

τij
∂ui
∂xj

are the pro-

duction terms; β∗kω and βω2 are the dissipation terms; σd
ω

∂k
∂xj

∂ω
∂xj

is the cross

diffusion term and ∂
∂xj

[
(ν + σ∗νT )

∂k
∂xj

]
and ∂

∂xj

[
(ν + σνT )

∂ω
∂xj

]
are the diffusive

terms. It is possible obtain the ω-equation from the ε-equation; all mathematical
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steps are described in Appendix C.

6.1.1 Cross diffusion term

The cross-diffusion term appears in the Eq. 6.4, because this equation derives

form the ε equation (all mathematical steps are described in Appendix C). This

term is originally introduced by Speziale [59]. According to [59], the cross diffusion

term can make the k − ω asymptotically consistent near the wall. In free shear

flows, this term enhances the production of ω that increases the turbulent kinetic

energy dissipation. The overall effect is to reduce the net production of turbulence

kinetic energy.

Menter [49] introduced a coefficient, σd, for activating the cross-diffusion term

only away from the solid boundary: this coefficient (Eq. 6.5) becomes zero near

the solid boundary, where k grows and ω decreases, as the distance from the

boundary increases.

6.1.2 Stress-limiter

Menter [49] and Wilcox [71] demonstrated that the first Wilcox model [70] has

the tendency to predict turbulence levels that are much higher than the measured

ones. For this reason, the eddy viscosity is limited by the introduction of a stress

limiter, ω̃ (Eq. 6.5).

In the context of the simulation of wave and velocity fields, Mayer and Mad-

sen [48] have demonstrated that Wilcox’s k−ω produces too much turbulence in

the zone between the oscillating turbulent boundary layer and the wave break-

ing fronts. For this reason, the Reynolds stress tensor is overestimated. The

effects of the overestimation of the turbulent stress tensor cause premature wave

decay: the wave breaking point is not correctly evaluated and the wave height is

underestimated around the wave breaking point.

In order to improve the representation of the turbulent phenomena under

breaking waves and the simulation of the wave-structure interactions, in this the-

sis, a new k − ω turbulence model is proposed.
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6.2 New k − ω Turbulence Model

In this subsection, a new k − ω turbulence model is proposed for the simula-

tion of the breaking waves and wave-structure interactions. This new model is

collocated in the context of URANS numerical simulations, where only the un-

steady stochastic turbulent fluctuations are represented by the Reynolds stress

tensor. The unsteady quasi-periodic vortex structures are directly simulated in

the velocity fields.

As demonstrated by [48], the Wilcox’s k−ω turbulence model, when applied to

breaking wave simulations, produces an excess of turbulent kinetic energy in the

zone between the oscillating wave boundary and the wave fronts, with a resulting

underestimation of the wave height both in the shoaling and surf zone and a wrong

prediction of the wave breaking point. In the new model, the excessive growth of

the turbulent kinetic energy is limited by using a particular closure relation for

the eddy viscosity and for the dissipation of ω.

The balance equations for the turbulent kinetic energy and for the specific dis-

sipation rate are written in an original integral contravariant form on a generalized

curvilinear coordinate system.

∂Hk

∂τ
= − 1

∆V0
√
g0

3∑
α=1

{∫
∆Aα+

0

[
Hk

(
Huα

H
−

Hwαg
H

)]
√
g0dξ

βdξγ−

∫
∆Aα−

0

[
Hk

(
Huα

H
−

Hwαg
H

)]
√
g0dξ

βdξγ

}

+
1

∆V0
√
g0

3∑
α=1

{∫
∆Aα+

0

[(
ν +

νT
σk

)
gαr

∂k

∂ξr
H
√
g0

]
dξβdξγ−

∫
∆Aα−

0

[(
ν +

νT
σk

)
gαr

∂k

∂ξr
H
√
g0

]
dξβdξγ

}

+
1

∆V0
√
g0

∫
∆V0

[(Pk − β∗kω)H
√
g0] dξ

1dξ2dξ3

(6.6)
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∂Hω

∂τ
= − 1

∆V0
√
g0

3∑
α=1

{∫
∆Aα+

0

[
Hω

(
Huα

H
−

Hwαg
H

)]
√
g0dξ

βdξγ−

∫
∆Aα−

0

[
Hω

(
Huα

H
−

Hwαg
H

)]
√
g0dξ

βdξγ

}

+
1

∆V0
√
g0

3∑
α=1

{∫
∆Aα+

0

[(
ν +

νT
σω

)
gαr

∂ω

∂ξr
H
√
g0

]
dξβdξγ−

∫
∆Aα−

0

[(
ν +

νT
σω

)
gαr

∂ω

∂ξr
H
√
g0

]
dξβdξγ

}

+
1

∆V0
√
g0

∫
∆V0

[(
αω
νT

Pk − βωω
2

)
H
√
g0

]
dξ1dξ2dξ3

+
1

∆V0
√
g0

∫
∆V0

σω′

ω

[
∂k

∂ξr
g⃗(r)

∂ω

∂ξr
g⃗(r)
]
H
√
g0dξ

1dξ2dξ3

(6.7)

Analogously to k-equation, the terms of Eq. 6.7 can be defined as follow:

• Unsteady term: it is the first term on the left-hand side of Eq. 6.7.

• Advection: it is identified by the first and second terms on the right-hand

side of Eq. 6.7.

• Molecular and turbulent diffusion: they are expressed by the third and

fourth terms on the right-hand side of Eq. 6.7.

• Production and dissipation: these terms are the fifth terms in Eq. 6.7.

• Cross diffusion term: it is the last term on the right-hand side of Eq. 6.7.

The meaning of this term is explained in Section 6.1.1.

The production of ω and k are given by Eq. 5.2 and Eq. 5.4. In Eqs. 6.6 and

6.7, the closure coefficients are the ones given by Wilcox [71]

αω =
13

25
β∗ ≡ Cµ = 0.09 σk =

3

5
σω =

1

2
σω′0 =

1

8

σω′ =


0 ∂k

∂ξr g⃗
(r) ∂ω

∂ξr g⃗
(r) ≤ 0

σω′0
∂k
∂ξr g⃗

(r) ∂ω
∂ξr g⃗

(r) > 0

(6.8)

In Eq. 6.7, the term multiplied by σω′ (cross diffusion term) enhances the pro-

duction of the specific dissipation rate, as explained in Section 6.1.1; the derivation

of the cross diffusion term from the ε equation is explained in Appendix C. The
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coefficient σω′ , introduced for the first time by Menter [49], activates the addi-

tional production term away from the solid boundary. As known, the production

of turbulent kinetic energy is mainly located in the oscillating wave boundary

layer outside the surf zone, while in the surf zone this production is located both

in the oscillating wave boundary layer and on the breaking wave fronts. Near

the wall, the cross diffusion term is zero, because k increases while ω decreases.

Away from the wall, the cross diffusion term differs from zero, ω increases and,

consequently, k decreases.

Some authors [48, 49, 71] demonstrated that the Wilcox model [70] overes-

timates the production of turbulent kinetic energy. For this reason, some years

later Wilcox [71] proposed a new model in which the eddy viscosity is limited by

the introduction of a stress limiter. Following this approach, in this thesis an ad

hoc stress-limiter for the breaking waves is introduced in the eddy viscosity.

