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Abstract

In the most advanced robot evolution systems, both the bodies
and the brains of the robots undergo evolution and the brains
of ‘infant’ robots are also optimized by a learning process
immediately after ‘birth’. This paper is concerned with the
brain evolution mechanism in such a system. In particular, we
compare four options obtained by combining asexual or sexual
brain reproduction with Darwinian or Lamarckian evolution
mechanisms. We conduct experiments in simulation with a
system of evolvable modular robots on two different tasks.
The results show that sexual reproduction of the robots’ brains
is preferable in the Darwinian framework, but the effect is the
opposite in the Lamarckian system (both using the same infant
learning method). Our experiments suggest that the overall
best option is asexual reproduction combined with the Lamar-
ckian framework, as it obtains better robots in terms of fitness
than the other three. Considering the evolved morphologies,
the different brain reproduction methods do not lead to differ-
ences. This result indicates that the morphology of the robot
is mainly determined by the task and the environment, not by
the brain reproduction methods.

Introduction
In Evolutionary Robotics (ER), the simultaneous develop-
ment of robot morphologies and control systems is a diffi-
cult task. It was introduced by Karl Sims in his simulated
virtual creatures (Sims (1994)) and we have only seen rela-
tively simple results so far, as noted by Cheney et al. (2016).
Some of the difficulty is due to the increased dimensional-
ity of the search, but a more pernicious aspect may be the
increased ruggedness of the search space: a small variation
in the morphology can easily offset the performance of the
controller-body combination found earlier. The design choice
for reproduction varies per study. Cheney et al. (2016) and
Nygaard et al. (2018) employ asexual reproduction for the
generation of both morphologies and controllers. Medvet
et al. (2021) generate each offspring by either mutation or
geometric crossover according to a probability. Lehman and
Stanley (2011), Miras et al. (2020), Stensby et al. (2021),
Auerbach and Bongard (2012) and De Carlo et al. (2020)
utilize sexual reproduction.

Several researchers have combined evolutionary methods
with learning techniques to drive the joint evolution of con-

trollers and morphologies deeper. Different reproduction
methods for their robots have been used too. Cheney et al.
(2018) produce new offspring by mutation of the parent’s
morphology or controller but not both. Wang et al. (2019),
Nygaard et al. (2017), Kriegman et al. (2018) and Goff et al.
(2021) only use mutation to generate the robotic offspring and
Gupta et al. (2021) generate new morphologies by asexual
reproduction but use randomly initialized controllers. Sexual
reproduction is used, instead, to produce the morphology and
controller of the offspring by Luo et al. (2022), Jelisavcic
et al. (2019), and Miras et al. (2018).

To the best of our knowledge, no studies have addressed
the arity of brain reproduction (a.k.a. crossover or recombina-
tion), comparing unary/asexual with binary/sexual reproduc-
tion in a morphologically evolving robotic system, let alone
in combination with a Darwinian vs. Lamarckian framework
for combining evolution with learning. Our study aims to fill
this gap by answering the following research questions:

Research Question 1: How do asexual and sexual brain
reproduction compare within Lamarckian and Darwinian
evolution frameworks in terms of task performance?

Research Question 2: Will the different brain reproduc-
tion methods lead to different robot morphologies?

Research Question 3: Will the different brain reproduc-
tion methods lead to different robot behaviours?

To answer these questions, we design an evolutionary robot
system in which robot morphologies (bodies) and controllers
(brain) are jointly evolved and, before reproduction, the con-
trollers go through a phase of learning. In such systems, the
best robots are chosen to produce new robotic offspring and
the new genes are formed by sexual or asexual reproduction
of their parent’s genes. The body of every offspring is pro-
duced by recombination and mutation of the genotypes of its
parents’ bodies. For the inheritance of the brain, we design
two different mechanisms. The first one, dubbed sexual re-
production, generates the new brain by recombination and
mutation starting from the parent’s genotype. The second
mechanism, asexual reproduction, produces the new brain
by the sole mutation of the genotype of its best parent. The
new robots are then tested on two separate tasks, panoramic
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rotation and point navigation, and a fitness value is assigned
to them based on their performance. The best individuals are
selected to form the new population.

