IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 8, 2020, accepted February 25, 2020, date of publication March 3, 2020, date of current version March 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2978082

Privacy-Preserving Asynchronous Federated
Learning Mechanism for Edge
Network Computing

XIAOFENG LU, YUYING LIAO"", PIETRO LIO"2, AND PAN HUI“3, (Fellow, IEEE)

I'School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Computer Laboratory, University of Cambridge, Cambridge CB2 1TN, U.K.
3Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong

Corresponding author: Xiaofeng Lu (luxf@bupt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61472046, in part by the Ant Financial
through the Ant Financial Science Funds for Security Research, and in part by the Beijing Association for Science and Technology Seed Fund.

ABSTRACT In the traditional cloud architecture, data needs to be uploaded to the cloud for processing,
bringing delays in transmission and response. Edge network emerges as the times require. Data processing
on the edge nodes can reduce the delay of data transmission and improve the response speed. In recent
years, the need for artificial intelligence of edge network has been proposed. However, the data of a
single, individual edge node is limited and does not satisfy the conditions of machine learning. Therefore,
performing edge network machine learning under the premise of data confidentiality became a research
hotspot. This paper proposes a Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge
Network Computing (PAFLM), which can allow multiple edge nodes to achieve more efficient federated
learning without sharing their private data. Compared with the traditional distributed learning, the proposed
method compresses the communications between nodes and parameter server during the training process
without affecting the accuracy. Moreover, it allows the node to join or quit in any process of learning, which
can be suitable to the scene with highly mobile edge devices.

INDEX TERMS Federated learning, edge computing, privacy preservation, asynchronous distributed

network, gradient compression.

I. INTRODUCTION

Since its introduction, deep learning has gradually changed
the way we live, learn, and work. It has made great break-
throughs in speech, image, as well as text recognition [1],
language translation, and other area. Traditional deep learn-
ing requires a large amount of data to be collected for
learning. Although the ascendancy of deep learning is unde-
niable, the involved training data may have serious privacy
issues. First, millions of photos and videos are collected cen-
trally, and this data is kept by large companies forever. Users
can neither delete the data nor control how it is used.
Second, images and videos are likely to contain a lot of sen-
sitive information [2], such as faces, license plates, computer
screens, and people’s conversations. In addition, the internet
giants monopolize this “big data” and enjoy huge economic
benefits behind it.

The associate editor coordinating the review of this manuscript and
approving it for publication was Laurence T. Yang.

48970

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

It is known that with an increase in the number of training
data sets and the data diversification, the neural network
models behave better. Data held by one single organization
(such as a specific medical clinic) may be similar and not
diversified enough, so that models based on such data sets
may eventually result in over-fitting or less scalability. In this
case, the limitations of privacy and confidentiality signifi-
cantly affect performance of the neural network model.

On the other hand, the current global Internet of Things
has entered the third era of development. In 2018, the number
of global IoT connections was about eight billion [3]. These
IoT devices generate a large amount of data every day. If the
data generated by the Internet of Things is transmitted to the
cloud-computing center for processing, it will cause transmis-
sion congestion and data processing delays. It is necessary
to shift computing tasks from cloud center to the network
edge. Based on this, fog computing and edge computing have
been proposed to compensate for some of the shortcomings
of cloud computing.

VOLUME 8, 2020


https://orcid.org/0000-0003-1033-164X
https://orcid.org/0000-0002-0466-3544
https://orcid.org/0000-0002-0540-5053
https://orcid.org/0000-0002-0848-2599

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

IEEE Access

Fog computing [4], [5] is an architecture that distributes
computation, communication, control, and storage closer to
the user side. Fog servers can be connected to the cloud so
as to leverage the rich functions and application tools of the
cloud, which is conducive to data protection [6]. Therefore,
“the fog is a cloud close to the ground”. Fog computing is
not meant to substitute cloud computing, but to complement
it in order to ease bandwidth burden and reduce transmission
latency [7].

Edge computing refers to a close-to-data-source platform
that integrates network, computing, storage, and other core
capabilities, providing near-end services [8]. Compared with
the data-centralized cloud computing method, edge comput-
ing processes data at the edge of the network. Because of its
near-end characteristics, edge computing can reduce network
bandwidth load, shorten response time, and improve battery
life while ensuring data security and privacy.

Fog computing and edge computing both process data
close to the data collectors, moving computing load from
servers to decentralized computing nodes to achieve work-
load balance [9], [10]. In many ways, they are very simi-
lar, but there are still slight differences between them. Fog
computing introduces a ‘““fog layer” between the cloud and
the clients. The fog layer is composed of many fog servers,
which are located close to the edge of the network. Each
fog server is a highly virtualized computing system, similar
to a lightweight cloud server. On the other hand, edge com-
puting executes computing tasks at the edge of the network.
Computing nodes are usually IoT devices with certain com-
puting and storage capabilities. Except for the difference
between fog computing and edge computing, they both are
complementary to cloud computing. The effective combi-
nation of the three can bring forward solutions for various
complex needs in reality.

With the advent of 5G, edge computing and federated
learning have attracted widespread attention. McMahan and
Ramage et al. [11] gave a general description of Federated
Learning. Bonawitz et al. [12] continued their research and
explored more possibilities. Federated learning means ““‘joint
learning”, where multiple devices work together to train
learning models collaboratively. Traditional federated learn-
ing is a decentralized learning framework, in which most of
the computation (like model training) is performed on the
node side. Nodes learn locally on each device and gradually
optimize the learning models through interaction with the
central server. Fig. 1 shows the simplified federated learning
framework. Throughout the federated learning process, pri-
vacy data does not leave the data owner, and it does not need
to be shared with other nodes, solving data security and other
issues.

Because of the decentralized nature of federated learn-
ing, it can make better use of the computing power of
IoT devices. Fig. 2 presents a sample application scenario,
in which data is stored locally on the cameras so that the
cameras themselves can learn from the data. After learning,
the cameras have the ability to make simple decisions, such

VOLUME 8, 2020

e Edge Device

Private Data =
Edge Device

Private Data
A

Model Data (Like Parameters
And Gradients) During
Training Process

Private Data Do y \‘

Not Need To Be
Combined!

Private Data |= | . .