νT =
k

ω̃

ω̃ = max

(
˜̃ω,Cω2

β

β∗α

2SlmSlm

2ΩlmΩlm
ω

)
Cω2 = 0.05

˜̃ω = max

ω, Cω

√
2SlmSlm

β∗


(6.9)

In Eq. 6.9, Ωlm is the contravariant components of the vorticity tensor. The

coefficient Cω is a function of the ratio between the maximum total water depth

at the breaking point and the local maximum water depth. This coefficient varies

in the range [1.0− 2.0].

Cω =
max(Hmax)

Hmax
(6.10)

Before the wave breaking point, the value of Cω is set to 1.0; after the wave break-

ing point, Cω increases, because the maximum water depth decreases approaching

the shoreline. This coefficient is able to take into account the differences in the

production of ω before and after the wave breaking point. ω̃ is the maximum value

between ˜̃ω and a specific term that is a function of the strain rate tensor and the

vorticity tensor. Where the strain rate tensor has high values, the vorticity tensor

has lower values and the ratio on the second term in the definition of ω̃ increases.

By means of ω̃ and ˜̃ω, the eddy viscosity is limited in the zones where too small
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values of ω would erroneously increase its values.

The coefficient βω in the dissipation term of ω is defined by following the

suggestion proposed by Yakhot [72], as follow

βω = βω1 + Cµ(2ζ)
2 1− (2ζ)

1 + 0.3(2ζ)2
ζ =

1

ω

√
2SlmSlm (6.11)

in which βω1 = 0.1. βω is dynamically defined by the strain rate tensor. Its

variation is shown in Fig. 6.1. For high values of the magnitude of the strain

rate tensor, the coefficient βω decreases and, consequently, the dissipation of ω

reduces. By this way, the specific dissipation rate increases and the turbulent

kinetic energy is further reduced.

Figure 6.1: Variation of βω as a function of the absolute value of the strain rate tensor
|S|.

6.2.1 Boundary Conditions

The boundary conditions for ω and k is placed directly at the bottom (z = 0m).

Wilcox [71] have proposed a boundary condition for ω on the wall as a func-

tion of the bottom roughness Sc and the friction velocity u∗. By following his
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suggestions, in this thesis the boundary condition for ω is defined as follow

ωB =
u∗2

ν
BC BC =


(
100
Sc+

)2
S+
c ≤ 5

50
S+
c
+

[(
100
S+
c

)2
− 50

S+
c

]
e5−S

+
c S+

c > 5
(6.12)

where Sc =
Scu∗

ν . The boundary condition for the turbulence kinetic energy is set

zero at the bottom.

The friction velocity u∗ is calculated as follow

u∗ =
√
u∗2x + u∗2y

u∗x =

√
ν
∂u

∂z

u∗y =

√
ν
∂v

∂z

(6.13)

where u and v are horizontal Cartesian velocity components, x and y are the

horizontal coordinates and z is the vertical one.

The velocity boundary conditions, uB and vB, are placed at the border be-

tween the viscous sublayer and the buffer layer; they are calculated as a linear

function between the null velocity at the bottom (at z = 0m) and the velocity

calculated in the first calculation grid cell, in the buffer layer.

6.3 Results and discussion

In this Section, the three experimental test cases, previously presented, are nu-

merically reproduced with the new k − ω turbulence model. In these numerical

simulations, the adopted numerical scheme is the new high-order shock-capturing.

The new k − ω turbulence model allows to assign directly at the bottom the

boundary condition for the specific dissipation rate. Consequently, through this

model it is possible to adequately take into account the turbulent phenomena that

occur in the oscillating wave boundary layer.

The adopted vertical discretization of the grid cells near the bottom in the

oscillating wave boundary layer is shown in Fig. 6.2. In this configuration, there

are three grid cells in the buffer layer and four grid cells in the turbulent core.

The bottom boundary conditions for k and ω are placed directly at the bottom,
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Figure 6.2: Vertical discretization of the grid cells inside the buffer layer and turbulent
core for the new k − ω turbulence model.

z = 0m: k is imposed equal to zero; ω is given by Eq. 6.12; the bottom roughness

is Sc = 0.0005m.

The equations of motion are solved starting from the center of the first calcu-

lation grid cell (indicated by number one in Fig. 6.2) that is placed in the buffer

layer (y+ ≃ 9). The turbulent equations for k and ω are solved starting from

the lower face of the first calculation grid cell, at the border between the viscous

sublayer and the buffer layer (y+ = 5).

All the numerical simulations are carried out by a spatial discretization step

∆x = 0.05m in the wave propagation direction and 22 non uniform layer along

the vertical direction.

In Tab. 6.1, a synthetic description of the test cases of this chapter are de-

scribed.

6.3.1 Ting and Kirby test case of a spilling breaker with a cnoidal

wave

A Ting and Kirby’s test case [63] for a spilling breaker is numerically reproduced.

In Figs. 6.3, 6.4 and 6.5, the numerical results obtained by the new k− ω turbu-
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Test Name Turb. model Numerical Scheme

Ting and Kirby [63] Ting6 new k − ω
5nd-order (WTENO
+ Exact Riemann S.)

Stive spilling [60, 61] Stive4 new k − ω
5nd-order (WTENO
+ Exact Riemann S.)

Stive spilling-plunging [61] Stivesp4 new k − ω
5nd-order (WTENO
+ Exact Riemann S.)

Table 6.1: Test cases with the new k − ω turbulence model.

lence model are shown.

Figure 6.3: Ting6: local minimum, average and maximum water surface elevations.
Experimental measurements • [63] and numerical results − with the new k−ω turbulence
model.

The numerical results in terms of the local minimum, maximum and average

water surface elevations fit very well the experimental measurements, as shown

in Fig. 6.3. The wave breaking point is correctly located, the local maximum

water surface elevation at the breaking point and in the surf zone are correctly

evaluated.

The time mean vertical distribution of the normalized turbulent kinetic energy,

showed in Figs. 6.4(a)-(d), is in good agreement with the experimental measure-

ments, while at x = 9.67m (Figs. 6.4(e)) is slightly overestimated. Concerning

the time mean vertical distribution of normalized turbulent kinetic energy (Figs.

6.4), it is possible to make the following considerations in comparison with the

same quantity obtained with the new k−l turbulence model (Figs. 5.8). The time

mean vertical distribution of the normalized turbulent kinetic energy obtained by

the new k− l turbulence model is in good agreement at x = 7.27m (Figs. 5.8(a)),
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(a) (b)

(c) (d)

(e)

Figure 6.4: Ting6: time mean vertical distribution of the normalized turbulent kinetic
energy at (a) x = 7.27m, (b) x = 7.88m, (c) x = 8.5m, (d) x = 9.07m and (e) x = 9.67m.
Experimental measurements • [63] and numerical results ▽ with the new k−ω turbulence
model.
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(a) (b)

(c) (d)

(e)

Figure 6.5: Ting6: time mean vertical distribution of the normalized horizontal flow
velocity (undertow) at (a) x = 7.27m, (b) x = 7.88m, (c) x = 8.5m, (d) x = 9.07m and
(e) x = 9.67m. Experimental measurements • [63] and numerical results ▽ with the new
k − ω turbulence model.

slightly overestimated at x = 7.88m (Figs. 5.8(b)), overestimated at x = 8.50m

(Fig. 5.8(c)) and underestimated at x = 9.07m and x = 9.67m (Figs. 5.8(d) and

(e)). In general, the new k − ω model is able to better evaluate the distribution

of the turbulent kinetic energy in all the surf zone.

The time mean vertical distribution of the normalized horizontal flow velocity,

showed in Figs. 6.5(a)-(c), is in good agreement with the experimental measure-

ments, while is slightly underestimated at x = 9.07m and x = 9.67m (Figs.

