
Optimization-Based Methods for Stable and Robust
Motion Generation and Control in Mobile Robots

Sapienza University of Rome
Dottorato di Ricerca in Automatica, Bioingegneria e Ricerca Operativa -
XXXVI Ciclo

Tommaso Belvedere
ID number 1705326

Advisor
Prof. Giuseppe Oriolo

Academic Year 2023/2024

Thesis defended on 29 May 2024
in front of a Board of Examiners composed by:

Prof.ssa Gaia Nicosia, Università di Roma Tre (chairman)
Prof. Andrea Pacifici, Università di Roma Tor Vergata
Prof.ssa Federica Pascucci, Università di Roma Tre

Optimization-Based Methods for Stable and Robust Motion Generation and
Control in Mobile Robots
Ph.D. thesis. Sapienza University of Rome

© 2024 Tommaso Belvedere. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: belvedere@diag.uniroma1.it

mailto:belvedere@diag.uniroma1.it

ii

Abstract

While Robotics is seeing an ever-increasing adoption in both industrial and service
applications, truly autonomous robots are still far from being widespread. One
of the limiting factors is in the availability of adaptable, performant and robust
control methods to generate complex motions for such systems. At the moment,
Model Predictive Control (MPC) stands out among the most promising techniques
to fill this gap. In fact, with its ability to minimize a cost function while respecting
a set of constraints that represent physical and operational limitations of a system,
MPC is capable of outperforming classic approaches, and its predictive nature makes
it adaptable to a large range of tasks.

This thesis presents a series of motion generation methods based on Model
Predictive Control with the aim of improving over the current methodologies in two
aspects: the first being the treatment of systems that exhibit a non-minimum phase
behavior and thus pose the challenge of generating motions that are stable; the
second being the robustness against uncertainties in the model parameters, which
will inevitably make the robot deviate from the planned trajectory.

The first part presents IS-MPC (Intrinsically Stable MPC), demonstrating its ef-
fectiveness in the stable inversion of non-minimum phase systems. We showcase the
applications of IS-MPC in stabilizing balancing robots performing non-trivial nav-
igation and loco-manipulation tasks, and in preventing the jackknife phenomenon
in autonomous Tractor-Trailer vehicles.

The second part of the thesis addresses the problem of robustifying motions
against parametric uncertainties, focusing on aerial robots. We make use of the
recent notion of closed-loop sensitivity and explore its application for robust flight
control in Quadrotors with an experimental validation. We also present a novel
computationally efficient Robust MPC scheme, named ST-MPC (Sensitivity-aware
Tube MPC), for controlling nonlinear systems affected by parametric uncertainties,
demonstrating its effectiveness through an extensive simulation campaign.

The contributions of this thesis extend to both stability and robustness in mo-
tion generation, offering valuable insights and practical applications across diverse
robotic systems.

iii

Acknowledgments

As I reflect on this thesis, I am reminded of the many people who have shared
this journey with me in various ways.

I am deeply grateful to Prof. Giuseppe Oriolo and Prof. Leonardo Lanari for
their invaluable guidance on my path to becoming a researcher. I also extend my
heartfelt thanks to Dr. Paolo Robuffo Giordano for welcoming me into his team and
engaging me in so many stimulating discussions.

I have been fortunate to meet many individuals who have made this experience
truly enjoyable. I am especially thankful to everyone at the Robotics Lab in Rome,
particularly Michele, Nicola, Filippo, and Spyros, for the wonderful times we shared
and the pleasure of working together. Likewise, I am indebted to the Rainbow Team
in Rennes, which became a second home to me. There are too many people to
thank individually, but I would like to mention Nicola, Salvatore, Esteban, Marco,
Maxime(s), and Pierre, among others.

Finally, I cannot overstate the unwavering support and love I have always re-
ceived from my family throughout these years.

iv

List of Symbols

Unless stated otherwise or evident from context, throughout this thesis we adhere
to the following notation.

