
  
Abstract— Optical solitons in multimode fibers exhibit complex 

dynamics, and peculiar characteristics in terms of pulse duration 
and energy, which distinguish them from the single-mode 
counterpart. We propose a theory for Raman-induced soliton self-
frequency shift in multimode fibers, that is compared against 
experimental data of 1-km multimode soliton propagation. 
Specific values of pulsewidth and energy are found, at which 
solitons show long-distance stability and better correspondence 
with the theory of self-frequency shift; those values depend on the 
input wavelength, but are not related to the duration of the input 
pulse. Raman delay is affected by a jitter, characterized by a 
Gaussian statistical distribution, whose standard deviation tends 
to stabilize to a constant value for increasing pulse energies. 
 

Index Terms—Fiber nonlinear optics, Optical solitons, Raman 
scattering.  
 

I. INTRODUCTION 

he propagation of optical solitons in multimode (MM) 
fibers has been theoretically predicted over 40 years ago 

[1]. MM fiber solitons are a relatively accessible example of 
otherwise elusive objects such as spatiotemporal solitons or 
light bullets [2], where dispersion and diffraction are 
simultaneously balanced by nonlinearity and linear 
waveguiding. Since then, the field of MM fiber solitons has 
remained largely unexplored, especially when compared with 
their extensively investigated single-mode counterparts. 
Motivated by the potential use of MM fibers in spatial-division 
multiplexing (SDM) communications [3] and fiber lasers [4], 
experimental studies on MM fiber solitons have gained an 
increasingly renewed research attention over the past ten years 
[5-9]. 

The first evidence of soliton self-frequency shift (SSFS) 
was reported by Mitschke and Mollenauer in [10], by using sub-
picosecond pulses propagating in a single-mode, polarization 
preserving fiber span of 390 m. Those experiments have shown 
that the soliton pulse was affected by a spectral red-shift 
induced by Raman nonlinearity. This SSFS could be easily 
distinguished from other dissipative effects induced by the 
stimulated Raman scattering (SRS), because of its graduality: 
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the spectral shift is continuous for solitons, and does not break-
up the spectrum into multiple lobes. A first theory for the SSFS 
was proposed by Gordon in [11] for single-mode optical fibers: 
from the lossless nonlinear Schrödinger equation including the 
Kerr and Raman exact models, a differential equation for the 
frequency shift was obtained, starting from the Raman gain 
spectrum 𝐺𝐺(𝜈𝜈). The theory assumed the soliton to maintain a 
constant temporal duration. In [12], Grudinin et al. reported the 
first observation of a soliton produced by SRS in 50 m of 
parabolic graded-index fiber (GRIN): an ultra-short pulse with 
90 fs duration, at 1650 nm, was generated from a 150 ps pump 
pulse at 1064 nm, with 600 kW peak power. A more complete 
theory for the Raman frequency shift in single-mode fibers, in 
the presence of losses, dispersive effects, and considering a 
Raman nonlinear term described by a finite response time 𝑇𝑇𝑅𝑅, 
was developed in [13]. However, a more accurate theory 
describing chirped pulse evolution in single-mode fibers, 
including losses and high-order dispersion, was introduced 
much later [14] based on the moment method: a set of 
differential equations was found, describing the adiabatic 
evolution of the pulse energy, delay, frequency shift, duration 
and chirp. The adiabatic approach was also introduced to 
describe the interaction between Raman soliton and group 
velocity matched pulses [15]. 

Besides the accuracy demonstrated by the above theories in 
single-mode pulse transmission, no comparison was carried out, 
to the best of our knowledge, with experiments on multimode 
solitons in GRIN fibers. Here, the pulsewidth evolution is 
affected by modal dispersion, losses and inter-modal nonlinear 
interactions: as a result, the soliton behavior is somewhat 
different from the single-mode counterpart [5], and it must be 
described in terms of the walk-off theory [16]. Raman-induced 
SSFS still holds, but it is strongly affected by the multimode 
soliton evolution; hence, a quantitative comparison between 
theoretical predictions and experimental results for multimode 
soliton propagation should be carried out.  

This comparison is precisely the scope of our work: we 
found a good agreement between theory and experimental 
results, providing that: (i) the propagating soliton pulse has a 
specific energy, which depends on the input wavelength; (ii) an 
effective waist for the multimode soliton beam is used in the 
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theory. Our paper is organized as follows: in Section 2, 
multimode soliton pulsewidth evolution will be studied 
numerically and experimentally, in order to find out if there are 
any substantial differences with respect to the single-mode 
soliton case. In Section 3, a theory for the SSFS and for the 
Raman delay of multimode solitons will be introduced, and 
tested against both experimental and numerical results.  