Methods
Robot Morphology(Body)
Body Phenotype We choose RoboGen’s components as
the phenotype of the robot body. RoboGen Auerbach et al.
(2014) is a widely used, open-source platform for the evolu-
tion of robots which provides a set of modular components:
a morphology consists of one core component, one or more
brick components, and one or more active hinges. The pheno-
type follows a tree structure, with the core module being the
root node from which further components branch out. Child
modules can be rotated 90 degrees when connected to their
parent, making 3D morphologies possible.

Body Genotype The phenotype of bodies is encoded in a
Compositional Pattern Producing Network (CPPN) which
was introduced by Stanley Stanley (2007) and has been suc-
cessfully applied to the evolution of both 2D and 3D robot
morphologies in prior studies. The structure of the CPPN
has four inputs and five outputs. The first three inputs are
the x, y, and z coordinates of a component, and the fourth
input is the distance from that component to the core com-
ponent in the tree structure. The first three outputs are the
probabilities of the modules being a brick, a joint, or empty
space, and the last two outputs are the probabilities of the
module being rotated 0 or 90 degrees. For both module type
and rotation the output with the highest probability is always
chosen; randomness is not involved.

The body’s genotype to phenotype decoder operates as
follows:
The core component is generated at the origin. We move
outwards from the core component until there are no open
sockets(breadth-first exploration), querying the CPPN net-
work to determine the type and rotation of each module.
Additionally, we stop when ten modules have been created.
The coordinates of each module are integers; a module at-
tached to the front of the core module will have coordi-
nates (0,1,0). If a module would be placed on a location
already occupied by a previous module, the module is sim-
ply not placed and the branch ends there. In the evolution-
ary loop for generating the body of offspring, we use the
same mutation and crossover operators as in MultiNEAT
(https://github.com/MultiNEAT/).

Robot Controller(Brain)
Brain Phenotype We use Central Pattern Generators
(CPGs)-based controllers to drive the modular robots which
has demonstrated their success in controlling various types
of robots, from legged to wheeled ones in previous research.
Each joint of the robot has an associated CPG that is de-
fined by three neurons: an xi-neuron, a yi-neuron and an

Figure 1: The structure of the CPG associated to the ith joint.
wxiyi

, wyixi
and wxioi are the weights of the connections

between the neurons and out is the activation value of outi
neuron that controls the servo in a joint

outi-neuron. The recursive connection of the tree neurons
is shown in Figure 1. The change of the xi and yi neurons’
states with respect to time is obtained by multiplying the ac-
tivation value of the opposite neuron with the corresponding
weight ẋi = wiyi, ẏi = −wixi. To reduce the search space
we set wxiyi

to be equal to −wyixi
and call their absolute

value wi. The resulting activations of neurons xi and yi are
periodic and bounded. The initial states of all x and y neu-
rons are set to

√
2
2 because this leads to a sine wave with

amplitude 1, which matches the limited rotating angle of the
joints.

To enable more complex output patterns, connections be-
tween CPGs of neighbouring joints are implemented. An
example of the CPG network of a "+" shape robot is shown
in Figure 2. Two joints are said to be neighbours if their
distance in the morphology tree is less than or equal to two.
Consider the ith joint, and Ni the set of indices of the joints
neighbouring it, wij the weight of the connection between xi

and xj . Again, wij is set to be −wji. The extended system
of differential equations becomes:

ẋi = wiyi +
∑
j∈Ni

wjixj

ẏi = −wixi

(1)

Because of this addition, x neurons are no longer bounded
between [−1, 1]. For this reason, we use the hyperbolic
tangent function (tanh) as the activation function of outi-
neurons.

out(i,t)(x(i,t)) =
2

1 + e−2x(i,t)
− 1 (2)

Brain Genotype We utilize an array-based structure for
the brain’s genotypic representation to map the CPG weights.
This is achieved via direct encoding, a method chosen specif-
ically for its potential to enable reversible encoding in future
stages. We have seen how every modular robot can be rep-
resented as a 3D grid in which the core module occupies
the central position and each module’s position is given by
a triple of coordinates. When building the controller from
our genotype, we use the coordinates of the joints in the grid
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Figure 2: Brain phenotype (CPG network) of a "+" shape
robot. In our design, the topology of the brain is determined
by the topology of the body.

to locate the corresponding CPG weight. To reduce the size
of our genotype, instead of the 3D grid, we use a simplified
3D in which the third dimension is removed. For this reason,
some joints might end up with the same coordinates and will
be dealt with accordingly.

