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Abstract

The increasing demand for connectivity services to the mobile (cellular) network,
together with the co-existence of former terrestrial mobile networks and the conver-
gence of satellite telecommunication systems, lead the telecommunication operators
to find solutions for enabling such convergence, by also making use of former cel-
lular networks present on the field. Moreover, the introduction of next-generation
cellular telecommunication systems leads to the need for telco operators to find new
industrial use cases, which may enable new kinds of services both at the industrial
and at the network level. This thesis discusses some control methodologies to be
applied to facilitate the convergence of terrestrial and non-terrestrial networks in a
multi-Radio Access Technology (RAT) environment, where different Radio Access
Technologies are available at the same time, providing multi-connectivity services
at increasing bandwidth and reduced latency, by also considering the users’ per-
ceived Quality of Experience (QoE). Such control techniques are mainly model-free
and are based on Game Theory arguments and on Reinforcement Learning, and
address two different problems: the network selection (i.e., deciding the best Access
Point (AP) to serve a User Equipment (UE) request) and the dynamic traffic split-
ting and steering (i.e., in a multi-connectivity context, the problem of deciding the
quantity of traffic of each UE to be sent to each of the connected AP). Moreover, an
applicative scenario of 5G network for smart grid control, and in particular for the
provisioning of Frequency Regulation services using charging plug-in electric vehi-
cles (PEVs) has been proposed in this thesis, by analyzing the regulatory framework,
the technical feasibility, and the economic feasibility of the proposed approach. All
the proposed approaches are provided with extensive simulations to validate the
concepts and the proposed control algorithms. In addition, a 5G multi-RAT radio
access network simulator has been developed in the context of the work carried out
by the Candidate for this thesis, in order to validate the proposed approaches in
a realistic environment. Some of the proposed algorithms have been / will be also
tested in real environments in the context of the activities of the H2020 project
5G-ALLSTAR and 5G-Solutions, which partially supported the ideas, algorithms,
and results proposed in this thesis.
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Chapter 1

Introduction

This thesis contains the main activities and results the Candidate has carried out
during his 3-year PhD, which has been developed in the context of the activities
carried out by the Network Control Laboratory at the Department of Computer,
Control and Management Engineering "Antonio Ruberti" of Sapienza University
of Rome, and by the no-profit research consortium CRAT (Consortium for the
Research in Automation and Telecommunication), which is composed by Sapienza
University of Rome, University of Sannio, Politechnic University of Bari, Thales
Alenia Space Italy and TopNetwork.

The proposed solutions, developed by the Candidate during his PhD, are par-
tially supported by the EU-Korea H2020 project 5G-ALLSTAR (grant n. 815323)
and by the EU H2020 project 5G-Solutions (grant n. 856691).

This thesis, as well as the work of the Candidate during his PhD, is focused
on the control of next-generation cellular networks, with particular reference to 5G
and 6G multi-RAT networks. At the same time, the candidate deepened into some
applicative scenarios of such next-generation cellular networks, with a particular
focus on the smart grids use case.

1.1 Motivation

By the beginning of the digital era, an ever-increasing demand for bandwidth, low
latency, and, in general, connectivity has driven the evolution of fixed and mo-
bile networks and their requirements. Mobile networks, which were traditionally
used only to provide phone services and a few other services (like SMS, MMS, etc),
became of crucial importance since the introduction of smartphones in the mar-
ket. Indeed, the final users started to require more and more powerful connectivity
services from such networks (e.g., broadband services [4, 5], low-latency [6, 7], fast
mobility [8,9], etc.), driving the evolution of cellular networks to sustain such kind of
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requirements from the users and the market. In the very latest years, 5G networks
began to appear in the cities, providing enhanced broadband and very-low latency,
which should sustain new kinds of applications (e.g., Virtual Reality, Augmented
Reality, High-Resolution Video Streaming, etc.). Moreover, given the presence of
multiple terrestrial RATs available at the same time (e.g., 4G, 3G) and with the
evolution of satellite telecommunication systems (which now sustain capacities com-
parable to terrestrial network ones [10,11]), it is now possible to better balance the
users’ requests among the available RATs, based on the QoE/QoS requested by
the specific applications. In addition, the convergence of satellite communication
systems with terrestrial 5G networks may provide further benefits in terms of radio
coverage (e.g., in rural areas) and traffic offloading. Finally, with the introduction
of Unmanned Aerial Vehicles (UAVs), High Altitude Platform Stations (HAPSs),
and Low Altitude Platform Station (LAPS), it is possible to develop new 6G net-
works that exploit such solutions to provide 3D connectivity services and to provide
intelligence to the network to reconfigure itself to mitigate or reduce congestion at
the radio level.

Given such a context, it is fundamental to control physical resources at the radio
level to provide the required performance to the end users, both for the access to
the radio access network (i.e., choosing the best AP to connect to in a multi-RAT
environment) and for the handling of the connections (i.e., dynamically adapt the
data rate - and so the required physical resources- based on the condition of the
network).

At the same time, it is fundamental to define new industrial use cases for next-
generation radio access networks, to identify new business opportunities both for
telco operators and for industry, which may drive the design of 6G networks and
beyond to the definition of new requirements and services.

1.2 Objectives, contributions and thesis structure

The objective of this thesis is to provide a set of control methodologies for next-
generation cellular radio access network control, and in particular for 5G and 6G
networks composed by multiple RATs. Moreover, an applicative scenario of such
networks in the field of smart grid control, exploiting the new capabilities offered by
5G and foreseen by 6G, has been proposed. The aim of this thesis is to highlight the
potentiality of next-generation cellular networks both from a control perspective, by
applying model-free techniques like Reinforcement Learning, and from an industrial
one, and in particular in a field (the power systems one) which is considered not to
be a killer application for 5G/6G networking services, but instead may reap great
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benefit from such new cellular telecommunication systems.
This thesis is structured as follows:

• Part I deals with several control techniques for next-generation radio access
networks control and is divided in:

– Chapter 2, where a Game Theory based control methodology for 5G
traffic splitting and steering in multi-RAT networks is detailed, making
use of the concept of Wardrop equilibria to equalize a generic latency
function among the different APs;

– Chapter 3, where a Multi-Agent Reinforcement Learning technique is
applied for 5G multi-RAT network selection, considering the various APs
as competing entities in serving the users’ requests;

– Chapter 4, where a Deep Reinforcement Learning technique is proposed
for 5G multi-RAT network selection, this time considering the vari-
ous APs as coordinated entities (controlled by a Radio Access Net-
work (RAN) controller) in allocating the requests from the UEs;

– Chapter 5, where a vision on 6G multi-RAT networks, exploiting 3D con-
nectivity and mobile APs is provided, together with a proposed system
architecture and a proof-of-concept of the advantages brought by mobile
APs;

• Part II deals with an applicative scenario of next-generation radio access net-
works, and in particular the one of Frequency Regulation for smart grids by
using charging PEVs:

– Chapter 6 provides the fundamentals of Frequency Regulation services,
by providing the relevant mathematical formulation for the dynamics of
the electricity network frequency;

– Chapter 7 details the idea of using charging PEVs for the provisioning
of Frequency Regulation services, by providing a detailed control archi-
tecture, a precise delay budget to make the service feasible, and some
possible approaches for the computation of the power-frequency curves
for each PEV participating in the service;

– Chapter 8 describes a proposed controller based on a linear optimiza-
tion problem to compute and assign local power-frequency curves to the
PEVs, differentiating the effort of each PEV in the provisioning of the
Frequency Regulation service based on both user constraints (desired
state-of-charge (SOC) and remaining dwelling time), and on network
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constraints (global droop curve agreed by the Transmission System Op-
erator (TSO)).

• Chapter 9 draws the conclusion of this thesis and the future works that will
be carried out by the Candidate.

1.3 Contributing publications

The contents of this thesis have been disseminated in the following publications:

• F. Delli Priscoli, E. De Santis, A. Giuseppi, and A. Pietrabissa, “Capacity-
constrained wardrop equilibria and application to multi-connectivity in 5g
networks,” Journal of the Franklin Institute, vol. 358, no. 17, pp. 9364–9384,
Nov. 2021. [Online]. Available: https://doi.org/10.1016/j.jfranklin.

2021.09.025.

• A. Giuseppi, E. De Santis, F. Delli Priscoli, S. H. Won, T. Choi, and A.
Pietrabissa, “Network selection in 5g networks based on markov games and
friend-or-foe reinforcement learning,” in 2020 IEEE Wireless Communications
and Networking Conference Workshops (WCNCW). IEEE, Apr. 2020. [On-
line]. Available: https://doi.org/10.1109/wcncw48565.2020.9124723.

• E. De Santis, A. Giuseppi, A. Pietrabissa, M. Capponi, and F. Delli Priscoli,
“Satellite integration into 5g: Deep reinforcement learning for network selec-
tion,” Machine Intelligence Research, vol. 19, no. 2, pp. 127–137, Apr. 2022.
[Online]. Available: https://doi.org/10.1007/s11633-022-1326-3.

• E. Calvanese Strinati, S. Barbarossa, T. Choi, A. Pietrabissa, A. Giuseppi,
E. De Santis, J. Vidal, Z. Becvar, T. Haustein, N. Cassiau, F. Costanzo, J.
Kim, and I. Kim, “6g in the sky: On-demand intelligence at the edge of 3d
networks (invited paper),” ETRI Journal, vol. 42, no. 5, pp. 643–657, Oct.
2020. [Online]. Available: https://doi.org/10.4218/etrij.2020-0205.

• R. Germanà, E. D. Santis, F. Liberati, and A. Di Giorgio, “On the partici-
pation of charging point operators to the frequency regulation service using
plug-in electric vehicles and 5g communications,” in 2021 IEEE International
Conference on Environment and Electrical Engineering and 2021 IEEE In-
dustrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe).
IEEE, Sep. 2021. [Online]. Available: https://doi.org/10.1109/eeeic/

icpseurope51590.2021.9584495.

https://doi.org/10.1016/j.jfranklin.2021.09.025
https://doi.org/10.1016/j.jfranklin.2021.09.025
https://doi.org/10.1109/wcncw48565.2020.9124723
https://doi.org/10.1007/s11633-022-1326-3
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• R. Germanà, F. Liberati, E. De Santis, A. Giuseppi, F. Delli Priscoli, and A. Di
Giorgio, “Optimal control of plug-in electric vehicles charging for composition
of frequency regulation services,” Energies, vol. 14, no. 23, p. 7879, Nov.
2021. [Online]. Available: https://doi.org/10.3390/en14237879

https://doi.org/10.3390/en14237879
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Part I

Techniques for cellular network
control
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Chapter 2

Wardrop equilibria for traffic
splitting and steering in 5G
heterogeneous networks

This chapter details a first work in the field of radio access control for cellular
networks, based on Game Theory and, in particular, on the concept of Wardrop
equilibria. In this work, a set of downlink data flows (commodities in the following)
coming from a set of UE is split/steered to a set of AP, exploiting the concept of
multi-connectivity envisaged in 5G radio access networks, so that the same data
flow can be divided into sub-flows associated to different APs to equalize a certain
latency function that can be chosen by the Network Manager so to balance a certain
parameter of the radio access network among the flows. In this work, the latency
function used aims at balancing the number of Physical Resource Blocks (PRBs)
used by each flow in each AP, and each flow (initially split among several APs) is
then steered between the available APs to equalize the number of PRBs used by
each subflow, and so at the end equalize the number of PRBs allocated in each
AP. The algorithm presented in this chapter has been proved to converge to a
Wardrop user equilibrium and the simulations presented in Section 2.3.2. validate
the proposed controller using a 5G New Radio (NR) radio access network simulator
developed ad-hoc by the Candidate for validating control algorithms on realistic
radio access network scenarios. The same approach could be applied for uplink
data flows without loss of generality from a mathematical and technical point of
view.
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2.1 Introduction

Load Balancing is a classic problem of network control and can be interpreted
as a particular case of traffic routing with providers representing unitary paths
and latency functions describing the performance of each provider. In adversarial
(or selfish) routing, the control algorithms are aimed at leading the network into
convenient equilibrium states without the cooperation of its agents. One of such
states is known in mean-field game theory as Wardrop equilibrium (which can be
regarded as a Nash equilibrium for infinite players [12]): in such state, the latencies
experienced by the agents that constitute the traffic flows are equalized over all
their available routes, and, as a consequence, no agent may improve its routing
unilaterally. In this work, a particular case of selfish capacitated load balancing, in
which the capacities of the service providers are limited has been studied. Therefore,
as it will be discussed, the proposed control law objective will be to equalize the
latencies of all the providers which are not saturated. This network state is a
generalization of the Wardrop equilibrium in capacitated networks and is known in
the literature as the Beckmann user equilibrium [13].

Multi-connectivity is an emerging challenge in the heterogeneous network sce-
nario envisaged by 5G, where multiple RATs, such as LTE, 5G, and Satellite net-
works, are available to connect the network users to the core network [14]. According
to the multi-connectivity paradigm, each UE may be able to be served by several of
the various AP of the available RATs, potentially at the same time. The problem,
referred to in the 5G literature as multi-connectivity, consists in dynamically choos-
ing which acpAP shall serve each UE and deciding how much traffic relevant to
each UE shall be routed through each of the serving APs. This work focuses on the
downlink direction, i.e., it refers to the traffic transmitted from the core network to
the UEs via the APs; nevertheless, similar considerations apply when considering
the uplink direction.

In this work, the performance of the network APs is measured in terms of latency
functions that capture the amount of resources (in terms of resource blocks) required
from each AP to serve the various commodities. In the considered 5G scenario, such
commodities consist in the so-called QoS-Flows, which are streams of data toward
a UE that are characterized by standardized QoS requirements (e.g., bit error rate,
maximum tolerated delay. . . ). In general, the latency functions may account for
different connection-specific performance indexes (e.g., amount of network resources
utilized on a given AP, power consumption, service reliability), and may include
additional factors, such as operator preferences or different usage tariffs.

Overall, the objective of the proposed control law for load balancing is to dy-
namically steer the downlink traffic in such a way that the values of the latency
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functions are equalized.
The described scenario is typical in adversarial routing and load balancing prob-

lems, as the various connections are not concerned with the overall network state
and aim at optimizing their own, individual, performances. The two main prob-
lems in the algorithm development are i) the fact that the latency functions are not
known apriori, but can be only measured; ii) the fact that a distributed approach
is needed since a centralized approach would require too much control traffic to
exchange information among the potentially thousands of UEs. In this work, a
distributed, non-cooperative and dynamic load balancing algorithm is consequently
developed in the context of adversarial network equilibria; specifically, the algorithm
considers every single packet included in a QoS-Flow as an agent, able to decide the
AP it is assigned to. Such decisions are based on the measurements of the latency
functions, obtained starting from the observation of the resource blocks allocated
on the APs over which the commodity is routed to sustain the connection, and
are made unilaterally in an adversarial framework, with no concern for the overall
system performance.

The main motivations behind this work are then (i) to design a dynamic ad-
versarial capacitated load balancing algorithm and to prove, using Lyapunov and
Invariance Principle arguments, how the difference equation governing the global
state of the system converges to an approximated Beckmann equilibrium, and (ii)
to show the effectiveness of such an approach through its application to the multi-
connectivity problem in a simulated 5G network scenario.

The work presented in this chapter was carried out within the H2020 5G-
ALLSTAR project (www.5g-allstar.eu), aimed at the seamless, reliable, and ubiqui-
tous provision of broadband services over heterogeneous 5G networks. However, it
is possible to note that, since the algorithm is developed within the research frame-
work of selfish routing, it can be applied to several problems and scenarios other
than the one considered here.

2.1.1 Multi-Connectivity and Traffic Steering in 5G Networks

This work addresses the problem of traffic steering, i.e., of selecting which APs a
QoS-Flow shall utilize to connect the UEs with the core network by modeling it as
a load-balancing problem.

This vision is compliant with the latest developments of the 5G architecture (see
Fig. 2.1), as designed by 5GPPP in [1]. Multi-connectivity comprises the concept of
dynamic traffic steering, which envisages the ability to dynamically steer the traffic,
partitioned into QoS-Flows among the various available APs of the RATs, based on
feedback on the current AP performances. In this framework, QoS-Flows may be
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Figure 2.1. Dynamic Traffic Steering framework from [1]

duplicated over different APs to increase their resiliency, while other ones may be
split over multiple RATs to increase their throughput or to better meet their QoS
requirements.

Within the 5G architecture, the traffic steering problem is solved in three dif-
ferent ways: (i) with a User-Centric approach, where each UE decides its connec-
tion preferences according to local measures of some performance indicator; (ii) in
a RAN-Assisted fashion, in which the decision is still made by the UEs but the
RAN provides them with additional information on the network state; (iii) with a
RAN-Controlled approach, where all decisions are made by the RAN, which is a
centralized unit by nature, or delegated to the distributed control units that govern
the single APs.

Several works study the problem of multi-connectivity in the heterogeneous net-
work framework proposed by 5G, from both architectural [15], [16] and algorith-
mic [17–19] points of view. Multi-connectivity enables the problem of optimally
steering the network traffic over the available APs, in such a way that the QoS
requirements of the various QoS-Flows are met [20], [21]. The problem of access
network selection has been studied utilizing several different approaches, spacing
from fuzzy-logic control to multiple-attribute decision-making and combinatorial
optimization [17]. Common solutions utilize the concept of utility and latency func-
tions, as in this work, to capture the network performances [17, 22, 23]. Several
works in the literature also employ game-theoretic approaches for the AP selection,
typically in adversarial frameworks, as [17, 24, 25], leading the networks to Nash
equilibrium states.

Regarding game-theoretic solutions, one possible modeling choice is to have an
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adversarial game between the users, as in [24, 26] that envisage a setup similar
to the one used in this work. In such scenarios, the users compete to attain the
best connection quality while eventually also minimizing their costs. An alternative
approach is to set up a game between the various network operators, each controlling
a set of APs as in [23,25], and focusing on their economic performances.

The algorithm proposed in this work utilizes differential game theory, a branch of
game theory that studies dynamical systems, and shares some of the characteristics
of the previously mentioned works, such as the adversarial nature of its equilibrium.
The control algorithm designed in this work will be proven to drive the communi-
cation network state to a convenient equilibrium state, and this convergence will be
attained by following an explicit discrete-time control law, with no need for round-
games or price/cost bidding auctions. Contrary to optimization-based works, the
proposed control law is also suitable to steer the traffic flows in real-time, and, be-
ing a distributed decision process, it does not require any significant control traffic
overhead.

The previous aspects, together with the explicit inclusion of constraints on the
available transmission capacity, make the proposed approach a suitable candidate
for deployment in 5G scenarios implementing network slicing [18], in which the APs
provide a limited quantity of resources to the QoS-Flows of a given service type
or managed by third party tenants (e.g., video streaming, autonomous guidance,
voice. . . ). Concerning the mentioned Dynamic Traffic Steering framework [5], the
algorithm can be implemented in the RAN-Assisted and in the RAN-Controlled
configurations: in the former case, the algorithm would run in the UEs based on
the information received by the RAN; in the latter case, the algorithm would run
directly in the RAN and, in particular, for Non-StandAlone 5G systems (5G-NSA),
in either the Centralized Unit (CU) or the Distributed Unit (DU) [19] of the next-
generation-Node-Bs (gNodeBs or gNBs) [20] that govern the various APs.

2.1.2 Adversarial Load Balancing in 5G Networks and Beckmann
Equilibria

The problem of optimally distributing the flow is one of the most fundamental and
challenging aspects of any network operation. In the framework of selfish routing,
the network flow is formed by a stream of infinitely-many decision-making agents
[27] that compete for attaining the best performance, without consideration for
the congestion, and consequent performance degradation, that their decisions cause
to the other agents. Wardrop equilibria [28] were then introduced to describe a
network state in which no single agent can unilaterally improve its performances
(e.g., in terms of travel time, as in the original Wardrop formulation). Being an
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adversarial kind of equilibria, the overall network performance is not optimized and
the performance loss is referred to as the price of anarchy in the literature [29]. The
concept of Wardrop equilibrium has been extended to various families of networks,
among which the capacitated ones [13], [30–32], and problems, as the load balancing
one [33–35]. Even if Wardrop equilibria can be computed by centralized algorithms
in polynomial time [36], for the low connection latency promised by 5G – and the
consequent agile and fast traffic steering requirements – distributed approaches are
more suitable, motivating the development of a dynamic algorithm.

Based on a simple representation of the network dynamics in terms of differ-
ence equations derived from the flow conservations laws, this work proposes a load
balancing solution over the nodes of a dynamical network that represents the 5G
infrastructure [37, 38], consisting in the connections between several APs and their
users with the core network. In doing so, the algorithm takes into account that
the amount of traffic each AP can support is limited, or capacitated, due to trans-
mission power constraints and, in general, resource scarcity as in network slicing
scenarios. This limitation implies that the user equilibrium to which the network
will converge may not be in principle the Wardrop equilibrium [32], which is de-
fined for unconstrained networks. Several works [13], [30–32] extended the original
formulation of the Wardrop user equilibrium, which corresponds to a situation in
which all the latencies of each commodity are equalized, to deal with capacitated
networks. The resulting equilibrium, known as Beckman user equilibrium, is such
that the latencies of all the unsaturated APs of each commodity are equalized. Dif-
ferently from [13], [30–32], this work proposes a dynamic algorithm that will be
proven to converge to a Beckmann equilibrium.

Regarding dynamic load balancing solutions for Wardrop equilibria in the liter-
ature, several works utilize the concepts of learning and exploration to cope with
the limited feedback information that the decision-making agents have access to.
To attain a better knowledge of the system state and dynamics, the agents sample
different flow distribution strategies and then exploit the learned system character-
istics to converge to optimal states. The authors of [39] present an asynchronous
and distributed algorithm that employs reinforcement learning to update transmis-
sion probabilities, based on an estimation of the network edges’ latencies. In [40],
an iterative and distributed learning solution is proven to converge to a Wardrop
equilibrium state using Lyapunov arguments, as in this work.

An important contribution has been given by Fischer et al. in [41–43]. In [41]
and [43], a round-based algorithm is developed to solve a game among the various
commodities, aimed at redistributing the traffic flow and reaching an approximated
Wardrop equilibrium. In [42], a similar setup is analyzed assuming that the infor-
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mation available to the agents may be stale. In [44], a dynamic discrete-time load-
balancing algorithm, later extended to the time-delayed case in [45], is presented
in the context of Virtual Private Networks, which converges to an approximate
Wardrop equilibrium.

The present work extends the results of previous works, starting from the algo-
rithm in [44], mainly in two directions:

i) the convergence properties of the algorithm are studied in the multi-commodity
case (a requirement for application in the 5G framework), which was not ex-
plicitly discussed in the cited works;

ii) the algorithm analysis and design are extended to the case of capacitated
networks, not dealt with by the dynamic algorithms in the literature, enabling
the application of the solution to more realistic case studies in several domains.

2.2 Proposed Wardrop Load Balancing Algorithm

Subsection 2.2.1 describes the basic definitions needed for the algorithm analysis;
subsection 2.2.2 presents the load balancing algorithm and the convergence proof;
subsection 2.2.3 models the 5G traffic steering problem as a load balancing one.

2.2.1 Preliminaries on Wardrop and Beckmann Equilibria and Lya-
punov Stability

As anticipated in Section 2.1, this work further develops a well-known model for
selfish routing [41], where an infinite population of agents carries an infinitesimal
amount of load each and builds on the previous work [44] concerning distributed load
balancing algorithms. The proposed control scheme relies on common assumptions
on the latency functions. The considered network consists of a set of P providers,
which serve a set of I of commodities. Each commodity i ∈ I is characterized
by a fixed flow demand λi and is served by a subset of providers P i ⊂ P. Each
commodity i using provider p is characterized by a latency function lip and each
provider p is characterized by a capacity cp.

Assumption 2.2.1. The latency function lip(ξ) are positive, non decreasing and Lips-
chitz continuous with constant βi

p, for ξ ∈ [0, cp], where cp is the capacity of provider
p, for all p ∈ P. Furthermore, the maximum Lipschitz constant of all the lip’s is
denoted as β̄ = maxp∈P,i∈I βi

p.

The assumption is not restrictive in real use-cases since the provider perfor-
mances decrease with their load and poses a very mild design constraint on the
function classes choices.
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In non-capacitated algorithms, if xi
p indicates the amount of the flow of com-

modity i allocated on the provider p, the set of feasible states is defined as

X =
{

x = (xp)p∈P | xp =
∑
i∈I

xi
p, xi

p ≥ 0,∀p ∈ P i,
∑

p∈Pi

xi
p = λi, ∀i ∈ I

}
,

(2.1)
and a flow x ∈ X is at a Wardrop equilibrium if, for each commodity i ∈ I, the

latencies of the loaded providers are equalized, i.e., if lip(xi
p) ≤ liq(xi

q) for all p ∈ P i

such that xi
p > 0, for all q ∈ P i and for all i ∈ I.