Ikj = {i ∈ N | j ≤ i ≤ k} Set of indices from j to k

a Scalar

a Vector

A Matrix

Aij i-th row, j-th column element of A

a(t) Time-varying vector

ak = a(tk) Vector a evaluated at time tk
a× b = [a]×b Skew-symmetric cross product

a ≤ b Element-wise inequality between the two
vectors a and b

(a, b) Vertical concatenation of vectors a and b

In Identity matrix of dimension n× n
1n, 0n n-dimensional (column) vector of ones/zeros

1n×m, 0n×m (n×m)-dimensional matrix of ones/zeros

A† Moore-Penrose inverse of A

∥ · ∥W 2-norm weighted by the matrix W

q = (qw, qx, qy, qz)T Quaternion

qv = (qx, qy, qz)T Vector part of the quaternion

⊗ Quaternion product’s operator

∥qa − qb∥ = ∥(qa ⊗ q−1
b)v∥ Error quaternion norm

v

Contents

List of Symbols iv

1 Introduction 1
1.1 Contribution and overview . 3

2 The Optimization-Based Approach to Motion Generation 6
2.1 Preliminaries . 6

2.1.1 Examples . 8
2.2 Model Predictive Control . 9
2.3 Constrained optimization . 11
2.4 Approximate methods for real-time MPC 14

2.4.1 Linearized Time Varying MPC 14
2.4.2 The Real-Time Iteration scheme 19

I Motion Generation Using Intrinsically Stable MPC 23

3 Intrinsically Stable MPC 24
3.1 Preliminaries . 25

3.1.1 Linearization via feedback . 27
3.1.2 The zero dynamics . 28

3.2 Boundedness condition for LTI systems 30
3.3 The IS-MPC approach . 33

3.3.1 Application to a Wheeled Inverted Pendulum 35

4 Stable Tracking Control of Articulated Balancing Robots 43
4.1 Related works . 43
4.2 Contribution . 44
4.3 The control problem . 45

4.3.1 Modeling . 45
4.3.2 Partial feedback linearization 47
4.3.3 Task definition . 47

4.4 The proposed approach . 48
4.4.1 Overview . 48
4.4.2 IS-MPC . 49

4.5 Results . 54
4.5.1 Navigation task . 54

Contents vi

4.5.2 Loco-manipulation task . 55

5 Anti-Jackknifing Control of Tractor-Trailer Vehicles 60
5.1 Related works . 60
5.2 Contribution . 61
5.3 The control problem . 63

5.3.1 Modeling . 63
5.3.2 Internal instability under tracking control 64

5.4 The proposed approach . 66
5.4.1 Overview . 67
5.4.2 Generation of the auxiliary trajectory 67
5.4.3 Linearization around the auxiliary trajectory 69
5.4.4 MPC-based control correction 71

5.5 Results . 73
5.5.1 Simulations . 73
5.5.2 Comparison with an alternative method 77
5.5.3 Experiments . 79

5.6 Extension to the two-trailer system 81

II Robust Motion Generation using Sensitivity-Based Tubes 86

6 Closed-Loop Sensitivity 87
6.1 Parametric sensitivity of closed-loop systems 88
6.2 Tubes of perturbed trajectories . 90
6.3 Robust trajectory planning for a Quadrotor 93

6.3.1 Quadrotor model . 94
6.3.2 PX4 controller . 96
6.3.3 Problem formulation . 98
6.3.4 Results . 99

7 Sensitivity-Aware Tube MPC 105
7.1 Related works . 105
7.2 Contribution . 107
7.3 The proposed approach . 108

7.3.1 Overview . 108
7.3.2 Computing the MPC feedback gains 109
7.3.3 The ST-MPC algorithm . 112
7.3.4 Efficient computation of the MPC gains over the prediction

horizon . 113
7.4 Application to Quadrotor motion control 115

7.4.1 Test scenarios . 116
7.4.2 Application of ST-MPC to the test scenarios 119
7.4.3 Results . 120
7.4.4 Implementation details . 126

8 Conclusions 127

Contents vii

Bibliography 130

1

Chapter 1

Introduction

Over the past decades, the Robotics field has experienced a series of advancements
that have allowed robots to become more widespread across different levels of our
societies.