N4 \ /
- 2 - N
*_ Edge Device —

=

Edge Device

=
=

N~ Edge Device Private Data
/

[

e

\

Private Data

FIGURE 1. Federated learning system architecture.

Real-time Data

Real-time Data
-
S =1

Cluster
]
8 ERE

Real-time Data
~ -
- \ N/ [’1

Real-time Data

Real-time Data %

\F“) =

9 A
prem &

FIGURE 2. One of the possible application scenario of federated learning.

as adjusting real-time traffic by controlling signal lights.
Compared to uploading the data to a central server for pro-
cessing, this method can respond faster and is suitable for
real-time scenarios.

In this paper, we propose a Privacy-Preserving Asyn-
chronous Federated Learning Mechanism for Edge Network
Computing (PAFLM) that can satisfy the reality of learn-
ing from multi-party data without sharing their own private
information. Compared with traditional distributed learning,
PAFLM ensures learners’ freedom and preservation of pri-
vacy without affecting accuracy. Each node independently
trains on its own using a local dataset. Our method helps
to improve the accuracy of the participants’ local models
because the limited data owned by either party can easily
result in a trapping into the local optimum. Using models
learned by other participants to optimize parameters of local
model can effectively help each participant escape local pref-
erences and enable them to explore other values, resulting in
more accurate models.

Our contributions are as follows:

(1) We designed a federated learning system that is more
suitable for collaborative learning of discrete nodes in edge
networks and is different from the existing distributed learn-
ing system, so that nodes can learn from the data without
sharing private information.

48971



IEEE Access

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

(2) We improve and design a gradient compression
algorithm based on previous work. When the gradient com-
munications are compressed to 8.77% of the original commu-
nication times, the accuracy of the test set is only reduced by
0.03%. The gradient data indirectly reflects the information
of training samples, and the attacker can deduct the sample
data from the massive effective gradient. Therefore, reducing
gradient communications can effectively lower the likelihood
of privacy breaches.

(3) We further explored the possibility of asynchronous
federated learning in order to better adapt to the unrestricted
characteristics of edge nodes, and as a result, designed,
proposed, and tested a dual-weights correction method to
solve the performance degradation caused by asynchronous
learning.

The rest of this paper is organized as follows. Section I
is the brief introduction of our work. The state-of-art solu-
tions of federated learning are introduced in section II.
In section III, we demonstrate the basic structure of PAFLM,
which consists of two parts: self-adaptive threshold gradient
compression and asynchronous federated learning with dual-
weights correction. In section IV, we further illustrate the self-
adaptive threshold gradient compression method, and discuss
its examination-free mechanism. In section V, we propose
a dual-weights correction to solve asynchronous federated
learning problems. The experiment of our proposed meth-
ods is shown in section VI, and section VII presents the
conclusion.

Il. RELATED WORK

A. FEDERATED LEARNING

Traditional federated learning is a decentralized learning
method. It allows learners to store the training data privately
on their mobile devices and learn a shared model by aggre-
gating locally-computed updates. In the federated learning
framework, sensitive sample data does not need to transfer
to a cloud center. Edge nodes execute computing tasks sep-
arately and independently, guaranteeing data integrity. With
the development of technology, federated learning has grad-
ually evolved into different forms. A combination of feder-
ated learning and blockchain is an interesting exploration.
Blockchain has emerged as a chronological, decentralized,
provenance-preserving, and immutable ledger technology.
It is an effective solution to replace a vulnerable central
server in an unsecure environment. Blockchain integrated
with federated learning can effectively solve the security
issues involving the central server [13]-[17].

However, we are more concerned with the traditional fed-
erated learning framework rather than the development of its
other forms. Most of the studies about federated learning are
focused on synchronous training algorithms, such as the fed-
erated average algorithm proposed by McMabhan et al. [11].
Privacy protection in federated learning, such as security
aggregation [18], requires synchronization operations at the
device level, so it essentially belongs to the category of

48972

synchronous training. In addition, researchers began to imple-
ment the federated learning system on vehicle-to-vehicle
communications [19], medical applications [20], and in other
areas.

B. GRADIENT COMMUNICATION WORKLOAD

Because federated learning requires a large number of learn-
ing nodes, the huge network communication bandwidth
required by these nodes cannot be ignored. Researchers have
proposed many ways to overcome communication bottle-
necks, where gradient quantization and sparseization are two
popular areas of research.

Gradient quantization converts gradients to a low-precision
value to reduce the communication bandwidth. 1-bit Stochas-
tic Gradient Descent (SGD) [21] reduces the size of gradient
transmission data and achieves 10x acceleration in traditional
speech applications. TernGrad uses ternary gradients to accel-
erate distributed deep learning in data parallelism [22]. Both
of these tasks demonstrate the convergence of quantitative
training. However, TernGrad has only been tested on CNN,
and QSGD has only calculated the accuracy of RNN loss.

Gradient sparseness compresses gradient communication
times to mitigate network pressure. The first thing that comes
to mind is regularly skipping some of the gradient inter-
actions [23]. Dryden et al. [24] selected a fixed ratio of
positive and negative gradients. Chen et al. [25] proposed and
proved mathematically a method that automatically adjusts
the compression ratio according to the local gradient activity.
This method achieves 200 times compression for the fully-
connected layer, 40 times compression of the convolution
layer, and the reduced top-1 accuracy that is negligible in
the ImageNet data set. However, ignoring the information
of real-time gradients and compressing communication only
according to the fixed interval or ratio can adversely affect
the training process. At the same time, Strom et al. [26] used
thresholds to achieve gradient sparseness—only sending gra-
dients that are greater than a predefined constant threshold.
Gradient Dropping [27] uses a single absolute threshold to
sparse the gradient matrix. Gradient Dropping saves 99%
of gradient swaps while causing a 0.3% loss of BLEU in
machine translation tasks.

However, the performance of the above work greatly relies
on choosing the correct threshold, which is not an easy task.
A “perfectly” fixed threshold can solve the problem of one
specific scenario, but for another problem scenario it may be
a disaster. Moreover, the threshold selection requires a lot
of time to debug, which is unrealistic for scenarios requir-
ing high-speed response. At this time, the Lazily Aggre-
gated Gradient (LAG) [28] appears to be more fascinating.
LAG adaptively calculates gradient and skips partial gradient
communications to reduce communication bandwidth and
mitigate server pressure. The basic principle is to detect
slowly-changing gradient and compress it. LAG is very valu-
able, but it requires the optimization problem to be convex
and Lipschitz smooth.