  

II. MULTIMODE SOLITON PULSEWIDTH 

Before moving to the theory for multimode SSFS, it is 
necessary to point out the differences between single-mode and 
multimode solitons. In the former case, the pulse adjusts its 
duration according to the energy coupled at the input, and to the 
chromatic dispersion of the fiber; in the latter case, the so-called 
walk-off soliton forms at a specific optimal energy, and it takes 
an initial pulsewidth, which is only dependent on the fiber’s 
dispersion parameters, and it remains independent on the 
duration of the pulse coupled at the fiber input [16]. Such 
peculiarity restricts the validity of the SSFS theory to a limited 
pulse energy interval, as it will be shown in Section 3. 

A. Pulsewidth Invariance in Multimode Solitons. Simulations 

Numerical simulations use a coupled-mode equations model 
derived from [17-20]; right-side terms of Eq. 2.1 describe: 
modal dispersion, four orders of chromatic dispersion, 
wavelength-dependent losses, random modal coupling (with 
coefficient 𝑞𝑞𝑚𝑚𝑚𝑚, limited to degenerate modes), nonlinear Kerr 
and Raman terms, respectively. The 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are cross-terms 
corresponding to the inverse of effective modal areas, providing 
appropriate weights to inter-modal four-wave mixing (IM-
FWM) and Raman scattering (IM-SRS) terms. The Raman term 
contributes with a fraction 𝑓𝑓𝑅𝑅 = 0.18; the expression ℎ ∗
(𝐴𝐴𝑚𝑚𝐴𝐴𝑛𝑛∗ ) denotes for time convolution with the Raman response 
function ℎ(𝑡𝑡), with typical time constants of 12.2 and 32 fs 
[21,22]. Fiber parameters at wavelength 𝜆𝜆 =1450 nm are: 𝛽𝛽2 =
−16.27 ps2/km, 𝛽𝛽3 = 0.12 ps3/km, 𝛼𝛼 = 1.38 × 10−4 m-1, 𝑛𝑛2 =
2.6 × 10−20 m2/W. The modal distribution of power at the fiber 
input was calculated by field superposition integrals. 
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      .              (2.1) 
Fig. 1 (a) reports the simulated pulsewidth vs. input energy 

for a pulse propagating over 1 km of GRIN fiber, with input 
parameters: 1450 nm wavelength, 42 μm beam diameter, 60 fs 
or 300 fs pulsewidth. Power is distributed with fractions 0.497, 
0.309, 0.193 among the first Laguerre-Gauss modes with axial 
symmetry, i.e., with radial/azimuthal indexes (𝑝𝑝,𝑚𝑚) =

(0,0), (1,0), (2,0). Non-axial mode power is neglected at the 
fiber input. 

The soliton pulsewidth at short distances (a few meters), 
immediately after the soliton formation, scales in agreement 
with the single-mode soliton formula [5] 

 

𝑇𝑇0 =
𝜆𝜆|𝛽𝛽2(𝜆𝜆)|𝑤𝑤𝑒𝑒2

𝑛𝑛2𝐸𝐸𝑠𝑠
         , 

  (2.2) 
where 𝐸𝐸𝑠𝑠 is the soliton energy, 𝑤𝑤𝑒𝑒 is an effective modal waist, 
and soliton duration 𝑇𝑇0 = 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 1.763⁄ , with 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 the 
pulsewidth (full-width half-maximum); both pulses with input 
pulsewidths of either 60 fs or 300 fs appear to generate, after a 
few meters, a pulse with nearly the same pulsewidth, for any 
values of the input energy.  

In order to apply Eq. 2.2 to MM solitons, an effective beam 
waist 𝑤𝑤𝑒𝑒 must be used, in place of the single-mode waist; from 
the theory of self-imaging in GRIN fibers [23-26], the modal 
effective area oscillates with distance z according to the law 
𝑐𝑐𝑐𝑐𝑐𝑐2(𝜋𝜋 𝑧𝑧 𝑧𝑧𝑝𝑝) + 𝐶𝐶2⁄ 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋 𝑧𝑧 𝑧𝑧𝑝𝑝)⁄ , with 𝑧𝑧𝑝𝑝 = 𝜋𝜋𝑟𝑟𝑐𝑐 √2∆⁄  the self-
imaging period, and 𝐶𝐶 ≈ 𝜆𝜆 𝑧𝑧𝑝𝑝 (𝜋𝜋2𝑛𝑛0𝑤𝑤𝑖𝑖𝑖𝑖2 )⁄  the oscillation 
amplitude, being 𝑤𝑤𝑖𝑖𝑖𝑖  the input beam waist, 𝑛𝑛0 and 𝑟𝑟𝑐𝑐  the core 
index and radius, respectively, and Δ the relative index 
difference between core and cladding. The mean effective area 
is 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜋𝜋𝑤𝑤𝑖𝑖𝑖𝑖2 (1 + 𝐶𝐶2) 2⁄ , hence, the effective beam waist is 
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 .   (2.3) 
Eq. 2.3 over-estimates the effective waist of a multimode 