6.5(d)-(e)). By comparing the numerical results obtained by the new k− l turbu-

lence model, Figs. 5.9, with the ones obtained by the new k−ω turbulence model

Figs. 6.5 in terms of time mean vertical distribution of the normalized horizontal

flow velocity, it is possible to notice that the new k − ω turbulence model gives

better agreement with the experimental measurements than the results obtained
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by the new k − l turbulence model.

In Figs. 6.6 (a)-(f) are represented respectively five instantaneous fields of

turbulent kinetic energy and an instantaneous velocity field, in which one vector

every two is drawn. These snapshots are taken after 80 subsequent waves, when

the results reach a quasi-steady state (Ts = 160s).

As can be seen from Figs. 6.6(a)-(e), most of the turbulent kinetic energy

can be found close to the wave breaking fronts and, in minor measure, under the

wave toughs, between two subsequent breaking wave fronts. In fact, after the

wave breaking point, (x > 6.40m) the maximum production of turbulent kinetic

energy takes place on the wave breaking front and, in minor measure, inside the

oscillating wave boundary layer; the produced turbulent kinetic energy is partly

diffused and transported towards the middle part of the water column, between

two subsequent breaking wave fronts. In this region, where the production of

turbulence is small, the turbulent kinetic energy tends to decrease, until another

new breaking wave front and oscillating boundary layer produce new turbulent

kinetic energy and a new transport of turbulence towards the middle part of the

water column takes place. As can be noticed by the sequence in Figs. 6.6(a)-(e),

these phenomena are accompanied by a reduction of the wave height in the surf

zone.

(a)
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(b)

(c)

(d)

(e)
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(f)

Figure 6.6: Ting6: Instantaneous fields with contours of turbulent kinetic energy at
(a) Ts = 160.2s, (b) Ts = 160.4s, (c) Ts = 160.6s, (d) Ts = 160.8s, (e) Ts = 161.0s. (f)
Instantaneous velocity field, one vectors every two is drawn (Ts = 160.2s).

6.3.2 Stive test case of a spilling breaker with a monochromatic

wave

A Stive test case for a spilling breaker [60, 61] is numerically reproduced by using

the new k − ω turbulence model and the high-order numerical scheme. In Fig.

6.7, the wave height is shown in comparison with the experimental measurements.

From Fig. 6.7, it is possible to notice that the wave height is correctly evaluated

before and after the wave breaking point. Also the wave breaking point is correctly

evaluated.

Figure 6.7: Stive4: wave height. Experimental measurements • [60, 61] and numerical
results − with the new k − ω turbulence model.

In Figs. 6.8(a)-(f), five instantaneous fields of turbulent kinetic energy and

an instantaneous velocity fields, in which one vector every two in shown, are

represented. These wave and velocity fields are taken after about 100 subsequent

waves, when the results reach quasi-steady state (Ts = 180s).

Benedetta Iele 107



6.3. Results and discussion

(a)

(b)

(c)
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(d)

(e)

(f)

Figure 6.8: Stive4: Instantaneous fields with contours of turbulent kinetic energy at
(a) Ts = 180.0s, (b) Ts = 180.5s, (c) Ts = 181.0s, (d) Ts = 181.5s and (e) Ts = 182.0s.
(f) Instantaneous velocity field, one vectors every two is drawn (Ts = 180s).
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From Figs. 6.8(a)-(e), it is possible to notice that the maximum values of

the turbulent kinetic energy is in the surf zone, in particular around the breaking

wave crests and at the bottom. In the other part of the surf zone, the turbulent

kinetic energy is not produced, but comes from the one produced on the wave

breaking fronts.

6.3.3 Stive test case of a spilling-plunging breaker with a monochro-

matic wave

A Stive test case for a spilling-plunging breaker [61] is numerically reproduce with

the new k − ω turbulence model and the high-order numerical scheme. In Fig.

6.9, the numerical results are compared with the experimental measurements in

terms of wave height.

Figure 6.9: Stivesp4: wave height. Experimental measurements • [61] and numerical
results − with the new k − ω turbulence model.

The wave height shown in Fig. 6.9 is quite in accordance with the experimental

measurements; it is slightly overestimated after the wave breaking point. The

wave height at the wave breaking point is correctly evaluated and also the position

of the wave breaking point is correctly evaluated.

In the following figures (Figs. 6.10), six instantaneous fields are shown. In

the first five figure, Figs. 6.10(a)-(e), the turbulent kinetic energy contour is

represented and in the last figure, Fig. 6.10(f), the velocity field is shown. These

fields are taken after about 60 subsequent waves, when the results reach quasi-

steady state (Ts = 179s).

By looking at Figs. 6.10(a)-(e), it is possible to demonstrated that the waves
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break around x = 33.5m and it is possible to remark that, after this point,

the maximum values of turbulent kinetic energy is mainly located on the wave

breaking fronts. Before the wave breaking point, the production of turbulent

kinetic energy is located at the bottom, in correspondence of the wave breaking

fronts, as is known. The turbulent kinetic energy is transported and diffused

towards the middle part of the water column.

(a)

(b)

(c)
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(d)

(e)

(f)

Figure 6.10: Stivesp4: Instantaneous fields with contours of turbulent kinetic energy at
(a) Ts = 179.0s, (b) Ts = 179.5s, (c) Ts = 180.0s, (d) Ts = 180.5s and (e) Ts = 181.0s.
(f) Instantaneous velocity field, one vectors every two is drawn (Ts = 179s).
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6.4 Conclusions

In this Chapter, the new k − ω turbulence model is proposed. Three test cases

are numerically reproduced by the new k − ω turbulence model. In the new

k − ω turbulence model, the calculation point nearest to the bottom, in which

the equations of motion are solved, is in the buffer layer, in the proximity of the

viscous sublayer (y+ ≃ 9); the velocity boundary condition is placed at the border

between the buffer layer and the viscous sublayer (y+ = 5) and it is calculated

as a function of the velocity of the first grid cell nearest to the bottom. The k-

equation and ω-equation are solved starting from the border between the viscous

sublayer and the buffer layer (y+ = 5). The boundary condition for the turbulent

kinetic energy is zero directly at the bottom. Also the boundary condition for

the specific dissipation rate is placed directly at the bottom and it is a function

of the friction velocity (that it is not a function of a logarithmic law) and the

bottom roughness. The specific dissipation rate ω used in the eddy viscosity is

calculated as a function of the maximum value of three different values of ω. The

first value is calculated directly by solving the ω-equation. The second value is

calculated as a function of the absolute value of the strain rate tensor and the

absolute value of the vorticity tensor. Finally, the third value is calculated by the

product between the absolute value of the strain rate tensor and a coefficient that

is activated as a function of the zone in which it is calculated. This coefficient is

determined by the local maximum water depth and is increased in the surf zone,

where the local maximum water depth is reduced. In such a way, the behaviour

of the model before and after the wave breaking point is differentiated. In the

new k−ω turbulence model, a dynamic coefficient for the dissipation of ω is also

introduced to limit the production of the turbulent kinetic energy.

By using the new k−ω turbulence model, it has been possible to overcome the

limits of the k−l turbulence models, such as the hypothesis of the balance between

production and dissipation of turbulent kinetic energy in all the turbulent core.