By defining the Beckmann-McGuire-Winsten potential

Φ(x) =
∑
i∈I

∑
p∈Pi

∫ xi
p

0
lip(ξ)dξ (2.2)

the Wardrop equilibria are the solutions of the optimization problem

min
x∈X

Φ(x). (2.3)

Capacity-constrained networks are characterized by the additional capacity con-
straints

xp ≤ cp ∀p ∈ P. (2.4)

A flow x ∈ X is feasible if constraints (2.4) hold, and the set of feasible states
is defined as

XCP =
{

x ∈ X | xp ≤ cp,∀p ∈ P
}

. (2.5)

Considering a flow x ∈ XCP , provider p ∈ P is defined as capacity-constrained
or saturated if xp = cp.

A flow x ∈ XCP is at Beckmann user equilibrium if, for each commodity, the
latencies of the loaded and unconstrained providers are equalized, i.e., mode pre-
cisely:

Definition 2.2.1. [13] A flow x ∈ XCP is at Beckmann user equilibrium if lip(xi
p) ≤

liq(xi
q) for all p ∈ P i such that xi

p > 0, for all q ∈ P i such that xq < cq and for all
i ∈ I.

The set of equilibria is then
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Xeq =
{

x ∈ XCP | lip(x) ≤ liq(x), ∀p ∈ P i, s.t. xi
p > 0,∀q ∈ P i, s.t. xq < cq,∀i ∈ I

}
.

(2.6)
The minimization problem (2.3) with constraints (2.4) will hereinafter referred

to as Capacity-constrained Problem (CP). The Beckmann user equilibria [31] are
the optimal solutions of the CP.

Property 2.2.1. [13] If the set of feasible solutions XCP of the CP is nonempty, the
optimization problem consists in minimizing a convex function over a nonempty
polytope and, thus, the set of optimal flows Xeq is nonempty and convex.

The algorithm convergence proof of section 2.2.2 relies on LaSalle invariance
principle for discrete-time nonlinear systems [46] [47].

Definition 2.2.2. L : X → R is a candidate Lyapunov function for a discrete-time
nonlinear system x[k + 1] = f(x[k]) if:

1. L ∈ C1 and is bounded from below;

2. If xeq ∈ Xeq, where Xeq is the set of equilibrium points, L(xeq) = 0 and
L(x) > 0 if x /∈ Xeq;

3. Along forward trajectories, L satisfies ∆L(x[k]) := L
(
f(x[k])

)
− L(x[k]) ≤

0, k = 0, 1, 2, ...

Theorem 2.2.1. [46] Let L(x) be a candidate Lyapunov function for the discrete-
time nonlinear system x[k + 1] = f(x[k]). Then, any bounded trajectory tends to
the largest invariant subsetM contained in the set of points defined by ∆L(x) = 0.

2.2.2 Capacitated Load Balancing Algorithm and Convergence Proof

For each commodity i ∈ I, the control action consists in the decision, at time k,
of migrating part of the flow mapped onto a given provider p to another provider
q, with p, q ∈ P i. By denoting the rate of such migration with ri

pq[k], the system
dynamics is written as

x[k + 1] = f(x[k]), k = 0, 1, 2, ... (2.7)

with
xp[k] =

∑
i∈I

xi
p[k], (2.8)

xi
p[k + 1] = xi

p[k] + τ
∑

q∈Pi

(
ri

qp[k]− ri
pq[k]

)
, (2.9)
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and with feasible initial conditions

x[0] ∈ XCP (2.10)

forall p, q ∈ P i and i ∈ I.
The proposed controller builds on the dynamic algorithm in [44], which expresses

the migration rate as

ri
pq[k] = xi

p[k]σiµi
pq[k], (2.11)

where σi is a positive migration gain and µi
pq[k] is the migration policy, representing

the decision of whether (if it is positive) or not (if it is equal to zero) migrate some
flow from provider p to provider q.

As in [44] for the Wardrop equilibria, approximated Beckmann user equilibria
are defined.

Definition 2.2.3. The set of ε-Beckmann user equilibria is defined as

X ε
eq =

{
x ∈ XCP | lip(xi

p) ≤ liq(xi
q) + ε, ∀p ∈ P i s.t. xi

p > 0,

∀q ∈ P i s.t. xq ≤ cq −
ε

2β̄
,∀i ∈ I

} (2.12)

where ε ≥ 0 represents a maximum tolerated latency mismatch.

Remark 2.2.1. The defined sets are such that X ε
eq →ε→0 Xeq and Xeq ⊆ X ε

eq ⊆
XCP : the objective of the controller is then, starting from a physically admissible
state in XCP , to reach an approximated equilibrium state in X ε

eq, whose degree of
approximation with respect to the equilibrium state in Xeq reduces with ε.

The tolerance ε is introduced since the kind of migration rates of equation
2.11 cannot guarantee convergence in the discrete-time case, however small the
sampling period [42]. A flow x ∈ XCP is then at ε-Beckmann equilibrium if, for
each commodity i, the latencies of the loaded and ε-unconstrained providers are
equalized, where a provider p ∈ P i is defined to be ε-unconstrained if xp < cp− ε

2β̄
.

In the proposed algorithm, the migration decision is defined as

µi
pq[k] =

0, if lip(xi
p[k])− liq(xi

q[k]) ≤ ε or if xq[k] ≥ cq − ε
2β̄

1, otherwise
. (2.13)

The controller system dynamics, hereafter denoted as load balancing dynamics,
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is then expressed by equations (2.9), (2.11) and (2.13), with control gain set as

σi = ε

2τ β̄λi(|P i| − 1)|I|
, (2.14)

and with the tolerance set as

0 < ε ≤ min
i∈I

β̄λi|I|. (2.15)

Remark 2.2.2. The approximated capacity-constrained user equilibria are such that,
for each commodity, the latencies of the loaded and ε-unconstrained providers are
equalized within the tolerance ε. Then, for a given equilibrium flow x ∈ X ε

eq and
for each commodity i ∈ I, three classes of providers exist: the unloaded providers
p ∈ P i such that xi

p = 0; the ε-constrained providers p ∈ P i such that xp > cp− ε
2β̄

;
the ε-unconstrained providers, whose latencies are equalized.

The convergence property of the algorithm relies on the following 3 lemmas:

Lemma 2.2.2. Under Assumption 2.2.1, considering the LB dynamics, the latency
variation of a provider p ∈ P i in one time-step is bounded by∣∣∣∣lip(xi

p[k + 1])− lip(xi
p[k])

∣∣∣∣ ≤ ε

2|I| (2.16)

Proof. Considering the generic commodity i ∈ I, provider p ∈ P i and time k, the
maximum latency decrease occurs when no commodities migrate their population
from the other providers to provider p:

lip(xi
p[k + 1]) =

= lip

(
xi

p[k] + τ
∑

q∈Pi

(
ri

qp[k]− ri
pq[k]

))
≤

≤ lip

(
xi

p[k]− τ
∑

q∈Pi

ri
pq[k]

) (2.17)

Since βi
p is Lipschitz constant of the function lip(·) between 0 and cp, it follows

that

lip(xi
p[k + 1]) ≥ lip(xi

p[k])− τβi
p

∑
q∈Pi

ri
pq[k]. (2.18)

Considering equations (2.11) and (2.14), the last term of equation (2.18) is
written as
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τβi
p

∑
q∈Pi

ri
pq[k] =

= τβi
p

∑
q∈Pi

xi
p[k]σiµi

pq[k] =

= τβi
pxi

p[k]σi
∑

q∈Pi

µi
pq[k] =

= τβi
pxi

p[k] ε

2τ β̄λi(|P i| − 1)|I|
∑

q∈Pi

µi
pq[k] ≤

≤ ε

2|I|

(2.19)

where the inequality holds since xi
p[k] ≤ λi, βi

p ≤ β̄ and since, recalling equation
(2.13), there are at most (|P| − 1) terms equal to 1 in

∑
q∈P µj

pq[k]. It follows that

lip(xi
p[k + 1]) ≥ lip(xi

p[k])− ε

2|I| . (2.20)

Similarly, the maximum latency increase occurs when no commodities migrate
their populations from provider p to other providers:

lip(xi
p[k + 1]) ≤ lip(xi

p[k]) + τ
∑
q∈P

ri
qp[k], (2.21)

which yields

lip(xi
p[k + 1]) ≤ lip(xi

p[k]) + ε

2|I| . (2.22)

Lemma 2.2.3. XCP is a positively invariant set for the LB dynamics.

Proof. The aim of this proof is to show, for all k ≥ 0, for all p ∈ P i and for all
i ∈ I:

i)
∑

p∈Pi xi
p[k] = λi,

ii) xi
p[k] ≥ 0,

iii) xp[k] ≤ cp.

Here below are reported the proofs for the three statements:

i) Considering that x[0] ∈ XCP , equations (2.9), (2.11) and (2.8) yield that the
population remains constant, since
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xi
p[k + 1]− xi

p[k] =

=
∑

p∈Pi

∑
q∈Pi

(ri
qp[k]− ri

pq[k]) =

=
∑

p∈Pi

∑
q∈Pi

ri
qp[k]−

∑
q∈Pi

∑
p∈Pi

ri
qp[k] = 0,

(2.23)

and thus that
∑

p∈Pi xi
p[k] =

∑
p∈Pi xi

p[0] = λi, ∀k ≥ 0.

ii) Given that xi
p[0] ≥ 0, it is proven below by induction that xi

p[k] ≥ 0, ∀k ≥ 0.
Assuming that xi

p[k] ≥ 0, for a given k, it is sufficient to prove that

xi
p[k + 1] = xi

p[k] + τ
∑

q∈Pi

(ri
qp[k]− ri

pq[k]) ≥ 0, ∀p ∈ P i. (2.24)

If xi
p[k] = 0, it follows that ri

pq[k] = 0 and thus the equation (2.24) yields
xi

p[k + 1] ≥ 0.

If xi
p[k] > 0, from equation (2.11) it follows that ri

pq[k] ≥ 0. Thus, the
following inequality holds (in the worst case, no providers migrate part of
their population to a provider p):

xi
p[k + 1] ≥ xi

p[k]− τ
∑

q∈Pi

ri
pq[k]. (2.25)

A sufficient condition for inequality (2.24) to hold is then

xi
p[k]− τ

∑
q∈Pi

ri
pq[k] ≥ 0. (2.26)

Recalling equations (2.11) and (2.13), eq. (2.26) is written as

xi
p[k]− τ

∑
q∈Pi

ri
pq[k] =

= xi
p[k]− τ

∑
q∈Pi

xi
p[k]σiµi

pq[k] =

= xi
p[k]

(
1− τσi

∑
q∈Pi

µi
pq[k]

)
≥

≥ xi
p[k]

(
1− τσi(|P i| − 1)

)
,

(2.27)
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where the inequality holds since the summation has at most (|P i| − 1) terms
equal to 1. In the case xi

p[k] > 0, equations (2.14) and (2.15) are sufficient for
equation (2.27) to be non-negative;

iii) Given that xp[0] ≤ cp, it is proven below by induction that xp[k] ≤ cp, ∀k ≥ 0.
Assuming that xp[k] ≤ cp, for a given k, it is sufficient to prove that

xp[k + 1] = xp[k] + τ
∑
i∈I

∑
q∈Pi

(ri
qp[k]− ri

pq[k]) ≤ cp, ∀p ∈ P i. (2.28)

If xp[k] ≥ cp − ε
2β̄

equation (2.13) entails that ri
qp[k] = 0 for all q ∈ P i and

i ∈ I and, thus, from equation (2.9), that xp[k + 1] ≤ xp[k].

Otherwise, if xp[k] < cp − ε
2β̄

, it is possible to consider that

xp[k + 1] ≤ xp[k] + τ
∑
i∈I

∑
q∈Pi

ri
qp[k] =

= xp[k] + τ
∑
i∈I

xi[k]σi
∑

q∈Pi

µi
qp[k] ≤

≤ xp[k] +
∑
i∈I

ε

2β̄|I|
= xp[k] + ε

2β̄
< cp

(2.29)

Lemma 2.2.4. L(x) := Φ(x)−Φmin, where Φmin is the minimum value of Φ(x) for
all the minimizers of the CP, is a candidate Lyapunov function for the LB dynamics

Proof. For the definition of Φmin, the function L(x) is positive definite in XCP .
Let ∆L(x[k]) denote the difference of the Lyapunov function L(x) along the

solutions of the controlled system:

∆L(x[k]) = L(x[k + 1])− L(x[k]) =

=
∑
p∈P

∫ xp[k+1]

xp[k]
lp(ξ)dξ ≤

≤
∑
p∈P

(
xp[k + 1]− xp[k]

)
lp(xp[k + 1]) =

= τ
∑
p∈P

∑
i∈I

( ∑
q∈P

ri
qp[k]−

∑
q∈P

ri
pq[k]

)
lp(xp[k + 1]) =

= τ
∑
p∈P

∑
i∈I

∑
q∈P

ri
pq[k]

(
lq(xq[k + 1])− lp(xp[k + 1])

)
,

(2.30)
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where the inequality holds from geometric considerations: if xp[k + 1] > xp[k], re-
calling that the lp’s are nondecreasing functions, the definite integral

∫ xp[k+1]
xp[k] lp(ξ)dξ

is smaller that the quantity
(
xp[k + 1] − xp[k]

)
lp(xp[k + 1]); conversely, if xp[k +

1] < xp[k], the integral
∫ xp[k+1]

xp[k] lp(ξ)dξ is larger than the quantity
(
xp[k + 1] −

xp[k]
)
lp(xp[k + 1]).

Analysing each term of the inner summation, two cases hold: if ri
pq(t) = 0 the

term is null, otherwise, if ri
pq(t) > 0, the term is negative. In fact, it is shown below

that, if ri
pq[k] > 0, it holds that lp(xp[k + 1])− lq(xq[k + 1]) > 0.

Lemma 2.2.2 states that

lp(xp[k + 1])− lq(xq[k + 1]) ≥

≥
(

lp(xp[k])− ε

2

)
−

(
lq(xq[k]) + ε

2

)
=

= lp(xp[k])− lq(xq[k])− ε > 0,

(2.31)

where the inequality holds since a necessary condition for ri
pq[k] > 0 is that lp(xp[k])−

lq(xq[k]) > ε (see equation (2.13)).

Finally, the following theorem proves the convergence towards an approximated
Beckmann user equilibrium.

Theorem 2.2.5. The trajectories of the LB dynamics asymptotically tend to the set
of equilibria X ε

eq.

Proof. Given that Lemma 2.2.4 states that L(x) is a candidate Lyapunov function
for the LB dynamics, the proof relies on the LaSalle invariance principle of Theorem
2.2.1, i.e., on showing that X ε

eq is the maximum invariant set where ∆L = 0.
Let x ∈ X ε

eq and x[0] = x. By comparing definition (2.6) and equation (2.13),
it holds that ri

pq[k] = 0 for all p, q ∈ P i and i ∈ I, which entails i) that x[k] =
x[0] = xeq ∈ X ε

eq for all k > 0, i.e., that X ε
eq is a positively invariant set, and ii)

that ∆L(x[k]) = 0 in Xeq (see equation (2.30)).
To show that X ε

eq is the maximum set where ∆L(x[k]) = 0, it is proven below
that ∆L(x[k]) < 0 if x[k] = x with x /∈ Xeq. In fact by definition (2.12), in this
case there exist at least one pair of providers p, q ∈ P i and a commodity i ∈ I such
that lp(xp[k]) − lq(xq[k]) > ε, with xi

p[k] > 0 and xq[k] < cp − ε
2β̄

, which, in turn,
yields ri

pq[k] > 0 (see equations (2.11), (2.14) and (2.13)). Having established that
ri

pq[k] > 0 with lp(xp[k]) − lq(xq[k]) > ε, it follows that the corresponding term of
the inner summation of equation (2.30) is negative, which is a sufficient condition
for ∆L(x[k]) < 0 (recalling that, in the proof of Lemma 2.2.4, it is shown that the
terms of equation (2.30) are non-positive).
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2.2.3 5G Traffic Steering as a dynamic load-balancing problem

In the dynamic multi-connectivity framework of 5G networks [1], each UE selects the
serving APs for its QoS-Flows. The network resources (capacity) are hence provided
by the APs, and their efficient usage guides the design of traffic steering controllers.
As introduced, in 5G systems, the dynamic management of such resources becomes
of crucial importance in network slicing scenarios [48].

To model a multi-connectivity scenario in a network slicing environment as a
dynamical network of the form (2.7)-(2.10) the AP p is regarded as a provider in
the set of providers P, the QoS-Flow associated with a UE as a commodity i in the
set of commodities I and the amount of bitrate of the commodity i that is provided
by the AP p at time k is associated to the state variable xi

p[k]. The bitrate demand
of the commodity i is then λi, which can be assumed, for a limited time window,
to be constant.

In the following, a network slicing scenario in which the network operator dedi-
cated a certain amount of bitrate cp on each AP p to the control slice is considered.

Regarding latency functions, a natural choice is associating a different latency
function lip to the radio connection between the UE of commodity i and the AP
p ∈ P i . This choice allows to capture quantities related to the specific connection
performance, such as the resource blocks [3] usage, the power consumption of the
single commodity i or its QoS degradation, but in turn implies that each commodity
i is subject to a different latency from provider p, that may even depend only on xi

p.
It is worth mentioning that, in this kind of scenarios, in general, the network admits
various equilibria characterized by different costs (latencies) [49]. Nevertheless, in
the proposed framework depicted in Fig. 2.2, the considered network is character-
ized by parallel areas [49], implying that its equilibrium cost Φmin is unique. In fact,
with simple manipulations, the scenario of Fig. 2.2 can be shown to be equivalent to
a network in which the latencies are associated with the depicted radio links, each
of which can only be used by a single commodity. The scenario is then equivalent
to a standard adversarial routing scenario with a unique equilibrium cost.

Regarding the mapping of the proposed control law onto the standard 5G ar-
chitecture, Access Traffic Steering, Switching and Splitting (ATSSS) [50] decision
rules for multi-connectivity are typically produced by a software module of the 5G
core network, the Policy Control Function (PCF). The PCF configures the UEs
and the User Plane Function (UPF), an entity directly connected to the gNodeBs
of the RAN, to handle traffic steering based on local measurements, respectively for
the uplink and the downlink phase. Such ATSSS rules may define the set of APs P i

available to the user i, depending on its contract with the provider, their priority,
and in general, may define a control law to guide the steering of the QoS flows that
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Figure 2.2. Load balancing graph. Solid line represents the QoS-flow of commodity 1,
dotted line of commodity 2, dashed line of commodity 3 etc.

constitute the considered Protocol Data Unit (PDU) session. The dynamic traffic
steering functionalities [1] are taken at RAN level, as depicted in Fig. 2.1 and so
the proposed algorithm is designed to be deployed either in the DU of the gNodeBs
that constitute the controlled RAN or in the UEs. The rules provided by the PCF
can be included in the control logic by properly weighting or forbidding the various
AP connections.

2.3 Numerical Simulation

This section reports the simulation setup and the results respectively in subsections
2.3.1 and 2.3.2.

2.3.1 Simulation Setup

For the validation of the proposed algorithm, in the scope of the 5G-ALLSTAR
project, an open-source network simulator available in [51] has been developed, able
to model different AP technologies, connection protocols and interference models
in a multi-connectivity scenario. The network in Fig. 2.3 has been considered,
consisting of a 4x4 Km area covered by a macro cell (provider BS1), a satellite
(provider BS0), and six micro cells (BS2-BS7).
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Figure 2.3. Network scenario

Operating band N° Carrier frequency (GHz) Bandwidth (MHz)
n20 0.8 20
n25 1.9 40
n66 1.7 40
n70 2 25

Table 2.1. Characteristic of micro and macro cells
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A total of 20 UEs/commodities (grey dots in Fig. 2.3) were randomly distributed
in the area, each requiring a constant load λi = 50 Mbps. The implemented inter-
ference model is taken from [52] and the frequency characteristics of the terrestrial
APs are summarized in table 2.1 [53], [54].

Regarding the satellite AP, a Time Division Multiplexing (TDM) as in the
example 6.6.2 of [55] is considered. The satellite parameters are adapted to have
at least 1 bit per symbol with typical Signal to Noise Ratio (SNR) values [56],
[57]. According to the TDM frame structure used, it is possible to allocate only
blocks of 64 symbols (1µs). Moreover, each allocation must consider a header
made of 288 symbols and a spacing between allocations of 64 symbols. Additional
implementation details and updates can be found in [51].

It is considered as latency functions lip the number of resource blocks utilized by
the commodity i on the access point p. This particular choice will drive the network
towards a state in which each connection equalizes the resource block usage over its
available unsaturated APs p ∈ P i.

Assuming a stationary UE i (i.e., with constant path loss with all the access
points p) and no interference, the amount of bitrate provided by a resource block
on a given access point p is fixed. This implies that, in ideal conditions, lip is almost
linear, with a slope that depends on the utilized frequency bands, in line with
Assumption 2.2.1. Note that several different choices could be made for the latency
function, spacing from quantities that capture connection reliability, to transmission
delay and user satisfaction, as the only requirements that such functions must satisfy
are represented by Assumption 2.2.1, which open the possibility of considering a
large family of functions (e.g., including polynomial or exponential ones). It is
mentioned that in non-ideal cases, the value of β̄ in (2.14) may need to be estimated
by observing the growth of the selected latency functions during different network
operative conditions. To allow a fair comparison with the terrestrial AP resource
blocks, the assumptions made for the satellite imply that its latency function is
equal to the number of its allocated symbols divided by 64. Additionally, each AP
was associated with a multiplicative scaling factor for their latency functions to
model different operating costs. In particular, the satellite was given the highest
factor (0.5), the macro cell was given a medium value (0.2) and the lowest weight was
associated with micro cells (0.1). Regarding the capacitated nature of the considered
network, is assumed that the network operator dedicated to the controlled slice 200
Mbps on all micro cells, save for BS4, which was capacitated at 55 Mbps.

Concerning the parameters of the controller, the choice of latency functions
leads to an experimentally determined value β̄ = 2.44 (found by try and error), the
latency tolerance is selected as ε = 0.5 and the sampling time as τ = 10−3s. The
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Figure 2.4. Maximum latency mismatch during the simulation (dotted line: tolerance ε)

resulting values for σi are in the range [0.02, 0.05].

2.3.2 Simulation Results

Simulation runs were initialized by distributing uniformly the load of the commodi-
ties over |P i| − 1 of their available APs, selected randomly.

The reported simulations showed a convergence time to an ε-Beckmann user
equilibrium in the order of 30 seconds, averaged over 25 runs. It is worth remarking
that such convergence time is not related to the 5G QoS requirements, as it is
assumed that the various access points can provide the proper QoS level (e.g.,
connection latency, average Bit Error Rate (BER), reliability level,. . . ) if their
capacities are not violated.

Fig. 2.4 shows, for an example run, how the maximum latency mismatch over
all the commodities, defined as

e[k] = max
i∈I

{
max

p∈Pi|xi
p[k]>0

lp(xp[k])− min
q∈Pi|xq [k]<cq− ε

2β̄

lq(xq[k])
}

,

decreases with time and, even if the initial conditions are quite unbalanced, with
e[k] > 40, after 30 seconds e[k] is already below the threshold ε.

For the example run, Fig. 2.5 reports the evolution of the latencies that charac-
terize the commodities 4 and 8, for all of their available APs. The upper plot shows
that the latencies of the APs available to QoS-Flow 8 converge to a common value,
as expected, within the threshold ε; in particular it is possible to notice how the
commodity rapidly starts using the (initially unused) micro cell BS7 and rapidly
discharges the satellite. The lower plot of Fig. 2.5 shows the latencies of the QoS-
Flow 4 and highlights that the latency of micro-cell BS4 does not converge to the
latencies of the other used APs: the reason is that the AP becomes ε-saturated after
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(a)

(b)

Figure 2.5. Commodity latency examples during the simulation (solid lines: unconstrained
providers used by the commodity; dashed line: constrained providers; zoomed sub-plots
to show the convergence within the tolerance ε = 0.5

about 3 seconds (see Fig. 2.6) – thus, by definition, the population of QoS-Flow
4 still converges to an ε-Beckmann equilibrium. Note that the latency associated
with BS4 starts higher than its final value, as the commodity migrates towards BS5,
but remains the lowest latency for the commodity 4 from 10 seconds onwards, as
the other QoS flows already ε-saturated BS4 (i.e., no bitrate can be migrated to it).