Since our robots have a maximum of 10 modules, every
robot configuration can be represented in a grid of 21× 21.
Each joint in a robot can occupy any position of the grid
except the center. For this reason, the possible positions of a
joint in our morphologies are exactly (21 ·21)−1 = 440. We
can represent all the internal weights of every possible CPG
in our morphologies as a 440-long array. When building
the phenotype from this array, we can simply retrieve the
corresponding weight starting from a joint’s coordinates in
the body grid.

To represent the external connections between CPGs, we
need to consider all the possible neighbours a joint can have.
In the 2-dimensional grid, the number of cells in a distance-2
neighbourhood for each position is represented by the De-
lannoy number D(2, 2) = 13, including the central element.
Each one of the neighbours can be identified using the rela-
tive position from the joint taken into consideration. Since
our robots can assume a 3D position, we need to consider an
additional connection for modules with the same 2D coordi-
nates.

To conclude, for each of the 440 possible joints in the
body grid, we need to store 1 internal weight for its CPG,
12 weights for external connections, and 1 weight for con-
nections with CPGs at the same coordinate for a total of 14
weights. The genotype used to represent the robots’ brains is
an array of size 440× 14. An example of the brain genotype
of a "+" shape robot is shown in Figure 3.

It is important to notice that not all the elements of the
genotype matrix are going to be used by each robot. This
means that their brain’s genotype can carry additional infor-
mation that could be exploited by their children with different
morphologies.

Figure 3: Brain genotype to phenotype mapping of a "+"
shape robot. The left image (brain phenotype) shows the
schema of the "+" shape robot with the coordinates of its
joints in the 2D body grid. The right image (brain genotype)
is the distance 2 neighbour of the joint at (1,0). The coordi-
nates reported in the neighbourhood are relative to this joint.
The CPG weight of the joint is highlighted in purple and its
2-distance neighbours are in blue.

The recombination operator for the brain genotype is im-
plemented as a uniform crossover where each gene is chosen
from either parent with equal probability. The new genotype
is generated by essentially flipping a coin for each element of
the parents’ genotype to decide whether or not it will be in-
cluded in the offspring’s genotype. In the uniform crossover
operator, each gene is treated separately. The mutation opera-
tor applies a Gaussian mutation to each element of the geno-
type by adding a value, with a probability of 0.8, sampled
from a Gaussian distribution with 0 mean and 0.5 standard
deviation.

Asexual & Sexual Reproduction
In this research, the bodies of the robots are evolved only
with sexual reproduction while the brains of the robots are
evolved with asexual or sexual reproduction.

Body - sexual reproduction: Parents are selected from the
current generation using binary tournaments with replace-
ment. We perform two tournaments in which two random
potential parents each are selected. In each tournament the
potential parents are compared, the one with the highest fit-
ness wins the tournament and becomes a parent. The body
of every new offspring is created through recombination and
mutation of the genotypes of its parents.

Brain - asexual & sexual reproduction: For the generation
of the brain, we use two different strategies. The first strategy
is called asexual because the brain genotype of the offspring
is generated from only one parent. The brain genotype of
the best-performing parent is mutated before being inherited
by its offspring. For sexual reproduction, instead, the child’s
brain is created through the recombination and mutation of
its parents’ brain genotypes.
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The Algorithm 1 displays the pseudocode of the com-
plete integrated process of evolution and learning. With the
highlighted blue code, it is the sexual reproduction method,
without it is the asexual reproduction. With the highlighted
yellow code, it is the Lamarckian learning mechanism, with-
out it is the Darwinian learning mechanism. Note that for the
sake of generality, we distinguish two types of quality test-
ing depending on the context, evolution or learning. Within
the evolutionary cycle (line 2 and line 14) a test is called an
evaluation and it delivers a fitness value. Inside the learning
cycle (line 11) a test is called an assessment and it delivers a
performance value.

The code for replicating this work and carrying out the ex-
periments is available online: https://rb.gy/7gx13.