Furthermore, the two-equation turbulence models provide not only for solving

the k-equation, but also for the dissipation of k. Consequently, these models are

complete, i.e., can be used to predict properties of a given turbulent flow with no

prior knowledge of the turbulence structures.
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The new formulation for the eddy viscosity limits the production of turbulent

kinetic energy in the zone between the wave breaking fronts and the oscillating

wave boundary layer, the excessive reduction of the wave height and an anticipa-

tion of the wave breaking point, as it happens in the standard k − ω turbulence

model.

From the comparison between the experimental measurements and numerical

results obtained by the new k − ω turbulence model and by the new high-order

shock-capturing numerical scheme, it is possible to notice that this new model is

able to correctly evaluate the wave height in the shoaling zone, the wave breaking

point and the wave height in the surf zone. From the numerical results, it is

also clear that the new k − ω turbulence model is able to correctly evaluate the

time mean vertical distribution of the turbulent kinetic energy and the horizontal

flow velocity. The fitting between the numerical and experimental results has

demonstrated the need to solve the equations of motion inside the buffer layer

and the k and ω equations starting from the border between the buffer layer and

the viscous sublayer, in order to take into account the turbulence phenomena and

their effects in oscillating wave boundary layer.
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Chapter 7

Interaction between breaking

waves and a coastal defence work

Emerged barrier are widely used coastal defense structures. Generally, they are

heavy structures resting on the bottom which emerge from the free surface to avoid

wave propagation. In most cases, they are placed parallel to the shoreline, isolated

or in series. The presence of such barriers, besides modifying the wave fields and

coastal currents, can cause local sea bottom erosion produced by unsteady quasi-

periodic vortex structures close to the edge of the barrier. The flow velocity

field that causes this local sea bottom erosion is fully three-dimensional and is

related to the formation of vortexes of various dimensions which interact with

each other. In this chapter, the new k − ω turbulence model is applied to the

numerical simulation of the complex free-surface elevation and three-dimensional

flow velocity fields produced by the interaction between breaking waves and an

emerged vertical coastal barrier, which is placed parallel to the shoreline in the

surf zone.

The fluid motion can be called turbulent when large Reynolds number is

reached. In this case, the fluid laminar motion becomes unstable, inherently three-

dimensional and unsteady and velocity and pressure fluctuations appear. In many

cases of engineering interest flows are turbulent: flows past vehicles or objects,

river and sea currents, etc. Hinze [29] defined the turbulence as follow: Turbulent

fluid motion is an irregular condition of flow in which the various quantities show

a random variation with time and space coordinates, so that statistically distinct
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average values can be discerned.

Some authors described the turbulent fluid motion in terms of turbulent eddies

that give rise to a vigorous mixing and effective turbulent stresses. The scale of

turbulence ranges from large eddies to small eddies. The kinetic energy transfer

(turbulence decay) takes place from large eddies to small eddies, this phenomena

is called energy cascade [38–40]. The smallest eddies are dissipated into heat

by the action of the molecular viscosity. The largest eddies are responsible for

enhancing diffusivity.

As well explained by Wilcox [71], the main physical process that spreads the

fluid motion over a wide range of wavelenghts is vortex stretching. The turbulence

gains energy, if the vortex elements are primarily oriented in a direction in which

the mean velocity gradients can stretch them. Consequently, the larger-scale

turbulent motion carries most of the energy and is mainly responsible for the

enhanced diffusivity and increasing stresses. In turn, the larger eddies randomly

stretch the vortex elements that comprise the smaller eddies, cascading energy to

them. Energy dissipated by viscosity in tho shortest wavelenghts, although the

rate of dissipation of energy is set by long-wavelenght motion at the start of the

cascade. The shortest wavelenght simply adjust accordingly.

The vortex stretching is a characteristic of motion properly three-dimensional,

indeed the vortex lines in the flow are non parallel, but they are skewed. In

general, in turbulent flow, there is vorticity. The vortex stretching is associated

to an increment of the vorticity in the stretching direction. The energy cascade

is due to the vortex stretching because, during the stretching, the dimension of

the vortexes decreases and the large eddies are split in small eddies.

The vortexes are coherent structures of the turbulent flow. According to

Robinson [57] a vortex is defined as a characteristic of the flow such that the

streamlines mapped onto plane normal to the vortex core exhibit a roughly circular

or spiral pattern, when viewed form a reference frame moving with the center of

the vortex core. Theodorsen [62] presented a hypothesis to explain the formation

of some particular vortexes in the boundary layer. The velocity away from the

wall is higher than the one near the wall, the middle part of the vortex line

is stretched into an elongated structure. At low Reynolds numbers, the vortexes

behave as vortex with much less elongation; in buffer layer the vortexes are parallel
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to the current (quasi-streamwise vortexes [27, 57]). At high Reynolds numbers,

the vortexes are strongly elongated.

The presence of coastal defence works in nearshore areas influence and modify

the wave propagation and wave-induced currents. The interaction between waves

and coastal works can produce local erosion phenomena due to the occurrence of

unsteady quasi-periodic vortex structures.

In this chapter, the proposed numerical model is applied to simulate the hydro-

dynamic phenomena produced by the interaction between waves and an emerged

barrier, located in the surf zone parallel to the coastline. According to the URANS

approach, the complete spectrum of the stochastic turbulent motion is represented

by the proposed k−ω turbulence model. The adoption of this turbulence model,

in conjunction with the new high-order shock-capturing numerical scheme allows

to directly simulate both the large-scale circulation patterns downstream of the

barrier and the onset of quasi-periodic vortex structures close to the edge of the

barrier.

7.1 Results and discussion

In this section, the numerical results of the simulation of the interaction between

an emerged barrier parallel to the shoreline and breaking waves, obtained with the

new k − ω turbulence model and the high-order numerical scheme, is presented.

The numerical simulation is made on a domain that is a portion of a coastal

area 20m long, 6m wide and 1m high. The undisturbed water depth is h = 0.40m;

before x = 0.0m the sea bottom is flat and after the bottom has a slope 1 : 35.

An emerged barrier is placed between 7.1m ≤ x ≤ 7.6m and −1.0m ≤ y ≤ 1.0m.

In Figs. 7.1, a plan view and a vertical section of the domain are shown; the

emerged barrier is indicated in black in the figures.

The computational domain has a spatial discretization step that range between

∆x = 0.050m and ∆y = 0.050m away from the barrier and ∆x = 0.025m and

∆y = 0.025m around the barrier. In the vertical direction, 22 non-uniform layers

are adopted. As it is possible to notice from Fig. 7.2, the domain is symmetric

with respect to x-axis and for this reason the numerical simulations are made in

half of the original domain in order to save the computational time. A three-
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(a)

(b)

Figure 7.1: Domain of a portion of coastal area. (a) Plan view; (b) vertical section.

Figure 7.2: Half domain of a portion of coastal area. Three-dimensional view.

dimensional view of the computational domain is represented in Fig. 7.2. A plan

view and a vertical section of the computational domain are shown in Figs. 7.3,

in which one line every four is drawn in the horizontal directions and one line

every two is drawn in vertical direction.

On the west side boundary of the computational domain x = −5.0m, cnoidal

wave trains with wave height H = 0.125m, wave period T = 2.0s and wavelenght

L = 6.35m are numerically reproduced. On the east side boundary, a wet and dry

technique is adopted. On the south side boundary y = 0.0m, a closed boundary

condition is imposed with null gradient of the free-surface elevation and tangential

flow velocity components and zero normal velocity. On the north side boundary

y = 3.0m, an open boundary condition is imposed with null gradient of free-
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(a)

(b)

Figure 7.3: Computational domain. (a) Plan view; (b) vertical section (one line every
four is drawn in the horizontal directions and one line every two is drawn in vertical
direction).

surface and flow velocity components. At the bottom z = 0.0m, no-slip condition

of the velocity is imposed.