Finally, Fig. 2.6 shows the population dynamics over the APs, highlighting how
the macro cell is the most utilized AP, while all the micro cells allocate a similar
amount of bitrate. The satellite, whose latency was the most penalized as it is the
most costly connection technology, is rapidly discharged.

For the sake of comparison, in Fig. 2.7 the proposed controller has been bench-
marked against two classic examples of load balancing solutions in heterogeneous
networks. The figure reports the latency functions values experienced by the com-
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Figure 2.6. Network state in terms of total bitrate allocated on the various APs (solid
lines: unconstrained providers, dashed line: constrained provider)

modity i = 20 over eight APs in the set P20. The choice of commodity 20 was
related to the fact that it is one of the closest to the center of the considered area,
as depicted in 2.3, and can hence be served by any AP. The first benchmarking
algorithm (“uniform”) uniformly distributes the bitrate demand over the various
available and unsaturated APs. Due to the capacitated nature of the network, is
assumed that this controller distributes the load of the commodities according to
their index i, so that the traffic of commodity i = 1 is the first one to be allocated
while the one of commodity i = 20 is the last.

The second algorithm (“weighted”) distributes the bitrate considering the scaling
factors associated with the latencies of the APs (0.5 for the satellite, 0.2 for the
macro cell, and 0.1 for micro cells) so that for every unit of traffic allocated on the
satellite 5 are allocated on the micro cells and 2.5 on the macro cell.

From the analysis of the figure, one can note that the proposed controller –
in the figure, the values are the ones achieved after convergence (∼30 seconds) -
successfully equalizes the latencies up to the threshold ε = 0.5. On the contrary, the
other two controllers fail to allocate any bitrate on BS4, as it was already saturated
by the other commodities that were prioritized. The uniform distribution causes
the first controller to experience a very high latency on the satellite (BS0), while
the distance and consequent low signal-to-noise-ratio causes the weighted controller
to allocate too much bitrate on BS5 (this behavior is further amplified by the fact
that BS5 is a micro cell associated to a scaling factor of 0.1), requiring a significant
amount of resource blocks.

Overall, it is possible to conclude that the proposed controller better balances
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Figure 2.7. Comparison for the three considered algorithms of the latencies over APs for
commodity i = 20

the usage of network resources because it is a feedback-based solution that steers
the traffic flow based on online measurements of the latency functions. The main
limitation of the proposed approach is related to the availability of the measurements
needed to compute the steering decisions (i.e., the latency values in terms of assigned
resource blocks), whose impact on the control traffic overhead is to be evaluated
considering the control traffic already necessary for the different access technologies,
and the estimation of β̄ which, however, can be performed starting from the channel
models and the expected traffic that the network is designed to support. Regarding
the complexity of the algorithm, the computation overhead is negligible since the
control law (2.11) only involves basic operations (summations, multiplications, and
comparison between real numbers) that remain limited in number even for RANs
with a high number of APs.

To conclude, it is worth mentioning that the two benchmarking algorithms dis-
cussed above could be used to initialize the network resource allocation, speeding
up the convergence time.
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2.4 Conclusion

This work develops a distributed, non-cooperative and dynamic load balancing al-
gorithm in the framework of adversarial selfish routing with link capacities. Each
provider is associated with a latency function which represents its performance as
a function of the provider’s load. By using Lyapunov arguments, the proposed al-
gorithm is proved to converge to an approximate Beckmann user equilibrium, in
which the latencies of the non-saturated providers are equalized up to a tolerated
latency mismatch.

The algorithm is then applied to the problem of multi-connectivity, one of the
key features of 5G networks, which enables the user equipment to simultaneously
transmit/receive traffic flows over different access networks, to increase the trans-
mission rate and/or improve the transmission reliability. In multi-connectivity, the
traffic steering functionality is in charge of distributing the traffic load of each flow
over the different access networks. This work models the traffic steering problem
as a capacitated load-balancing problem by associating a latency function to each
access point/user equipment radio link. The problem is then solved using the devel-
oped algorithm. An open-source simulation environment was proposed, and some
numerical simulation results validate the approach.

Besides the modeling of the 5G Multi-connectivity problem as a dynamic load-
balancing one, this work presents, up to the authors’ knowledge, the first multi-
commodity, dynamic, and adversarial load-balancing algorithm which explicitly
considers capacitated providers.

Future work is aimed (i) at introducing latency constraints in the problem for-
mulation to model more Quality-of-Service constraints of the 5G services and (ii)
at considering time-varying loads.
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Chapter 3

Friend-or-foe Q-Learning for
network selection in 5G
multi-RAT network

In this chapter, the problem of Network Selection in 5G heterogeneous networks
has been faced. Differently from the work presented in the previous chapter, which
focuses on how to split/steer the traffic among the APs for which a UE has an
already-established connection, this work focuses on the selection of the best AP to
handle a new request from a UE. In this sense, this work is complementary to the
traffic splitting/steering approach of the previous chapter.

This work is based on Game Theory, and in particular on the concept of Nash
equilibria. Optimal policies (i.e., an adversarial Nash equilibrium for the Markov
Game) for the agents, that in this case are the APs, upon receiving a request from
a UE are learned through a Multi-Agent Reinforcement Learning technique named
Friend-or-Foe Q-Learning, which is detailed in Section 3.2.2: This technique is
considered in its adversarial variant, i.e., each AP competes with the other APs to
allocate the request from a UE. This assumption leads to a more realistic scenario
with no centralized entity to coordinate the APs in choosing how to allocate the
UE request.

3.1 Introduction

The problem of Network Selection arises in the framework of the so-called “heteroge-
neous networks”, modern communication scenarios in which several different RATs
are available to connect a user with the Core Network (CN). In such networks,
when a new connection is established, a decision regarding which AP to utilize shall
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be taken by either the UE or the network itself, based on a feedback-based analysis
of the network state.

Different criteria (e.g., congestion state, power efficiency, reliability) may be
utilized for the selection, and, based on the scope of the information gathered for
the analysis, it is possible to identify three different classes of approaches [58]:

• User-Centric approach: in which the UE monitors the APs state and takes its
connection decisions based on some thresholds-based performance parameters
(e.g. SNR) measurable locally. In advanced scenarios, the UE could consider
other RATs characteristics (e.g. coverage, user preferences, etc.) to better
satisfy the application and user needs.

• RAN-Assisted approach: in this approach, information exchange is done be-
tween the AP and the UE, so that the latter can select the one it prefers based
on broader feedback that may capture aspects not locally measurable, such
the congestion level on the specific RATs, their expected resource allocation
and their predicted/historical connection reliability.

• RAN-Controlled approach: the previous approaches were user-centric by na-
ture, and consequently could only attain a sub-optimal solution to the network
selection problem, in this approach the decision is taken directly by the RAN,
a controller that oversees the functioning of the various RATs that constitute
the Access Network. The decision taken by the RAN can either be centralized
or distributed, as the RAN itself may have some functionalities distributed
over the various RATs. In this approach, the UEs may be configured to re-
port radio measurements on their local radio environment to integrate the
feedback available to the centralized network controller. This solution is the
one adopted by 3GPP for addressing dual-connectivity issues.

The solution presented in this work can be classified as a control strategy of
the RAN-Controlled category, characterized by the distribution of the control logic
over the controller of the various RATs controllers that regulate the APs connection
admittance logics, so that the network resources available for the connection are
optimally exploited.

From a methodological point of view, several approaches were investigated in
the literature for the network selection problem, spacing from solutions based on
Multiple Attribute Decision Making (MADM) [59] [20], to Fuzzy Logic control sys-
tems [60], and Game Theory-based approaches [24] [25]. Additionally, Markov De-
cision Processes (MDPs) and Reinforcement Learning (RL) were tested, among the
others, in [61] and [62]. The proposed approach utilizes results from both RL and
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Game Theory in a multi-agent framework. The problem will be modeled in such a
way that the distributed RAT controllers will compete with each other for being se-
lected to serve the connection requests. The overall goal of the control strategy will
be the optimal usage of network resources, without relying on centralized control
approaches – as, for example, with a common least loaded allocation logic that as-
signs the upcoming connections to the RAT with the lowest resource usage. In this
regard, the present work employs the so-called “friend-or-foe Q-learning” algorithm
to govern the network according to an adversarial Nash strategy.

3.2 Preliminaries on Learning Markov Games

3.2.1 Markov Games and Nash Equilibria

A Markov Game among N players is defined as the tuple (S,A, T,R, γ), where:

• S is the finite state space

• A = {Ai, i = 1, ..., N} is the collection of the action sets available to the
various players i.

• T (s, a1, a2, ..., aN , s′) : S×A1×A2× ...×AN×S → [0, 1] is the state transition
function, which describes the transaction probability between the two states
s and s′ when the agents take the actions a1, a2, ..., aN

• R = {Ri(s, a1, a2, ..., aN ) : S × A1 × A2 × ... × AN → R, Ai = {ai}} is the
collection of reward functions that attribute a reward to each agent when they
take actions a1, a2, ..., aN and the system is in state s.

• 0 ≤ γ < 1 is the discount factor that captures the trade-off between short-term
and long-term performances sought by the agents.

In this section the so-called general sum games are considered, meaning that no
assumption is made on the cumulative reward attained by the agents, contrary to
zero-sum games.

A policy πi(s) : S → R#(Ai) is a function that maps the state of the system
into a probability distribution over the actions of player i. Each player is associated
with a (state,action)-value function Qi defined as

Qi(s, a1, a2, ..., aN ) =

Ri(s, a1, a2, ..., aN ) + γ
∑
s′

T (s, a1, a2, ..., aN , s′)Qi(s′, π1, π2, ..., πN ), (3.1)
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in which Qi(s′, π1, π2, ..., πN ) is the weighted sum of the Qi’s according to the policies
πi’s. For their definition, the (state,action)-value functions represent the expected
discounted reward attained over time by the players starting from state s, taking
actions a1, a2, .., aN and following the policies π1, π2, ..., πN from there on. The
goal of the controllers that will determine the policy of each agent is the one of
maximizing its own value function unilaterally (i.e., without cooperation).

An important concept to introduce in the framework of Markov Games is the
one of adversarial Nash equilibria, which are a set of policies π1, ..., πN characterized
by the following two properties:

• no player can improve unilaterally its policy, i.e.,
Ri(s, π1, ..., πN ) ≥ Ri(s, π1, ..., πi−1, π′

i, πi+1, ..., πN ) 1

• no player sees its reward lowered by a change in the policies of the other
players, i.e., Ri(s, π1, ..., πN ) ≤ Ri(s, π′

1, ..., π′
i−1, πi, π′

i+1, ..., π′
N ).

3.2.2 Multi-Agent Reinforcement Learning

In scenarios in which the agents are not provided with a complete and accurate
model of the system, model-free control solutions as RL have to be implemented to
attain the desired system behavior.

The attractiveness of RL in Multi-agent scenarios is due to the fact that it allows
the agent i behavior, described by policy πi, to adapt to the strategy employed by the
other agents. This capability becomes of crucial importance when the various agents
compete one against each other, as each agent has no incentive to share information
regarding its own configuration with the others. Nevertheless, RL also allows the
agent to learn about the environment characteristics by directly interacting with
it, meaning that no explicit knowledge of the functions T and Rj , j = 1, ..., N is
assumed or necessary for reaching an optimal strategy.

In this section, the Friend-or-Foe Q-Learning algorithm from [63] is employed in
its adversarial variant. The additional degree of information that agent i requires
other than the feedback observation of the tuple (s, a1, ..., aN , s′, ri) is the classifica-
tion of the other players as either friends (cooperating agents that try to maximize
their rewards jointly) or foes (competing agents that try to maximize their own
rewards unilaterally and, consequently, to minimize player i’s reward).

In this algorithm, each agent i learns its (state-action)-value function Qi accord-
ing to the following rule:

1With a small abuse of notation Ri(s, π1, ..., πN ) is here denoted as the expected payoff obtained
by agent i in state s in case all agents j ∈ {1, ..., N} choose actions (a1, a2, ..., aN ) according to
their policies (π1, ..., πN )



3.3 Problem modelling 35

Qi(s, a1, a2, .., aN ) =
(
1− α(t)

)
Qi(s, a1, a2, .., aN )+

+ α(t)
(
ri + γNashi(s, Q1, Q2, .., QN )

) (3.2)

where Nashi(s, Q1, Q2, .., QN ) is computed as

Nashi(s, Q1, Q2, .., QN ) = max
π∈Π(A1×Ak)

min
[ak+1,...,aN ]∈(Ak+1,...,AN )∑

[a1,...,ak]∈(A1,...,Ak)
π(a1) · ... · π(ak)Q(s, a1, ..., aN ).

(3.3)

In (3.3), it is assumed, without loss of generality, that the first k players,
i.e., players 1, ..., k, cooperate with agent i and the remaining players, i.e., players
k + 1, ..., N , are its foes. The sequence 0 ≤ α(t) < 1 represents the evolution over
time of the learning rate of the agents. Under the hypothesis that

∑
t α(t) = +∞

and
∑

t α(t)2 < +∞ [64], then Theorem 6 in [63] proves that Foe Q-Learning (i.e.,
in the case in which all agents are foes, which is the one considered in the following)
converges to an adversarial equilibrium, provided that such equilibrium exists.

3.3 Problem modelling

As already introduced, the network selection problem will be modeled as a Markov
Game in which each AP is a competing player.

3.3.1 State Space

The state of the network can be represented by the percentage of occupied resources
on each of the APs. To have a finite number of states, a possible solution is to
quantize the percentage of resources with a factor q .The set of states is then defined
as:

S =
{

[s1, s2, ..., sN ], si ∈
{

0,
1
q

,
2
q

, ...,
q − 1

q
, 1

}
, 0 ≤ si ≤ 1

}
, (3.4)

meaning that there are (q + 1)N different states.

3.3.2 Action Space

The actions available to each of the agents regard the decision of whether to accept
or decline the allocation of the incoming connection. Assuming that m different
service classes are available to network users, a total of 2m actions are required to
model all the possible different choices. Note that some actions might be unavailable
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since the APs could decide to accept only services of certain classes. The action set
of user i is then defined as:

Ai =
{

[a1, a2, .., am], aj ∈ {0, 1}
}

. (3.5)

3.3.3 Reward Functions

The reward that is given to each agent i for successfully allocating a service of class
j depends on the service characteristics and the amount of resources involved in the
allocation.

Assuming that the service requires tj resources, it is possible to model the reward
as:

ri = σijtj
Bi + tj

Ci
, (3.6)

where Bi and Ci represent respectively the amount of resources occupied on the
AP i before the new allocation and the total capacity of the AP i. The factor σij

serves the purpose of prioritizing certain services over other ones and/or modeling
the fact that some APs are more appropriate, in terms of Quality of Service, for
certain services. In this sense, an higher value of σij incentivizes users i of class j

to be allocated by the algorithm.
The structure of the reward allows incentivizing the agent to allocate all of their

resources, while also dedicating them to the most prioritized services.
When a new service request arrives at the agents, each of them selects its ac-

tion and consequently takes the decision of being available for the allocation or not.
One agent is sampled randomly from the list of available ones, and the allocation
procedure proceeds. The agents that offered their availability to allocate the incom-
ing service but were not selected for the actual allocation receive a small negative
reward to disincentivize the behavior of always offering the allocation availability.
Furthermore, an agent that offered the allocation but was not able to fulfill it due
to a scarcity of resources is given a highly negative reward to penalize its behavior
and the connection is discarded.

To avoid all agents rejecting the less rewarding services, a negative reward is
also given to all the agents if no agent offers its availability for the new allocation.

3.3.4 ε-Greedy Policy Selection

A fundamental concept in RL is the trade-off between knowledge exploitation and
environment exploration. The update of the Qi tables (3.2) and the solution of the
maxmin problem (3.3) represent, respectively, the process of learning from experi-
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ence, or knowledge acquiring, and its exploitation to derive a proper strategy for the
player. To provide the players with an adequate degree of exploration, the action
selection is subject to the following rule, known as ε-greedy selection:

ai =

arg maxai
(Nashi), with probability 1− ε

randomly chosen in the set Ai, with probability ε
(3.7)

where Nashi is the operator described in (3.3), in the case in which all the APs are
assumed to compete one with each other and, hence, no friend player cooperates
with the agent i. The exploration vs exploitation is tuned by the parameter ε, which
can incentivize exploration (random action) if high, or exploitation of the acquired
knowledge (arg maxai

(Nashi)) if low. A possible refinement to (3.7) is to consider a
decreasing sequence of values for ε, modeling the fact that the agent benefits more
from the exploration process at the beginning, while knowledge exploitation becomes
more effective as the agent experienced the system evolution and its possible states
several times.

3.3.5 Maxmin Linear Programming Formulation

In general, a maxmin optimization problem takes the following form [65]:

max min
j=1,...,n

J(xj) = cjxj

Aeqx = g

Aubx ≤ b,

(3.8)

where cj ≥ 0 are scalars, Aeq, Aub are matrices and g and b are vectors of appropriate
dimensions.

It is well known that such a formulation is equivalent to the following LP problem
[65]:

max
z∈R

J(xj) = cjxj

Aeqx = g

Aubx ≤ b

z ≤ cjxj , j = 1, ..., n

(3.9)

where z is an unknown scalar that is bounded by the smallest value cjxj through
the additional third constraint.

In the context of Foe-Q-Learning, the maxmin problem for agent i that appears
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Figure 3.1. Connection Area covered by 3 different Radio Access Technologies

in (3.3) becomes:

max
π∈Π(Ai)

min
[a1,...,ai−1,ai+1,...,aN ]∈(A1,...,Ai−1,Ai+1,...,AN )

∑
ai∈Ai

π(ai)Qi(s, a1, ..., aN )

π(ai) ≥ 0 ∀ai ∈ Ai∑
ai∈Ai

π(ai) = 1

(3.10)

which, by introducing the additional variables h (that are fixed equal to the objective
function terms) and z (that is bounded by the smaller hi), leads to an equivalent
LP formulation of the form:

max
π∈Π(Ai)

z

hi =
∑

ai∈Ai

π(ai)Qi(s, a1, ..., aN )

∀[a1, ..., ai−1, ai+1, ..., aN ] ∈ (A1, ..., Ai−1, Ai+1, ..., AN )

π(ai) ≥ 0 ∀ai ∈ Ai∑
ai∈Ai

π(ai) = 1

z ≤ hi ∀[a1, ..., ai−1, ai+1, ..., aN ] ∈ (A1, ..., Ai−1, Ai+1, ..., AN )

(3.11)

Algorithm 1 reports the pseudocode for the Network Selection Algorithm.
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Algorithm 1 An algorithm with caption
Qi(s, a)← arbitrary value, i = 1, ..., N
for connection request from a user of class j do

• Each player observes the state of the system and the class j of the upcoming
connection

• Each player selects its action ai with an ε-greedy policy based on their Nashi

function
if aj = 1 for at least one agent then

• The connection is allocated using the resources of one of the agents that
selected an action with aj = 1.

else
• One agent is selected randomly to allocate the incoming request

end if
• Each player i receive a reward ri as described in (3.6)
• Each player i updates its Qi table according to (3.2)

end for

3.4 Simulations

3.4.1 Simulation setup

The scenario considered in the simulation is reported in Fig. 3.1, and consists of
an area covered by three different RATs. The number of agents considered is then
N = 3. The resource considered for the connection is throughput, and each RAT
had a maximum capacity of 1000 Mbps. Two service classes were modelled, the first
characterised by a resource request of t1 = 1 Mbps and the latter by t2 = 5 Mbps.
The parameter σij was set differently for each simulation.

A total of 2000 user requests were generated, where each request had a 0.8
probability of being a new connection and 0.2 of being the end of a connection,
with consequent resource deallocation. The connection requests were uniformly
distributed over the two service classes.

Regarding the RL-based controller parameters, α(t) was set as α(t) = 1/(1 +
⌊t/10⌋), where the ⌊⌋ represents the lower-integer operator, and ε(t) halved every
100 iterations starting from ε(0) = 0.6. Finally, the discount factor γ was set to 0.9.

The simulative scenario considered is a simplified one, but maintains the dimen-
sioning and the key characteristics of the test cases that were developed in the scope
of the 5G-ALLSTAR project [66].

To validate the proposed approach, different simulations will be represented
in the following considering a baseline approach and two different versions of the
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Figure 3.2. Number of allocated connections for the three controllers, divided by service
class

proposed controller:

• the baseline controller considered as a benchmark follows a least-loaded AP
logic, as it assigns the upcoming connections to the APs with the lowest
relative resource usage. Such a controller is centralized by nature, as it requires
complete knowledge of the state of the system

• a version of the proposed Foe-Q-Learning where σij = 1 ∀i, j, meaning that
the reward of the agents depends only on the amount of allocated resources
and no priority is given to any of the two service classes

• a version of the proposed Foe-Q-Learning that has been trained with parame-
ters σi,1 = 2 and σi,2 = 0.2, ∀i. In this way the proposed controller is trained
to receive a higher per-bps reward for the first service class rather than for
the second one, thus prioritizing requests coming from the users belonging to
the first service class.

3.4.2 Simulation results

From the analysis of Fig. 3.2 and Fig. 3.3, it is possible to note how the two RL
agents behave differently from the centralised Least Loaded controller. In partic-
ular, the controller trained with σij = 1 ∀i, j, tends to uniformly accept the two
services, in line with the fact that they were characterized by the same amount of
reward per-Mbps, while the second RL controller (simulation three) favors the allo-
cation of services of the first class. Overall, as it is possible to notice from Fig. 3.4,
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Figure 3.3. Number of blocked connections for the three controllers, divided by service
class

Figure 3.4. Total amount of bitrate of the blocked connections



3.5 Conclusion 42

both the Least Loaded controller and the first version of Foe-Q-Learning controller
blocked a total of 409 Mbps, meaning that the first RL solution fully exploits its
available resources. The second Foe-Q-Learning controller, on the contrary, allo-
cates a slightly lower amount of throughput, blocking a total of 463 Mbps. This
different behavior is since the agents obtain, for the same amount of resources, a
different pay-off depending on the service class. In fact, due to the choice of the
parameters σij , the services of the first class provide ten times the amount of reward
per Mbps with respect to the other. Even if the second RL controller blocked more
Mbps, this translated into an improvement in performances, measured in terms of
its cumulative total reward, of approximately 10%.

3.5 Conclusion

The work presented a distributed control approach for the problem of network
selection. The proposed solution was based on Friend-or-Foe Q-learning, a multi-
agent distributed Reinforcement Learning approach to solve Markov Games. The
problem was modeled as a standard multi-agent Markov Decision Problem, and an
adversarial game was formulated. The preliminary simulations presented validated
the concept of the approach, while future testing on more realistic scenarios will be
carried out within the scope of the H2020 5G-ALLSTAR project [66].
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Chapter 4

Deep Reinforcement Learning
for network selection in 5G
heterogeneous networks

As in the previous chapter, the problem of Network Selection in 5G heterogeneous
networks is considered again. In this chapter, the Network Selection of a UE request
is made by a RAN controller that governs the various APs (even belonging to
different RATs) in the RAN. This work is still based on learning the optimal policy
(this time for the RAN controller instead of the APs), but, differently from the work
described in the previous chapter, with a Deep Reinforcement Learning technique
named DQN, which is described in detail in Section 4.3. The advantages with
respect to the approach proposed in the previous chapter are reduced computation
time and complexity (in Friend-or-Foe Q-Learning each agent has to compute a
linear optimization problem at each learning step), and better results since the
APs are not competing for each other to allocate the current UE request (i.e., this
approach does not pay the price of anarchy).

This work also introduced the concept of QoE, since each UE request is as-
signed to a certain QoS flow, for which a reward for the DQN agent for successfully
allocating such QoS flow is modeled according to the QoE perceived by the user.

Moreover, the approach described in this chapter is tested against the over-
mentioned 5G NR multi-RAT radio access network simulator developed by the
Candidate in the context of his PhD, giving more realistic results.
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4.1 Introduction

The exponential increase in bandwidth, coverage, and data rate demands, along
with the diversification of use cases that are planning to use cellular RANs to
provide connectivity, has prompted the development of the fifth-generation (5G)
RAT. Through the support for higher mobile bandwidths complemented with low
latency and more reliable communications, the 5G RAT is expected to address the
significant increase in data rate demands that network operators are expecting and
to support the diversification of services required by UE during the coming years.
Moreover, the 5G specifications, starting with [67], will include other RATs in the
5G environment, such as 4G Long Term Evolution (LTE) and satellite AP. In this
system, where the connection demand continues to increase, appropriate network
resources management is required since an optimal allocation of those resources will
guarantee better performances and will help to ensure user requirements in terms
of QoE without overloading the network.