soliton at large distances, because most of the soliton energy 
tends to flow into the fundamental mode, whose waist is 𝑤𝑤0 =

�𝜆𝜆𝑟𝑟𝑐𝑐 �𝜋𝜋𝑛𝑛0√2Δ�⁄ . Hence, the effective waist should be 

calculated by accounting for the evolution of the power 
distribution within modes; its value gradually decreases from 
what predicted by Eq. 2.3 down to 𝑤𝑤0. 

When the pulsewidth at large distances is observed (e.g., at 
1 km), a common minimum value of 220 fs, at the optimal input 
energy of 1 nJ, is obtained for both input pulsewidths of 60 and 
300 fs. Hence, only a single soliton state is formed at large 
distances, with a specific soliton duration and energy, 
independently of the input pulse duration.  

For such optimal pulse energy, the soliton pulsewidth 
increases with distance because of the Raman-induced SSFS, 
which is responsible for increasing the soliton wavelength, 
hence of the absolute value of the chromatic dispersion 
experienced by the red-shifted soliton. In the example of Fig. 1, 
at 1 nJ input energy the soliton wavelength grows from 1450 to 
1548 nJ after 1 km distance. Correspondingly, the soliton pulse 
increases its time duration from 205 fs at 20 m distance, up to 
220 fs at 1 km, in order to conserve the soliton condition of Eq. 
2.2. 
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Fig. 1 – Simulated pulsewidth vs. input energy for a 
pulse propagating over 1 km of GRIN fiber; input 
parameters are: (a) 1450 nm (b) 1550 nm wavelength, 42 
μm beam diameter, 60 fs or 300 fs pulsewidth. 

 
Fig. 1 (b) shows that similar results are obtained with the 

following input parameters: 1550 nm wavelength, 30 μm beam 
diameter, 60 fs or 300 fs pulsewidth. The input power is 
distributed with fraction 0.519, 0.303, and 0.177 among the first 
3 axial modes. Hence, a longer wavelength and a smaller beam 
diameter are used with respect to the case in Fig. 1 (a). Still, an 
optimal input energy of 1.5 nJ is found at 1 km of distance, 
providing same output pulsewidth of 270 fs for both input 
conditions of 60 fs and 300 fs; at 20 m distance, a common 
pulsewidth of 215 fs is also obtained. The optimal input energy 
may vary by a few percents in the two cases of 60 fs and 300 fs 
input, for two reasons: first, because the 60 fs pulse appears 
generating a larger amount of dispersive waves during the 
soliton formation process; second, because for large Raman-
induced wavelength shifts, fiber losses start to affect the pulse 
duration. The soliton pulsewidth at the optimal energy increases 
with distance, because the Raman SSFS is responsible for a 
wavelength increase, from 1550 nm at the fiber input up to 1650 
(1740) nm after 1 km, for input pulsewidth of 60 (300) fs. 

By comparing Figs. 1 (a) with Fig.1 (b), we observe that the 
optimal input energy for long-distance soliton formation 
increases with wavelength, from 1.0 nJ at 1450 nm up to 1.5 nJ 
at 1550 nm. The soliton pulsewidth also increases with 
wavelength, from 205 fs to 215 fs at short distances, and from 
220 fs to 270 fs at 1 km.  