According to Ting and Kirby test case [63], the wave breaking point, with

this particular geometry and these initial conditions, is at x = 6.4m and so the

emerged barrier is in the breaking zone. For this reason, the new k−ω turbulence

model is adopted to numerically simulate the interaction between the emerged

barrier and the breaking waves.

Instantaneous wave fields are shown in Figs. (the barrier is represented in

the figures through rectangles in which only the perimeter is represented). This

wave fields are taken after about 47 subsequent waves, when the results reach

quasi-steady state (Ts = 95.7s). From these figures, it is possible to see the wave

breaking before the barrier, the increase of the wave height due to the impact

with the barrier, the propagation of the wave breaking front along the side of the

barrier, the diffraction and the reflection of the wave front due to the presence of

the barrier.

In Fig. 7.4(a), the wave front has not yet reached the surf zone in which

the emerged barrier is placed. Behind the barrier, the previous wave front has

undergone a diffraction due precisely to the presence of the emerged barrier. In

Fig. 7.4(b), the wave height increases because of the shoaling. At around x =
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6.5m, the wave breaks and the reduction of the wave height due to the wave

breaking is shown in Fig. 7.4(c). In Fig. 7.4(c), it is possible to notice that

the wave height does not reach the maximum value. In Figs. 7.4(d) and (e), the

wave front impacts on the barrier and the wave height increases a lot. Meanwhile,

the wave breaking front passes along the side of the barrier. In Fig. 7.4(f), the

wave front before the barrier is reflected in the direction opposite to the wave

propagation direction. In Figs. 7.4(g) and (h), it is possible to see the diffraction

of the wave front behind the barrier, in the region in front of the coastline.

(a)

(b)
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(c)

(d)

(e)
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(f)

(g)

(h)

Figure 7.4: Instantaneous wave fields. (a) Ts = 95.9s; (b) Ts = 96.1s; (c) Ts = 96.3s;
(d) Ts = 96.5s; (e) Ts = 96.7s;(f) Ts = 96.9s; (g) Ts = 97.1s; (h) Ts = 97.4s.
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In Figs. 7.5, the circulation patterns are shown at different vertical distances

from the bottom: near the bottom, in the intermediate water depth and near

the free surface. The velocities are averaged over time. Upstream of the barrier

near the bottom, the wave trains impact against the barrier and induced a mean

gradient of the free-surface elevation. In this zone, the velocity is offshore directed

near the bottom, as shown from Fig. 7.5(a), while near the free surface, the

velocity is onshore directed, Fig. 7.5(c). This particular phenomena is called

undertow. Along the lateral boundary (north-side boundary) of the barrier, the

flow velocity is onshore directed. Close to this lateral boundary, a small clockwise

vortex can be seen near the bottom and in intermediate water depth. Downstream

of the barrier, a mean gradient of the free-surface elevation induces flow velocities

that are directed to the sheltered area. In the zone behind the barrier, a clockwise

vortex is generated (8.0m < x < 8.5m and 0.0m < y < 1.0m) and its intensity

increases upon approaching the intermediate water depth (Fig. 7.5(b)). Near the

free surface, the velocity before the barrier is onshore directed (Fig. 7.5(c)).

(a)

(b)
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(c)

Figure 7.5: Circulation pattern. (a) At the bottom; (b) intermediate depth; (c) near
the free surface. Only one out of every three vectors are drawn.

In order to study the interaction between waves and coastal works, it is nec-

essary to simulate the unsteady quasi-periodic vortex structures that occur near

the coastal works.

Figs. 7.6 show the instantaneous local vortex structures close to the bound-

aries of the emerged barrier (the barrier is represented in the figures through

rectangles in which only the perimeter is represented). Q-criterion is used to

visualized the vortex structures. In this method, a vortex is identified by the

three-dimensional contours of the second invariant of the velocity gradient tensor

(in Appendix D, Q-method [15, 35] is explained). All the instantaneous fields

showed in this thesis are taken when the results reach quasi-steady state.

The presence of the emerged barrier causes, near the edge, the onset of quasi-

periodic vortex structures. In Fig. 7.6(a), the wave front has not yet reached the

surf zone. Near the two corners of the emerged barrier, two vortexes with a vertical

axis arise. Downstream of the emerged barrier, other vortexes generated at the

upstream edge of the barrier arise and are characterized by almost horizontal axes

(x-axis). Behind the barrier in the sheltered area, an horizontal vortex (y-axis)

is generated near the bottom and it is permanent during all the simulations. In

Figs. 7.6(b) and (c), the vortexes with vertical axis are still near the corners of

the emerged barrier. In Fig. 7.6(d), the wave front impacts against the barrier

and after that the vortex near the first corner (y = 7.1m) is stretched along the

north edge of the barrier (Fig. 7.6(e)). When the wave front arrives near the

second corner, also the second vortex with vertical axis is stretched in the wave

propagation direction, as it is possible to see by Figs. 7.6(f)-(h). The vortexes that
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are stretched on the north edge of the emerged barrier (y = 1.0m) are near the

free surface and break into smaller vortexes. In all the figures, the vortex behind

the barrier in the sheltered area (y = 8.0m), is present near to the bottom.

The three-dimensional quasi-periodic vortex structures shown in Figs. 7.6(a)-

(h) can produce local erosion phenomena at the toe of barrier and the breaking

of the emerged barrier.

Some vertical and horizontal sections (represented by red lines in Fig. 7.7) are

shown in the following figures to better understand how these vortex structures

can interact with the emerged barrier.

(a)

(b)
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(c)

(d)

(e)

Benedetta Iele 126



7.1. Results and discussion

(f)

(g)

(h)

Figure 7.6: Instantaneous vortex structures visualized using Q-criterion (three-
dimensional contours of the second invariant of the velocity gradient tensor). (a)
Ts = 95.9s; (b) Ts = 96.1s; (c) Ts = 96.3s; (d) Ts = 96.5s; (e) Ts = 96.7s; (f) Ts = 96.9s;
(g) Ts = 97.1s; (h) Ts = 97.4s. The emerged barrier is inside thin black lines.
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Figure 7.7: Vertical sections.

In Figs. 7.8, a sequence of four plan view of the instantaneous vortex structures

near the bottom are shown. The four instants are taken during the propagation

of the braking wave from deep water to the coastline, at (a) Ts = 95.9s, (b)

Ts = 96.3s, (c) Ts = 96.9s and (d) Ts = 97.4s.

In these figures at every instants, it is possible to notice two principal vortexes

with vertical axes near the two corners of the emerged barrier. These vortexes

can produce the undermining of the foundations of the emerged barrier. The

permanent vortex in the sheltered, behind the barrier, can be observed in all the

figures.

(a)

Benedetta Iele 128



7.1. Results and discussion

(b)

(c)

(d)

Figure 7.8: Plan sections of instantaneous vortex structures visualized by Q-criterion
near the bottom at (a) Ts = 95.9s, (b) Ts = 96.3s, (c) Ts = 96.9s and (d) Ts = 97.4s.
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In Figs. 7.9, the same sequence of four plan view of the instantaneous vortex

structures, presented above, are shown in the intermediate water depth.

In the intermediate water depth, the vortex near the two corners of the

emerged barrier is still present. The incoming wave produces the stretching of

the vortexes in the wave propagation direction. The stretching is evident in Figs.