In this work, a network selection technique relying on MDPs and DQN algorithm
[68] has been studied. A centralized controller will take care of allocating requests
in the best way coming from UE analyzing the network state in terms of APs
load and UE perceived transmission power. The goal of this study is to show the
effectiveness of the proposed deep reinforcement learning approach by simulations
with a realistic multi-RAT (5G/4G/Satellite) network scenario. Moreover, several
classes of user requests have been modeled in order to represent different connection
service requirements in terms of downlink bitrate, QoS requirements, and QoE
profiles.

Network selection plays a fundamental role in providing stable connections with
an adequate level of QoS. Hence, network operators and providers commonly ex-
ploit several advanced techniques to select the best AP to allocate new connections.
Among the various techniques proposed in the literature, MADM proved to be one
of the most flexible solutions to capture user preferences and QoE-related aspects
in the decision process [69–73]. In MADM solutions, the information character-
izing the decision-making is made by the so-called attribute values and attribute
weights: The first ones describe characteristics, qualities, and performances of dif-
ferent alternatives, whereas the latter ones are used to measure the relevance of
attributes.

By modeling the network selection problem as a MADM, it is then possible to
decide the trade-off among service QoS requirements, user preferences, and overall
network congestion.

A similar approach is followed in this work, in which a different QoE profile is
associated with the various connections, depending on its specific service character-
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istics.
Among other solutions, it is possible to mention fuzzy logic approaches [60,

74–76], a methodology that allows fast decision-making, but relies heavily on the
operator’s knowledge and best practices, and game theory [25, 77–80]. In game
theory based approaches, the problem is modeled as a set of players/agents coupled
with a set of network states and possible agent actions, commonly utilizing the MDP
framework [64]. The main idea behind this method is that the player’s actions are
influenced by the choices and actions of the other players. The interaction among the
players can either be adversarial, i.e., each agent tries to maximize its performance,
or cooperative, when agents share a common objective.

The approaches mentioned so far are typically employed in scenarios in which
the controller is provided with a model of the network and user behavior, such as
a statistical distribution of the incoming connection requests and QoE profiles, like
in [81,82], where the authors studied how to maximize QoE/QoS for specific services
(e.g., video streaming applications. On the contrary, this work employs RL [64], a
model-free control methodology that allows the network controller to automatically
acquire knowledge of the system by interacting with it and experiencing its response
to different control policies.

RL has been extensively applied in the network control domain [83–88] and has
become particularly appealing over the last few years due to the innovations bought
by its deep-learning-based variant, namely Deep Reinforcement Learning (DeepRL)
[68], that allowed RL-based controllers to address previously challenging problems
due to their complexity and high dimensionality [89]. DeepRL has also been used
for network selection and radio resource assignment, respectively [84,90]. This work
differs from these other two because it aims at maximizing the user’s perceived QoE
in a multi-RAT environment, where multiple radio access technologies are available
at the same time. For multi-RAT network control, deep learning approaches (e.g.,
using Long Short-Term Memory (LSTM)) have been used in [91], which focuses on
the cloud-edge computation offloading in satellite-UAV-served 6G networks. The
main contributions of this work are:

1. The design of a two-step network control algorithm based on deep reinforce-
ment learning for the problem of network selection and optimal resource man-
agement in the heterogeneous 5G networks setting also envisages the presence
of satellite communication systems.

2. The inclusion in such a control framework of QoE maximization by considering
three different service types with different QoS-QoE relations.

3. The development of an open-source network simulator [51] able to model sev-
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eral different radio access technologies, including satellite systems, in terms of
network resource usage.

4.2 Sketch of the control algorithm

The algorithm designed in this work is a 2-step process: First, the controller that
governs the RAN receives a connection request and determines which available AP
it should be allocated. The AP reserves the allocation of the network resources
needed to satisfy the connection minimum QoS requirements to guarantee service
provision. Then, the distributed controllers that oversee the various APs distribute
the remaining network resources to the connections they sustain to improve the
QoE of their users. Fig. 4.1 reports a functional diagram of the proposed control
scheme, highlighting the flowchart of the algorithm and the related data flow.

The first part of the proposed control algorithm will be based on a deep rein-
forcement learning agent, whereas the network resource allocation will distribute
the available resources over the various connections according to their priority.

Section 4.3 provides the reader with the necessary background information on
MDP and DeepRL.

4.3 Markov decision process, Q-learning, and deep-Q-
network

An MDP is defined as the tuple {S,A, T, R, Σ, γ} where S andA are the (continuous
or discrete) finite state and action set, respectively, T is the transition probability
function T : S × A × S → [0, 1], with T (s, a, s′) denoting the probability that the
next state is s′ when the current state is s and the chosen action is a. and with∑

s′∈S T (s, a, s′) = 1, R is the one-step reward function R : S × A × S → R, Σ is
the initial state distribution and γ ∈ (0, 1) is the discount factor that weights future
rewards against immediate ones. The set of actions might be state-dependent as
not all the actions might be available at each state, the set of actions available at a
given state s ∈ S will be denoted by A(s) ⊆ A.

A deterministic policy π : S → A selects one action for each state. Let Π
be the set of feasible policies π such that π(s) ∈ A(s) for all s ∈ S. The expected
discounted reward obtained by starting from state s and following policy π thereafter
is represented by the state-value function, defined as

Vπ(s) = Eπ

( ∑
t

γtR(st, at, st+1)|s0 = s

)
(4.1)
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Figure 4.1. Flow-chart of the control algorithm
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where Eπ is the expected value under policy π and st and at represent the state and
action at time t. Similarly the state-action-value function

Qπ(s, a) = Eπ

( ∑
t

γtR(st, at, st+1)|s0 = s, a0 = a

)
(4.2)

represents the expected discounted reward obtained by following the policy π when
starting from state s and taking action a ∈ A(s).

Solving the MDP means to find the optimal policy π∗ that maximizes the ex-
pected cumulative discounted reward, i.e., π∗ = arg maxπ∈Π Vπ(s). Dynamic pro-
gramming approaches [64] can be used to determine exactly π∗. However, they
typically require the complete knowledge of the MDP dynamics - in particular of T

and R - and their computing time exponentially increases with the dimensions of
state and action sets.

Conversely, RL algorithms, such as Q-learning, aim to obtain an estimate of
the optimal state-action-value function Qπ∗ based on the experience the controller
gathers by interacting with the environment.

The standard update rule for Q-learning is

Q(st, at) = (1− αt)Q(st, at) + αt
(
rt + γ max

a∈A(st+1)
Q(st+1, a)

)
(4.3)

where rt = R(st, at, st+1) is the measured reward obtained at time t and αt > 0 is
the learning rate, which, in order to assure convergence, is subject to the conditions∑∞

t=1 αt =∞ and
∑∞

t=1 α2
t <∞.

The balancing between exploration and exploitation is controller by the param-
eter εt ∈ [0, 1] in the so-called ε-greedy policies: at any time t, the agent chooses
a random action with probability εt, whereas it chooses the action that maximizes
the state-action-value function (i.e., arg maxa∈A(s) Q(s, a)) with probability (1−εt).

It is worth noting that in standard RL approaches, the Q function is updated
only for the visited state-action pairs. Thus, in order to have a complete estimation
of the optimal Q function, it is needed to visit at least once every state-action pair.
This implies that the state space S and the action space A must be finite and
discrete, and if their dimensions increase, RL algorithms incur the so-called curse
of dimensionality.

To address these issues, the DQN algorithm was proposed in [68] as a deep
learning solution for function approximation-based Q-learning [64]. DQN approxi-
mates the Q function by means of a deep neural network able to approximate high-
dimensional functions with low-dimensional representations. The training process
for the neural network is detailed in [68], and despite having included some technical
solutions to address the neural network limitations, such as the target network and
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memory buffers, conceptually it remains the same as in the standard Q-learning,
with (4.3) replaced by the neural network training process and in particular by the
weight updates.

The main advantage of using DQN is its ability to cope with continuous state
spaces, and it proved capable of solving complex problems, such as playing video
games. Note that DQN still considers discrete action sets, actor-critic solutions such
as the deterministic deep policy gradient (DDPG) should be used when dealing with
continuous actions.

4.4 Problem modelling

This section presents the modeling of the network selection problem as an MDP.
In particular, sections 4.4.1-4.4.3 formulate the sets and functions required for the
MDP formalism, while sections 4.4.4 and 4.4.5 detail the physical processes that
allow the conversion of network resources into bitrate provision.

Let I be the set of UEs connected within a RAN constituted by a set P of
APs. Each UE i ∈ I is connected to an AP p ∈ P of the RAN, characterized by
a certain amount Wp of PRBs available. In addition, let P i ⊆ P be the set of the
APs available at UE i, depending on its position and antennas. Moreover, let K be
the set of different service types considered, each one characterized by a different
minimum bitrate Bk, k ∈ K. Finally, let npk be the number of requests of type k

allocated to an AP p.
Three different types of services are considered here, as in [92], namely: elastic,

non-elastic, and multi-codec, each characterized by a different QoE profile.
Let bi

pk be the bitrate allocated on AP p for the service k requested by UE i.
It is possible to model the three QoE profiles as the functions ri

pk(bi
pk) depicted in

Fig. 4.2.
In particular:

1. Elastic services have a linear QoE behavior with respect to the allocated bi-
trate, starting from a minimum level b1

k up to a maximum bitrate b2
k, where the

perceived quality is saturated, as depicted in Fig. 4.2a. This service captures
applications such as web surfing and file downloading.

2. Non-elastic services have a threshold-like behavior with respect to the allo-
cated bitrate. Thus, if the bitrate is less than b1

k, the perceived quality is 0;
otherwise, it is maximal, as depicted in Fig. 4.2b. This service type represents
well real-time applications with guaranteed bitrate requirements.

3. Multi-codec services have a stair-like QoE profile, as the perceived quality has
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(a) QoE profile of elastic services (k = 1)

(b) QoE profile of non-elastic services (k = 2)

(c) QoE profile of multi-codec services (k = 3)

Figure 4.2. QoE profiles of the different service types
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a different threshold corresponding to the utilized codec, depending on the
amount of bitrate allocated b1

k, b2
k, b3

k, as reported in Fig. 4.2c. This service
type represents multi-codec video and audio streaming.

The proposed modeling of the services is compliant with the 5G standards, as the
so-called QoS flows that constitute the various connections can be associated with
one of the three service types introduced above depending on their QoS requirements
and characteristics.

4.4.1 State space definition

As already introduced, each AP is characterized by the number of its physical
resources available for allocation, denoted as Wp, p ∈ P .

To allow the controller to take an optimal decision on the allocation of a new
incoming connection request from a given UE, the state of the network should
contain information regarding:

i) the congestion level of the physical resources over the various APs;

ii) the coverage quality that the APs provide to the UE;

iii) the service class,

to infer its associated QoE profile and its bitrate requirements.
In this sense, the minimum quantity of physical resources that need to be allo-

cated to sustain a single QoS-flow i of type k on a given access point p is denoted as
wi

pk, with i ∈ Ipk is defined as the set of QoS-flows of type k related to AP p. Note
that, referring to figures 4.2a-4.2c, this quantity represents the number of resources
needed to provide the UE with a connection with an associated bitrate b1

k.
Let η1

p(t) denote the number of resources allocated at time t to sustain the
allocated services (i.e., the number of physical resources required to support the
ongoing QoS-flows at their minimum bitrate level). By definition,

η1
p(t) =

∑
k∈K

∑
i∈Ipk

wi
pk(t), p ∈ P (4.4)

Let lp(t) the load level of an AP p, defined as the allocated physical resources
over the total available ones:

lp(t) =
η1

p(t)
Wp

, p ∈ P. (4.5)

Given a UE i ∈ I requesting a service of type k ∈ K, the state space is then
given by the following three quantities:
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1. The load level related to each AP p ∈ P ;

2. The Reference Signal Received Power (RSRP) value Pip for each AP p, mea-
sured by the UE itself;

3. The minimum amount of bitrate required for the requested service class Bk

(b1
k in figures 4.2a-4.2c).

The state set can then be defined as

S =
{

s =
{
(lp)p∈P ′(Pip)i∈I,p∈P ′(Bk)k∈K

}}
. (4.6)

The resulting state s ∈ S is a vector with 2|P | + 1 elements. With little abuse
of notation, lp(s), Pip(s) and Bk(s) represent respectively the load level op AP p,
the RSRP value, and the minimum required amount of bitrate in state s.

4.4.2 Action space definition

When a new connection request arrives at the network controller, there are two
possible outcomes:

1. The controller accepts the request and allocates it to (exactly) one AP p.

2. The connection is rejected as there are no APs that can handle it due to
insufficient resources.

The RAN controller is then required to act as an advanced Connection Admission
Controller (CAC).

The action set can be defined similarly to in [92]. Let δp be a vector with 2|P |+1
values, i.e., the same dimension of the state vector s ∈ S, where all the values are
zeros, but the element associated with the AP p. The single non-zero element in δp

represents the extra load that would be added to the access point p in case the new
connection request is accepted. It follows that, in each state s, a request service
may be allocated on AP p if and only if s + δp ∈ S, i.e., by allocating the new
request to the AP p, the newly generated state still belongs to S.

The action set available in a state s ∈ S is then defined as

A(s) =
{

(ζ1, ...ζ|P |)
∣∣∣∣ ∑

j∈1,...,|P |
ζj = 1, ζj ∈ {0, 1}∀j

}
∪ 0, (4.7)

where 0 is a P -vector of zeroes, and the action is a vector whose only non-zero
element is equal to one and indicates which AP has been selected for the allocation.
The special case in which at = 0 represents a condition in which the connection
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request must be rejected due to a lack of network resources, as no AP can allocate
the incoming request assuring its minimum required bitrate.

In the simulation in section 4.5, the requests of service type k ∈ K for each UE
are assumed to arrive according to a Poisson distribution in time with mean value
υk and a termination rate following an exponential distribution with mean µk.

4.4.3 Reward definition

In the presented definition of the states and actions, it was assumed that the net-
work controller only allocates the network resources needed to satisfy the minimum
amount of bitrate required by the various connections. As introduced in Section
4.2, the network control algorithm follows a two-step procedure: Firstly, it selects
which AP will serve the incoming connection request. Then, each AP distributes
its remaining resources η1

p(s) over its connections, according to some prioritization
order that may take into account the user tariff or operator preferences.

In our simulations, the APs will firstly distribute their available resources uni-
formly to the multi-codec services, so each connection receives a bitrate up to b3

3.
Afterward, the remaining resources are uniformly distributed to the elastic services
up to a bitrate of b1

1. Non-elastic services, due to their threshold-like behavior, are
always given a bitrate of b1

2.
To define the reward function, it is needed to introduce Spi as the amount of

additional bitrate that the AP p is able to provide to the connection i using a
share of its remaining resources. This quantity is directly linked to the QoE profile
associated with the connection. As it is possible to notice from Fig. 4.2, the QoE
obtained by the allocation depends on the minimum bitrate allocated by the DQN
algorithm b1

k + Spi, i.e., the total bitrate available to the service i of class k.
The reward function shall then capture three cases:

1. The connection request is rejected (i.e., no AP allocates the connection).

2. The connection is allocated on an AP with low resource usage.

3. The connection is allocated on an AP that is already providing several other
connections.

To capture those three cases, the reward rt(st, at, st+1) obtained by the controller
with allocating a connection i of class k on AP p can be defined as

rt(st, at, st+1) =


−r0 < 0 if at = 0

rpk(b1
k + Spi) if lp(t + 1) ≤ 0.5

rpk(b1
k + Spi)− rsat if lp(t + 1) > 0.5.

(4.8)
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The negative reward −r0 represents a penalty given to the agent if the allocation
is rejected to capture the cost incurred by the network operator in failing to provide
a connection. The term rpk(b1

k +Spi) is a positive reward, shaped depending on k as
in Fig. 4.2, that captures the QoE of the new user, and the term −rsat is a negative
reward subtracted from rpk(b1

k +Spi) is case the new allocation is destined to an AP
whose saturation level is higher than the desired threshold (50% in our case). The
long-term maximization of this reward allows the network controller to maximize
the overall QoE of its users while keeping the connection rejection rate minimized.

4.4.4 5G NR and 4G LTE resource allocation description

In order to relate the physical resources that appear in the state definition with the
transmission bitrate needed by the reward function to estimate the QoE level, it is
now necessary to detail their relationships and how one translates into the other for
both terrestrial and satellite APs.

5G NR APs have a limited set of resources [3], both in terms of frequency
bandwidth and time to allocate UE requests. The minimum allocation unit for a
5G NR AP is the PRB, each composed of 12 frequency subcarriers with a 2µ × 15
KHz bandwidth and a time duration of 2−µ × 1 ms, where µ ∈ {0, 1, 2, 3, 4} is the
parameter called numerology defined by 5G NR standards [3].

For 4G LTE APs, the definition of PRB still stands, but the numerology param-
eter is constrained to µ = 0, so there is no flexibility in using less/more subcarrier
bandwidths and more/less time slot durations. Even if 4G LTE will likely to be
replaced by 5G NR in the next few years, it has been considered in this work since
it is currently the predominant radio access technology for mobile devices, and its
seamless integration in the multi-connectivity framework allows for more stable and
broadly available connectivity.

The receiving power, or RSRP, Pip that appears in the states of (4.6) represents
the transmission power measured by the UE i ∈ I between itself, and the AP p ∈ P

is computed as follows:

Pip = Pp ·Gp · Lp · Lip (4.9)

where Pp is the AP’s antenna power, Gp is the AP’s antenna gain, Lp is the AP’s
feeder losses, and Lip is the path loss between UE i and AP p.

In the simulations in Section 4.5, the path loss Lip is computed through the
COST-HATA model [93], which is a statistical model that considers many factors
as the building density (rural, suburban, urban), the carrier frequency used for the
communications, and the relative heights of UE and AP.

In order to estimate the number of resource blocks to be allocated by the AP
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p ∈ P for the communication with the UE i ∈ I, the Signal over Interference plus
Noise Ratio (SINR) has to be computed. The thermal noise part can be computed
according to

Np = kbT
envBpΘp (4.10)

Θp(t) =
∑

τ∈(t−T,t)
∑

j∈I\i Cjp(τ)Njp(τ)
T ·#Rp

(4.11)

where Θp(t) is the Resource Blocks Utilization Ratio (RBUR) of AP p at time t, kb

is the Boltzmann constant, T env is the environmental temperature, Bp is the total
bandwidth of the AP p, T is the length of the moving average, Cjp(t) is equal to 1
if UE j is connected to AP p at time t and 0 otherwise, and Njp(t) is the number
of PRB allocated to AP p to UE j, and #Rp is the total number of resource blocks
of AP p.

The interference part is computed as follows:

Iip =
∑

p′∈P,p′ ̸=p

Fpp′Pip′Θ′
p(t) (4.12)

where Fpp′ is 1 if AP p and p′ share the same carrier frequency and 0 otherwise.
Using (4.9), (4.10) and (4.12) it is possible to compute the SINR, and so it is

possible to estimate the data rate that can be transmitted by allocating one PRB
to UE i using the Shannon formula

rip = 2−µ10−3BPRB log2(1 + SINRip) (4.13)

where BPRB is the bandwidth of a single PRB, and it can be computed as BPRB =
12 · 2µ15 KHz.

Now, given a certain bitrate request bk from UE i requesting service of class k,
it is possible to compute the number of resource blocks to be allocated by AP p to
satisfy the request: nPRB

ip = ⌈(bk/rip)⌉.

4.4.5 Satellite resource allocation description

Contrary to ground APs, the satellite APs usually use TDM to serve multiple UEs
at the same time. In this case, the minimum allocation unit is a block of symbols
that occupies a certain time slot in the satellite time frame.

The receiving power Pip can still be computed as (4.9), but in this case, the
path loss function will be the Free Space Path Loss (FSPL):
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LFSPL
ip =

(4πdipf

c

)2
(4.14)

where dip is the Euclidean distance between UE i and AP p, f is the carrier frequency
used in the communications and c is the speed of light.

The thermal noise can be computed as in (4.10), and the interference can be
computed as in (4.12). Using the Shannon formula (considering that in the satellite
case the bandwidth used is the total bandwidth of the satellite AP since TDM
utilizes all the bandwidth for a specified amount of time inside the satellite time
frame), one has that the bitrate obtainable by a single block of symbols is:

rip = bB log2(1 + SINRip) (4.15)

where b is the ratio between the number of symbols in a single block of symbols
and the total number of symbols of the satellite AP. The number of blocks to be
allocated for a requested bitrate bk from UE i requesting a service of class k is then
computed as nblock

ip = ⌈(bk/rip)⌉.

4.5 Simulation results and validation

In order to demonstrate the effectiveness of the proposed approach, a simulative
environment has been built up according to the model definition previously intro-
duced.

4.5.1 Scenario definition

As shown in Fig. 4.3, a scenario consisting of four terrestrial APs (NR1 and NR2
are 5G NR APs and the remaining two are 4G LTE APs) and a satellite AP in a
2.5× 2.5 km2 area has been developed to demonstrate the proposed work.

In particular, for 5G NR access points, a carrier frequency of 1.7 GHz (band
n66) with numerology µ = 2 has been considered, while for 4G LTE access points,
a carrier frequency of 800 MHz (band 20) has been considered. All the terrestrial
APs have 20 dB power, 16 dB antenna gain, and 3 dB feeder losses. For the
satellite access point, the Inmarsat implementation of example 6.6.2 of [55] has
been considered. A total of 100 UEs has been considered in the given area. Each of
them follows, as described before, a Poisson distribution for requesting data with a
certain service type and for the duration of such requests; the parameters for each
service type are described in table 4.1. Moreover, the RL parameters have been set
as follows: γ = 0.9, ε0 = 1, ε−decay = 0.9995 and ε−min = 0.01. As for the DQN
parameters, a replay buffer of 2000 tuples, a batch size of 64 tuples, and the update
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Figure 4.3. Considered network scenario

Figure 4.4. Deep Neural Network architecture used for the simulations
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Elastic Non-elastic Multi-codec
Bitrate (Mbps) 10 200 100
Arrival rate (s) 2 6 4

Dwelling time (s) 30 120 90
Table 4.1. Parameters of the various service types

of target network weights every 50 steps have been considered. Finally, the Deep
Neural Network hidden layers, whose structure is represented in Fig. 4.4, have tanh
activation function, a learning rate of 10−4, and the network performs 4·104 training
steps before finishing the training. The training process and its testing using the
proposed radio access network simulator, run on an Intel Core i7 6700HQ machine
with 16 GB RAM. No dedicated GPU has been used for the training process since
the small size of the batches. Most of the computation complexity is, of course, in
the training process of the four hidden layers of the DQN network; once trained,
DQN has O(1) computational cost to compute the best action.

4.5.2 Simulation results

The results displayed in figures 4.5-4.11 will focus on the performance of the con-
troller in terms of QoS-flows allocation and their management. In order to validate
the results of the proposed DQN algorithm, a set of other approaches have been
simulated. In particular, a classical, tabular, Q-learning (QL in figures 4.5-4.11
approach has been simulated, together with a least loaded (LL in figures 4.5-4.11)
approach, where a new request will be allocated to the least loaded AP, and a Max-
RSRP (MR) approach, where a new request will be allocated to the AP with the
maximum receiving power. The Q-learning approach shares the same MDP repre-
sentation as the one presented for the DQN, except for the fact that the state-space
needed to be discretized so that the AP loads and the RSRP values contained in
the states in (4.6) were uniformly quantized into four levels.

The various controllers have been tested on the same scenarios to obtain fair
performance results. Moreover, to ensure more balanced experiments, the results
are the average between ten different scenarios, each tested by all the different
controllers. Finally, both the DQN and the QL controllers have been trained before
executing the simulations. Several metrics are shown to understand better the
performances of the controllers with respect to each other.

As it emerges from Fig. 4.5, the DQN controller outperforms the other con-
trollers in terms of rejection rate, even if both the Max-RSRP (MR) one and the
Q-learning (RL) one have similar results. This behavior is not surprising since the
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Figure 4.5. Overall rejection rate

Max-RSRP approach allocates requests to the AP with minimum path-loss, so the
number of requested physical resources will be in general lower, and the Q-learning
approach has a similar behavior w.r.t. the DQN approach, since the only difference
is in its finite state space.

Fig. 4.6 reports the rejection rate of each controller divided by service type. In
Fig. 4.6, it is possible to note how all controllers allocate a lower percentage of the
non-elastic service requests, whereas the LL controller shows a significantly higher
rejection rate for the elastic services.

In terms of bitrate, the DQN approach is found to be the best one, allocating
around 48 Gbit over the accepted incoming requests.

Fig. 4.7 details the allocated bitrate percentage with respect to the total re-
quested bitrate divided by service type.

The result demonstrates that DQN behaves almost in the same way as MR for
what concerns the elastic services, while it allocates about 6% more than the other
approaches for what regards non-elastic traffic and about 3% for what regards the
multi-codec requests.