VOLUME 8, 2020



X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

IEEE Access

Gradient compression in PAFLM belongs to the cate-
gory of gradient communication sparseization. But unlike
the scheme mentioned above, there is no need to explore
an optimal gradient threshold in PAFLM because the opti-
mal thresholds vary from problem to problem. In addition,
defining gradient thresholds reduces the scalability of the
asynchronous federated learning framework.

If the learning object is spread to edge nodes, synchronous
training becomes difficult to implement and does not meet the
needs of reality. Although a few researchers have adopted the
asynchronous learning method, they all use it as a regulariza-
tion method [29], lacking detailed systematic research. And
in most studies, during the federated learning, training status
of participating nodes is almost the same. There is a lack
of attention to the fact that the learning progress is quite
different, even when the learning process is completely stag-
gered. In this paper, we study this type of asynchronous
learning problem and mitigate the loss of precision caused
by asynchronization.

IIl. PRIVACY-PRESERVING ASYNCHRONOUS FEDERATED
LEARNING MECHANISM FOR EDGE

NETWORK COMPUTING

Federated Learning is an emerging artificial intelligence tech-
nology. It is designed to carry out efficient machine learning
among multiple participants or computing nodes while ensur-
ing the security of private personal data. The machine learn-
ing algorithms used in federated learning are not limited to
neural network algorithms, but also include other algorithms,
such as random forests.

The traditional federated learning mechanism consists of
a parameter server and multiple edge nodes. The parameter
server is responsible for collecting gradients uploaded by
each participating node, updating the parameters of the model
according to the optimization algorithm and maintaining the
global parameters. The participating nodes learn from their
sensitive data independently and locally. After each epoch,
nodes upload gradients to the parameter server, and the server
summarizes and updates the global parameters. Then nodes
download the updated parameters from the parameter server,
overwriting their local model parameters and proceeding to
the next iteration. During the whole learning process, nodes
only communicate with the parameter server. Learning nodes
cannot obtain any information about the remaining nodes,
except the global parameters that are jointly maintained,
which guarantees the confidentiality of the private data.

Fig. 3 shows the Privacy-Preserving Asynchronous Fed-
erated Learning Mechanism for Edge Network Computing,
which is based on the traditional federated learning frame-
work. Our work contains two layers: parameter server layer
and edge node layer. The self-adaptive threshold gradient
compression module is at the edge node layer, and the asyn-
chronous federated learning module spans both layers.

Self-Adaptive Threshold Gradient Compression Fed-
erated learning oriented for edge network requires interac-
tion with multiple edge nodes for real time training data,

VOLUME 8, 2020

Gradient Dual-Weights
Adjustment Calculation

Global Model

Server
Layer
Edge Node ;
Layer <

)=

FIGURE 3. Privacy-preserving asynchronous federated learning
mechanism for edge network computing.

Learning
Status Monitor

Sample
Num,Epochs,.

Local Model

Gradient Check

resulting in high communication costs, which greatly limit
the scalability of the federated learning system. In this case,
communication latency is the bottleneck of the performance
of the whole learning framework. It has been found that
99.9% of the gradient exchanges in distributed SGD are
redundant. In this paper, we present a gradient sparseization
method that compresses the interaction between nodes and
parameter server, effectively reducing communication band-
width in the learning process. In the experiment, when the
gradient communications are compressed to 8.77%, the accu-
racy of the test set is only reduced by 0.03%.

Asynchronous Federated Learning with Dual-Weights
Correction Because edge nodes are highly unrestrained, it is
impractical to force all nodes to train at the same time.
We explore the different situations of asynchronous learning
and propose the dual-weights correction for asynchronous
learning with edge nodes. Asynchronous federated learning
aims to provide a freer learning environment for edge nodes
and to reduce the loss of precision caused by extremely
unrestrained learning.

Self-adaptive threshold gradient compression module is
divided into two sub-modules: self-adaptive threshold com-
putation and gradient communication compression, which are
respectively responsible for calculating the threshold accord-
ing to the latest parameter change and using the thresh-
old to compress the redundant gradient communications.
Asynchronous federated learning is divided into four
sub-modules: parameter update, gradient adjustment, dual-
weights calculation, and learning status monitor. The monitor
sub-module is responsible for monitoring the learning state
of the node, such as current learning round and the num-
ber of samples. The dual-weights computation sub-module
calculates the corresponding sample weights and parameter
weights according to its learning information. The gradient
adjustment sub-module corrects the gradient uploaded by the
node according to the dual-weights. Moreover, the corrected
gradient is used for the global parameter update in the param-
eter update sub-module.

The self-adaptive threshold gradient compression module
and the asynchronous federated learning module are not inde-
pendent of each other. The self-adaptive threshold calculation
needs to obtain the updated parameters and compare them
with the historical parameters. The compressed gradient com-
munications affect the learning status of the node, which in
turn affects the dual-weights calculation.

48973



IEEE Access

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

IV. SELF-ADAPTIVE THRESHOLD

GRADIENT COMPRESSION

Gradient compression is used to compress the gradient com-
munications between nodes and parameter server. In other
words, it compresses the number of calls that one single node
communicates to the parameter server. As described above,
the information contained in the gradient is largely redun-
dant. When the number of edge nodes increases, the commu-
nication cost required for these redundant communications
becomes enormous. Moreover, the parameter server is under
a large communication pressure, and skipping part of the
information interaction can reduce the communication load.
In addition, the gradient data indirectly reflects the sample
information secretly owned by nodes. Attackers can deduce
sample data of target nodes by combining the trained global
model with the collected effective gradient information.
Gradient compression reduces gradient communications,
which not only improves the efficiency of federated learning,
lightens network load, but also reduces the chance of sample
privacy leakage.

Previous work [23]-[27], whether simply introducing the
communication compression ratio or compressing gradient
communications based on the fixed threshold, contains many
shortcomings. Because gradient change is varied for different
learning processes, simply selecting nodes for compression
according to the compression ratio tends to ignore the gra-
dient with a large amount of information, which affects the
global model training. At the same time, using fixed thresh-
olds can easily result in over-compression, causing model
convergence difficulties in the latter part of the training.