7.9(a) and (b), because the wave front is already passed away the barrier and

the new incoming wave front is still in deep water. In Figs. 7.9(d), the wave

front is near the east side boundary of the emerged barrier: the stretching of

vortexes generated near the corner is evident. The vortex behind the barrier, at

intermediate water depth, is not present at this distance from the bottom.

By comparing Figs. 7.8 and Figs. 7.9 at the same instants, it is possible to

notice that the vortexes, that have vertical axes and are generated at the bottom

near the barrier, are stretched in the wave propagation direction and reached the

intermediate water depth.

(a)
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(a)

(c)

(d)

Figure 7.9: Plan sections of instantaneous vortex structures visualized by Q-criterion
at the intermediate water depth at (a) Ts = 95.9s, (b) Ts = 96.3s, (c) Ts = 96.9s and
(d) Ts = 97.4s.
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In Figs. 7.10, three vertical sections (at x = 7.60m behind the barrier in the

sheltered area) of the instantaneous vortex structures are shown. The sequence

is taken at (a) Ts = 96.5s, (b) Ts = 96.9s and (c) Ts = 97.4s. In all the following

figures, the emerged barrier is not represented. It is possible to see from the figures

that the vortex with vertical axis that is generated at the corner of the barrier

(y = 1.0m). When the wave passes over the barrier, this vortex is stretched

in the wave propagation direction, indeed in Fig. 7.10(c), the vortex has low

intensity. These vortexes near the bottom corner of the barrier can undermine

the foundations of the emerged barrier.

(a)

(b)

(c)

Figure 7.10: Vertical sections of instantaneous vortex structures visualized by Q-
criterion at x = 7.60m: (a) Ts = 96.5s, (b) Ts = 96.9s and (c) Ts = 97.4s.
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In Figs. 7.11, three vertical sections (at x = 7.70m behind the barrier in the

sheltered area) of the instantaneous vortex structures are shown. The sequence

is taken at the same time of the previous figures (Figs. 7.10) (a) Ts = 96.5s, (b)

Ts = 96.9s and (c) Ts = 97.4s.

At Ts = 96.5s (Fig. 7.11(a)), the incoming wave has not reached the area

behind the barrier. The vortex structures present at this time are stretched by

the previous wave. Some vortexes are in correspondence of the corner of the

barrier. At Ts = 96.9s (Fig. 7.11(b)), the wave comes from deep water and

stretches the vortex that was at the corner of the barrier. This vortex is stretched

in the wave propagation direction and moves away from the bottom. In the last

snapshot (Fig. 7.11(c)), the vortexes are located in all the water column, because

the wave fronts reached the sheltered area and stretched all the vortexes that were

generated by the interaction between the waves and the barrier.

(a)

(b)
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(c)

Figure 7.11: Vertical sections of instantaneous vortex structures visualized by Q-
criterion at x = 7.70m: (a) Ts = 96.5s, (b) Ts = 96.9s and (c) Ts = 97.4s.

In Figs. 7.12, three vertical sections (at x = 7.78m behind the barrier in the

sheltered area) of the instantaneous vortex structures are shown. The sequence

is taken at the same time of the previous figures (Figs. 7.10 and Figs. 7.11) (a)

Ts = 96.5s, (b) Ts = 96.9s and (c) Ts = 97.4s.

In the sheltered area at x = 7.78m, in all the snapshots in Figs. 7.12, the

big horizontal long vortex near the bottom can be seen. The vortexes in cor-

respondence of the corner of the barrier (y = 1.0m) have been stretched along

the structures by the passage of the wave front on the north side boundary. The

stretched vortexes are shown in Fig. 7.12(c).

(a)

Benedetta Iele 134



7.1. Results and discussion

(b)

(c)

Figure 7.12: Vertical sections of instantaneous vortex structures visualized by Q-
criterion at x = 7.78m: (a) Ts = 96.5s, (b) Ts = 96.9s and (c) Ts = 97.4s.

In Figs. 7.13, three vertical sections (at y = 0.31m) of the instantaneous vortex

structures are shown. The sequence is taken at (a) Ts = 95.9s, (b) Ts = 96.7s and

(c) Ts = 97.4s. In all the following figures, the emerged barrier is not represented.

In this sections, it is possible to notice the coherent vortex behind the barrier

at y = 7.80m. The intensity of the vortex grows, when the wave passes away from

the barrier (Fig. 7.13(c)). In Fig. 7.13(b), the wave front that impacts against

the barrier can be seen.

(a)
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(b)

(c)

Figure 7.13: Vertical sections of instantaneous vortex structures visualized by Q-
criterion at y = 0.31m: (a) Ts = 95.9s, (b) Ts = 96.7s and (c) Ts = 97.4s.

In Figs. 7.14, three vertical sections (at y = 0.98m) of the instantaneous

vortex structures are shown. The sequence is taken at the same time of the

previous figures (Figs. 7.14) (a) Ts = 95.9s, (b) Ts = 96.7s and (c) Ts = 97.4s.

The vortexes, generated by the interaction between the structures and the

waves, at the north-east corner (7.80m < x < 7.90m) of the barrier can be seen

in Figs. 7.14(a) and (c). These vortexes are generated near the bottom, in the

oscillating wave boundary layer, and are stretched by the wave passage, as shown

in Fig. 7.14(c). In this figure, the vortexes are stretched in the wave propagation

direction from the bottom to the free surface. In Fig. 7.14(b), in the sheltered

area, there are no vortexes, because the wave behind the barrier reached the

coastline and the new wave, coming from deep water has already impacted the

barrier.
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7.1. Results and discussion

(a)

(b)

(c)

Figure 7.14: Vertical sections of instantaneous vortex structures visualized by Q-
criterion at y = 0.98m: (a) Ts = 95.9s, (b) Ts = 96.7s and (c) Ts = 97.4s.

The numerical results demonstrate that, by using the new 5th-order shock-

capturing numerical scheme and the new k − ω turbulence model, it is possible

to simulate both the large-scale circulation patterns downstream of the barrier

and the onset of quasi-periodic vortex structures close to the edge of the barrier.

The simulation of these hydrodynamic phenomena can be a useful tool for coastal

engineering problems.
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Chapter 8

Conclusions

In this thesis, a new model for the simulation of the breaking waves is proposed.

This model is based on the solution of the three-dimensional equations of motion

expressed in contravariant formulation. These equations are in integral form and

are expressed in terms of the conserved variables H and Hu⃗ (H is the total water

depth and u⃗ is fluid velocity vector).

The three-dimensional ensemble-averaged motion equations are solved by a

new high-order shock-capturing numerical schemes. The elements of novelty in

this new numerical scheme are two. The first element of novelty consists in the pro-

posal of a new reconstruction technique of the point values of the conserved vari-

ables on the cell faces of the computational grid (starting from the cell-averaged

values of the same variables). This reconstruction technique is named WTENO

and it is specifically designed for the three-dimensional simulation of breaking

waves. The second element of novelty consists in the use of an exact solution

for the Riemann problem to advancing in time the point values of the conserved

variables at the cell faces.

In this thesis, it is demonstrated that the new high-order shock-capturing

numerical scheme limits the numerical dissipation, leaving the task of dissipating

the kinetic energy of the ensemble-averaged motion to the turbulence model.

The numerical results obtained by the high-order numerical scheme (with the

Smagorinsky turbulence model) are in better agreement with the experimental

measurements than the ones obtained by the low-order numerical scheme.