In addition, from Fig. 4.8, which represents the average percentage of successful
allocations in each AP on all the requests made by the UEs, it is evident that the
least loaded controller is the one that better balances the load between the APs.
Despite its limited performances according to the other metrics presented, due to
its definition, it allocates requests to the least used AP at the given time instant,
resulting in an overall reasonable balance among the APs.

The other controllers appear to be less balanced when allocating resources, with
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Figure 4.6. Rejection rates divided by service type

Figure 4.7. Allocated bitrate percentage divided by service type
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Figure 4.8. Load distribution among each AP

one or two base stations being exploited more than the others. In particular, the
DQN controller relies heavily on the satellite base station to allocate incoming
requests, allocating about 30% of requests to this AP. DQN is hence the only
approach that fully exploits satellite resources, as the others tend to utilize mainly
the NR base stations.

Fig. 4.9 represents the QoE collected by each of the controllers. The values
for each controller are computed by summing the QoE gained by each request
according to the QoE profiles defined in Section 4.2 and then normalized on the
result obtained by the DQN controller. As expected, the Q-learning controller has
similar performances with respect to the DQN one, reaching the highest QoE level.
The performance gap increases when comparing a learning-based agent against the
other approaches.

Finally, Fig. 4.10 represents the QoE collected by each controller in case the
number of UEs is less than 100. From Fig. 4.10, it is possible to notice, as expected,
that the DQN controller is able to achieve better performances compared to the
competitor controllers when the number of UEs is smaller, while, if the number of
UEs increases, the network is more likely saturated, making the DQN, Q-learning
and MR approaches gain similar levels of QoE. In fact, the rejection rates of all
approaches increase as the network overload increases. However, the DQN and
the Q-learning controllers continue to prefer rejecting non-elastic traffic in favor of
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Figure 4.9. Cumulative QoE gained by each of the controllers with respect to DQN
controller

multi-codec and elastic service classes.
As shown in Fig. 4.11, the cumulative QoE of the DQN approach, normalized

with the QoE of the case with 100 UEs, still increases (in a sub-linear way) as the
number of UEs increases. This is because, even if the network is going towards
saturation, the controller is still able to allocate some more UEs w.r.t. the cases
with fewer UEs.

4.6 Conclusion

The work proposed a network controller based on deep reinforcement learning to
enable the integration of satellite systems into 5G heterogeneous networks. The
proposed controller dealt with the problem of network selection by formulating it as
a Markov decision process and was compared to several standard benchmark algo-
rithms. The proposed solution proved to be able to cope with large-scale scenarios
involving 100 different UEs.

For validation purposes, an open-source network simulator [51] that realisti-
cally captures the network resource usage of different radio technologies, including
satellite connections, has been developed.

Overall, the proposed controller improved the performance of the network, in-
creasing the connection-flow acceptance rate and providing better resource manage-
ment compared to the other methods tested.

Future works are related to the introduction of other unmodeled complexities
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Figure 4.10. Cumulative QoE with different numbers of the user equipment, normalized
on the corresponding DQN performance

Figure 4.11. Cumulative QoE percentage for DQN approach with different numbers of
user equipment, normalized on the DQN performance with 100 UEs
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in the simulator, such as user and access point mobility. Actor-critic algorithms
[89] will also be explored to enable the split of QoS-flows and multi-connectivity,
allocating a single flow over different access points at the same time.
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Chapter 5

Vision on 6G cellular networks
exploiting 3D-connectivity and
multi-RAT

This work gives a vision of 6G cellular networks architecture, which should comply
with new KPI requirements of 6G, by considering new opportunities given by UAVs,
HAPSs and LAPSs, that may act both as radio signal relay (i.e., just as signal
amplifiers to augment the radio coverage of fixed base stations) or even as mobile
base stations, that may cover remote areas or may change their position according
to local network saturations at the radio access level. Moreover, by using UAVs
and HAPSs/LAPSs it is possible to augment the current 2D radio coverage offered
by 4G/5G to a 3D connectivity (and in particular a hierarchical 3D connectivity
made up by Geostationary Earth Orbit (GEO)/Low Earth Orbit (LEO) satellites,
HAPSs/LAPSs, UAVs, and terrestrial APs).

These new ideas have been tested against the multi-RAT radio access network
simulator described in previous chapters to demonstrate the feasibility of the pro-
posed approach, which is strongly encouraged by both standardization bodies (e.g.,
3GPP) and literature on this research field.

5.1 Introduction

Coverage is a critical key performance indicator (KPI) when deploying wireless net-
works. Up to 4G networks, most of the efforts have been focused on increasing
link capacity while ensuring sufficient coverage in the two-dimensional (2D) plane.
5G with its multi-dimensional requirements adds more stringent constraints for,
e.g., mission-critical services with requirements on low latency and high reliability
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(URLLC), massive amount of devices (eMMB), range extensions, and on Opera-
tional Costs (OPEX) of the communication infrastructure. 5G allows exploiting
new opportunities by sharing the underlying infrastructure among isolated and self-
contained networks through the concept of network slicing. Moreover, starting
from the 4G-LTE all-IP architecture, the network offers communication coverage
and integration of cloud support. Nevertheless, services were offered on a 2D-
plane, and cloud services were conceived for data fetching/storage (over significant
distances between data centers and the users connected) and to provide services
(e.g., social media or instant messaging) to mobile internet users. Newly emerging
5G services ask for solutions going beyond this framework, including ubiquitous
coverage/capacity availability and service scalability adapted to new use cases, ap-
plication scenarios, and traffic conditions, which would be a tough challenge for the
one-network-fits-all 4G-LTE architecture.

While the availability of good terrestrial coverage has become common in densely
populated areas and regions, the underlying business model based on a flat fee per
user does not scale well in sparsely populated regions or areas with difficult orog-
raphy (e.g., islands, rugged mountainous terrain or off-shore). Worldwide mobile
network operators provide usually no, poor, or at best low-quality connectivity in
those cases, while the potentials of these regions can only be fully exploited when
providing connectivity for the digitization of their economic activities, e.g., smart
agriculture or mining. Relevant KPIs in this context are ubiquitous connectivity,
scalability, and affordability. Moving from 2D to 3D-coverage is an enabling solu-
tion, the third dimension resulting from placing network elements up into the sky
and space.

5.1.1 Cooperation among Terrestrial and aerial/spatial networks

Many recent research projects investigate the cooperation between terrestrial and
LEO satellite networks for 5G NR. Within the 3GPP framework, use cases and
associated system requirements for the satellite integration in the 5G eco-system
are specified and continuously updated by the working group SA1 in [94]. Stan-
dardization impact to the NR specification are studied in [95] [67], considering
Non-Terrestial Network (NTN) as an integral part of NR. The successful outcome
from these studies led to normative work in Release 16 specifying extensions to NR
for UAVs [96], HAPS and satellites based on well-defined channel models, deploy-
ment scenarios, and system parameters. Likewise, future 3GPP releases will focus
on solutions for RAN protocols and architecture.

The 5G AgiLe and fLexible integration of SaTellite And cellulaR (5G-ALLSTAR)
H2020 project [97] investigates multi-connectivity technologies that integrate cellu-
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lar and satellite networks to provide reliable, ubiquitous, and broadband services
for 5G NR. This is the follow-up of the first investigations on terrestrial with non-
terrestrial communication integration in the 5G CHAMPION project [98]. Multi-
connectivity requires significant innovations in the integration of millimeter-wave
(mmWave) 5G-NR-based cellular system with a NR-based satellite system, as well
as the adoption of spectrum sharing and interference management techniques. The
H2020 project VITAL addresses the terrestrial and satellite networks by enabling
Software Defined Networking (SDN) based, federated resources management in hy-
brid satellite-terrestrial networks. The H2020 project SANSA aims at enhancing the
capacity and resilience of wireless backhauling through the cooperation of terrestrial-
satellite networks. In these projects load balancing, efficient spectrum usage, im-
proved coverage, and link performance are sought.

HAPS [99] are unmanned aircrafts positioned above 20 km altitude, in the strato-
sphere, for very long-duration flights counted in years. Since the 1990s, many ini-
tiatives have been launched worldwide to explore potential applications, including
telecommunications services. HAPS offers wide area coverage with advantages com-
pared to satellites in terms of cost, ease of deployment/reuse and large payloads,
lower delays, and signal attenuation. Recently, Google’s Loon project has been
deploying a network of high-altitude solar-powered balloons that move using wind
jets. They embark regenerative payloads and inter-balloon communication links
and their network coexists with terrestrial LTE networks providing service to rural
mobile broadband users in areas where terrestrial coverage does not exist. Some
other operational HAPS with higher payload capacity (like Thales-Alenia’s Strato-
bus dirigible) are expected by 2021-2023.

At a lower altitude, drones are UAV that have the capacity of dynamically pro-
viding radio on-demand coverage exploiting embarked light base stations [100,101].
UAV’s and HAPS have received considerable attention [102] in terms of data traf-
fic management [103], network coverage enhancement [104, 105], improving quality
of service [106, 107], propulsion and transmission powers [108], latency minimiza-
tion [109], or exploitation of network access [110].

5.1.2 Hierarchical BS fleets for providing computing and intelli-
gence functionalities

Several works in the literature such as [108, 109, 111] and [105] propose different
architectures and mathematical models for 3D networks comprising multiple UAVs,
focusing in particular on the communication aspects such as data backhauling and
reduced latency, whereas the architecture that will be presented in this work fo-
cuses on joint communication, computation, and caching capabilities, which are
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considered as components of a single 3D system. Extending the use of UAV’s to
provide not only radio access, but also mobile computing functionalities is actually
considered a promising paradigm to satisfy on demand communication and compu-
tation requests, and deliver context-aware cloud services to mobile users. The first
attempt to host cloudlet processors on the UAV, is addressed in [112]. The tar-
get is to minimize the energy at the UEs while optimizing transmission data rates,
jointly with the UAV’s trajectory under latency constraints. In [113] the authors
include an edge computing scenario with aerial platforms and heterogeneous IoT
devices. A dynamic formulation appears in [114], where computation offloading is
handled with Stochastic Optimization tools having energy consumption as a goal
while optimizing the trajectory of UAVs. In [115], a dynamic online strategy jointly
allocates communication and computation resources, while selecting the vehicle’s
altitude, with the aim of minimizing the system energy and satisfying latency con-
straints. The work in [116] introduces Fog Computing into a swarm of drones,
with the aim of handling computation-intensive offloading of tasks. In [117] the
sum power consumption is minimized for a multi UAV-enabled Multi-Access Edge
Computing (MEC) network.

According to this novel vision, research is needed to investigate solutions in
realistic scenarios in which 3D services are supported by a hierarchical fleet BS em-
barked in UAVs, HAPS, and LEO satellites, each having its own specific features
in terms of payload, flight autonomy, mobility, service coverage time, altitude, re-
visit time, computation, storage, coverage area, link power budget, etc. In such
a challenging context, ensuring end-to-end service continuity for ground users or
users moving in the 3D space entails rethinking the mobility management mecha-
nisms incorporating proactive allocation of the content, smart proactive caching of
recurrent computational results [118], instantiation of virtual machines, interference
management and joint handover between radio access points and mobile edge com-
puting hosts. This will require the development of a fast live migration of the light
virtual machines, e.g., dockers, and an extension of Network Function Virtualiza-
tion (NFV)/SDN orchestration schemes to make them more inclusive with respect
to the types of network nodes and also faster to support the mobility of both user
terminals and network elements.

Artificial intelligence (AI) can help to solve these issues. The last decade has
witnessed rapid progress in the field, driven by the increased computational capacity
of computers and the wide availability of data sets. In end-to-end communications,
ETSI Experiential Network Intelligence (ENI) group investigates how 5G networks
can leverage AI to achieve autonomous, and thus cost-effective, slice management
and orchestration. Inspired by the success of AI in solving complicated control
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Figure 5.1. Hierarchical 3D Network System Architecture

and decision-making problems, distributed AI approaches are enablers to allow the
network functionalities to learn about the network and take the best decisions ac-
cordingly.

Looking into the predictions of new technologies and services for the next decade,
there is a clear need to move beyond 2D service coverage to truly 3D native services.
6G networks will enable end users moving in the 3D space to perceive a surrounding
“huge artificial brain” offering virtually zero-latency services, unlimited storage, and
immense cognition capabilities [119]. To match this vision, future 6G networks will
seamlessly incorporate terrestrial, aerial, and satellite radio access points to teleport
on demand cloud functionalities where and when the intelligence support is needed
in the 3D space.



5.2 System Architecture 70

5.2 System Architecture

Hierarchical 3D networks with multiple and heterogeneous types of flying layers
are key to provide enhanced 2D services [120] and to 3D native services including
connectivity and intelligence support. Fig. 5.1 illustrates a high-level architecture
of the hierarchical 3D networks unifying diverse 3D network nodes distributed over
ground and flying layers. Different types of aerial nodes such as UAV, and more
generally LAPS, HAPS and LEO/GEO satellites are located on different flying
layers. Since aerial nodes can be equipped with on-board computation/storage
capabilities, they can serve as 3D Base Stations, alone or in swarm formation, or 3D
relay, which comprises an integrated access and backhaul (IAB) based hierarchical
3D networks. Although the current IAB standardization in 3GPP focuses on the
ground network, in 6G, it will be extended to air and space networks as well as their
integrated network.

Low and high-altitude platforms have several key potential applications in wire-
less communication systems due to their high mobility, flexibility, adaptive coverage
capacity, and low cost. Equipped with MEC servers, these aerial vehicles can pro-
vide opportunities for ground mobile users to offload heavy computation tasks, and
then after computation, the mobile users can download the computation results via
reliable, cost-effective wireless communication links, as well as download each kind
of needed content. The proposed integrated 3D architecture enables the boosting
of Command, Control, and Communications (C3) performance in areas with exist-
ing infrastructure, and provides a network infrastructure for C3 services in areas
without coverage. 3D connectivity services exploit the flexibility to accommodate
a wide spectrum of applications ranging from two-way telecommunications (e.g.,
interactive 3D video, 3D intelligent services), to remote sensing, pollution monitor-
ing, meteorological measurements, real-time earth monitoring, traffic monitoring,
control, land management, and agriculture.

Connectivity of UEs, BS, and relays placed on different flying layers might lead
to much larger connectivity handover instances, mainly due to the difference in
heights and speeds of nodes belonging to different flying layers. A today’s open axe
of research for offering 3D service continuity and handover instance minimization is
the cross-layer harmonization of selected UAV, HAPS and satellite placement and,
the optimization of flying trajectories. In addition, already in 2005, NASA proposed
the vision of a Space Wide Web network, where messages can hop between interme-
diate nodes to reach close planets having each orbiter, rover, space-borne telescope,
and any other skyward-launched device working as a node of the 3D network [121].
At the horizon of 2030, with 6G, 3GPP standards will not go so far. Nevertheless, an
Sky Wide Web or Internet of Sky might be already possibly interconnected with 6G
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non-terrestrial 3D networks. In this hierarchical 3D network, 3D multi-connectivity
will allow UEs to establish multiple different traffic links with 3D network nodes,
thereby significantly improving the service performance of the UE with a dynamic
load balancing scheme over the established links. This, however, requires specifically
designed highly efficient, and intelligent control and management of 3D layers.

In our view, future 3D system architectures will apply network slicing not only
across terrestrial nodes as it is designed for 5G networks but also across non-
terrestrial nodes to facilitate different use cases and services provisioned in 3D space.
The proposed architecture shall then be able to offer services that go beyond pure
connectivity and at the same time offer deep customization of connectivity and
intelligent mobile network services at different granularity levels, spacing from ded-
icated slices per data of users, to slices per individual and groups of users and to
slices dedicated to 3D applications and 3D sub-networks. This will require a new
adaptable Midhaul for an era of services that goes well beyond the services of to-
day’s 5G networks and the ones envisaged in most studies that focus on integrating
UAVs into 5G networks.

AI-based approaches for network control also play a pivotal role in intelligent
routing selection across 3D network layers and load balancing. For this reason, the
proposed architecture shall be able to provide network intelligence capabilities at
various levels and also entail device-to-device (D2D) communication, which may be
enhanced by the addition of the new dimension and moving network equipment such
as UAVs. In 3GPP, the first version of NR sidelink for the support of advanced V2X
applications has been developed in Rel-16, and in 3GPP Rel-17, sidelink-based re-
laying functionality will be studied on top of the Rel-16 sidelink specification for the
purpose of sidelink/network coverage extension and power efficiency improvement.
In 6G, device-to-device (D2D) communications will be further extended to 3D lay-
ers, which could have great potential in facilitating a wider range of applications
and services such as the next-generation intelligent transportation services.

5.2.1 Terrestrial and Non-Terrestrial Networks

Since many years, researchers have been advocating solutions for a converged inte-
gration of terrestrial and satellite communication into handheld devices and mission
control centers [100], which ranged from Over-The-Top multi-RAT approaches [122]
to fully unified air-interfaces [123]. Conducted field trials with e.g. adapted 4G-
LTE system parameters [124] proved feasibility but only recent advances in 5G-NR
standardization [67] finally bring commercial impact into graspable reach.

Continuous efforts were made by the satellite community to engage and con-
tribute to the 3GPP process, which was focused on land mobile networks for decades.
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The inclusion of NTN use cases and deployment options into the 3GPP technology
feature roadmap is a best practice example of how vertical industries can actively
push boundaries and get vital technologies included in an evolving standard. Initial
skepticism by many critics was overcome by a gradual approach, first to study the
impact from NTN use cases on 5G-NR and to provide suitable channel models [67]
and simulation assumptions [125] matched to the well-established 3GPP evalua-
tion procedures and, after successful completion, continued with nominal work in
Release 16 and 17.

The 3D component is new territory for network design, in particular when as-
pects and KPIs like e.g. coverage, capacity, reliability, interference, and mobility are
to be extended and evaluated in 3D. It is expected that providing ubiquitous con-
nectivity in 3D will require significant changes in architecture, function placement,
and network node design beyond the current approaches for terrestrial 5G base sta-
tions and satellites deployed or launched today. One example is MEC placement in
a LEO satellite network to provide, e.g., a virtual private network slice for maritime
or air fleet applications with low latency service requirements. MEC placement
may require fundamentally new approaches to dynamic allocation of computation,
caching, and communication resources on LEO nodes, including inter-node connec-
tions in space and between space and ground. Thus, the standardization impact
goes beyond 3GPP and will touch standardization groups in charge of MEC, SDN,
Fronthaul, and other interfaced involved to build a fully functional communication
network.

Latest satellite network deployments will increasingly populate the LEO at 500-
1000 km altitude. Various corporations and consortia e.g. Amazon’s Project Kuiper,
OneWeb, Telesat, or Elon Musk’s Starlink plan to provide internet services from
2021, with current deployments ranging from a few dozen to hundreds of satellites,
some targeting more than 10.000 in the future. Bend-pipe satellites keep flexibil-
ity for air-interface selection, e.g. DVB S2X or LEO adapted variants of LTE,
NB-IoT or 5G-NR. On the other hand, onboard signal processing help to reduce
e2e latency, in space packet routing and MEC. This will further open the existing
satellite ecosystem toward interoperability and scalability in market size on-chip,
module, device, and signal processing platform manufacturers, system, and ser-
vice provider levels. Since satellite networks provide coverage footprints beyond
the boundaries of countries or continents, infrastructure and spectrum sharing will
become increasingly important for cost and spectrum-efficient deployment and op-
eration of terrestrial and NTN including VLEO, cube sats, and HAPSs.
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5.2.2 UAVs as Radio Access Network

Instead of connecting UAV with an existing RAN for control and communication
from on-board equipment and/or sensors, UAVs may serve as deployed base sta-
tions or provide relaying functionality between devices and base stations of the RAN.
Prominent examples of flying base stations for emergency networks or networks in
remote areas are Google’s Loon project [126] or unmanned airplanes supporting a
larger coverage area while moving above the targeted coverage area at an altitude of
10-20km. Alternative approaches consider drones at very low altitudes of 10-50m to
provide extra capacity at hotspots [127] e.g. during large public gatherings. Consid-
ering non-stationary positions and a varying number of infrastructure components
e.g. UAV mounted base stations to provide an extended cellular coverage, such
dynamic topology with all its flexibility comes at the cost of additional features at
the RAN side to be standardized. So far, moving base stations and/or networks
have been tested and deployed in relative isolation, using proprietary interfaces in
particular for backhaul and interlinking between several base stations using line-of-
sight links over potentially hundreds of kilometers with mmWave or laser technology.
For a wider acceptance in co-existence with terrestrial RAN deployments, further
studies have to be made beyond the ongoing discussions for 5G-NR.

5.3 From 5G NR 2D Enhanced Services to 6G 3D Ser-
vices

In this section, we focus on the coverage extension from 2D to 3D. First, we analyze
the benefits of the inclusion of aerial devices in terms of connectivity. Then, we move
to the service level, highlighting the need for moving to a holistic approach that looks
at communication, computation, and caching as components of a single system.
We distinguish between 2D services involving devices on the ground potentially
benefiting from 3D connectivity, and 3D services involving devices on the ground
and in the air. We discuss these aspects also from the point of mobility management,
handover and live migration of virtual machines and, control of C3 services. Finally,
we focus on the importance of including artificial intelligence mechanisms to design
a cost-effective system, able to incorporate proactive mechanisms and learn from
online observations.

5.3.1 3D Connectivity

Including UAV-based devices in wireless communication networks provides a cost-
effective solution to improve connectivity, especially if the data traffic is non-homogeneous
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and non-stationary, i.e. it is expected to be highly varying across space and/or time.
In such a case, a fixed infrastructure is highly ineffective, for both CAPEX and
OPEX expenditures. As in many real-world situations, the opportunities offered
by the UAV-based devices come along with several challenges. To highlight these
challenges, it is first necessary to classify the role that UAV-based devices can play
in the network. The UAV devices may act as flying bases stations (UAV-BS), as
flying user equipments (UAV-UE), and as flying relays (UAV-R).

The UAV-BS brings connectivity to mobile devices on demand. The challenges
come from the nature of the UAVs. HAPS have sufficient energy availability and
are typically supported by solar-powered batteries so that they are able to support
continuous coverage for a long time. They can typically be used to support long-term
coverage purposes. On the contrary, the support of coverage in highly time-varying
situations is better handled with LAPS, which can be flown on the spot of interest on
demand. However, LAPS have very limited energy availability and can hover over
a given area for a relatively short period of time. This means that flight and energy
constraints should be taken into account in allocating the resources of the network.
The limited weight payload that can be placed on a LAPS suggests the use of higher
frequency bands, e.g., mmWave bands, to use smaller size antennas and to achieve
better spectral efficiency. However, the use of mmWave links faces the problems of
link attenuation, in case of rain, and blocking effects. To reduce link attenuation it is
necessary to limit the coverage area, possibly flying at the lowest permitted altitude.
However, flying at low altitudes increase the probability of blocking. Momentary
blocking severely impacts also the reliability of high-capacity radio links and the
MEC-assisted service continuity [128]. In 2D networks, the detrimental effects of
blocking are reduced using multiple RATs or multiple interfaces of the same RAT.
The adoption of 3D connectivity to enhance the performance of 2D networks brings
interesting new opportunities and challenges to be solved [102] for the next decade
in 5G and beyond 5G networks. The selection of the altitude plays a key role.
Intuitively, the higher the altitude, the larger the coverage offered by the platform
and the lower the chance of suffering shadowing effects, due to favorable Line-of-
Sight propagation conditions. However, high altitudes also imply larger distances
and then higher attenuation. The altitude has then to be carefully selected, also
depending on the distribution of the UE’s [115].

To enable the several applications of UAV-assisted services, the UAV’s needs to
communicate with the existing wireless network, either cellular or Wi-Fi. In such
a scenario, the UAV’s acts as the UEs of the wireless networks. The UAVs can
also act as UEs in applications such as delivery drones, real-time surveillance, and
UAV-assisted transportation networks. In this case, we have a really 3D service
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exploiting a 3D network architecture. An interesting example of 3D service is a
virtual reality scenario, where the UAV flies over a location of interest carrying
a 360-degree camera, which is controlled by the end-user equipment to select the
view angle specifying which part of the video needs to be transmitted with sufficient
quality. To handle these 3D services properly, it is necessary to handle the inter-
ference that UAV-UEs can bring to the terrestrial UEs. Typically, the antennas of
current terrestrial BSs are designed to handle an essentially 2D coverage problem,
so that the radiation patterns are usually attenuated at high elevation angles. As
a consequence, the communication between UAV-UEs and conventional BSs typi-
cally relies on sidelobes or back lobes of the BS antenna. Clearly, a better design
involves a proper redesign of 3D beamforming at the BS, able to track the UAV-
UEs. In [129], 3GPP specifies new BS antenna design and cellular communication
techniques for UAV coverage up to the maximum altitude of 300 m. Most likely, it
will be necessary for the BS to distinguish between the aerial and terrestrial UEs,
to handle them separately.