In PAFLM, the nodes automatically adapt to the changes
of each round of the model training process, and calculate
the appropriate threshold to compress the gradient commu-
nications. Only the qualified nodes can communicate with
the parameter server in the corresponding round. Otherwise,
the gradient is accumulated locally until the next round.
The final gradient will accumulate enough information to
upload to the parameter server. Regardless of whether the
node is qualified for communication in a certain round,
gradient checks are performed at the end of each learn-
ing iteration; that is, the gradient checks participate in the
entire learning process. We propose the self-test expression
in gradient compression and prove it with a mathematical
method.

A. MATHEMATICAL DERIVATION
Table 1 explains the symbolic representations involved in the
formulas below.

In the gradient descent algorithm (GD), there is a parameter
server that needs to communicate with M learning nodes
to complete the update of the model parameters. In the kg,
iteration, the parameter server broadcasts the current model
0%~ to all learners; each learning node m € M computes
Vyn—1(0%) and uploads it to the parameter server; then param-
eter server receives the gradients from all learning nodes.
Parameter server updates the model parameters by iterating

48974

TABLE 1. The meaning of symbol in the following formulas.

Symbol Meaning

oF the k¢ round parameter of the parameter server

Vo (6F) the k¢p, round gradient calculated by node m based
on the k; round parameter

Vﬁ/l the sum of the &, round gradient of all nodes in the
set M

M the set contains all edge nodes

m card(M), the total number of all elements in the
set M

S total number of samples owned by all nodes

Si number of samples owned by node ¢

,Bg the sample weight of current epoch of node ¢

Bp the parameter weight of current epoch of node ¢

the gradient descent algorithm.
ok =k~ —avi . 1)

where « is the learning rate, and Vllf,l_l is the aggregation
gradient, which represents a round of variation of the model.

We refers to the work of Chen et al. [28] about compressing
the gradient interaction to reduce the bandwidth burden of
communications. The main idea of the algorithm is to, in a
certain round, ignore the “Lazy” nodes and only commu-
nicate with the “Hard work™ nodes. These ignored nodes
are represented as My, and the nodes communicating with
the server are My, that is, M = M; + Mpy. Nodes that are
ignored still need to accumulate the gradient locally, and then
finally, gradient will increase large enough to participate in
the communications. Therefore VII\‘,[_I can be updated to:

Vil = v"*‘ + vjfl;‘. )

Let the set My, satisfy the following formula, where mr, m
respectively are the total number of all elements in the set My,
and M:

2
k—1 k—1
[l _ |
< 3
my, m

Substituting formula (1) into the above formula we can
obtain:

3

= o o @

k—1
where H VML

‘ = ”ZmeML Vm(f)k)Hz. According to the

2
Inequality of Arithmetic and Geometric Means, ’V;Zl ‘
satisfies the following formula:
2 2
Vi | = 3 || 5)

meMy,

The formula (3) must satisfy if the node m € My meets the
following conditions :

S e

almpm
Since the total number of set M; cannot be obtained in
advance, in order to simplify the problem, we introduce a

VOLUME 8, 2020



X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

IEEE Access

proportional coefficient 8 to express the total number of
nodes of the set My, that is, m; = fm. From formula (6)
we can obtain:

|

However, the acquisition of 0k —9%1is difficult, but since
the parameter changes tend to be smooth during the learning
process, 8% — 0% is approximated as:

2
Vb =<

k_ gk—1
<l -l o

D
_oF1 & ng(ak—d _ k14, ®)
d=1

where £; and D are constant coefficients, simply we choose
& =1/D.
Substituting equation (8) into equation (7) gives us:

2

e

Formula (9) is the self-testing expression for the gradient
check of federated learning, that is, the node conducts the
self-test operation after the end of every round of learn-
ing. It should be noted that if the gradient does not sat-
isfy formula (9), the corresponding node will communicate
with the parameter server. Otherwise, the current round com-
munication will be skipped, and learning nodes cumulative
gradient locally, continuing to execute the next round of
learning.

B. GRADIENT COMPRESSION WITH

EXAMINATION-FREE MECHANISM

As described above, gradient compression compresses redun-
dant gradient communications in federated learning. The
edge learning nodes calculate the current gradient after one
epoch of training and then decide whether to upload param-
eters to server according to the self-test expression. Nodes
that satisfy the condition communicate with the server, upload
the gradient, and receive the updated parameter. Otherwise,
nodes accumulate the gradient locally and begin the next
epoch. This is a typical example of sacrificing the local
computation time of nodes to reduce global communication
time. In many neural network learnings, the number of epochs
is large. Therefore, the calculation time brought by the self-
testing is undoubtedly not negligible.

In order to alleviate the amount of local computation,
we add an “‘examination-free” mechanism based on the
gradient compression described above. Let the set be y =
{)/1, V2youns yTomlEpochS}, where the random variable y; € y
indicates the possibility of nodes that can skip the gradient
check and directly communicate with the parameter server
after the ky, epoch. Only when y; > yr, the node is eligible
to skip the self-testing process, where yr is a predefined
probability threshold.

VOLUME 8, 2020

Yeah! I
finished!
I am at my
50%. H

I am current
time line.

It is close! The last
10%, come on!

Hey,guys~1
am new here.

Node
C Node

Node

Node

Node
E

FIGURE 4. Asynchronous federated learning (bright part means the
finished learning tasks, while the dark part means tasks that need to be
carried on).

V. ASYNCHRONOUS FEDERATED LEARNING

FOR EDGE NETWORK

As mentioned above, PAFLM is oriented toward the unre-
stricted edge nodes. There are many factors that can cause
asynchronous problems, such as different time to join fed-
erated learning and different computing power (varied com-
puting time required for the same training task), gradient
compression, learning interruption caused by various external
factors, and so on. We propose dual-weights correction to
solve asynchronous federated learning problems.