The pulsewidth invariance of the forming soliton with 
respect to the input pulse duration was previously explained in 
terms of the walk-off soliton theory [16,27]. This involves 
introducing: (i) the mean modal walk-off length of the forming 
soliton 𝐿𝐿𝑊𝑊 = 𝑇𝑇0 𝛥𝛥𝛽𝛽1�����⁄  , where Δ𝛽𝛽1����� the mean group velocity 
difference between modes (ps/km); (ii) the pulse nonlinearity 
length 𝐿𝐿𝑁𝑁𝑁𝑁 = 𝜆𝜆𝑇𝑇0𝑤𝑤𝑒𝑒2 (𝑛𝑛2𝐸𝐸𝑠𝑠)⁄ ; (iii) and the dispersion length  
𝐿𝐿𝐷𝐷 = 𝑇𝑇02 |𝛽𝛽2|⁄ . When nonlinearity acts over distances shorter 
than those associated with random mode coupling and 
birefringence, i.e., for 𝐿𝐿𝑁𝑁𝑁𝑁 <  𝐿𝐿𝑐𝑐𝑐𝑐, 𝐿𝐿𝑐𝑐𝑐𝑐, a multimode soliton 
involving non-degenerate modes may form after a few meters, 
provided that both the dispersion and nonlinearity lengths are 
comparable with the fiber walk-off length, i.e., 𝐿𝐿𝐷𝐷 = 𝐿𝐿𝑁𝑁𝑁𝑁 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝐿𝐿𝑊𝑊, being const an adjustment constant close to unity, 
which depends on the input beam coupling conditions. After 
hundreds of meters, the spatiotemporal soliton is eventually 
attracted into an effectively single-mode soliton [28]. Based on 
the above considerations, we may find the condition to be 
respected by the soliton pulsewidth at the point of its initial 
formation 

 

𝑇𝑇𝑠𝑠(𝜆𝜆) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 1.763
|𝛽𝛽2(𝜆𝜆)|
𝛥𝛥𝛽𝛽1�����(𝜆𝜆)

        , 

               (2.4) 
 
which explains why two pulses with different input 
pulsewidths, but same wavelength, generate the same soliton at 
the fiber output. Pulses also share the same soliton energy, 
which is associated with the common pulse duration 𝑇𝑇0 by Eq. 
2.2. A different amount of dispersive wave is eventually 
generated by the two input pulses, which explains the small 
difference among the input energies. 

Only marginal dependence of the soliton pulsewidth from 
the input beam diameter (the coupling conditions) was found, 
when changing its value from 30 μm to 42 μm. On the other 
hand, we noticed an increase in the optimal energy for long-
distance soliton formation, that increases with the square of the 
soliton effective waist, in agreement with Eq. 2.2. 

B. Experimental Investigation of Pulsewidth Evolution 

In order to verify experimentally the Raman-induced SSFS, and 
the wavelength dependence of the MM soliton pulsewidth, a 
femtosecond Yb laser is used to feed an optical parametric 
amplifier (OPA), generating 60, 70, and 60 fs pulses at 1450, 
1550, 1650 nm, respectively, with 100 kHz repetition rate. 
Pulses are injected into an 830 m span of GRIN fiber, with 1/e2 
input diameter of approximately 30 μm (15 μm beam waist, M2 
= 1.3), and in a separate experiment into a 1 km span, with input 
beam diameter of 42 μm. The GRIN fiber is a commercial OM4 
type fiber, 50/125 μm core/cladding diameter, cladding index 
𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  = 1.445 at 1450 nm, and relative index difference Δ = 
0.0103. The laser pulse input energy is controlled by means of 
an external attenuator, and varied between 0.1 nJ and 6 nJ. At 
the fiber output, a micro-lens focuses the near-field on an 
InGaAs camera (Hamamatsu C12741-03); a second lens 
focuses the beam into a real-time multiple octave spectrum 
analyzer (Fastlite Mozza) with a spectral detection range of 
1100-5000 nm. The output pulse temporal shape is inspected by 
a fast photodiode (Alphalas UPD-35-IR2-D) and a real-time 
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oscilloscope (Teledyne Lecroy WavePro 804HD) with 30 ps 
overall response time, and an intensity autocorrelator (APE 
pulseCheck 50) with femtosecond resolution. Input and output 
power are measured by a power meter with μW resolution. 

Fig. 2 provides the measured pulsewidth, after 6 m or after 
830 m of GRIN fiber, respectively, vs. the soliton energy. By 
comparing the output spectra and power, we extracted the 
energy of the emerging soliton pulse. Input wavelength and 
pulsewidth used in this first experiment are: 1450 nm and 60 fs, 
1550 nm and 70 fs, 1650 nm and 60 fs, respectively; the input 
beam diameter is approximately 30 μm. As observed in our 
simulations, we experimentally confirmed the existence of an 
optimal pulse energy that provides a minimum long-distance 
pulsewidth. Whereas the soliton energy increases with 
wavelength (1.0, 1.5, 2.2 nJ at 1450, 1550, 1650 nm, 
respectively). Such an effect is not visible at short distances (6 
m), where the pulsewidth of the forming soliton agrees well 
with the theory of Eq. 2.2, provided an effective waist 𝑤𝑤𝑒𝑒 = 9.5 
μm is used, close to the fundamental mode waist of 7.8 μm. The 
only visible difference from the short-distance pulsewidth, with 
respect to the theory, is a small local increase of the pulse 
duration, immediately above the value of optimal energy for 
long-distance soliton formation.  