Finally, UAV devices can act as relays (UAV-R) to provide backhaul the connec-
tivity between the terrestrial/aerial UEs and the terrestrial/aerial BSs. In such a
case, a key challenge is to devise effective cooperative communication strategies that
take into account the mobility of aerial devices. In principle, one could make near
distance UAV devices operate as a huge virtual antenna, with also the possibility to
adapt the shape of the constellation by making the UAVs move as needed, provided
that the resulting synchronization problems are properly handled. In general, using
the UAVs as wireless relays can boost (on demand) the link quality between the
ground BSs and the terrestrial UEs, but it raises also an interference issue towards
the neighboring BSs that should be handled consequently.

5.4 Dynamic Resource Management for 3D Connectiv-
ity

5.4.1 Multi-RAT Connection Admission Control

Mobile nodes acting as embarked relays or BSs in UAV can handle sporadic con-
gestion events in the radio access network occurring in specific areas, by offloading
communication and MEC traffic from the fixed terrestrial links (from the protocol
stack viewpoint).

This scenario impacts on connection admission control (CAC) algorithms which
now have to consider not only UE mobility, but also the mobility of the AP. To
show the capacities of this new scenario, a simulation study made through an ad-
hoc open-source 5G network simulator [51] is presented, in which the multi-RAT
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Numerology (µ) Subcarrier spacing (KHz) Timeslot length (ms)

0 15 1
1 30 0.5
2 60 0.25
3 120 0.125
4 240 0.0625

Table 5.1. Subcarrier bandwidth and timeslot length for the various numerologies (table
4.3.2-1 and 4.2-1 from [3])

simulation environment is composed of one type of fixed RAT, provided by a satellite
cell, and two types of mobile RATs: a 5G NR mobile relay node and a 5G NR mobile
BS.

Besides the fact that the admission control must be capable of handling mobile
APs in a 3D environment, the key to the success is the readiness for intervention.
Based on traffic and mobility data, AI algorithms are needed to foresee when and
where traffic peaks are going to occur for UAV to reach the identified area timely.

5.4.2 Resource allocation

The resource allocation process differs depending on the RAT. For 5G NR RATs,
we consider the Type 1 frame structure defined by 5G NR standards, which uses
Frequency Division Duplexing (FDD) for both downlink and uplink, with minimum
allocation unit defined as PRB. A PRB, as mentioned before, is composed by
12 frequency subcarriers, whose bandwidth depends on the numerology µ [3], as
represented in table 5.1. The NR frame structure is composed of 10 ms frames, in
turn, composed by a number of time-slots depending again on the numerology µ.
Each RB is made by 12 or 14 Orthogonal Frequency Division Multiplexing (OFDM)
symbols (respectively with extended and normal Cyclic Prefix).

A different number of PRBs is defined for each channel bandwidth, depending
on the frequency band used (either FR1 [53] or FR2 [54]), and on the subcarrier
bandwidth.

Once the UE requests a bitrate to an NR RAT, the AP computes the required
number of PRBs. Firstly, the AP computes the SINR for the UE. The inter-
AP interference is estimated as in equation (4.12). The data rate which can be
transmitted by a single PRB is computed using Best Modulation Coding Scheme
(MCS) [130] with the Shannon formula: rij = BRB log2(1 + SINRij), where BRB is
the bandwidth of a single PRB (i.e. 12 · 15 · 2µ kHz). Finally, the number of PRB
needed to satisfy UE requirements is
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nij =
⌈

Ri

rij

⌉
(5.1)

If the relative position between the UE and the AP changes, the SINR changes,
and the number of allocated PRB to the UE has to be updated.

As detailed in section 4.4.5, the simulated satellite RAT uses TDM for concurrent
UE access. Given a time frame, a certain number ntot of symbols are available to
the UE transmissions. Moreover, for each time frame, part of the symbols is used for
synchronization purposes (nsync), each communication contains a header (of length
nhead) and there is a guard space of nspace symbols between each communication to
avoid intra-RAT interference. The simulated satellite is an Inmarsat implementa-
tion, with ntot = 120832 symbols, equivalent to a time frame of 2ms, nsync = 288
symbols, with 2 synchronization messages inside the time frame, nhead = 280 sym-
bols for each UE communication, nspace = 64 symbols, nslice = 39104 symbols, that
are about a third of the total symbols, nblock = 64 symbols. [55] The data rate that
can be obtained by a single block is obtained from the Shannon formula, and the
number of blocks to be allocated to satisfy the UE request Ri is computed as in
equation (5.1). The actual integer number of symbols occupied by an UE are equal
to n̄ij = nhead + nij + nspace.

5.4.3 Simulation Setup

The environment is represented by a 4 Km × 4 Km grid containing 50 UE, a single
satellite AP, and two mobile 5G NR APs. Each UE requires a bitrate of 10 Mbps,
its starting position is randomly computed and it moves on a straight line with a
random direction at a speed of 10 m/s. We also consider the service is interrupted
if the bitrate falls below 5 Mbps. The satellite AP is geostationary and uses a
carrier frequency of 28.4GHz with 220 MHz bandwidth [57]. Its antenna Equivalent
Isotropic Radiated Power (EIRP) is 62 dBw [56]. The path loss considers both the
FSPL and the atmospheric loss (0.1 dB) and the user terminal G/T (-9.7 dB/K).
The mobile 5G NR APs transmit a power of 15W, have an antenna gain of 15dB, a
feeder loss of 1 dB and at 800 MHz carrier frequency with a bandwidth of 100 MHz
and with numerology µ = 2.

The connection procedure consists of the following steps: (i) the UE measures
the receiving power of the APs within its range; (ii) the UE chooses the AP to be
connected to according to the received power with a User-Centric, RAN-Controlled
or RAN-Assisted approach; (iii) upon communications with the UE, the AP allo-
cates the resources based on the SINR in a best-effort basis. Due to the dynamicity
of traffic and network elements, connection updates are required following the same
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Figure 5.2. Simulation scenario 1: a) Final position of APs and UEs; b) load of the
satellite AP and of the mobile APs; c) number of UE connected to the satellite AP and
to the mobile APs; d) average transmission bitrate of the UEs.

procedure. The measured received power depends on the characteristics of the an-
tenna of the generic AP j and on the path loss from the antenna to the UE i,
i.e., Pij = PjGjLjLij , where Pj and Gj are the antenna power and gain, and Lj

and Lij represent the losses at the antenna side and the path loss between UE i

and AP j, respectively. The received power depends, via the path loss Lij , on the
relative positions of UE i and AP j. The simulated path loss model of the satellite
RAT is the free space path loss, whereas for terrestrial RATs (5G NR) we chose the
COST-HATA [93] path loss model. If a UE measures a receiving power lower than
a threshold Pmin for a certain AP, then the AP is considered not visible by the UE.

5.4.4 Simulation Results

The simulation scenario shows how the use of mobile nodes can solve the congestion
of fixed APs and assure service continuity. The initial height of the two mobile 5G
NR APs is 200 m and they are far from the UE positions, which in turn can only
be connected to the satellite.

In the first scenario, represented in Fig. 5.2, initially, the satellite AP is con-
gested, i.e., all of its resources are assigned to the nearby UEs but the requests
cannot be all satisfactorily fulfilled. As the simulation goes on, the two mobile 5G
NR APs move towards the UEs and reduce their height to 150m. As shown in Fig.
5.2d, the average bitrate assigned to the UEs is initially equal to about 7 Mbps,
below the requested one, due to the congestion of the satellite AP. The mobile APs
approach the UEs and reduce their height. As a result, some UEs within range start
connecting to the mobile APs, performing a handover from the satellite AP to the
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Figure 5.3. Intervention of mobile BSs in the area covered by a BS and a satellite spot.
The final position of APs and UEs is shown.

mobile APs. The figure shows that, from time 90 on, the congestion of the satellite
AP is solved, and all the UE requests are fulfilled.

The UEs start communicating at a random time causing the satellite AP load
to increase with time. With no mobile nodes available, the satellite AP eventually
becomes congested, and new UE service requests are rejected, as shown in Fig.
5.4. Moreover, some of the UE bitrates fall below 5 Mbps, causing connections’
drops and service interruption, as in Fig. 5.4b. On the contrary, if UAV APs are
available, as in Fig. 5.5, the UEs start connecting to the mobile APs. In this case,
no UE has to interrupt the service, and service continuity is granted, maintaining
the connections at 10 Mbps for the whole simulation time as well as maintaining all
the UEs connected to some AP.

5.5 Conclusions

The nature of new applications in the next decade and the desire for ubiquitous
availability will most likely require technologies supporting truly 3D on-demand
services, rather than today’s 2D service coverage.

In this view, while the integration of terrestrial with NTN for 2D service en-
hancement will come as a natural evolution of 5G, providing on-demand connectivity
and edge intelligence to support truly 3D services will not come before 6G.
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Figure 5.4. a) Load of the satellite without the mobile AP. b) Number of UEs connected
to the satellite.

Figure 5.5. a) Load of the satellite and of the mobile APs. b) Number of UEs connected
to the satellite and to the mobile APs.
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In this work, an in-depth overview of a future hierarchical 3D network architec-
ture where heterogeneous flying devices, providing different levels of mobility, cov-
erage, and service level has been provided, enabling revolutionary new on-demand
connectivity and intelligence support.

Today, NTN use cases are already being considered for new features and tech-
nology extensions in the 3GPP standard releases 16 and 17. On the roadmap for 5G
NR, the integration of terrestrial and non-terrestrial networks will enable global 5G
service enhancements and new functionalities. Beyond release 18 up to 6G, further
extensions of 3GPP and other standardization bodies will enable advanced dynamic
and meshed interconnection and relaying between NTN-nodes and MEC placement
in the 3D space.

Some fundamental challenges remain open for future research. Promising in-
novation directions have been highlighted, like on-demand distributed C3 support,
3D-interference management, 3D-multi-link load-balancing and admission control,
live intelligence handover and migration mechanisms, and AI-based joint orchestra-
tion of C4 distributed resources in the 3D-space.

Moreover, it has been shown how additional 3D nodes can effectively be exploited
to dynamically handle network congestion, e.g., by using drones as on-demand mo-
bile relay nodes or mobile BSs, to offload traffic from the fixed terrestrial links
and/or to provide an extended opportunistic cellular coverage. New admission con-
trol procedures are thus needed to cope with the extended 3D network topology
and, specifically, with the increased network handover occurrences implied by the
dynamic 3D network.
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Part II

Applicative scenario of
next-generation cellular

networks
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Chapter 6

Fundamental concepts of
Frequency Regulation in
Electricity Grids

Among the many applicative scenarios of 5G and 6G cellular networks, this the-
sis deepened the application of next-generation cellular networks to the control
and operation of electricity networks, and in particular smart grids. Indeed, next-
generation cellular networks may enable completely new kinds of services on the
smart grids, that were unfeasible from a technical or an economical point of view
up to now with 4G LTE networks.

Among the many scenarios involving smart grids and 5G/6G, this thesis focuses
on the provisioning of Frequency Regulation Services to the electricity network by
exploiting Ultra-Reliable Low-Latency Communication (URLLC) slices of the next-
generation cellular networks. Indeed, these kinds of services require very strict time
constraints for their activation (up to 300 ms according to [2]), which are usually
much faster than traditional time constants of the electricity network (5-15 minutes).

In this chapter an introduction to the problem of Frequency Regulation in Elec-
tricity Grids is detailed. In particular, the mathematical relation between the me-
chanical power provided to a synchronous generator and the electrical power re-
quested to it is detailed, showing the effectiveness of aggregation of flexible loads in
the participation to frequency regulation services.

6.1 Introduction

Power networks are nowadays composed of different entities that participate in the
generation, transportation, and dispatching of energy to customers. In particular,
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in traditional power networks, such entities had separate and precise tasks, i.e.,
generation companies are in charge of producing energy and providing regulation
services to the network; TSOs are in charge of transporting the energy (with high-
voltage lines) from the generation points to the primary substations, ensuring the
safe operation of the electricity grid by requesting regulation services to the gener-
ators; Distribution System Operators (DSOs) (or very big customers) are in charge
of distributing the electricity from the primary substations to the final customers
(or to their plant in case of very big customers).

Nowadays, the electricity grid (and in particular, for the European context, the
European Association for the Cooperation of Transmission System Operators for
Electricity (ENTSO-E)) opened up the possibility for final customers to participate
with a significant role in the electricity grid operation, starting from distributed gen-
eration (e.g., with small/medium-size renewable energy sources) to the contribution
in the provisioning of regulation services for the electricity network.

Among the many regulation services requested by the TSO for the safe operation
of the network, one of the most crucial ones is Frequency Regulation. Indeed, as
detailed in Section 6.2, the frequency of the electricity network should be kept at
the constant value of 50 Hz (60 Hz for the U.S.A. and a few other countries) in
order to avoid damage to the synchronous generators present on the network, on
the transmission and distribution lines and on the final customers’ appliances.

Traditionally this kind of service is provided only by generation companies by
some control loops on their synchronous generators. Moreover, with the increasing
penetration of non-synchronous renewable energy sources (e.g., photovoltaic) which
rely on inverters to produce energy instead of synchronous generators, the inertia of
the electricity grid decreases over time, thus increasing the effects of electricity net-
work frequency disturbances and so increasing the control effort needed to provide
frequency regulation services.

In this regard, as will be detailed in the next sections, it is in principle possi-
ble to contribute to the frequency regulation services also at the customers’ side,
reducing the control effort requested to the synchronous generators. Indeed, the
relevant regulatory bodies (ENTSO-E for the European Electricity Network, but
also ARERA for the Italian Electricity Network) started to deploy pilot projects [2]
for opening the ancillary service market (that includes also frequency regulation
services) to other entities rather than generation companies (i.e., final customers or
aggregators with a certain minimum contractual power).
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Figure 6.1. Simplified scheme of a Synchronous Generator

Figure 6.2. Rotor angle of a synchronous generator with respect to the slack node

6.2 Synchronous Generators and Frequency Regulation

A Synchronous Generator (depicted in Fig. 6.1) is an electrical machine that is made
for generating alternate current with a frequency that is proportional to the rotation
speed of the rotor. The rotor, namely an electromagnet, rotates with respect to the
stator (that is fixed and contains the coils where the alternate current for the three
phases is generated) thanks to the mechanical torque provided to the stator by some
mechanical energy source (e.g., steam, water, wind).

Each synchronous generator has a certain rotor angle δm with respect to one
synchronous generator that is considered as a reference (namely, the slack), as
depicted in Fig. 6.2, and both of the generators rotate at nominal angular speed
ωsm.

For each generator the following equation holds:

J
dωm

dt
+ Ddωm = τt − τe, (6.1)



6.2 Synchronous Generators and Frequency Regulation 86

with J the moment of inertia of the turbine, ωm the rotor shaft mechanical angular
speed, Dd the mechanical damping coefficient, τt the mechanical torque applied to
the rotor shaft, and τe the electromagnetic torque.

At steady state the mechanical angular speed is equal to the synchronous angular
speed ωsm, thus

τm = τt −Ddωsm = τe. (6.2)

Given such a state, if an imbalance between τm and τe appears, then the rotor
shaft will accelerate/decelerate in its rotational speed, with a certain ωm defined as

ωm = ωsm + dδm

dt
. (6.3)

If δm is constant, then ωm = ωsm (i.e., no imbalance between τm and τe).
Moreover, since the inertia of the power network (due to the inertia of all the
generators’ rotating masses connected to the electricity grid) and the frequency
control loops on board, which try to keep δm always constant, the second term of
(6.3) is almost equal to 0

dδm

dt
≈ 0. (6.4)

Substituting (6.3) in (6.1), the following is obtained:

J
d2δm

dt2 + Dd

(
ωsm + dδm

dt

)
= τt − τe, (6.5)

and then by adding 6.2

J
d2δm

dt2 + Dd
dδm

dt
= τm − τe. (6.6)

By multiplying all members by ωsm the following is obtained:

Jωsm
d2δm

dt2 + Ddωsm
dδm

dt
= ωsm

ωm
Pm −

ωsm

ωm
Pe. (6.7)

Given the hypotesis of equation (6.4), i.e., ωsm
ωm
≈ 1, (6.7) becomes

Mm
d2δm

dt2 + Dm
dδm

dt
= Pm − Pe. (6.8)

From equation 6.8, which describes the behavior of the rotor shaft angle δm

with respect to the mechanical power provided to the rotor shaft and the electrical
power requested at the stator coils, it is possible to regulate the electricity network
frequency (i.e., the rotor angle speed d2δm/dt2 of each synchronous generator) by
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modulating the mechanical power Pm at the rotor shaft (i.e., what it is traditionally
done by control loops installed on-board of the generators themselves, usually by
the means of a PID controller), or by modulating the active power Pe requested to
the generator (i.e., the customers’ electricity power request).

This means that, by modulating the electric load of the customers (i.e., by the
means of an aggregate of flexible loads), it is possible to contribute to the frequency
regulation services of the network. Of course, the amount of electrical power re-
quired to have an effect on the power network is quite high (due to the network
inertia), so only appropriate aggregates of flexible loads could effectively participate
in this type of service (according to [2] the minimum power to be guaranteed to the
TSO for frequency regulation services is 1 MW).
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Chapter 7

Frequency Regulation in
Electricity Grids using Plug-in
Electric Vehicles and 5G
networks

In this chapter, an architecture for using an aggregate of PEVs as flexible loads for
the provisioning of Frequency Regulation Services, by exploiting URLLC capabili-
ties of 5G NR and the presence of MEC at the edge of the 5G radio access network,
is detailed.

Indeed, as seen in the previous chapter, aggregation of (high-power) flexible
loads may help in the regulation of the electricity network frequency. Charging
PEVs are very appropriate for such task since their charging power goes from a few
kilowatts to hundreds of kilowatts and it is possible to regulate their charging power
quite easily (according to standards such as IEC 61851 for AC charging sessions and
ISO 15118 for DC charging sessions). Aggregating many charging PEV it is possible
to reach the minimum power to participate in frequency regulation services, but the
measurement of electricity network frequency according to the requirements of [2]
could make this approach unfeasible, due to the high cost of accurate frequency
meters. The capabilities of 5G networks in terms of latency and the possibility
of having some intelligence at the edge of the 5G radio access network (in the 5G
MEC) enables the possibility to install a limited number of frequency meters (even
just one, if no redundancy is needed), and then spread the frequency measurement
to each PEV/charging station (CS) to provide frequency regulation services (i.e.,
by changing their charging power setpoints according to the measured electricity
network frequency)
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This work considers the requirements from [2] and is going to be implemented
in the context of the European H2020 project 5G-Solutions [131], and in particular
for the Smart Energy use case.

A detailed system scenario and objectives are discussed in Section 7.2 and some
possible algorithms for the computation of the power-frequency (droop) curves of
increasing complexity are defined in Section 7.4. Moreover, a detailed delay budget
analysis has been performed to ensure the technical feasibility with respect to the
requirements of [2].

7.1 Introduction

The safe and efficient operation of a power system strictly depends on two physical
quantities: the frequency and the voltage level of the network [132]. The deviation
of frequency and voltage from their nominal values is the effect of disequilibrium
in terms of active and reactive power in the network. The so-called ancillary ser-
vices are then designed for the injection/withdrawal of active and reactive power
to balance the power mismatch. The evolution of the electricity network system
and the spread of active components [133], make the involvement of new actors and
technologies in the provisioning of ancillary services possible. The growth of elec-
tromobility in the last decade has pushed the scientific community and the power
system stakeholders to develop new control strategies and concepts in order to im-
prove and implement new paradigms to ancillary services. The high penetration
of Renewable Energy Sources (RESs), with the associated transition of the power
systems from synchronous-machine-based systems to inverter-dominated systems,
pushed the development of the virtual inertia concept, in which also the inclusion
of PEVs is expected to play an important role [134]. From this trend, several works
that explore the potential and the issues of PEVs usage for frequency regulation
have been studied. In [135], a review of the strategies used to include the partici-
pation of electric vehicles in frequency regulation is provided; the review considers
both technical and economic aspects, showing different points of view that have to
be faced to move towards the development of ancillary services that include PEVs.

Recent work in line with the activities of this work is [136], which proposes
the use of PEVs for the provisioning of frequency regulation services. The work
proposes some control strategies for the optimal control of PEVs’ contributions,
considering also the impact that such a service has on battery degradation.

This work elaborates on the design of a frequency regulation service based on
the use of PEVs. The coexistence of the frequency regulation service with the smart
charging one is tackled, and the advantages and challenges of the proposed scheme,
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considering also relevant information and communication technologies (ICT) inte-
gration aspects, are analyzed. This work reports preliminary concepts and results
established in the context of the European research project “5G Solutions" [131]
where innovative use cases enabled by 5G communication technology in the field of
smart energy grids are under design.

7.2 System scenario and objectives

The scenario of this work considers the evolution of the European Energy Market
and the related separation of the Balance Responsible Party (BRP) and Balance
Service Provider (BSP) roles [137]. The diffusion of distributed generation plants,
favoured also by the European decarbonization objectives [138], and the diffusion
of small-sized storage systems, together with the spread of electric mobility, bring
to the need of carrying out an important revision of the role played by distribution
companies. The DSOs are considering the possibility of assuming two additional
roles compared to those that are traditionally under their responsibility: (i) the role
of neutral facilitator for the provisioning of ancillary services made available by the
BSP, that are needed for the safe operation of the overall system, and (ii) the role
of the purchaser of these services.

Moreover, this evolution changes the role of the Charging Point Operator (CPO):
the separation between BRP and BSP, that breaks up the physical positioning and
market correlation of generation units and load plants. This separation allows the
owner of energy sources to provide only ancillary services without having to care
about balancing constraints. This results in the opportunity to participate in the
Energy Market in an aggregated way. The separation of physical contribution and
market position enables the aggregation of energy sources and, together with the
possibility to sell services both at the level of distribution and transmission network,
opens to the participation of new actors in the dispatching market, putting the CPO
in an interesting market position.

In this context, the CPO can exploit the PEVs flexibility to create the necessary
conditions for the participation in the dispatching market.

The presence of a smart charging system responsive to external signals intro-
duces an additional factor in the context of smart charging in a load area: the
possibility to have power margins; indeed, in [139] it is shown how it is possible
to drive the aggregated charging sessions power to track a target load curve; even
in case of several charging sessions running at the same time, the smart charg-
ing system proposed is able to avoid the power saturation of the load area, while
ensuring the drivers’ requirements [140]. The existence and the proper manage-
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ment of power margins are necessary for resource qualification to the provisioning
of ancillary services.

Ancillary services are historically entrusted to synchronous machines hosted by
the generation units. The reasons why these services are provided by the generators
are multiple; focusing on the aspects of interest for this work, there are mainly two
reasons: the capability of easily controlling the power generation, thus ensuring the
presence of power margins, and the unidirectionality of the distribution network
power flow. The change of paradigms presented above for DSOs and Energy Mar-
ket also affects the way the distribution networks are modeled and, consequently,
their role in the power system. Distribution networks become hosts of active loads,
storage systems, and generation units; their presence changes the distribution net-
works into a set of active nodes with a bidirectional flow that can potentially supply
ancillary services. The vision of disseminating the provisioning of ancillary service
on different portions of the network is nowadays supported and enforced by official
entities and stakeholders [141].

The work presented in this chapter focuses on the Frequency Restoration Re-
serves with Automatic activation (aFRR). aFRR is currently entrusted to gener-
ation plants relying on synchronous machines. The extension of the aFRR service
to the participation of flexible loads is subject of studies and experimentation in
Europe. For example, in the Pilot Project Fast Reserve [2] the inclusion of Mixed
Enabled Virtual Unit (UVAM) - that can be composed by PEVs [137] - in the
aFRR service and their impact are investigated. This pilot project imposes spe-
cific performances on the units that are involved in the service provisioning like a
specific degree of sensitivity to the frequency variations and precise reaction time
requirements.

In light of the considerations made above, the reference scenario in this work is
as follows: a smart charging load area is considered, and the smart charging capa-
bilities are used to introduce power margins at a single charging session level and,
consequently, in the aggregated form at load area level. The presence of charging
session margins is exploited by applying a real-time frequency-based modification
of the smart charging setpoints with the aim of providing the aFRR service. In this
work, the Pilot Project Fast Reserve requirements are used to drive and validate
the results.

In this context, 5G communication technologies, able to guarantee low end-
to-end latency and high reliability compared to legacy technologies, together with
modular virtualized network functions offered by the 5G Core Network architec-
ture, represent enabling factors. These technologies are expected to allow the com-
munication of frequency measurements to the charging stations within the strict
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Figure 7.1. System Architecture

time constraints imposed by the frequency regulation service, instead of relying on
frequency meters installed in each unit of the UVAM. Considering the size, the
number, and the dispersed nature of the flexible loads needed in the aggregate, 5G
technologies enable the UVAM to provide the frequency regulation service in a more
cost-effective way.