A. PROBLEMS IN ASYNCHRONOUS

FEDERATED LEARNING

In asynchronous federated learning, nodes have uneven learn-
ing samples and different learning status. As shown in Fig. 4,
the straight line in the figure represents the current time. The
total number of learning rounds of all nodes is the same.
The part that intersects with timeline indicates the current
epoch. Each node is at different stages of learning, such as
node A is at the 50% of the learning process. If the total
number of epochs is 1000, node A is at its 501, round. It obvi-
ously is unreasonable for the nodes with large differences to
update the global parameters equally. Therefore, we introduce
dual-weights correction to solve the problem of unbalanced
learning status in asynchronous learning.

B. ASYNCHRONOUS FEDERATED LEARNING WITH
DUAL-WEIGHTS CORRECTION

The dual-weights of PAFLM are divided into two parts:
sample weights and parameter weights. The sample weight
is determined by the proportion of the node samples to
the total samples of all learning nodes, and the parameter
weight is affected by the time difference between one node
downloading parameters and it uploading corresponding
gradients.

48975



IEEE Access

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

Global Iteration

Time Line 6r Or41 Brs2 -+ Brat2 Brst-1 Orst

FIGURE 5. Asynchronous federated learning and parameters staleness.

Definition 1: The sample weight represents the proportion
of the sample owned by one node to the total number of all
learning nodes.

Let n learning nodes be N = {N, N2, ..., N,}, and the
number of samples owned by node N; be represented by S;.
The sample weight of one particular node can be computed
from its sample number and the total sample number. The
calculation is as follow:

. S;

Bs =3

where ﬂg represents the sample weight of node i,and § =
Z}’:O S is the total sample number of 7 nodes.

Definition 2: The parameter weight indicates the time
difference between one node downloading parameters and
uploading corresponding gradients.

From the perspective of the parameter server, the entire
federated learning is the iteration of the parameter optimiza-
tion update. Nodes continually send requests to the parameter
server for downloading the latest parameters, and upload
the latest gradient to update the parameters. The simplified
process is shown in Fig. 5. Each node has upload operations
of other nodes interspersed between the time when its latest
parameter is downloaded and the corresponding gradient is
uploaded. In the parameter optimization described in Fig. 5,
the gradients have certain “‘staleness”, and the definition of
“staleness’ is as follows:

(10)

Mstaleness = Lupload — Laownioad - (11)

As the example in Fig. 5 shows, the staleness is Lsleness =
t+1 —t = 7. The parameter staleness reflects the computing
power of the node in some ways. In order to guarantee that
nodes with larger staleness have smaller parameter weights
and that their weight attenuation process is relatively flat,
we select the exponential function with the base number less
than 1 as the attenuation function of the parameter weights:

: 1 i
ﬁlP = a(ﬁl‘bxtalenexs)_l . (12)

where uimlenm represents the staleness of node i, and «
is the base of the exponential function that determines the
speed of attenuation. When the exponential part is greater
than zero, we want the parameter weight to decrease as the
exponential value increases, so the selection interval of « is

48976

All steps are
conducted
asynchronously.

Local
Gradients

FIGURE 6. Detail of asynchronous federated learning in PAFLM.

reduced to [0, 1]. As we all known, in the interval [0, 1],
the larger the «, the gentler is the decline of the calculation
result. So, in this paper, we simply choose o = 0.9.

The dual-weights correction formula is as follows, where 6
is the original model parameter and @’ is the modified model
parameter:

0 =0 % B * Bb. (13)

As shown in Fig. 6, in the asynchronous federated learning,
the gradient submitted by the edge nodes is subject to dual-
weights correction on the parameter server before optimizing
the global model. The corrected gradients update the global
parameters according to a specific optimization algorithm.
After one round of optimization is finished, nodes download
the latest parameters and overwrite their local parameters to
prepare the next learning iteration.

VI. EXPERIMENT

A. EXPERIMENTAL CONFIGURATION

In order to simulate the actual scene, we set up the follow-
ing experimental environment: a GPU server with a strong
calculation capacity played the role of a parameter server,
being responsible for most of the calculation work. Many
other computers simulated the individual learning nodes in
the edge network, and each of them independently conducted
federated learning. The communications between the param-
eter server and the nodes were based on the Thrift frame-
work. In it, each computer stores its data locally (in our
experiment, the data of each node took 0.2% of the total
data), and trains the neural network model based on their
own private data. Our research objects were multiple edge
nodes with different computing powers, resulting in different
data processing times. Therefore, we tried to simulate these
devices by adding pause intervals between every adjacent
epoch. In order to better simulate the real-world scenarios,
the federated learning systems built on these computers were
controlled by an independent management computer.

The experimental environment is shown in Fig. 7, where
Order represents the start order of N nodes, and Interval
represents the interval time between two epochs. In the ini-
tialization phase, the management node generated a shuffled

VOLUME 8, 2020



X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

IEEE Access

Administrato ord
rder:
Node &= Interval

4 1: 6: k 9: 5:
1620 46.46 62.97 325.62 24.048
NodeA NndeB NodeC NodeD NodeM

Gradients

Parameter
Server

N
N

FIGURE 7. Experimental configuration example.

sequence Order according to the total number of nodes (such
as 4,1,6, 9,...,5 in Fig. 7), and correspondingly generated a
random sequence Interval (as 16.20, 46.46, 62.96, 325.62,
..., 24.048(s) in the Fig. 7). After the initialization, the man-
agement node started the designated node according to the
Order: Interval sequence pair.

B. EXPERIMENTAL INDEX
The experimental indexes used for evaluation were Accuracy
(Acc), Compression Ratio (CR), and Compression Balance
Index (CBI).

Acc reflects the performance of the model classification,
which is defined as follows:

The number of correctly classified samples

Acc = x 100%.

The number of total samples
(14)

CR reflects the degree of the gradient compression. The
smaller is the CR value, the higher is the degree of compres-
sion. The definition of CR is as follows:

Communication times after compression
x 100%.

(15)

CR =
Communication times before compression

As CR gradually decreases, the Acc is also goes down.
Weighing the two indicators and making the best decisions
becomes a problem. Therefore, we introduce the Compres-
sion Balance Index (CBI) to represent the comprehensive
performance of gradient compression, which is defined as
follows:

CBI = a; * ACC + a» * (1 — CR). (16)

ai, ay are two adjustable parameters for balancing the
priority of Acc and CR, a; +a; = 1,a; > 0,a; > 0. If in
the real situation, the priority of Acc is higher than CR, it can
be set that a; > ap; otherwise, a; < aj. If the priorities of
the two indexes are the same, then a; = a». The higher the
CBI value, the better is the comprehensive performance of
gradient compression.