In Fig.2, theoretical curves at 1550 nm, 6 m and 830 m 
distance, respectively, are calculated from Eqs. 3.4 (see next 
section) and Eq. 2.2, and account for the Raman-induced red-
shift, wavelength-dependent dispersion and linear fiber losses. 
At relatively short distances, the theory provides a fair 
agreement with the experimental data at all the tested input 
energies. Whereas at long distances, the wavelength-dependent 
losses are partially responsible, together with the Raman-
induced wavelength red-shift, for the output pulsewidth 
increase which is observed at energies above its optimal value; 
the theoretical curve at long distances does not correctly 
reproduce the experimental data. A possible reason for this 
discrepancy is the presence of linear random mode coupling 
(RMC), which is responsible for power scrambling between 
degenerate modes, and may affect the experimental data by 
degrading the soliton stability at large distances. Simulations 
performed with strong random modal coupling between 
degenerate mode groups (not shown), confirm that RMC can 
affect both the pulse duration and the soliton formation. The 
theory which is derived for single-mode solitons, although 
using an effective modal waist, wavelength-dependent 
dispersion and losses, does not account for the presence of 
random mode coupling; hence it does not appear to be suitable 
for predicting the values of the long-distance multimode soliton 
pulsewidth, especially at pulse energies which do not 
correspond to the minimum pulsewidth. 

On the other hand, the walk-off soliton theory of Eq. 2.3 is 
able to predict well the pulsewidth of the MM soliton that is 
formed at short distances. Starting from the measured soliton 
wavelengths of 1487, 1586, 1672 nm at 6 m of distance, with 
the optimal energies of 1.0, 1.5, 2.2 nJ, for input wavelength 
1450, 1550, 1650 nm, respectively, using the GRIN fiber 
dispersion curves, and choosing an adjustment constant 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1.0, the calculated solitons pulsewidth are 112, 158, 
198 fs, respectively. The corresponding three points are 
indicated by red x-crosses in Fig. 2, and show excellent 
agreement with the experimental data. From Eq. 2.3 and Fig. 2, 

we understand that only a single point, for each experimental 
curve at short distances, obtained at the optimal energy, can be 
associated with a stable MM soliton, which eventually leads to 
a minimum pulsewidth at long distances. 

In all of the three cases of 1450, 1550, 1650 nm input 
wavelength, a strong Raman-induced SSFS at 830 m affects the 
pulse propagation (not shown); the pulse wavelength may reach 
1950 nm at 4 nJ of energy, for all input wavelengths. The next 
section will describe this effect in detail, by introducing the 
differential equations that are capable to predict the MM SSFS 
at the optimal soliton energy.   

 
Fig. 2 – Experimental pulsewidth vs. soliton energy for 
a pulse propagating over 6 m or 830 m of GRIN fiber. 
Input parameters are: 1450 nm and 60 fs, 1550 nm and 
70 fs, 1650 nm and 60 fs; 30 μm beam diameter. 
Theoretical curves are calculated from Eqs. 3.4 and 2.2. 
Red x-crosses come from Eq. 2.4. 

 

III. MULTIMODE SSFS 

A. Theory and Experiment 

In order to test the theory of SSFS in the regime of long-distance 
MM soliton propagation, experiments were repeated over 1 km 
of parabolic GRIN fiber. 

Fig. 3 shows the measured photodiode traces (top), output 
spectra (center) and beam near field (bottom), after 1 km of 
GRIN fiber. The following input pulse parameters were used: 
center wavelength at 1450 nm, pulse duration of 60 fs, and 42 
μm beam diameter. Figure 3 illustrates the results for two cases 
of input energy: (a) 0.65 nJ, corresponding to the quasi-linear 
propagation regime, that is, immediately preceding the soliton 
formation, and (b) 2.57 nJ, corresponding to a well-formed 
soliton. By comparing the measured output power with the 
spectrum integration, we found that the optical soliton contains 
nearly 45% of the input energy. The remaining amount concurs 
to the formation of dispersive waves, whose presence is visible 
in the photodiode trace of case (b) as a broadened nanosecond 
pulse preceding the narrow soliton, and in the spectrum as an 
unshifted lobe, corresponding to the input pulse residue after 
soliton formation. Hence, 2.57 nJ of input energy corresponds 
approximately to the optimal energy value for soliton 
formation, that was found in the numerical simulations of Fig. 
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1, where the residual energy is limited to less than 10%. The 
difference in residual dispersive wave energy amount between 
simulations and experiments could be ascribed to the fact that, 
in experiments, the fiber is wrapped in a spool. 