In this thesis, two turbulence models, k−l and k−ω (k is the turbulent kinetic
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energy, l is the mixing length and ω is the dissipation of the turbulent kinetic

energy per unit of turbulent kinetic energy, hereinafter called specific dissipation

rate), are proposed. These models are collocated in the context of the URANS

models and intervene in the ensemble-averaged momentum equation in order to

directly simulate the largest part of the unsteady quasi-periodic vortex structures,

leaving the task of dissipating the complete spectrum of the stochastic motion to

the statistical turbulence model.

In the new k− l turbulence model, the k-equation is written in a new integral

contravariant form on a generalized time-dependent curvilinear coordinate system.

In this model, a new formula of the mixing length outside the oscillating wave

boundary layer is proposed. The mixing length is calculated as a function of the

first and second spatial derivatives of the local maximum water surface elevation.

In the oscillating wave boundary layer, the mixing length is calculated by the

hypothesis of the balance between production and dissipation of turbulent kinetic

energy.

The numerical results demonstrates that the new k − l turbulence model is

able to represent in different way the turbulence phenomena before and around the

wave breaking point and in the surf zone. In particular, it is demonstrated that

by solving the equations of motion also in the buffer layer and the k-equation also

in the proximity of the viscous sublayer, it is possible to better take into account

the effects that the turbulent phenomena have in the dissipation of the kinetic

energy of the ensemble-averaged motion in the oscillating wave boundary layer.

The numerical results show that the equations of motion and the turbulent

kinetic energy equation must be necessary solved also in the buffer layer of the

oscillating wave boundary layer and consequently, they show the necessity to de-

velop turbulence models that are able to overcome the limits of the k−l turbulence

model.

In the new k−ω turbulence model, the k and ω equations are written in a new

integral contravariant form on a generalized time-varying curvilinear coordinate

system. The new k − ω turbulence model admits the possibility to assign the

boundary condition for the specific dissipation rate directly at the bottom. The

production of turbulent kinetic energy in the zone between the breaking wave
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fronts and the oscillating wave boundary layer is reduced by a dynamic coefficient

for the dissipation of ω and by introducing a limiter in the eddy viscosity.

The new k− ω turbulence model overcomes the limits of the k− l turbulence

models: indeed, the hypothesis of the balance between production and dissipation

of turbulent kinetic energy in all the turbulent core is removed.

The new formulation for the eddy viscosity limits the production of turbulent

kinetic energy in the zone between the wave breaking fronts and the oscillating

wave boundary layer, the excessive reduction of the wave height and an anticipa-

tion of the wave breaking point, as it happens in the standard k − ω turbulence

model.

From the comparison between the experimental measurements and numerical

results obtained by the new k − ω turbulence model and by the new high-order

shock-capturing numerical scheme, it is possible to notice that this new model is

able to correctly evaluate the wave height in the shoaling zone, the wave breaking

point and wave height in the surf zone. From the numerical results, it is also

clear that the new k − ω turbulence model is able to correctly evaluate the time

mean vertical distribution of the turbulent kinetic energy and the horizontal flow

velocity.

In this thesis, it is demonstrated that, by using the new 5th-order shock-

capturing numerical scheme and the new k − ω turbulence model, it is possible

to simulate both the large-scale circulation patterns downstream of the barrier

and the onset of quasi-periodic vortex structures close to the edge of the barrier.

The simulation of these hydrodynamic phenomena can be a useful tool for coastal

engineering problems. By using the contravariant formulation of the equations on

a time dependent curvilinear coordinate system, it is possible to reproduce the

complex geometries of the coastal areas with no limitation on the the applicability

for real-scale numerical simulations. In the case of a real-scale numerical simula-

tion, to save the computational time, the computational domain requires the use

of grid cells refined only around the coastal defence works and at the bottom in

order to correctly simulate the unsteady quasi-periodic vortex structure, bearing

in mind the coastal engineering problems.
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Appendix A

Appendix A: Rankine-Hugoniot

condition

Rankine-Hugoniot condition is applicable to discontinuous solutions of hyperbolic

conservation laws 
At + F(A)x = 0

A(x, 0) = A0(x)

(A.1)

where A is the vector of the unknown variables expressed by

A = [a1, a2, ..., am]
T (A.2)

and F(A) is the vector of the fluxes.

The integral form of a conservation equation (Eq. A.1) is given by

d

dt

∫ xR

xL

a(x, t)dx = f(a(xL, t))− f(a(xR, t)) (A.3)

Let be a(x, t) one of the solutions of Eq. A.3 so that a(x, t) and f(a) and their

derivatives are continuous except on the line s = s(t). On this line a(x, t) has

a discontinuity. xR and xL are chosen on x-coordinate so that xL < s(t) < xR.

The integral form of Eq. A.3 on a control volume [xL, xR] is given by

f(a(xL, t))− f(a(xR, t)) =
d

dt

[∫ s(t)

xL

a(x, t)dx+

∫ xR

s(t)
a(x, t)dx

]
=

[a(sL, t)− a(sR, t)]S +

∫ s(t)

xL

a(x, t)dx+

∫ xR

s(t)
a(x, t)dx

(A.4)
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where a(sL, t) and a(sR, t) are the limits of a(s(t), t) respectively for x → s(t)

from left and right; S = ds/dt is the speed by which the discontinuity travels1.

The sum of the integrals on the right-hand side of Eq. A.4 is zero because a is

limited.
f(a(xL, t))− f(a(xR, t)) = [a(sL, t)− a(sR, t)]S

∆f = S∆a
(A.5)

The expression that relates ∆f and ∆u to the discontinuity velocity S is called

Rankine-Hugoniot condition. The solution of the partial differential equations

(PDEs) can be determined both where the solution is regular and where the

solution has a discontinuity through this condition.

1 d
dy

∫ x2(y)

x1(y)
f(x, y)dx =

∫ x2(y)

x1(y)
∂f
∂y

dx+ f(x2, y)
dx2
dy

− f(x1, y)
dx1
dy
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Appendix B: Riemann Invariants

Riemann invariants are constant along the characteristic curves of a PDEs and

are formulated to simplify the study and the solution of conservation equations.

By using the Jacobian matrix1, any system of conservation law can be ex-

pressed in quasi-linear form. A system of quasi-linear hyperbolic PDEs can be

expressed by

At + F(A)Ax = 0 (B.1)

where A is the vector of the unknown conserved variables expressed by

A = [a1, a2, ..., am]
T (B.2)

Let be λi(A) the characteristic field associated with a wave in which the

eigenvalue is λi and R(1)(A) is the corresponding right eigenvector

R(i) = [r
(i)
1 , r

(i)
2 , ..., r(i)m ] (B.3)

Eq. B.1 is simplified by using the components of the vector R(i) trough the

Riemann invariants that lead to the following m−1 ordinary differential equations

da1

r
(i)
1

=
da2

r
(i)
2

= ... =
dam

r
(i)
m

(B.4)

Eqs. B.4 relate the variation of a quantity am to respective components of the

1A differential conservation law At + F(A)x = 0 expressed in conserved variables can be
expressed in quasi-linear form as follow At + G(A)Ax = 0, where G(A) = ∂F/∂A is the
Jacobian matrix corrispondig to the flux F(A).
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right eigenvector that corresponds to a λi(A
(i)) wave family.
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Appendix C: Derivation of ω

-equation

The equation for the dissipation rate can be obtained from the equation for the

dissipation of turbulent kinetic energy.