VOLUME 8, 2020

TABLE 2. Degree of compression and accuracy under different g.

B Average Communi- | Accuracy on | Accuracy on | Compression
cation Times After | Train Set Test Set Ratio
Compression

0.1 19 93.68% 91.98% 6.33%

02 |214 95.4% 92.4% 71.3%

0.3 270 95.3% 92.5% 90%

04 |283 95.34% 92.52% 94.3%

0.5 290 95.46% 92.52% 96.7%

0.6 |2925 95.44% 92.44% 97.5%

0.7 |296.5 95.45% 92.4% 98.83%

0.8 |296.5 95.31% 92.35% 98.83%

09 |297 95.41% 92.42% 99%

1 300 95.41% 92.41% 100%

C. SELF-ADAPTIVE THRESHOLD GRADIENT
COMPRESSION EXPERIMENT

We evaluated the gradient compression performance of
PAFLM using the MNIST data set, which is a handwritten
data set with 60,000 train samples and 10,000 test samples.
We normalized sample images to a 32 x 32 format so that the
handwriting number was at the center of the image.

In this part of the experiment, three training nodes were
included. The model structure of the training refers to the
Tutorial in the Tensorflow official website, and we did not
adjust it. The model structure was a three-layer MLP model,
and the number of neurons in each layer was 256, 256, and
10, respectively. The data set was divided into three equal
parts, and the learning nodes randomly obtained one of them.
In each experiment, the nodes reacquired new data. We exper-
imented with different hyper-parameters 8 and averaged the
final results.

Supplementary Note: Our work focused on the federated
learning framework, and we did not make too many adjust-
ments to the model structure or the optimization algorithms.
Therefore, in comparing the results of the training set and
the test set, it can be seen that the model had a slight over-
fitting phenomenon. Similarly, experimental indices, such as
Acc were only used to compare the performance of each
method, and did not evaluate the pros and cons of the model.
PAFLM did not limit the type of the learning model. The
model structure could be adjusted to actual problems, and to
solve various learning problems such as over-fitting.

1) Gradient Compression Experiment Analysis — Acc and
CR: Table 2 shows the effect of different 8 values on the
compression ratio and accuracy. Obviously, in the interval of
B = [0.1, 0.2], the compression rate increases significantly,
While in the interval § = [0.2, 1], the compression rate raises
within a smaller range. So in Fig.8, we highlight the interval
B =10.1,0.2].

As mentioned above, S affects the compression ratio.
The smaller the B8 value, the smaller the compression ratio
value, that is, the higher is the level of gradient communica-
tions. Normally, as the gradient communications are gradu-
ally compressed, the accuracy is also reduced. Fig. 8 shows
the results of the comparison experiment with 10 different

48977



IEEE Access

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

0. 960 7

0. 955

0. 930

=

&5

o
1

0. 940

Accuracy on Train Set

0.935

0.930 T T T T T T

(a) Different 8 values and model accuracy on train set (Thin lines indicate
the accuracy on the train set, and the bold lines indicates the corresponding
average accuracy.)

FIGURE 8. Self-adaptive threshold gradient compression.

300 A /

250 1
200

150

Communication Times After Compression

FIGURE 9. Different 8 and communication times.

hyper-parameter sets (sample number and pause interval).
Light-color thin lines in Fig. 8 (a) and Fig. 8 (b) are respec-
tively the specific data fluctuations on the test set and the train
set in ten experiments. The dark bold lines in Fig. 8 (a) and
Fig. 8 (b) are the test set and train set averages in these ten
experiments.

In Fig. 8, although the 10 sets of experimental data fluc-
tuate because of individual differences, the overall accuracy
shows that as the compression ratio increases, the accuracy
of model also increases, which can also be seen from the
corresponding dark bold lines. Interestingly, as can be seen
in Fig. 8(a), in the interval 8 = [0.14, 1] (corresponding to
the interval 8 = [0.13, 1] in Fig. 8 (b)), gradient compression
has little effect on accuracy, and the results fluctuate. This
is because the selected learning model has reached maxi-
mum learning. Obviously, redundant gradient communica-
tions have a lower gain in a model that has achieved saturation
learning, and gradient compression helps to improve the per-
formance of federated learning. In Fig. 9, as the B increases,

48978

0.94 7

=

o

]
1

Accuracy on Test Set
3

0.91 T T T T T T '
0.10 0.12 Q.14 0. 16 0. 18 0. 20 1.00

B
(b) Different 8 values and model accuracy on Test set (Thin lines indicate

the accuracy on the test set, and the bold lines indicates the corresponding
average accuracy.)

4 a1=0.4,a=0.6

L0q
—#— 3,=0.5,a,=0.5
—®* a,;=0.6,a=0.4
0.9+
0.8
=)
]
0.7+
0.6
A
A
0.5 T T T T T T

0.10 0.12 014 016 0.18 0.20
B

FIGURE 10. CBI of different 8 values in gradient compression.

the CR also increases, that is, the number of gradient commu-
nications increases.

2) Gradient Compression Experiment Analysis — CBI:
In order to select the optimal S value, we calculated CBI
in the interval 8 = [0.1, 0.2], and the results are shown in
Fig.10. It can be found that the optimum g in our experiment
is 8 =0.1.

We compared the performance of gradient compression in
PAFLM with LAG algorithm [28]. Table 3 shows the per-
formance comparison between threshold adaptive gradient
compression algorithm in PAFLM and the LAG algorithm
int three different aspects (Acc, CR, and CBI, respectively).
It can be seen that CR of LAG is lower than that of PAFLM
with 8 = 0.1 and 8 = 0.11. But Acc of LAG is lower than
PAFLM in both the train set and the test set. Furthermore,
to compare the performance of the two methods, we took
three different combinations of ay, ap to calculate CBI. It can
be seen from Table 3 that except for a; = 0.4, a = 0.6,

VOLUME 8, 2020



X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

IEEE Access

Synchronous . 0.642
Asynchronous . 0.653
PAFLM - 0693

o 1 2 3 4 5 &
Accuracy on Train Set

(a) Asynchronous experiment performance on train set.