By comparing the near-field in the linear and in the soliton 
regime, one may clearly see the beam condensation process 
which is accompanying soliton formation. The beam waist was 
measured from the image root-mean-square, according to the 
standard ISO11146; in the experiment of Fig. 3, the output 
beam waist in the linear regime is 22.6 μm, while it reduces 
down to 16.1 μm at the input energy leading to soliton 
formation. 

In the spectrum of Fig. 3(b) we can see the characteristic 
sech-shaped lobe of a soliton, which experiences wavelength 
red-shift by SSFS, and separates from the unshifted residual 
spectrum. 

Previous works [28,29] have pointed out how the 
multimode soliton formation process causes an initial 
wavelength increase for the lower-order modes, and a decrease 
for the higher-order ones, in order to equalize the respective 
modal velocities and obtain temporal trapping. IM-SRS is 
responsible for a power transfer from the shorter wavelength 
modes to the longer wavelength ones, hence accelerating the 
promotion of the fundamental mode and, at the same time, 
causing SSFS. 

 

 
Fig. 3 – Experimental fast photodiode trace (top), 
spectrum (center), and beam near field (bottom) after 1 
km of GRIN fiber, for input energy of (a) 0.65 nJ, and 
(b) 2.57 nJ. 

 
Fig. 4 reports the measured Raman-induced wavelength 

shift after 1 km of GRIN fiber, for an input pulse with 1450 nm 
wavelength, 42 μm diameter, and 60 fs pulsewidth. Blue and 

green dots are experimental and numerical data, respectively, 
showing good agreement. The soliton energy which is reported 
on the x-axis was estimated in the experiment to reach 45% of 
the input energy: this value was extracted from the measured 
output spectra, by comparing the soliton with the dispersive 
spectral lobes, and referring to the measured output power. 
Whereas in numerical simulations, nearly all the input power 
(90-95%) was captured by the output soliton. A good agreement 
between experimental and numerical data was found, when 
accounting for energy loss via the emission of dispersive waves; 
at the optimal soliton energy of 1 nJ, its wavelength has shifted 
from 1450 nm to 1530 nm. 

A theoretical description of the Raman-induced soliton self-
frequency shift in MM fibers starts from the single-mode 
formula for the wavelength shift (obtained by neglecting fiber 
loss) of a soliton with fixed duration 𝑇𝑇0 [11,13,14,30]  

 
∆𝜆𝜆 = 4𝜆𝜆2|𝛽𝛽2|𝑇𝑇𝑅𝑅𝑧𝑧 (15𝜋𝜋𝜋𝜋𝑇𝑇04)⁄  

   ,     (3.1) 
where 𝑇𝑇𝑅𝑅 = 3 fs is the response time of the Raman nonlinearity 
[5]. Expression 3.1 is suitable for soliton pulsewidth much 
longer than 10 fs [22], but it must be re-formulated in 
differential terms when dealing with losses, and relatively fast 
changes over distance 𝑧𝑧 of dispersion, pulsewidth and 
wavelength. In order to apply Eq. 3.1 to MM solitons, an 
effective beam waist 𝑤𝑤𝑒𝑒 must be used, in place of the single-
mode waist. By combining Eqs. 3.1 and 2.2, we obtain 

 
𝑑𝑑∆𝜆𝜆
𝑑𝑑𝑑𝑑

=
4𝑇𝑇𝑅𝑅

15𝜋𝜋𝜋𝜋𝜋𝜋2(𝑧𝑧)|𝛽𝛽2(𝑧𝑧)|3 �
𝑛𝑛2𝐸𝐸𝑠𝑠
𝑤𝑤𝑒𝑒2

�
4

 