Algorithm 1 Evolution+Learning

1: INITIALIZE robot population
2: EVALUATE each robot
3: while not STOP-EVOLUTION do
4: SELECT parents;
5: RECOMBINE+MUTATE parents’ bodies;

6: RECOMBINE parents’ brains;

7: MUTATE parents’ brains;
8: CREATE offspring robot body;
9: CREATE offspring robot brain;

10: INITIALIZE brain(s) for the learning process;
11: while not STOP-LEARNING do
12: ASSESS offspring;
13: GENERATE new brain for offspring;
14: end while
15: EVALUATE offspring with the learned brain;

16: UPDATE brain genotype

17: SELECT survivors / UPDATE population
18: end while

Learning algorithm
We use Reversible Differential Evolution (RevDE) Tomczak
et al. (2020) as the learning algorithm because it has proven
to be effective in previous research Luo et al. (2022). This
method works as follows:

1. Initialize a population with µ samples (n-dimensional vec-
tors), Pµ.

2. Evaluate all µ samples.

3. Apply the reversible differential mutation operator and the
uniform crossover operator.
The reversible differential mutation operator: Three new
candidates are generated by randomly picking a triplet

from the population, (wi,wj ,wk) ∈ Pµ, then all three
individuals are perturbed by adding a scaled difference in
the following manner:

v1 = wi + F · (wj −wk)

v2 = wj + F · (wk − v1)

v3 = wk + F · (v1 − v2)

(3)

where F ∈ R+ is the scaling factor. New candidates y1
and y2 are used to calculate perturbations using points
outside the population. This approach does not follow
the typical construction of an EA where only evaluated
candidates are mutated.
The uniform crossover operator: Following the original
DE method Storn (1997), we first sample a binary mask
m ∈ {0, 1}D according to the Bernoulli distribution with
probability CR shared across D dimensions, and calculate
the final candidate according to the following formula:

u = m⊙wn + (1−m)⊙wn. (4)

Following general recommendations in literature Pedersen
(2010) to obtain stable exploration behaviour, the crossover
probability CR is fixed to a value of 0.9 and according to
the analysis provided in Tomczak et al. (2020), the scaling
factor F is fixed to a value of 0.5.

4. Perform a selection over the population based on the fitness
value and select µ samples.

5. Repeat from step (2) until the maximum number of itera-
tions is reached.

As explained above, we apply RevDE here as a learning
method for ‘newborn’ robots. In particular, it will be used to
optimize the weights of the CPGs of our modular robots for
the tasks during the Infancy stage.

Tasks and Fitness functions
Point Navigation Point navigation is a closed-loop con-
troller task which needs feedback (coordinates)from the en-
vironment passing to the controller to steer the robot. The
coordinates are used to obtain the angle between the current
position and the target. If the target is on the right, the right
joints are slowed down and vice versa.

A robot is spawned at the centre of a flat arena (10 × 10
m2) to reach a sequence of target points P1, ..., PN . In each
evaluation, the robot has to reach as many targets in order
as possible. Success in this task requires the ability to move
fast to reach one target and then quickly change direction to
another target in a short duration. A target point is considered
to be reached if the robot gets within 0.01 meters from it.
Considering the experimental time, we set the simulation
time per evaluation to be 40 seconds which allows robots to
reach at least 2 targets P1(1,−1), P2(0,−2).

The data collected from the simulator is the following:
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• The coordinates of the core component of the robot at the
start of the simulation are approximate to P0(0, 0);

• The coordinates of the robot, sampled during the simula-
tion at 5Hz, allowing us to plot and approximate the length
of the followed path;

• The coordinates of the robot at the end of the simulation
PT (xT , yT );

• The coordinates of the target points P1(x1, y1)...
Pn(xn, yn).

• The coordinates of the robot, sampled during the simula-
tion at 5Hz, allow us to plot and approximate the length of
the path L.

The fitness function for this task is designed to maximize
the number of targets reached and minimize the path followed
by the robot to reach the targets.

F =

k∑
i=1

dist(Pi, Pi−1)

+ (dist(Pk, Pk−1)− dist(PT , Pk))

− ω · L (5)

where k is the number of target points reached by the robot
at the end of the evaluation, and L is the path travelled. The
first term of the function is a sum of the distances between
the target points the robot has reached. The second term is
necessary when the robot has not reached all the targets and
it calculates the distance travelled toward the next unreached
target. The last term is used to penalize longer paths and ω is
a constant scalar that is set to 0.1 in the experiments. E.g., if
a robot just reached 2 targets, the maximum fitness value will
be dist(P1, P0)+(dist(P2, P1)−dist(P2, P2))−0.1∗L =√
2 +

√
2− 0.2 ∗

√
2 ≈ 2.54 (L is shortest path length to go

through P1 and P2 which is equal to 2 ∗
√
2).

Panoramic Rotation The panoramic Rotation task is an
open-loop controller task which does not need any feedback
from the environment to feed the controller. Same as the
Point navigation, the initial coordinate of the robot is [0,0].
Success in this task requires the ability to rotate 360 degrees
around the robot’s vertical axis as many times as possible in
the evaluation time.