Firstly the equations for the standard k − ε model [41] should be presented

∂k

∂t
+ uj

∂k

∂xj
= τij

∂ui
∂xj

− ε+
∂

∂xj

[(
ν +

νT
σk

)
∂k

∂xj

]
(C.1)

∂ε

∂t
+ uj

∂ε

∂xj
= Cε1

ε

k
τij

∂ui
∂xj

− Cε2
ε2

k
+

∂

∂xj

[(
ν +

νT
σε

)
∂ε

∂xj

]
(C.2)

in which the closure relation are given by

Cε1 = 1.44 Cε2 = 1.92 Cµ = 0.09 σk = 1.0 σε = 1.3

νT = Cµ
k2

ε

(C.3)

The dissipation of turbulent kinetic energy, ε = Cµkω, can be replaced in Eq.

C.2
∂(Cµkω)

∂t
+ uj

∂(Cµkω)

∂xj
= Cε1

(Cµkω)

k
τij

∂ui
∂xj

− Cε2
(Cµkω)

2

k

+
∂

∂xj

[(
ν +

νT
σε

)
∂(Cµkω)

∂xj

]
(C.4)

By dividing Eq. C.4 by Cµ and re-writing the derivative, it is obtained the
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following expression(
k
∂ω

∂t
+ ω

∂k

∂t

)
+ ujk

∂ω

∂xj
+ ujω

∂k

∂xj
= Cε1

(kω)

k
τij

∂ui
∂xj

−Cε2
Cµ(kω)

2

k
+ k

∂

∂xj

[(
ν +

νT
σε

)
∂ω

∂xj

]
+

(
ν +

νT
σε

)
∂ω

∂xj

∂k

∂xj

+ω
∂

∂xj

[(
ν +

νT
σε

)
∂k

∂xj

]
+

(
ν +

νT
σε

)
∂ω

∂xj

∂k

∂xj

(C.5)

Eq. C.5 is divided by k(
∂ω

∂t
+

ω

k

∂k

∂t

)
+ uj

∂ω

∂xj
+

ujω

k

∂k

∂xj
= Cε1

ω

k
τij

∂ui
∂xj

−Cε2Cµω
2 +

2

k

(
ν +

νT
σε

)
∂ω

∂xj

∂k

∂xj

+
∂

∂xj

[(
ν +

νT
σε

)
∂ω

∂xj

]
+

ω

k

∂

∂xj

[(
ν +

νT
σε

)
∂k

∂xj

] (C.6)

Eq. C.1 is multiplied by ω/k

ω

k

∂k

∂t
+ uj

ω

k

∂k
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ω

k
τij

∂ui
∂xj

− ω

k
ε+

ω

k

∂

∂xj

[(
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νT
σk

)
∂k

∂xj

]
(C.7)

Eq. C.7 is subtracted from C.6. The subtraction of each term is below
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ω
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This three terms are getting together and the final ω-equation is obtained

∂ω

∂t
+ uj

∂ω

∂xj
= (C1ε − 1)

ω

k
τij

∂ui
∂xj

− (C2ε − Cµ)ω
2

+
∂

∂xj

((
ν +

νT
σε

)
∂ω

∂xj

)
+

2

k

(
ν +

νT
σε

)
∂ω

∂xj

∂k

∂xj

+
ω

k

∂

∂xj

((
1

σε
− 1

σk

)
νT

∂k

∂xj

) (C.8)

The closure coefficients are the ones used for k − ε model. The last term on

the right hand side of Eq. C.8 is deleted for sake of simplicity. The forth term

on the right hand side of Eq. C.8 is the cross diffusion term that some authors

missed in several k − ω model, while Speziale et al [59], Menter [49] and Wilcox

[71] introduced in their model.
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Appendix D: Q-method

Robinson [57] states: A vortex exists when instantaneous streamlines mapped onto

a plane normal to the vortex core exhibit a roughly circular or spiral pattern, when

viewed from a reference frame moving with the centre of the vortex core.

The vortex identification criteria are based on point-wise (or local) analysis of

the velocity gradient tensor. The local analysis for the identification of a vortex

defines a function that can be evaluated point-by-point. According a criterion

based on the point values, this function classifies each point as being inside or

outside a vortex. One of the most popular criteria are: Q-method [30], λ2-method

[15] and ∆-method [17].

Q-method [30] is based on the local analysis of the velocity gradient. A vortex

is identified as low region with positive second invariant of the velocity gradient

(Q > 0). The second invariant, Q, is defined as

Q =
((∇ · u⃗)2 − tr(∇u⃗2)

2
(D.1)

where tr( ) indicates a trace of a square matrix, ∇ is the nabla operator and u⃗

is the Cartesian velocity vector.

For an incompressible flow (∇ · u⃗ = 0), the second in invariant is given by

Q =
1

2
(|Ω|2 − |S|) (D.2)

where Ω and S are, respectively, the antisymmetric (vorticity tensor) and symmet-

ric (strain rate tensor) components of the velocity gradient ∇u⃗; |Ω| = tr[ΩΩt]1/2

155



Chapter D. Appendix D: Q-method

and |Ω| = tr[SSt]1/2.

The symmetric and antisymmetric components of the velocity gradient are

given by

Ω =
1

2
(∇u⃗− (∇u⃗)t)

S =
1

2
(∇u⃗+ (∇u⃗)t)

(D.3)

Q is a local measure of the excess rotation rate relative to the strain rate,

represents the local balance between shear strain rate and vorticity magnitude.
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Considerate la vostra semenza:

fatti non foste a viver come bruti,

ma per seguir virtute e canoscenza.

(Inferno, Canto XXVI Dante Alighieri)

Benedetta Iele, Roma, 17 maggio 2023

157


	List of Figures
	List of Tables
	Nomenclature
	Acronyms
	Introduction
	
	
	
	
	
	
	
	
	

	Motion Equations
	Conserved Variables
	Equations of motion
	Poisson-like equation

	Numerical scheme
	Finite volume discretization
	Discretized equations of motion
	Boundary conditions for the equations of motion

	Numerical procedure
	WTENO Reconstructions
	Exact Riemann Solver
	Fractional step method

	Smagorinsky Turbulence Model under breaking waves
	Smagorinsky Turbulence Model and near-wall treatment
	Results and discussion
	Ting and Kirby test case of a spilling breaker with a cnoidal wave
	Stive test case of a spilling breaker with a monochromatic wave
	Stive test case of a spilling-plunging breaker with a monochromatic wave

	Conclusions

	  Turbulence Model under breaking waves
	Equations of   Turbulence Model
	Standard   Turbulence Model (KLS)
	New   Turbulence Model (KLN)
	Results and discussion
	Ting and Kirby test case of a spilling breaker with a cnoidal wave
	Stive test case of a spilling breaker with a monochromatic wave
	Stive test case of a spilling-plunging breaker with a monochromatic wave

	Conclusions

	  Turbulence Model under breaking waves
	Existing   Turbulence Model
	Cross diffusion term
	Stress-limiter

	New   Turbulence Model
	Boundary Conditions

	Results and discussion
	Ting and Kirby test case of a spilling breaker with a cnoidal wave
	Stive test case of a spilling breaker with a monochromatic wave
	Stive test case of a spilling-plunging breaker with a monochromatic wave

	Conclusions

	Interaction between breaking waves and a coastal defence work
	Results and discussion

	Conclusions
	Bibliography
	Appendix A: Rankine-Hugoniot condition
	Appendix B: Riemann Invariants
	Appendix C: Derivation of   -equation
	Appendix D: Q-method