  .   (3.2) 
The chromatic dispersion of the fiber changes with 

wavelength (and distance) according to 
 

𝛽𝛽2(𝑧𝑧) = −
𝜆𝜆2(𝑧𝑧)
2𝜋𝜋𝜋𝜋

𝐷𝐷(𝜆𝜆) = −
𝜆𝜆2(𝑧𝑧)
2𝜋𝜋𝜋𝜋

{𝐷𝐷(𝜆𝜆0) + 𝑆𝑆[𝜆𝜆(𝑧𝑧) − 𝜆𝜆0]}, 
    ,       (3.3) 

where 𝐷𝐷 and 𝑆𝑆 are the second and third-order dispersion terms 
expressed in s/m2 and s/m3, respectively, and 𝜆𝜆(𝑧𝑧) the soliton 
wavelength. The model can be further improved by considering 
that the wavelength-dependent fiber losses 𝛼𝛼(𝜆𝜆) decrease the 
soliton energy, so that the soliton energy scales as 𝑑𝑑𝐸𝐸𝑠𝑠 𝑑𝑑𝑑𝑑⁄ =
−𝛼𝛼(𝜆𝜆)𝐸𝐸𝑠𝑠. By replacing Eq. 3.3 into 3.2, we finally obtain 

 
𝑑𝑑∆𝜆𝜆
𝑑𝑑𝑑𝑑

=
2𝑇𝑇𝑅𝑅

15𝜆𝜆8(𝑧𝑧)𝐷𝐷3(𝜆𝜆) �
2√𝜋𝜋𝜋𝜋𝑛𝑛2𝐸𝐸𝑠𝑠(𝑧𝑧)

𝑤𝑤𝑒𝑒2
�
4

 

  .  (3.4) 
According to Eq. 3.4, the rate of SSFS induced by Raman 

nonlinearity decreases with the 8-th power of wavelength; the 
rate becomes negligible for 𝜆𝜆 > 2.2 μm. 

The red curve in Fig. 4 is plotted by integrating Eq. 3.4, and 
including the wavelength dependence of the fiber dispersion 
and loss, with 𝐷𝐷(𝜆𝜆0) = 14.8 ps/nm/km and 𝛼𝛼(𝜆𝜆0) = 1.38 ×
10−4 m-1 at the input wavelength 𝜆𝜆0 = 1450 nm, and 𝑆𝑆 =
0.073 ps/nm2/km.  For an input beam with 42 μm diameter, Eq. 
2.3 provides an effective waist of 14.9 μm, which reduces to a 
weighted mean  𝑤𝑤𝑒𝑒 = 10.4 μm during soliton propagation; this 
last value is used in Eq. 3.4. The proper use of the effective 
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waist into Eq. 3.4 accounts for the modal content of the 
propagating soliton. The theoretical curve fits well to 
experimental and numerical data at the optimal soliton energy 
of 1 nJ; for higher or smaller energies, theory and experiment 
differ significantly, confirming that the soliton theory, Eq. 3.4, 
only fits at a specific optimal pulse energy. 

 
 

Fig. 4 – Experimental and numerical Raman-induced 
wavelength shift after 1 km of GRIN fiber, vs. soliton 
pulse energy, for input pulse with 1450 nm wavelength, 
42 μm beam diameter, 60 fs pulsewidth. Red curve is 
calculated from the theory of Eq. 3.4. 

 
The overall pulse delay induced by Raman SSFS over a 

distance 𝑧𝑧 is 𝑡𝑡𝑅𝑅 = |𝛽𝛽2|∆𝜔𝜔𝜔𝜔. In order to account for wavelength, 
dispersion and pulsewidth changes, the time delay must be 
calculated in differential terms; when expressed in terms of the 
soliton wavelength shift, we obtain 

 
𝑑𝑑𝑡𝑡𝑅𝑅
𝑑𝑑𝑑𝑑

= 𝐷𝐷(𝜆𝜆)𝑑𝑑Δ𝜆𝜆 
  .  (3.5) 

Fig. 5 shows the experimental delay (blue circles) after 1 km 
of distance, measured on the oscilloscope traces as the time 
separation between the leading tail of the dispersive pulse and 
the top portion of the soliton pulse; the delay was averaged over 
3000 consecutive traces. Green squares are obtained from 
numerical simulations, and the theoretical red curve is 
calculated by integration of Eqs. 3.5 and 3.4. 

Experimental and numerical data are in good agreement, 
providing a delay of 4800 ps at 1.5 nJ pulse energy, and 1200 
ps at the optimal soliton energy of 1 nJ. Also in this case, the 
theoretical red curve is in best agreement with experimental 
data at the optimal soliton energy; whereas greater 
discrepancies are observed for smaller or larger energies. 

 
Fig. 5 – Experimental and numerical Raman-induced 
pulse delay after 1 km of GRIN fiber, vs. soliton pulse 
energy, for an input pulse with 1450 nm wavelength, 42 
μm beam diameter, 60 fs pulsewidth. Red curve is 
calculated from Eq. 3.5. 