The objectives of this work are: (i) to present an efficient control architecture
that enables the exploitation of PEVs for the provisioning of aFRR, (ii) to provide
the rationale for the integration between smart charging and the aFRR service
provisioning and (iii) to discuss the impact of the telecommunication technologies
on the service provisioning requirements and on the quality of the service.

7.3 System architecture

In order to match the objectives described before, a new system architecture has
been designed. This system architecture represented in Fig. 7.1 shows the main
components of the frequency regulation control system, together with their log-
ical interfaces. The proposed system makes use of a single frequency meter for
each Load Area (reducing a lot of the cost for the deployment of such an architec-
ture), that can be installed inside a single Charging Station or in its neighborhood.
Moreover, the proposed system exploits the novel 5G network architecture, where
telecommunication operators make some computing power very near to the Radio
Access Network (RAN) available for their customers. These computing resources
are named MEC and enable very-low latency applications to work efficiently, since
the data packets can be processed (or pre-processed) in the neighborhood of the
customer requiring the service, with a substantial reduction of the end-to-end la-
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tency, that is reduced almost only to the radio access link latency (that is further
reduced by 5G New-Radio standards, compared to the 4G LTE one).

The proposed architecture makes use of Local Control Agents, installed inside
the Charging Stations, in order to compute the control signals in response to fre-
quency disturbances. Each of these control signals can be superimposed over its
corresponding slower smart charging scheduling signal computed by a separate sys-
tem, in order to enable the Load Area both to smart charging functionalities and
to frequency regulation functionalities.

In the proposed architecture, the MEC hosts a Master Control Agent module
that is in charge of spreading frequency measurements coming from the single fre-
quency meter of the Load Area (that may be installed inside a Charging Station in
order to make use of its 5G Modem) to all the Local Control Agents. The possibility
to put the Master Control Agent inside the MEC enables a low-latency broadcast of
the frequency measurements, avoiding placing a frequency meter inside each Charg-
ing Station, while still having the measurements spread with high reliability offered
by 5G communication services and with a delay in line with the time requirements
of the frequency regulation services, which will be better investigated in Section 7.5.

7.4 The smart charging problem and the power-frequency
curve assignment

The integration between smart charging and aFRR service presented before must
consider aspects related to the quality of the charging sessions, while have to guar-
antee the presence of power margins capable to realize a power-frequency curve that
satisfies precise properties. The power-frequency curve properties can differ depend-
ing on the country. In this work, the Pilot Project Fast Reserve [2] directed by the
Italian TSO Terna is considered as a reference for the forthcoming discussion. The
requirements of the above pilot project are many, and the present work doesn’t aim
to address all of them. The attention is focused on the power-frequency curve shape
and on the reaction time, in particular, the Pilot Project Fast Reserve requires:

• the power-frequency curve has to be symmetric (w.r.t. the frequency varia-
tions), continuous and the actuation has to be self-regulating;

• the power-frequency curve has to consider the possibility to implement a dead
band;

• the fast reserve unit has to react to the frequency variation in a time window
less than 300 ms and it should reach the steady state in a maximum of 1
second.
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Fig. 7.2 shows an example of the expected response. In this work, the tran-
sient specifications, such as the overshoot and the steady-state error, which are
strictly related to the power electronics components of the Electric Vehicle Supply
Equipment (EVSE), are not considered.

The extension of smart charging with a frequency response service is explained
by the example shown in Fig. 7.3. The example of Fig. 7.3 considers a PEV subject
to a V1G smart charging session. The first plot represents the network frequency,
with a dashed line for network frequency nominal value fn (in Europe 50Hz), and
a continuous line for measured network frequency f(t). In the example, the time
trajectory of the frequency network is characterized by different distortions, with
corresponding frequency deviation |∆f | = |f(t)− fn| ≥ ∆fmin where ∆fmin repre-
sents the frequency deviation threshold implemented by the dead-band. The second
plot shows the superposition of the frequency response service on the smart charging
session: the dashed line represents the nominal charging setpoint p̃(t) assigned by
the smart charging system at different time instants; the continuous line represents
the actual setpoint commanded by the system. The charging session presented in
the example well shows the concept behind the introduction of power margins: if the
power setpoint for the charging session is between maximum and minimum charging
power, the power gaps can be used to change the charging power of a term ∆p(∆f)
in response to frequency deviations. The pair of the two plots explains the concept
at the basis of the service integration. During nominal frequency operation, the
EVSE follows the charging reference generated by the smart charging scheduler. In
presence of a frequency deviation out of the dead band, the EVSE superimposes an
additional contribution ∆p(∆f) to the smart charging setpoint, to aim at steering
the network frequency back to the reference value.

A crucial point consists in the construction of the power-frequency (p-f) curve,
which defines the variation of the charging power as a function of the frequency
deviation. This work aims at illustrating and discussing different possible strate-
gies, highlighting the differences in terms of performance and compliance with the
requirements discussed before.

7.4.1 Case I - linear interpolation

A first attempt for the p-f curve assignment is a strict separation between the
smart charging service and the frequency regulation service. In this case, the smart
charging system does not provide an active contribution for aFRR service, but
it only introduces power margins (since typically the PEVs will not be charged at
maximum power, and thus some power margins will be available for the provisioning
of aFRR services). Each EVSE equipped with a Local Control Agent, receiving the
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Figure 7.2. Expected response of a fast reserve unit [2]

smart charging power setpoint p̃ and knowing the power limits of the whole charging
system, linearly interpolates in an independent way the points (∆fmin, p̃), (∆fmax,
pmax) and (−∆fmin, p̃), (−∆fmax, pmin) where ∆fmax characterizes the frequency
deviation over which the EVSEs have to provide the full power margins. Fig. 7.4
shows a representative example of this approach in a V2G scenario with two EVSEs
(blue and red curves): the main advantages of this strategy are the decoupling
between smart charging service and aFRR service, the possibility to compute the
p-f curves at the level of EVSE and the exploitation of all the available margins at
the level of EVSE. The drawback of this strategy is in the resulting shape of the
load area curve (that is composed of the curves of each active session in the Load
Area). Indeed, with this approach, the symmetry requirement for the aggregated
power-frequency curve is in general not ensured (see Fig. 7.4b).

7.4.2 Case II - linear interpolation with load area control

The presence of smart charging service is exploited not only to create margins at the
level of the EVSE but can be also used to manage the power margins at the load area
level. As in [139] [140] where an external signal is used to drive the aggregated load
area power in order to satisfy a Demand Side Managment (DSM) service, the same
methodology is used to impose a specific aggregated power withdrawal, i.e., half of
the nominal power of the active charging sessions present in the load area at the
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Figure 7.3. Example of the superposition of smart charging and frequency regulation
services: top - network frequency time evolution, bottom - associated charging session
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Figure 7.4. Case I - linear interpolation. a) frequency regulation p-f curves of two EVs
(p̃1 and p̃2), b) cumulative p-f curve P̃
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Figure 7.5. Case II - linear interpolation with load area control. a) frequency regulation
p-f curves of two EVs, b) cumulative p-f curve
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Figure 7.6. Delay Budget

given time. In this condition, by applying the linear interpolation strategy presented
before, even if at the level of the single EVSE the curves are not symmetric, the
aggregate p-f curve satisfies the symmetry requirement (Fig. 7.5). Nonetheless,
this strategy is characterized by different issues and limitations: first of all, the load
area should be operated at half of the nominal power capacity. In addition, the
symmetry is strictly related to the ability of the smart charging system to follow
the load area power setpoint.

7.4.3 Case III - resources allocation

A more sophisticated strategy considers the implementation of a resource allocation
algorithm, which assigns to each EVSE a specific p-f curve (even a nonlinear one),
such that the aggregated load area curve satisfies all the requirements discussed
before. The integration between the smart charging system and the resources allo-
cation algorithm results in an integrated system that, managing the two services,
allocates the resources considering drivers’ requirements, balancing and distribut-
ing the service provisioning based on user profiling. The strategies presented before
are less complex and easier to implement, while this last one requires the devel-
opment of a resources allocation algorithm, that implies communications between
EVSE and/or deep integration with the smart charging system. In next chapter, a
mathematical formulation for computing the (p-f) curves will be proposed.

7.5 The delay budget problem

In order to enable PEVs to the frequency regulation functions, some very strict
constraints on the delay between the occurrence of the frequency disturbance and
the actuation of the control signal by the EVSEs power unit on the PEVs have to be
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considered. In particular, the Pilot Project Fast Reserve requires an initial response
from the PEVs within 300ms from the occurrence of the frequency disturbance event,
and a full response of the system (the end of the transient and the establishment of
a steady-state at the frequency-dependent power setpoint) within 1s.

As detailed in Fig. 7.6, and having in mind the proposed architecture in Fig.
7.1, the system in the first 300ms from the frequency disturbance event (happening
at time t0) have to:

• measure, through the frequency meter, the frequency disturbance;

• transmit it to the Master Control Agent hosted in the 5G MEC;

• the Master Control Agent has to propagate this frequency measure between
all the Local Control Agents;

• the Local Control Agents have to compute the updated setpoints;

• the Local Control Agents have to communicate the new setpoints to the Con-
trol Units of the EVSEs.

Then, from t0 +300ms to t0 +1s, the PEVs must completely actuate the new power
setpoints.

Considering the frequency meters available on the market, it is possible to es-
timate a measurement delay in the order of a few hundred milliseconds (usually
100ms-200ms), while the computation of the new setpoints, as explained in sec-
tion 7.4, can be very simple, and so executed in less than a millisecond, or more
advanced, and so executed in few dozen of milliseconds.

The transmission delay is a critical factor in the total delay budget since the sys-
tem components must receive the frequency measure well in advance of t0 + 300ms,
so to have time to process it and to update the power setpoints. Then, a maximum
communication delay must be guaranteed by telecommunications operators, as the
TSO requesting the services may apply penalties to the CPO for not providing the
service within the time constraints.

Using wired telecommunication technologies, this delay can be in the order of a
few milliseconds (for optic fiber), or in the order of dozen milliseconds (for copper
wires), which is in line with frequency regulation service requirements. However,
considering the dispersed nature of the EVSEs, this kind of solution may be very
expensive for the CPO, implying a cost that may be considerably high compared
to the investment needed to install a frequency meter inside each EVSE.

Moreover, most of the EVSEs are nowadays connected through cellular networks
to their back-end, so, in principle, it is possible to exploit the cellular connectivity
already present on mean/guaranteed latency to perform such tasks. Indeed, 3G and
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4G technologies have end-to-end communication latency respectively in the order
of hundreds of milliseconds and about 50-100 milliseconds. 3G communication
delay occupies almost all the available time, while 4G latency may not guarantee
that there is enough time for measurement and for computation. Moreover, both
technologies do not support slicing, so the overall performance and the delay (at
least on the radio access part of the network) cannot be guaranteed easily. On the
contrary, 5G communication technologies reduced the radio access delay to a few
milliseconds, as well as the end-to-end delay with a novel fronthaul/backhaul/core
network architecture made of Virtual Network Functions. Moreover, 5G introduces
network slicing, so the telco operator may provide an exclusive slice of its resources
to the CPO’s frequency regulation system. Moreover, 5G architecture introduced,
as explained in section 7.3, the MEC at the edge of the radio access network. Indeed,
deploying Master Control Agent module inside MEC, it is possible to communicate
with the frequency meter and to the Local Control Agent with negligible delays
(in the order of a few milliseconds), making feasible the provisioning of frequency
regulation services with PEVs. Finally, since the EVSEs already have a modem
installed, the only cost for the CPO is to replace it with a 5G-compatible one.
This cost for the CPO is justified also by the obsolescence of older communication
technologies, that may be discontinued in the next few years, forcing the CPO to
change in any case the EVSEs modems.

7.6 Conclusion

This work has presented how plug-in electric vehicles can participate in the fre-
quency regulation ancillary service provisioning. In the work, the reference scenario,
the systems, and the actors involved are presented and discussed showing how the
roles of CPOs and DSO will be expected to evolve in the next few years.

The work provided a control architecture that exploits the novel 5G network ar-
chitecture and its very low latency. The work focused on the superposition between
smart charging services and frequency regulation services, providing three different
strategies and discussing their properties, pros, and cons.

The work also provided a deep discussion on the integration between the fre-
quency regulation service, the ICT infrastructure, and charging, measuring, and
communication components, providing quantitative considerations on the system
feasibility analyzing the effects of different ICT technologies on the service quality.

In future works, the proposed control strategy and its variants will be extended
and tested using hybrid real/virtual test scenarios. The real components, such as 5G
network nodes, charging infrastructures, and measurement devices, will be used to
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validate the feasibility of the approach, while high-fidelity real-time power network
simulators will be used to analyze the impact of the service provisioning strategy.
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Chapter 8

Optimal assignment of Droop
Curves for Frequency
Regulation services composition

The work presented in this chapter is strictly related to the one presented in the pre-
vious chapter. Indeed, the previous work presented a reference system architecture
to provide Frequency Regulation Services using PEVs and 5G network, together
with the delay budget required to make this approach feasible according to the pi-
lot project in [2]. Moreover, in the previous work, three different approaches (at
increasing complexity levels) are presented to provide the proposed Frequency Reg-
ulation Service. Here in this work, a linear optimization problem formulation for
the third approach is presented, which generates linear and non-symmetric local
droop curves for the PEVs, in such a way the aggregate global droop curve is equal
to the one contracted with the TSO for the provisioning of the service, which is
symmetric (as required in [2]) and characterized by a certain amount of power to
absorb/release in case of frequency disturbance.

Moreover, the local droop curves computed by the proposed algorithm consider
also the actual/desired state-of-charge of the PEVs and the remaining dwelling time,
as to make them possible to participate with more power to the PEVs that have
an actual state-of-charge near to the desired one and sufficient remaining dwelling
time, while reducing the contribution of PEVs that are far from their reference
state-of-charge or that have too small remaining dwelling time.

Since the proposed approach does not guarantee that, in case of the activation
of the service, the desired state-of-charge of a generic PEV is reached before the
remaining dwelling time. To this aim, the proposed approach has been designed
to run over a smart charging controller (such as [139, 140], where [140] has been
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actually implemented by the Candidate inside a 5G MEC in the context of the
European H2020 project 5G Solution [131]) that is able to bring back the actual
state-of-charge of the PEV towards the desired one within the remaining dwelling
time by properly modulating its charging power.

8.1 Introduction

In recent years, the European energy market opened the possibility for third parties
to provide regulation services (e.g., ancillary services). Among these control ser-
vices, a very important role in the safe operation of the electricity network is given
to the frequency control services, which aim at maintaining the network frequency in
a safe range. Frequency regulation services are usually provided by traditional gen-
erators, through speed droop controllers that control the mechanical power applied
to the rotor shafts based on their rotation speed. However, it is possible to control
the network frequency also with other kinds of generators, like wind farms [142,143]
and photovoltaic plants [144]. Moreover, many papers intercepted the possibility to
modulate the energy demand of heavy flexible electric loads, like heating, ventila-
tion, and air conditioning systems [145], and thermostatically controlled loads [146],
in order to control network frequency. Among the flexible loads, PEVs emerged as
good candidates for the provision of frequency regulation services, as their power
consumption can be changed remotely by the charging stations, and the reaction
time is very low. Anyway, the power absorbed by a single PEV is not enough to
participate effectively in the ancillary service market, so it is fundamental to aggre-
gate a set of PEVs and coordinate their action to provide the requested services.
The possibility to aggregate many charging PEVs is becoming easier, due to the
mass spreading of PEVs in the market, and thanks to new high-speed/low-latency
cellular communication means [147], which reduce a lot the cost to update the cur-
rent CPO infrastructure to provide frequency regulation services. Indeed, this work
proposed a novel architecture [148] that enables CPO charging stations to provide
frequency regulation services over a 5G communication network, exploiting the 5G
multi-access edge computing [149] as edge computing node, without violating the
time constraints to provide this kind of services. The proposed architecture [148],
together with the results coming from this work, will be implemented in the context
of the European H2020 Project 5G-Solutions [131].

The problem of controlling PEVs for frequency regulation services has been
studied in the literature by Yao, Wong, and Schober with a focus on a robust
control method to estimate the hourly regulation capacity (i.e., aggregated power
margins) of the PEVs [150], or with a focus on the market bids for the frequency
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regulation services provided by PEVs [151]. Moreover, Xia et al. studied in [152] the
problem of computing power setpoints for fleets of PEVs in presence of fluctuating
wind generators, using consensus.

In addition, the contribution of PEVs to fast frequency regulation has been stud-
ied in [153], where the frequency droop curves for each PEV cluster are computed
using an improved harmony search algorithm, but without balancing the effort of
each PEV based on its smart charging requirements.

Kuang et al. have studied in [154] the problem of providing frequency regulation
by using dispersed PEVs while maintaining the target SOC level requested by the
PEV owners, but without changing dynamically over time the control droop curves
to balance the effort among the different PEVs based on the drivers’ requirements.

In [155], the authors provided a hierarchical control scheme to allocate frequency
control effort among the charging PEVs that is able to ensure the final SOC level
for the PEVs by real-time corrections of the allocated frequency control action.
Anyway, this approach does not optimize the effort among the different PEVs,
allocating it based on the frequency regulation capacity of each PEV.

Jia et al. have studied in [156] the problem of load frequency control using PEVs
with inertia uncertainties and time-varying delays, and in particular, focusing on
the coordination among PEVs and power plants to provide such frequency control
functionalities, but without considering the integration of smart charging system
with load frequency control, which is one of the focuses of the presented work.

In [157], the authors have discussed a demonstration of the provisioning of
frequency-controlled normal operation reserve (one of the primary frequency reg-
ulation services in the Nord Pool energy market) using three PEVs from different
manufacturers. Differently from the present work, the charging setpoints to imple-
ment the frequency regulation service are computed by a central controller, which
results in higher response times compared to the decentralized solution.

In [158], a model predictive control scheme to schedule the bidding in the fre-
quency regulation market is proposed, with the aim of maximizing the payment to
PEV aggregators, based on a prediction of the frequency regulation market price
built using a seasonal-autoregressive integral-moving-average model. Though tak-
ing into account the current PEVs SOC level, the PEV power schedule is limited to
three possible states and, again, the effort is not balanced among PEVs; moreover,
the algorithm does not provide droop curves to be applied by the PEVs in response
to frequency deviations.

Finally, in [159], Islam et al. propose a Markov decision process formulation
of the problem of aggregating flexibility from the PEVs for providing frequency
regulation services. The goal is to maximize the revenue of the aggregator. A
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possible limitation of this approach is in its scalability, and in the possibility of
having a fine-grained control for each PEV (due to the use of the state aggregation
technique).

The distinctive features of the present work are: i) an approach in which fre-
quency control actions are taken at each charging station based on local droop
curves, which allows for very fast intervention, as required for providing fast fre-
quency regulation. The parameters of the local droop curves are periodically up-
dated by a central controller, which allows for equally balance frequency control
effort among the PEVs while having a highly scalable scheme, since the central
optimization problem is a linear one and is executed within larger time constraints
with respect to the frequency regulation control loop ones; ii) the droop curves are
computed as to balance the control effort among the various PEVs, taking into ac-
count the smart charging requirements of the different users, on available dwelling
time, current SOC, and final desired SOC; iii) the presented algorithm exploits the
availability of edge computing nodes, such as 5G multi-access edge computing, to
reduce as much as possible communication latencies with the charging stations, and
with the frequency meter.

In summary, the proposed approach is scalable, it allows for very fast frequency
control action, and it ensures a correct balancing of the control action among the
participating PEVs, by taking into account their individual conditions. Therefore,
the algorithm summarizes the strengths found separately in the different works in
the literature.

8.2 Reference Scenario and Problem Description

In the last few years the European energy market has moved towards a separa-
tion between the roles of the balance responsible party (i.e., the entities which are
responsible for electricity network imbalances), and the balance service provider
(i.e., the entities which provide balancing services for the electricity network). In
this context, the DSOs can rely on the balance service providers for their balanc-
ing services [160]. The CPO can, thus, take advantage of this market separation,
becoming itself a balance service provider and providing ancillary services to the
power network, by leveraging the possibility of changing the power setpoint of the
charging station in real-time. Anyway, the CPO cannot participate in the ancillary
service market with each separate charging station, since the power provided by
each charging station is not in line with the power requirements to access this mar-
ket; instead, it can participate after aggregating many (even physically dispersed)
charging stations, and so providing balancing services both at DSO and transmis-
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sion system operator level. In this context, the authors of this work proposed a
smart charging solution that can enable fleets of charging PEVs to demand-side
management services [140].

Within the same scenario, it is possible, in principle, to provide also frequency
regulation services, by leveraging the power margins provided by the smart charging
system. Indeed, most of the time the charging PEVs charge with a power setpoint
that is between zero and the maximum charging power, and so there are power
margins both to increase and to reduce the power absorbed by the PEVs. These
margins can be aggregated and used to participate in the frequency regulation
services.

Fig. 8.1 shows the reference scenario considered in this study, which is based
on the same novel architecture proposed in [148]. A set of PEVs are connected to
charging stations that are remotely monitored and controlled by the CPO backend.
The charging power setpoints actuated by the charging stations are periodically
(e.g., every minute in [140]) computed by smart charging algorithms hosted in the
"smart charging module". The goal of the smart charging module is to control
the PEV recharging in the load area, in such a way that the PEVs are recharged in
compliance with the user preferences (e.g., time available for recharging and amount
of energy to recharge), and in compliance with the technical constraints of the grid.
Hence, the role of the smart charging module is to ensure safe (for the vehicle and
the grid), efficient (e.g., taking into account battery degradation), and economical
smart charging service to the users. For an example of a possible implementation
of the smart charging module, and the associated smart charging algorithms, the
reader is referred, e.g., to the previous work [139].

The role of the "local droop curves computing module" instead is related to the
provisioning of frequency control services. The module hosts a control algorithm
that builds frequency control services by leveraging the flexibility offered by the
PEVs. The module periodically computes and sends to the charging stations one
power-frequency droop curve for each PEV performing smart charging, and agreeing
to participate in frequency regulation. The droop curves are frequency/power curves
that, given the current value of the network frequency, specify the power deviation
with respect to the smart charging setpoint, i.e., how much the charging power
setpoint computed by the smart charging module for the specific vehicle should
be increased or decreased at any time, depending on the current grid frequency
value. In absence of the frequency regulation service, the charging station simply
implements the power setpoint it receives periodically from the smart charging
module. When the PEV also participates in the frequency regulation, the charging
station adds or subtracts to the smart charging setpoint a delta of power that is
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given by the value of the local droop curve at the current value of the grid frequency
(frequency measurement is communicated to the charging station via 5G). To be
able to modulate in real-time the power setpoint, as required in this scheme, the
charging station needs to be equipped with a power converter (as in direct current
charging stations). As discussed in the following, the different droop curves are
computed in such a way that their total, cumulative effect follows a desired power-
frequency droop curve, as if the PEV fleet was a unique entity providing frequency
regulation services.

The relation between the two modules introduced above will be fully character-
ized in future works. It is important to remark here that each local droop curve
is computed on the basis of the specific parameters of the related charging session.
The logic is that the contribution of each PEV to the frequency regulation should be
tuned depending on the current progress of the charging session and on the technical
characteristics of the PEV. On the other hand, the implementation of the droop
curves by the single PEVs means that a different setpoint is actuated by the PEV,
compared to the one that was computed by the smart charging module. The effect
of this perturbation is compensated by the fact that the smart charging module
periodically recomputes the charging schedules (see, e.g., [139]), so that the new
charging schedule is computed taking into account, and to compensate, the effect
of any possible deviation from the previous schedule caused by the participation
of the PEV to the frequency regulation service (and by any other disturbance af-
fecting the charging process). The effect of the perturbation on the smart charging
session caused by the participation of the PEV in the frequency regulation service
is measured by the smart charging module by measuring the current state of charge
of the PEV, before each re-calculation of the smart charging setpoint. This scheme
ensures that the two services, i.e., the smart charging service, and the frequency
regulation one, can coexist, in a way that is transparent for the user.

The present work focuses entirely on the discussion of the control algorithm
hosted by the local droop curves computing module. The interaction of this module
with the smart charging module will be fully analyzed in a future publication.