To solve this task, we collect from the simulator the ori-
entation of the robot which is represented as quaternions
sampled at 5 Hz during the evaluation.

The fitness function is the total rotation (in radians) of the
robot computed as the sum of the rotation of the orientation
vector at each consecutive timestamp. Simulation time is set
to 30 seconds for this task.

F =

30∑
n=1

θi (6)

where θi is the angle between two vectors which were con-
verted from quaternions.

We assign a positive sign to the counter-clockwise rota-
tions and a negative one to the clockwise rotations in our
tests.

Experimental setup
The stochastic nature of evolutionary algorithms requires
multiple runs under the same conditions and a sound sta-
tistical analysis (Bartz-Beielstein and Preuss (2007)). We
perform 10 runs for each evaluation task, reproduction mech-
anism and evolutionary framework, namely Rotation Asexual
Darwinian, Rotation Asexual Lamarckian, Rotation Sexual
Darwinian, Rotation Sexual Lamarckian, Point Navigation
Asexual Darwinian, Point Navigation Asexual Lamarckian,
Point Navigation Sexual Darwinian, Point Navigation Sexual
Lamarckian. In total, 80 experiments.

Each experiment consists of 30 generations with a pop-
ulation size of 50 individuals and 25 offspring. A total of
50 + (25 · (30 − 1)) = 775 morphologies and controllers
are generated, and then the learning algorithm RevDE is
applied to each controller. For RevDE we use a popu-
lation of 10 controllers for 10 generations, for a total of
(10 + 30 · (10− 1)) = 280 performance assessments.

The fitness measures used to guide the evolutionary pro-
cess are the same as the performance measure used in the
learning loop. For this reason, we use the same test process
for both. The tests for the task of point navigation use 40
seconds of evaluation time with two target points at the co-
ordinates of (1,−1) and (0,−2). The evaluation time for
panoramic rotation is 30 seconds.

All the experiments are run with Mujoco simulator-based
wrapper called Revolve2 on a 64-core Linux computer, where
they each take approximately 15 hours to finish, totalling
1,200 hours of computing time.

Results
To compare the effects of asexual and sexual reproduction,
we consider two generic performance indicators: efficiency
and efficacy, meanwhile we also look into robots’ behaviour
and morphologies.

Efficacy We measure efficacy by the mean and maximum
fitness value within the simulation time at the end of the
evolutionary process (30 generations), and then we take the
average over 10 independent repetitions.

Figure 4 shows both reproduction methods can generate
robots that can solve the two tasks successfully. It also shows
that asexual and sexual reproduction has the opposite effect
for different evolution frameworks on two tasks. With the
point navigation task, sexual reproduction achieved a higher
fitness value in the Darwinian framework, while in the Lamar-
ckian framework, asexual reproduction has a higher mean
fitness value across generations.
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With the panoramic rotation task, there is no significant
difference between the two reproduction methods in the Dar-
winian framework, however, in the Lamarckian framework,
the asexual method has a significantly higher mean fitness
value across generations than the sexual method.

We can indicate from Figure 4 that Lamarckian benefits
more without crossover of the learned brain genomes while
Darwinian which does not inherit the learned traits is not
affected so much with or without crossover for the brain
genomes.

Second, another way to measure the efficacy of the solu-
tion is by giving the same computational budget (number
of generation) and measuring which method finds the best
solution (maximum fitness) faster. In Figure 6, for the Dar-
winian framework, sexual reproduction has a better mean
fitness on point navigation task. Although the difference in
mean fitness is not significant on the rotation task, the best
sexually reproducing robot for the rotation task with the high-
est fitness value, 80.21, is almost twice as better as the best
robot by asexual reproduction, whose fitness is only 44.52.
For the Lamarckian framework, mean and max fitness values
of asexual reproduction are significantly better than sexual
reproduction’s on both tasks.

Efficiency Efficiency indicates how much effort is needed
to reach a given quality threshold (the fitness level). In this
paper, we use the average number of evaluations to solution
to measure it. In figure 4, the most efficient method for the
point navigation task is asexual reproduction with the Lamar-
ckian framework. It already surpassed in its 15, 21, and 21
generations the fitness levels that asexual reproduction with
Darwinian, sexual reproduction with Darwinian and sexual
reproduction with Lamarckian methods achieved at the end
of the evolutionary period respectively. So does the rotation
task, asexual reproduction with Lamarckian framework sur-
passed in its 16, 17, and 25, generations the fitness levels that
sexual with Lamarckian method, asexual with Darwinian,
and sexual with Darwinian achieved at the end of the evolu-
tionary period respectively.