 

B. Statistics of SSFS 

By inspecting the output pulses using the fast photodiode, a 
short soliton pulse was found to delay in time respect to a large, 
nanosecond dispersive pulse (see Fig. 3b). From the 
oscilloscope traces, the delay of the peak of the soliton, with 
respect to the leading tail of the dispersive pulse, was measured; 
traces show the presence of significant fluctuations, both for the 
delay and for the peak of the Raman soliton, whose statistics 
were recorded by relying on sequences of 3000 traces.  

Fig. 6 reports the statistics of the SSFS for different soliton 
energies, as indicated by the values near the individual curves. 
After an initial increase of the delay jitter, for energies above 
1.2 nJ the distributions tend to show a constant standard 
deviation. To the contrary, the amplitude noise distribution 
keeps broadening for increasing pulse energy (not shown here). 
By fitting the delay distributions curves around the soliton 
energy, we find that the SSFS time jitter is well described by a 
Gaussian distribution, as it is shown by the dashed red fit for 
the curve at 1.26 nJ pulse energy. Jitter standard deviation 
increases from 0.031 to 0.25 ns for energy growing from 0.8 to 
1.26 nJ, but then it remains limited to 0.28 ns for energy 
increasing to 1.55 nJ. The observed SSFS jitter for increasing 
energy could be motivated by the peak power fluctuations, 
giving rise to changes in the incremental wavelength shift, Eq. 
3.4, and the delay, Eq. 3.5. According to this interpretation, the 
jitter saturation is explained by the reduction of the incremental 
wavelength shift with the eight power of the increasing 
wavelength. 

Gordon-Haus interaction between the soliton and the 
spontaneous Raman noise [31-33] has variance given by 𝜎𝜎𝑡𝑡2 =
𝑛𝑛𝑠𝑠𝑠𝑠ℎ𝜈𝜈𝛽𝛽22𝐿𝐿2 ln(𝐺𝐺) (3𝑇𝑇02𝐸𝐸𝑠𝑠)⁄ , with 𝑛𝑛𝑠𝑠𝑠𝑠 the spontaneous emission 
factor, 𝐺𝐺 and 𝐿𝐿 the fiber gain and length, respectively. 
According to this expression, the induced time jitter should be 
limited to less than 0.2 ps at the energy levels of Fig. 6; hence, 
Gordon-Haus effect is not sufficient to explain the jitter 
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observed in the figure, whose standard deviation reaches 280 ps 
at 1.55 nJ energy, after 1 km distance. 

 
 

 
Fig. 6 – Measured statistics for the soliton delay jitter, 
respect to the residual pulse, at 1 km distance. Numbers 
near the distribution curves indicate the corresponding 
soliton energy. The red dashed curve is a Gaussian fit. 

IV. CONCLUSIONS 

Multimode solitons in GRIN fibers show unique properties of 
pulsewidth and energy invariance, that distinguish them from 
the properties of well-known single-mode fiber solitons. With 
the help of numerical simulations and experimental results, we 
have shown that long-distance multimode solitons are mostly 
stable at specific energies, and assume precise pulsewidth 
values, which only depend on the input wavelength. We have 
shown that the values of pulsewidth and optimal energy can be 
predicted in terms of the walk-off theory. Based on this result, 
a SSFS theory accounting for pulse broadening, energy loss, 
and wavelength-dependence of fiber dispersion and losses, was 
proposed and compared with experimental results obtained 
after 1 km of propagation in a GRIN fiber. Our results show a 
good correspondence with theoretical predictions, both in terms 
of wavelength red-shift and pulse delay, but only in 
correspondence of the optimal energy where the MM soliton 
exhibits a long-range stability. In addition, we demonstrated 
that multimode solitons, due to their property of forming with a 
fixed sub-picosecond pulsewidth, are always accompanied by 
SSFS; this may appear detrimental, to a first sight, for soliton 
transmission in spatial-division multiplexed transmission 
systems (SDM). Conversely, the impossibility of forming 
multimode solitons with picosecond durations can be 
advantageously used in SDM systems, by launching the proper 
amount of energy in each degenerate modal group; as we shall 
discuss in a separate publication, this permits the generation of 
multiple independent solitons, one for each group, whose 
stability is not subject to the restrictions of the walk-off theory. 

Finally, we discussed how the MM soliton Raman delay is 
affected by fluctuations, whose statistics were studied 
experimentally. The soliton jitter, in particular, tends to 
stabilize for increasing pulse energies, and its statistics can be 
represented by a Gaussian distribution.  
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