The first wave witnessed the use of robot manipulators for industrial purposes,
particularly in the manufacturing industry. In these applications, robots were con-
fined to enclosed spaces away from humans and lacked flexibility due to their limited
sensing capabilities. Later, thanks to the introduction of force sensing technologies
and related advancements in safety, there has been a paradigm shift towards col-
laborative robots, or cobots. Unlike their predecessors, cobots are designed to work
alongside human operators, fostering a collaborative environment in which humans
and robots share tasks (see Fig. 1.1).

In parallel, the proliferation of mobile robots has experienced unprecedented
growth driven by the development of sensing, localization, and mapping, along with
more advanced control techniques. Similar to robot manipulators, Wheeled Mobile
Robots (WMR) were initially adopted in industrial and structured environments,
such as in the logistics business. With recent improvements in safety standards
and a decrease in the cost of development and components, WMR have emerged
in many civil applications (the so-called service robots field), including last-mile
delivery, stocktaking in grocery stores, vacuum cleaning, and autonomous mobility,
among others.

Figure 1.1. Robot manipulators operating in an industrial environment. Note how in the
traditional setting (left) robots are placed in a cage where humans are not allowed in
during operation, while cobots (right) can safely operate alongside humans.

2

Figure 1.2. Wheeled mobile robots used for pallet transportation in logistics (left) and
for stocktaking in grocery stores (right).

Figure 1.3. Examples of more complex articulated mobile robots. A quadruped robot
equipped with a array of sensors for patrolling (left) and a fully actuated aerial manip-
ulator (right).

In recent years, various types of more complex mobile robots have been devel-
oped for specialized applications (see Fig. 1.3). For instance, legged robots, includ-
ing humanoids and quadrupeds, excel in navigating uneven terrain and adapting to
human-centric environments better than simple WMR. On the other hand, WMR
has evolved to incorporate robot manipulators, giving rise to Wheeled Mobile Ma-
nipulators (WMM), capable of expanding the robot workspace compared to fixed-
base manipulators. Balancing WMR has also garnered attention in the past decade,
merging the manipulation capabilities of WMM with increased agility. The field of
aerial robots has also experienced substantial growth, with recent research focusing
on aerial manipulators capable of interacting with the environment.

While each of these systems presents its own unique set of challenges, they share
a commonality in facing the non-trivial problem of motion generation, i.e., that of
synthesizing movements and related commands to perform some task.

One of the issues arising when controlling such complex dynamical systems is
that of instability, which can be present when the system exhibits a non-minimum
phase behavior, and which has to be addressed to achieve controlled and safe mo-
tions. In such cases, the performance in executing the desired task might be affected
by the method used to generate stable motions, and no clear analytical solution
might be available.

Another one of the many challenges that still need to be solved for an effective
deployment of robots in real-world scenarios is that of robustness against the (un-
avoidable) uncertainties of the robot/environment models. In fact, any advanced
planning and control algorithm relies on a suitable model of the robot/environment

1.1 Contribution and overview 3

for generating the motion plan or actions for realizing a task of interest. However,
any model is only an approximation of the real world and, thus, planning/control
schemes must exhibit some degree of robustness against model uncertainties.

Due to the possibly complex nature of the motion generation problem, arguably
the most successful and widespread methods to perform motion generation are based
on optimization. In fact, being able to solve these problems by designing appropri-
ate cost functions and constraints, in conjunction with the availability of efficient
numerical optimization algorithms, has proven to be one of the enabling factors in
the development of solutions for complex articulated robots.