FIGURE 11. Asynchronous federated learning.

TABLE 3. Performance comparison between different g values of PAFLM
and LAG.

Compression Algorithm PAFLM LAG

JE] 0.1 0.11 e
Acc(Train set) 93.68% 94.23% 89.9%
Acc(Test set) 91.98% 92.35% 89.13%

CR 6.33% 8.77% 5.11%
CBI(a; = 0.4,a2 = 0.6) |0.9333 0.9206 0.9274
CBI(a; = 0.5,a2 = 0.5) |0.9325 0.9226 0.922
CBl(a; = 0.6,a2 = 0.4) |0.9316 0.9247 0.9167

PAFLM performed better than LAG. What is more, CBI of
PAFLM with B = 0.1 is larger than LAG in three cases.
In PAFLM, the value of 8 can be adjusted according to the
actual needs.

D. ASYNCHRONOUS FEDERATED LEARNING

In order to highlight the experiment results, the experimental
data of the asynchronous learning part was replaced by the
Cifar10 data set. The Cifarl0 data set consists of 60,000
32 x 32 color images of 10 classes, each of which con-
tains 6000 images. There are 50,000 training images and
10,000 test images. We divided the training set into 500 parts.
Before each experiment, the nodes randomly selected one of
those as local learning data. In order to simulate asynchronous
federated learning, we increased the number of learning
nodes to 10. In addition, we added the pause intervals to the
learning process based on Fig. 7, that is, each node paused
for a period of time after the end of every epoch. The man-
agement node generated the entire stall time series. Similarly,
we used the convolutional neural network code of the Tutorial
on the Tensorflow official website, the model structure of
which is a five-layer convolutional network model. Since
asynchronous federated learning focuses on edge devices
with high mobility that cannot train network models with as
much stability as a server and cannot make them long-lasting,
to simulate this situation, we set the number of training rounds
to 500. The reduction of epochs has led to a decrease in accu-
racy. This problem can be solved by algorithm optimization,

VOLUME 8, 2020

Synchronous . 0.4773
Asynchronous l 0.4794
PAFLM . 0.4809

1] 1 2 3 4 5
Accuracy on Test Set

(b) Asynchronous experiment performance on test set.

model tuning or by using other methods that will not be
discussed too much here. The hyper-parameter values set in
this experiment is only for reference, and the actual settings
still need to be adjusted according to the specific problems.

We randomly selected ten different sets of hyper-
parameters (subset index, pause interval) for three comparison
experiments, namely no pause during training (corresponding
to “synchronous” in Fig. 11), pause in training (‘‘asyn-
chronous™), and pause during training with dual-weights
correction (‘““PAFLM (Dual-Weights)’”). Within the scope of
consulted literature, we had not found other researchers
that have improved the algorithm of asynchronous fed-
erated learning, so we could not conduct comparative
experiment with more methods.

Fig. 11 is a stacked bar graph of the average accuracy of ten
devices under five different hyper-parameter sets.Comparing
the two subgraphs, it can be seen that the accuracy of each
experiment is fluctuating. This is because the experimental
node has a small amount of data, and each subset is largely
different. However, the overall trend shows that asynchronous
learning has better performance than synchronous learning.
Asynchronous learning is similar to a regularization process
that can to a certain extent prevent the over-fitting of learn-
ing. Moreover, PAFLM shows better performance than both
asynchronous learning and synchronous learning.

VIil. SUMMARY
In this paper, we propose a Privacy-Preserving Asynchronous

Federated Learning Mechanism (PAFLM) for Edge Net-
work Computing to satisfy the realistic needs of learning
multi-party data without sharing private information. PAFLM
gives learners more freedom and privacy protection without
compromising accuracy of training. Participants learn from
their own sensitive data sets locally. After a round of train-
ing, the participants check whether the current round meets
the conditions for communicating with the parameter server
according to the self-test condition. If it is satisfied, learning
nodes upload the gradient to the parameter server. All nodes
perform the above steps asynchronously without waiting for

48979



IEEE Access

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

the remaining nodes or synchronizing the learning process.
Throughout the federated learning, the nodes only communi-
cate with the parameter server, not having obtained any infor-
mation about the other nodes except for the global parameters
that are jointly maintained.

We demonstrate two aspects of PAFLM: self-adaptive
threshold gradient compression and asynchronous federated
learning, and then conduct related experiments. In self-
adaptive threshold gradient compression, there are many
deficiencies due to simply introducing communication com-
pression ratio or compressing gradient communications
based on the fixed threshold. The self-adaptive threshold
gradient compression algorithm can automatically adapt to
the change of gradient in each model-training process and
calculate the appropriate threshold to compress the gradient
communications. Since the gradient data indirectly reflects
the information of the training samples, attackers can deduce
the sample data from the effective gradient information.
Therefore, reducing gradient communications can effectively
reduce the possibility of privacy leakage.

Multiple problems, such as uneven learning samples and
different learning progress, arise in asynchronous federated
learning due to high mobility of edge nodes. Obviously,
it is unreasonable to expect the nodes with large differ-
ences to update the global parameters equally. Therefore,
we introduce dual-weights correction to solve the problem
of unbalanced learning status in asynchronous federated
learning.

As a relatively new research content, asynchronous learn-
ing still has much room for discussion. As mentioned
above, asynchronization is caused by many factors, and
different causes require different solutions. In future work,
we will discuss different attenuation functions and look
for a better attenuation function to fit the attenuation
requirements.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-
passing human-level performance on ImageNet classification,” presented
at the IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015.

[2] D. Shultz, “When your voice betrays you,” Science, vol. 347, no. 6221,
p- 494, Jan. 2015, doi: 10.1126/science.347.6221.494.

[3] T.Jian, “Analysis on the application of Internet of Things in Chengdu radio
and TV network,” Telecom World, vol. 26, no. 5, pp. 35-36, 2019.

[4] M. Chiang and T. Zhang, “Fog and IoT: An overview of research opportu-
nities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854-864, Dec. 2016.

[5] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, “A comprehensive survey on fog computing: State-of-the-
art and research challenges,” IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 416464, 1st Quart., 2018.