Robot Behavior To get a better understanding of the
robots’ behaviour, we visualize the trajectories of the 10
best-performing robots from both reproduction methods for
the point navigation task in the last generation across all
runs. Figure7 shows that with the Lamarckian framework,
all the robots reached the two target points much earlier than
the ones with the Darwinian framework. In the Darwinian
framework, both reproduction methods reached the first tar-
get point successfully. However, the majority of the robots
that use sexual reproduction with the Darwinian framework
reach the second target point while only some of the robots
produced using asexual reproduction can do the same. In the
Lamarckian framework, both reproduction methods reached
two target points successfully.

Robot Morphologies Figure 5 present the 5 best robots
for each method. The morphologies evolved for both tasks
are reaching maximum size, having close to 10 modules
on average, and are mostly made of hinges with no bricks
(except one). The best robots for point navigation have 3 or 4
limbs made of hinges while those for rotation task only have
2 or 3.

Conclusions and Future Work
We compared asexual and sexual brain reproduction methods
in a morphologically evolving robot system. Since our sys-
tem also lets ‘infant’ robots optimize their inherited brains by
learning, we also had two options regarding the combination
of learning and evolution: Darwinian and Lamarckian. Given
the two tasks we considered –point navigation and panoramic
rotation– all together we conducted eight experiments. The
results show that to achieve the highest task performance, the
use of sexual brain reproduction is advisable in the Darwinian
system for both tasks. (Although for one task, the two repro-
duction systems performed similarly.) However, the effect
is the opposite in the Lamarckian framework, since asexual
reproduction leads to robots with higher fitness. This answers
our first research question. Our experiments also show that to
maximize task performance, the use of asexual reproduction
and the Lamarckian framework is the best choice. This is a
novel result that can impact the design of evolutionary robot
systems of the future.

With regards to the evolved morphologies, both reproduc-
tion methods drive the evolution process towards maximum-
size robots composed of many active hinges. The morpholo-
gies of the best-performing robots for the same task are simi-
lar: they are made of only hinges attached to the core module
without bricks. For the rotation task, bodies mainly con-
verged to an "L" shape and for the point navigation task to an
"X" shape. We conclude that under the given experimental
conditions the morphology of the robot is mainly determined
by the tasks, not the brain reproduction methods.

Regarding our third research question, we highlight a dif-
ference in the behaviours of the robots that evolved using the
two reproduction methods for both tasks. In point navigation,
the trajectories of the best robots produced by both reproduc-
tion of the Lamarckian framework reached the target points
much earlier than the ones from the Darwinian framework
where the majority of the best robots evolved using sexual
reproduction reach the second target point while only a few
of those asexually evolved do so.

Future work will be directed to test the superiority of asex-
ual brain reproduction and a Lamarckian combination of
evolution and learning on more tasks and environments.
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Figure 4: Mean fitness over 30 generations (averaged over 10 runs) for asexual reproduction in purple and sexual reproduction in
blue. Subfigures (a)(b) exhibit mean average fitness for the point navigation task, and Subfigures (c)(d) are for the rotation task.
The bands indicate the 95% confidence intervals (±1.96× SE, Standard Error).
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(c) (d)

Figure 5: Subfigures (a)(b): The 5 best robots produced for the point navigation task by sexual and asexual reproduction and
their fitnesses. Sexually reproduced robots have higher fitness values. Subfigures (c)(d): The 5 best robots produced for the
panoramic rotation task by sexual and asexual reproduction and their fitnesses. Sexually reproduced robots have higher fitness
values and are more diverse.
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Figure 6: Efficacy boxplots at the generation 30. The fitness values of two reproduction methods at generation 30 for two tasks
and two evolution frameworks. Red dots show mean values.

Figure 7: Trajectories of the best 10 robots from both reproduction methods in the point navigation task with Darwinian and
Lamarckian evolution frameworks. The purple square is the starting point. Two yellow circles are the target points which robots
aim to go through. The blue lines are the trajectory paths of robots produced by the asexual reproduction method ending at the
blue squares. The green lines are from the sexual reproduction method ending at the green squares.
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