In order to enable the charging stations to provide frequency regulation services,
the system should be able to take a frequency measure and actuate the proper power
setpoint to the PEV (increasing or reducing it based on the frequency deviation)
within a very limited time (in the order of 300 ms, according to the Fast Reserve
pilot project of TERNA [2]), as analyzed in [148]. It is important to notice that
this very strict time constraint has to be guaranteed just for frequency regulation
functions, while other smart-charging functionalities (e.g., the computation of nom-
inal power setpoints) have much larger time constraints, that are typically in the
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Figure 8.1. Reference System Architecture

order of minutes. Installing a frequency meter capable of the above-mentioned time
requirements inside each charging station would imply very high costs. However,
by leveraging the new cellular communication technologies (e.g., 5G), it is possible
to install just one (or few, for redundancy) frequency meter in each load area, and
then spread the information to the other charging stations with negligible delay,
thus matching the strict time requirements for the service.

8.3 Nomenclature and Problem Formulation

In this section, the proposed control algorithm hosted in the "local droop curves
computing module", which periodically computes the local droop curves (i.e., one
for each charging station), based on the current status of the ongoing charging
sessions is detailed. In particular, the local droop curves are computed with the
same sampling time of the smart charging signals (e.g., nominal power setpoints for
the charging sessions), so in the order of minutes. First of all, the used nomenclature
is introduced.

Let N be the number of PEVs connected at the generic time k in the load area.
The generic n-th PEV at time k is characterized by:

• The current charging power level Pn,k;
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• The maximum and the minimum possible charging power levels, respectively
P max

n > 0 and P min
n (if P min

n < 0, the PEV is enabled to discharging);

• The current SOC level xn,k;

• The time left until the end of the charging session, dn,k > 0;

• The error, en,k, between the desired SOC, xref
n , and the current one, xn,k, i.e.,

en,k := xref
n − xn,k;

• The power deviation, ∆Pn,k, at time k, for the n-th PEV, due to the partic-
ipation in the frequency regulation service. This value is computed from a
droop curve.

The proposed algorithm is aimed at optimally coordinating the connected PEVs
in the participation in the provisioning of ancillary services. In more detail, the
problem tackled in this work is that of optimally defining p-f droop curves at single
PEV level (called local droop curves), in such a way that, once combined, they match
a given, desired droop curve (the global droop curve). The global droop curve defines
how, collectively, the connected PEVs should react to frequency mismatches, as if
they formed a unique entity participating in the provisioning of the ancillary service.

Fig. 8.2 displays a general prototype of a global p-f curve. Focusing on the
right-half plane, the parameter ∆fmin defines the deadband: the power variation is
zero if the deviation of the frequency with respect to the reference frequency value
is in the interval [0, ∆fmin]. ∆fmax defines the frequency deviation limit after which
the power variation saturates. mglobal defines the droop, i.e., the ratio between the
variation of the power and the frequency deviation.

The algorithm presented next recovers the global droop curve as the sum of N

local droop curves. A notable aspect is that the design of each local droop curve
takes into account the current status of the PEV’s recharging process, as explained
next.

For the design of the local droop curves, the following assumption is made.

Assumption 8.3.1 (Shape of local droop curves). Local droop curves have a positive
slope, and they are linear between ∆fmin and ∆fmax.

Assumption 8.3.1 is included because it is in line with the common design prin-
ciple of standard p-f droop curves (the algorithm proposed in this work could work
also with nonlinear droop curves). As implied by Assumption 8.3.1, the focus of
this work is on linear droop curves, i.e., on curves described by the equation:

∆Pn,k(∆f) = mn,k∆f + qn,k. (8.1)
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Figure 8.2. Global droop curve, with associated relevant parameters.

The focus of this work is on linear local droop curves because standard droop
curves are linear, and because working with such types of functions results in a
linear optimization problem, which has low computational complexity.

The algorithm proposed in this work optimally designs each local droop curve
by selecting the parameters mn,k and qn,k, which are therefore the optimization
variables of the problem. The algorithm is presented in the next section. To keep
the description of the algorithm concise, and without loss of generality, the work
focuses on the design of the portion of the droop curves lying on the right half of
the ∆f/∆P plane (see Figs. 8.2, 8.3). The part of the curve on the left half of the
plane is designed in a similar way.

8.4 Proposed Local Droop Curves Design Algorithm

The design of the generic local droop curve (8.1) must respect constraints related
to the shape of the local curve, and others related to the shape of the global droop
curve. It must also respect certain limitations imposed by the current status of the
charging sessions, as explained next.

8.4.1 Local Droop Curve Design Constraints

Fig. 8.3 displays in gray the "design space" in which the generic n-th local droop
curve can be drawn. The following constraints for each local curve are included.

0 ≤ ∆P min
n,k := mn,k∆fmin + qn,k ≤ P max

n − Pn,k, (8.2)

0 ≤ ∆P max
n,k := mn,k∆fmax + qn,k ≤ P max

n − Pn,k. (8.3)

The above two constraints state that, respectively, at ∆fmin and ∆fmax, the power
increase for the single PEV must be between zero (i.e., corresponding to a null
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Figure 8.3. Local droop curve, with associated relevant parameters.

contribution to the frequency regulation services, and therefore having no impact
on the current charging power level), and the maximum possible increase in charging
power, i.e., P max

n − Pn,k, which takes into account the current charging level, Pn,k,
and the maximum possible one, P max

n . Notice however that (8.3) alone is not
sufficient, since the maximum power increase might be affected also by the current
SOC. For example, the maximum power increase for a vehicle that is fully charged
is zero. For this reason, the following constraint is added:

Pn,k + ∆P max
n,k ≤ xmax

n − xn,k

T
. (8.4)

Equation (8.4) states that the maximum power increment is limited by the max-
imum energy that can be charged into the battery in the unit of time. T is the
sampling time of the algorithms, i.e., every T seconds the local droop curves are
re-computed.

Given the focus on linear droop curves, (8.2), (8.3), and (8.4) ensure that the
contribution of the single PEV is always feasible, also considering the current status
of the charging session.

Next, in line with Assumption 8.3.1, local droop curves must have a positive
slope, i.e.:

mn,k ≥ 0. (8.5)

This of course implies also that ∆P min
n,k ≤ ∆P max

n,k .

8.4.2 Global Droop Curve Design Constraints

The p-f droop curve arising from the superimposition of the local droop curves can
be written as

∆P (∆f) = mk∆f + qk, (8.6)
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where

mk =
N∑

n=1
mn,k, qk =

N∑
n=1

qn,k. (8.7)

The following additional constraints are included to ensure that the superimposition
of the local droop curves matches the desired global droop curve:

mk = mglobal, (8.8)

qk = qglobal. (8.9)

8.4.3 Target Function

In the above subsections, the constraints that must be respected in the selection of
the parameters mn,k and qn,k were presented, in order for the deriving local curves
and global curve to be feasible d-f droop curves. In the following, the formulation
of the proposed target function, to ensure that the parameters mn,k and qn,k are
selected in an optimal way, according to the current status of the charging session of
the PEVs participating in the provisioning of the ancillary service will be discussed.
The proposed target function to be minimized is:

Jk =
N∑

n=1
− α1ek(∆P min

n,k +∆P max
n,k ) + α2dk(∆P min

n,k +∆P max
n,k )+

+ α3mmax
k +α4∆P maxr

k +α5∆P minr
k ,

(8.10)

where α1, ..., α5 ∈ [0, 1] are such that
∑5

i=1 αi = 1, and mmax
k , ∆P maxr

k , ∆P minr
k ,

are auxiliary variables such that:

mn,k ≤ mmax
k , mmax

k ≥ 0, (8.11)

∆P max
n,k

P max
n − Pn,k

≤ ∆P maxr
k ∀n ∈ N, (8.12)

∆P min
n,k

P max
n − Pn,k

≤ ∆P minr
k ∀n ∈ N. (8.13)

Coefficients α1, ..., α5 can be used to weigh the terms of the objective function.
It is easy to see from (8.10) and (8.11) that, at the optimum, mmax

k is equal to
the maximum value of mn,k, for i = 1, ..., N . Hence, the inclusion of this term in
(8.10) has the goal of minimizing the maximum value of mn,k, i.e., of balancing the
effort of the participation in the ancillary service provisioning among the PEVs,
aiming to avoid that some vehicles are assigned steep droop curves (i.e., high values
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of mn,k). The last two terms in (8.10), similarly to mn,k, contribute to spread
the effort between the vehicles, by minimizing the maximum share of the available
power margin that each vehicle contributes to frequency regulation (see (8.12) and
(8.13)).

The first and the second terms in (8.10) instead are included to take into account
also the current status of the charging session of each PEV, and, specifically, to give
priority to the PEVs with a larger SOC error (the first term - notice the minus sign),
and the ones with a smaller remaining charging time (the second term). The local
droop curves associated with these PEVs, will have a more pronounced slope and/or
a higher power at ∆fmin. As a result, they will contribute more to the provisioning
of the ancillary service, which will help them in reaching earlier the desired SOC
level. Notice that, when the SOC error ek is negative (i.e., the current SOC is
higher than the reference), then the PEV will contribute less to the provisioning
of the service, which is a consistent behavior. Finally, recall that, for the sake of
brevity, the proposed work focuses on the design of the right-half part of the droop
curves. The design of the left-half part of the curve, also in terms of the choice of
the target function, can be carried out with similar considerations.

8.5 Numerical Tests

Simulations have been performed in Julia [161], version 1.6.0, on a standard com-
puter (3.3 GHz, I7 processor with 16 GB RAM). The simulation scenario is as
follows. There is a charging load area that participates in the frequency regulation
service. It is assumed that the charging sessions active in the load area are enough
to provide the required power-frequency curve, i.e., that the composition algorithm
presented in Section 8.4 admits a solution.

In the following, two simulation scenarios are discussed, to validate the proposed
approach:

1. Scenario 1: the algorithm is run in a balanced scenario, i.e., considering a set
of charging sessions that are homogeneous in terms of power margin flexibility,
SOC error, and charging time availability;

2. Scenario 2: the algorithm is run in a scenario in which the charging sessions
have different power margins, different SOC errors, and time flexibility.

The two scenarios are meant to show that, from one side, the algorithm is able
to come up with a fair and balanced assignment of local droop curves among the
participating PEVs while, on the other hand, taking always into consideration the
real-time SOC and time flexibility status of the participating PEVs, as determined
by the respective charging session status, controlled by smart charging algorithms.
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8.5.1 Scenario 1: Local Droop Curves Assignment in a Balanced
Scenario

The first set of simulations is aimed to show how the algorithm is able to design local
droop curves that result in a balanced distribution of the regulation effort, among
the participating PEVs. To this end, 3 active charging sessions are considered,
characterized by each one by the same dwelling time and SOC error. The distin-
guishing attribute between the sessions is the available margin of power, ∆P max

n,k ,
which reflects:

• The possible presence of different charging technologies in the load area, i.e.,
the fact that the charging sessions are characterized in general by different
maximum power, depending on the charging technology;

• The presence of smart charging sessions, i.e., the fact that the charging sessions
happen at different charging levels, which are in general different from the
maximum possible charging level.

Indeed, the algorithm must be able to work in presence of smart charging sessions
ongoing at different charging levels.

The first simulation in this scenario shows the case in which the charging sessions
are characterized by the same power margin. Specifically, the charging sessions are
characterized by a maximum charging power of 150 kW, and by a common charging
setpoint of 100 kW, resulting in a power margin of 50 kW. The global droop curve,
for over-frequency events, is characterized by a maximum power deviation of 105
kW (70% of the available power margin of 150 kW), and by a frequency range
[∆fmin, ∆fmax] = [500, 1500] mHz. In correspondence with the minimum of the
bandwidth, the given global droop curve is characterized by a power deviation of
10 kW. Fig. 8.4 shows the result of the algorithm. The algorithm determines the
optimal distribution as an equal allocation of droop curves between the charging
session. The target droop curve is identified in the plot with the red-dashed line,
instead, the resultant droop curve is represented by the black-dotted line. Fig. 8.4
shows that the sum of the local curves matches exactly the target global one. The
presence of the last term in the cost function determines an exact balancing of the
frequency regulation service among the charging sessions, i.e., leading to identical
local droop curves. Fig. 8.5 shows the percentage of maximum usage of the power
margin of each vehicle, i.e., the ratio between the value of the local droop curve
corresponding to the frequency deviation ∆fmax and the available margin of power.
This plot confirms what was already discussed: the algorithm distributes the effort
in order to assign the same maximum relative usage to each vehicle’s power margin,
in this case 70%.
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Figure 8.4. Scenario 1, balanced conditions: resulting local and global droop curves.
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Figure 8.6. Scenario 1, different power margins: resulting local and global droop curves
(request of 50% of the overall power margins).

Typically, in smart charging, different charging power set-points are assigned
to each charging session. As explained, this leads to different power margins, i.e.,
different levels of maximum contribution that could be provided by each PEV. This
unbalance is considered by the proposed algorithm during the composition of the
local droop curves. This is shown in the next simulation, which assumes three
charging sessions characterized by different power margins, as summarized in Table
8.1.

Table 8.1. Charging sessions of the first scenario.

PEV ID Pn,k [kW] P max
n [kW] ek [%] dk [%]

1 75 150 10 10
2 50 100 10 10
3 25 50 10 10

The global droop curve that has to be composed is characterized by a maximum
droop value of 75 kW, i.e., 50% of the overall available margins. Note that all the
charging sessions are performed at the 50% of maximum power, so they are char-
acterized by different absolute power margins, ∆Pn,k, but by the same percentage
margin.

Fig. 8.6 displays the droop curves assigned to each vehicle. The algorithm
allocates the curves in order to distribute the relative effort equally between the
sessions. Fig. 8.7 highlights the equal distribution.

It is interesting to see the result of the same simulation, when the overall max-
imum power deviation increases. The same simulation is now performed with a
maximum global droop curve value of 105 kW, i.e. 70% of available margins. The
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Figure 8.7. Scenario 1, different power margins: fraction of the maximum PEV power
margin used for each PEV (request of 50% of the overall power margins).

increased request for power could be accomplished using the same strategy as before,
so splitting the effort equally between the sessions. This strategy does not consider
the fact that an equal distribution of power margins will impose a steeper droop
curve on the sessions with larger margins, with a negative impact on the battery
system. A steeper curve means a more aggressive response of the battery system
to the frequency variations, with the consequent stress on power electronics and its
effects on the battery temperature and cells health. The strategy presented in this
work instead takes into account also the curve slope mn,k and the intercept qn,k. As
a result, the system distributes the additional effort needed to reach the new target
droop curve less equally (Fig. 8.9) but fair distributes the power electronics stress
(Fig. 8.8).

8.5.2 Scenario 2: Local Droop Curves Assignment in an Unbal-
anced Scenario

The interconnection between the smart charging and the frequency regulation ser-
vice is done by considering the charging preferences expressed by the driver, i.e.,
the desired final state of charge and the charging time. Summarizing what already
discussed about the target function (8.10), the algorithm gives priority in the as-
signment of droop curves to the PEVs with a greater state of charge error and/or a
shorter dwelling time (i.e., to those PEVs that will benefit from an increase in the
charging rate).

The simulations presented below will illustrate the capability of the designed
algorithm to link the droop curve assignment with the charging status and user
preferences.
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Figure 8.8. Scenario 1, different power margins: resulting local and global droop curves
(request of 70% of the overall power margins).
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Figure 8.9. Scenario 1, different power margins: fraction of the maximum PEV power
margin used for each PEV (request of 70% of the overall power margins).
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Table 8.2. Charging sessions of the second scenario.

PEV ID Pn,k [kW] P max
n [kW] ek [%] dk [%]

1 150 100 80 10
2 150 100 40 10
3 150 100 30 10
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Figure 8.10. Scenario 2, balanced margins and unbalanced SOC errors: resulting local
and global droop curves (request of 70% of the overall power margins).

The balanced scenario is now re-proposed, but this time with a different state
of charge errors and dwelling times for the three PEVs. Table 8.2 summarizes the
charging session status at the time when the proposed algorithm for allocating local
droop curves is run.

PEV 1 is characterized by the grater SOC error, followed by PEV 2. The
algorithm recognizes this condition and prioritizes the assignment of power to these
two vehicles. The prioritization is in turn weighted by the respective SOC error.

The SOC error is one of the two charging preferences taken into account in the
droop curve assignment. In the above simulation, the dwelling time was the same
for the three PEVs. Fig.s 8.13 and 8.14 show the case in which the PEVs 1 charging
session, characterized by a SOC error of 80%, is also characterized by a remaining
dwelling time of 50%. In this case, the SOC error prioritization is compensated
by the available dwelling time, so the algorithm identifies an optimal strategy to
equally distribute the effort between the vehicles.

8.5.3 Notes on the Computational Complexity of the Algorithm

The optimization problem associated with the proposed algorithm is linear, with
continuous variables. This is the category of optimization problems that is the
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Figure 8.11. Scenario 2, balanced margins and unbalanced SOC errors: fraction of the
maximum PEV power margin used for each PEV (request of 70% of the overall power
margins).

most consolidated in the literature, and for which efficient and well-established
optimization algorithms exist. The optimization problem was built in Julia and
solved with Gurobi 9.1 [162].

Quadratic cost functions could be also used for this kind of problem, as they are
an efficient choice in terms of effort distribution (e.g., the third term in the objective
function could be replaced by the term α3m2

n,k, and similarly the last two terms).
However, quadratic problems are more complex and require more computational
resources than linear ones.

Considering that this algorithm is designed to work in conjunction with a smart
charging system that updates the charging set points with a rate of minutes, and
considering the amount of power needed for the participation to the frequency regu-
lation services (e.g. in Italy, the Pilot Project fast reserve requires at least 5 MW of
aggregated power [2]), the issue of finding the solution of a large scale optimization
problem in a short amount of time has to be faced. For this reason, a linear formu-
lation has been chosen. To test the scalability of the proposed algorithm, several
simulations have been performed, considering scenarios of various dimensions. Fig.
8.12 reports the result of local droop curves computation in a scenario with 1000
PEVs participating in the frequency regulation. This simulation does not consider
a specific charging technology, the maximum charging (and discharging) power rate
for a generic charging session is randomly chosen between ±150 kW. Also, the user
preferences are assigned randomly. The simulation shows how the proposed algo-
rithm assigns different droop curves considering the current load area requirements
(70% of the maximum available aggregated power margin), and the charging ses-
sions status (the result is a uniform distribution of droop curves with no particular
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Figure 8.12. Simulation with 1000 PEVs.
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Figure 8.13. Scenario 2, balanced margins and unbalanced SOC errors and dwelling times:
resulting local and global droop curves (request of 70% of the overall power margins).

clustering). As already mentioned, being the problem linear with continuous vari-
ables, very low computational time was observed in various experiments, always
between 1-1.3 seconds.

Finally, the algorithm was tested with 100000 contemporary charging sessions.
The solution time was always between 30 and 50 seconds, which is acceptable, in
view of integrating the proposed algorithm with the smart charging algorithm.

8.6 Conclusions

This work has presented a novel control algorithm for enabling the participation of
smart charging PEVs in the provisioning of frequency regulation services. This has
a positive value for the grid, providing an additional source of flexibility to ensure
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grid stability, and for the PEV drivers as well, providing them an additional stream
of revenues, which will lower the cost of ownership of the PEVs.

The proposed algorithm computes local frequency-power droop curves, one for
each active charging session. These curves specify how the charging power setpoint
should be changed in real-time, in response to frequency deviations from the nominal
value. The local curves computation takes into account the real-time status of the
charging sessions (in terms of time left until the end of the charging session, current
state-of-charge, and energy left to charge), which is fundamental to ensure that
the frequency regulation service is interdependent and harmonized with the smart
charging service, and thus transparent to the PEV user. The superimposition of
the local droop curves has to match a desired load area droop curve, which specifies
how the PEVs in the load area should collectively react to a frequency deviation.
In this way, the aggregate of PEVs can provide frequency regulation services to the
market.

Numerical simulations have shown that the proposed algorithm is effective in
assigning local droop curves in a fair way, which takes into account the different
statuses of the charging sessions. Also, the algorithm scales well and is able to cope
with aggregates of tens of thousands of PEVs.
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Chapter 9

General Conclusion and
Perspectives

This thesis collected two of the main research activities the Candidate has been fo-
cused in during the three years of his PhD. The Candidate had the opportunity to
deepen several control methodologies to be applied in 5G NR radio access network
and in multi-RAT systems, both for Connection Admission Control, Network Selec-
tion, and Traffic Splitting & Steering, thanks to his participation in the H2020 joint
EU-Korea project 5G-ALLSTAR. At the same time, the Candidate had the oppor-
tunity to focus on applicative scenarios of 5G networks, in particular in the smart
grids one thanks to his participation in the EU-funded H2020 project 5G-Solutions.

During the activities he carried out in the context of the 5G-ALLSTAR project,
the Candidate studied several control methodologies to enable multi-connectivity
in 5G heterogeneous networks. In particular, the problem of traffic splitting and
steering has been deepened in the first work presented in this thesis. This work
was based on the concept of Beckmann User equilibria and aims at equalizing some
metrics on the network (i.e., the latency functions) among the different APs. In
this particular case, the physical radio resources (i.e., PRBs) of the APs have been
equalized by splitting the data flows from/to the UEs among different APs and
steering the traffic dynamically between these APs to attain load balancing.

In the first work, no proper Connection Admission Control or Network Selection
process is made. This means that, if the number of requests is too high, many
UEs may suffer from network congestion. To this aim, the second study addressed
the problem of selecting the APs to handle data flow requests from/to the UEs.
In this first approach, an AP is selected for each UE connection request by the
means of a Multi-Agent Reinforcement Learning methodology named Friend-or-Foe
Q-Learning, which is based on the concept of Nash equilibria in Game Theory.

The third study tackles the same problem, but using Deep Reinforcement Learn-
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ing methodology to select the best APs to maximize the users’ perceived QoE. Some
QoE models have been provided, to model typical user behaviors during Internet
connection, and the DQN algorithm has been trained by using a reward function
that depends on the estimated QoE of the current connection request by a UE.

All three works have been tested against a 5G heterogeneous radio access net-
work simulator developed by the Candidate, to validate the proposed algorithms
against realistic scenarios. The simulator has been developed starting from the rel-
evant standards on 5G NR, 4G LTE, and Satellite radio access networks and it has
been released as open-source software to the research community.

The fourth study presents a vision on 6G radio access networks and its possible
new functionalities, such as mobile APs (e.g., UAVs, HAPSs, LAPSs, GEO/LEO
satellites). In this work, the initial feasibility of the concept and the improvement
of radio access network performances by using mobile APs as relay and as base sta-
tions has been demonstrated, also by using the over-mentioned radio access network
simulator, that has been adapted to support these new functionalities.

Among the activities the Candidate carried out in the context of the 5G-Solutions
project, an applicative scenario of 5G networks for the provisioning of Frequency
Regulation services on smart grids, detailed in the second part of this thesis, has
been proposed. An introduction to the problem of Frequency Regulation in electric-
ity grids has been provided and the main idea of using charging PEVs to provide
such kind of services to the electricity network has been detailed in the fifth study.
In this work, a control architecture that fits the system scenario has been proposed,
together with three proposed control approaches of increasing complexity for the
computation of the power-frequency (droop) curves for each PEV in a smart charg-
ing scenario, and an assessment on the delay budget required to make the approach
feasible according to the current Italian regulatory framework.

In the last study, a control algorithm based on linear optimization problem
formulation for the computation of droop curves for each PEV (namely, local droop
curves) has been proposed. The control algorithm detailed in this work computes a
set of droop curves (one for each charging PEV) so to differentiate the contribution
of each PEV based on its actual and desired state-of-charge and on its remaining
dwelling time, while composing a global droop curve (i.e., the sum of all the local
droop curves) that is equal to the one agreed with the TSO. The optimal solution
is re-computed at each time step, due to the evolution of the state-of-charge of the
PEVs (which may be subject to disturbances due to conversion losses, but also due
to previous activations of the Frequency Regulation service) and their remaining
dwelling time.

The Candidate is currently continuing the study on 5G multi-RAT radio access
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network control, in particular for guaranteeing connectivity in emergencies (like
wildfires and landslides), by dynamically splitting the traffic generated by the UEs
among the available APs; moreover, he is deepening on the problem of physical radio
resources allocation in 5G networks to attain low-latency and increased bitrate at the
user level, while guaranteeing defined QoS levels. Moreover, the Candidate is going
through the implementation of the proposed approach for Frequency Regulation
service using PEVs in the context of the 5G-Solutions project and in collaboration
with Enel X Way, to demonstrate the proposed control architecture and algorithms
by using a real 5G network in the city of Turin (provided by TIM) and real DC
charging stations connected to real PEVs. Finally, the Candidate is also working on
optimal control approaches to enable fast charging in service areas equipped with
renewable energy sources and energy storage systems and on algorithms for day-
ahead allocation and real-time control of an aggregate of PEVs to participate in the
ancillary service market for the provisioning of ancillary services to the electricity
grid.
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