[6] T. D. Dang and D. Hoang, “A data protection model for fog comput-
ing,” presented at the 2nd Int. Conf. Fog Mobile Edge Comput. (FMEC),
May 2017.

[71 S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of
fog computing in the context of Internet of Things,” IEEE Trans. Cloud
Comput., vol. 6, no. 1, pp. 46-59, Jan. 2018.

[8] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637-646, Oct. 2016.

48980

[9]

(10]

(11]

[12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload
allocation in fog-cloud computing towards balanced delay and power
consumption,” IEEE Internet Things J., to be published.

A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the Internet
of Things realize its potential,” Computer, vol. 49, no. 8, pp. 112-116,
Aug. 2016.

B. McMahan and D. Ramage, “‘Federated learning: Collaborative machine
learning without centralized training data,” Google Res. Blog, vol. 3,
Apr. 2017. [Online]. Available: https://www.googblogs.com/federated-
learning-collaborative-machine-learning-without-centralized-training-
data/

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,
C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan, T. Van Overveldt,
D. Petrou, D. Ramage, and J. Roselander, “Towards federated learning
at scale: System design,” 2019, arXiv:1902.01046. [Online]. Available:
http://arxiv.org/abs/1902.01046

Y.J.Kimand C. S. Hong, ““Blockchain-based node-aware dynamic weight-
ing methods for improving federated learning performance,” presented at
the APNOMS 20th Asia—Pacific Netw. Oper. Manage. Symp., Sep. 2019.
D. Conway-Jones, T. Tuor, S. Wang, and K. K. Leung, “Demonstration
of federated learning in a resource-constrained networked environment,”
presented at the SMARTCOMP IEEE Int. Conf. Smart Comput., Jun. 2019.
U. Majeed and C. S. Hong, “FLchain: Federated learning via MEC-
enabled blockchain network,” presented at the APNOMS 20th
Asia—Pacific Netw. Oper. Manage. Symp., Sep. 2019.

Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain and
federated learning for privacy-preserved data sharing in industrial IoT,”
IEEE Trans. Ind. Inform., vol. 16, pp. 4177-4186, Jun. 2020.

J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, “DeepChain:
Auditable and privacy-preserving deep learning with blockchain-based
incentive,” IEEE Trans. Dependable Secure Comput., to be published,
doi: 10.1109/TDSC.2019.2952332.

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. Mcmahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” presented at the ACM SIGSAC
Conf. Comput. Commun. Secur., 2017.

S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “‘Federated learning
for ultra-reliable low-latency V2V communications,” presented at the
GLOBECOM IEEE Global Commun. Conf., Dec. 2018.

T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, and W. Shi,
“Federated learning of predictive models from federated electronic health
records,” Int. J. Med. Informat., vol. 112, no. 1, pp. 59-67, Apr. 2018.

F. Seideetal, ““1-bit stochastic gradient descent and its application to data-
parallel distributed training of speech DNNs,” presented at the INTER-
SPEECH 15th Annu. Conf. Int. Speech Commun. Assoc., 2014.

W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
presented at the NIPS Adv. Neural Inf. Process. Syst., 2017.

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205-1221, Jun. 2019.

N. Dryden, T. Moon, S. A. Jacobs, and B. V. Essen, ‘“Communication
quantization for data-parallel training of deep neural networks,” presented
at the MLHPC 2nd Workshop Mach. Learn. HPC Environ., Nov. 2016.
C.Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K. Gopalakrish-
nan, ‘“Adacomp: Adaptive residual gradient compression for data-parallel
distributed training,” presented at the 32nd AAAI Conf. Artif. Intell., 2018.
N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” presented at the INTERSPEECH 16th Annu. Conf. Int.
Speech Commun. Assoc., 2015.

A. Fikri Aji and K. Heafield, “Sparse communication for dis-
tributed gradient descent,” 2017, arXiv:1704.05021. [Online]. Available:
http://arxiv.org/abs/1704.05021

T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily aggregated
gradient for communication-efficient distributed learning,” presented at
the NIPS Adv. Neural Inf. Process. Syst., 2018.

R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” pre-
sented at the 22nd ACM SIGSAC Conf. Comput. Commun. Secur.,
Sep. 2015.

VOLUME 8, 2020


http://dx.doi.org/10.1126/science.347.6221.494
http://dx.doi.org/10.1109/TDSC.2019.2952332

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

IEEE Access

XIAOFENG LU received the Ph.D. degree from
the Beijing University of Aeronautics and Astro-
nautics, Beijing, China, in 2010. During his Ph.D.,
he held visiting scholar positions at the Computer
Laboratory, University of Cambridge, U.K. He is
currently an Associate Professor with the School
of Cyberspace Security, Beijing University of Post
and Telecommunications. His main research inter-
ests include cyberspace security, information secu-
rity, and artificial Intelligence.

YUYING LIAO received the B.S. degree in infor-
mation security from the Nanjing University of
Posts and Telecommunications, China, in 2017.
She is currently pursuing the M.S. degree with the
School of Cyberspace Security, Beijing Univer-
sity of Posts and Telecommunications, China. Her

PIETRO LIO is currently a Professor with the
Computer Laboratory, University of Cambridge,
U.K., and also a Fellow and Director of Studies
at Fitzwilliam College, University of Cambridge.
He is currently modeling biological processes on
networks, modeling stem cells, as well as devel-
oping transcription and phylogenetic applications
on a grid environment. He is also interested in bio-
inspired design of wireless networks and epidemi-
ological networks.

PAN HUI (Fellow, IEEE) received the bachelor’s
and M.Phil. degrees from The University of
Hong Kong, and the Ph.D. degree from Com-
puter Laboratory, University of Cambridge.
During his Ph.D., he was also affiliated with Intel
Research Cambridge. He is currently a Professor
of computer science and engineering with The
Hong Kong University of Science and Technol-
ogy. He is also a Distinguished Scientist with
Deutsche Telekom Laboratories (TLabs), Berlin.

current research interests include federated learn- His research interests include delay tolerant networking, mobile networking
ing, edge computing, privacy preservation, and Al and systems, planet-scale mobility measurement, social networks, and the
security. application of complex network science in communication system design.

VOLUME 8, 2020 48981