An idea that has proven to be extremely valuable has been that of combin-
ing trajectory optimization and feedback control in order to combine the capa-
bility of synthesizing complex motions of trajectory optimization with the reac-
tiveness and robustness to disturbances of feedback control. This technique, that
has seen enormous interest in recent decades also thanks to the continuous ad-
vancements in computing, is Model Predictive Control (MPC), a form of real-time
optimization-based motion generation. Nowadays, MPC is a widely adopted con-
trol approach in robotics, with many examples of its application to Quadrotor con-
trol [1, 2], autonomous racing [3], WMR navigation and control [4, 5], and legged
locomotion [6–8]. Its predictive nature, which leverages a nominal model of the
robot/environment, and the possibility to explicitly handle constraints and opti-
mization of performance indexes over the future evolution of the system, has made
it an attractive choice for solving complex control problems. For instance, one of
the main key advantages of MPC over traditional robot controllers is the ability
to account for input constraints [2] so as to ensure the feasibility of the planned
motion also in the presence of limited actuation. Yet, an effective use of MPC is
subject to the capability of effectively dealing with the possible instability of the
controlled system, and to the robustness to uncertainties despite the unavoidable
use of a nominal model.

1.1 Contribution and overview
In this thesis, we address the real-time motion generation problem focusing on two
distinct aspect arising in the proposed applications. For this reason, the manuscript
is divided in two parts, the first being concerned with the problem of generating
stable motions, while the second being focused on the problem of generating motions
that are robust to uncertainties in the model parameters.

The majority of this thesis is centered around the use of Model Predictive Con-
trol, so Chapter 2 provides an overview of the essential components of optimization-
based motion generation in the form of MPC. After some preliminaries on optimal
control and constrained optimization, the focus shifts to MPC for real-time applica-
tions to nonlinear systems. Due to the strict time requirements to perform real-time
control, we discuss in a general formulation the different approaches that will be
used throughout this thesis to appropriately approximate the possibly too complex
nonlinear optimization problem arising from the trajectory optimization performed
in an MPC controller at each control instant. Specifically, we discuss the Linearized
Time Varying MPC, in which the system is first linearized around a suitable auxil-

1.1 Contribution and overview 4

iary trajectory, and only then the Optimal Control Problem is formulated over this
linearized system, and the Real-Time Iteration scheme which, being closely tied
with the Sequential Quadratic Programming method, transforms the Optimal Con-
trol Problem into a finite-dimensional Nonlinear Program via direct transcription,
and approximately solves the resulting problem through linearization.

In the first part of the thesis, we introduce IS-MPC, an Intrinsically Stable MPC
scheme which is effective for stable inversion of non-minimum phase systems.

In more detail, Chapter 3 introduces the problem of controlling systems that
exhibit a non-minimum phase behavior, discussing the zero dynamics and its rela-
tion with the stability of the system when forced to track a desired output. Then,
we discuss the boundedness condition for the evolution of LTI systems, an anti-
causal condition on the initialization of the unstable component of the state that
depends on the future evolution of the forcing input. This condition will then be
used to establish a stability constraint for the MPC controller — in the form of
a terminal constraint on a subset of the state — that can be applied to nonlinear
system using a suitable approximate linearization. The resulting IS-MPC method
is then presented in the form of a tutorial with the application to a planar Wheeled
Inverted Pendulum, before being adopted for different applications in the following
two chapters.

In Chapter 4, we present a whole-body control architecture for the generation
of stable task-oriented motions in Wheeled Inverted Pendulum (WIP) robots. Con-
trolling WIP systems is challenging because the successful execution of tasks is
subordinate to the ability to maintain balance. Our feedback control approach
relies both on partial feedback linearization and MPC. The partial feedback lin-
earization reshapes the system into a convenient form, while the MPC computes
inputs to execute the desired task by solving a constrained optimization problem.
Input constraints account for actuation limits and a stability constraint is in charge
of stabilizing the unstable body pitch angle dynamics. The proposed approach
is validated by simulations on an ALTER-EGO robot performing navigation and
loco-manipulation tasks. The contents of this chapter have been originally presented
in [9].

In Chapter 5 we discuss the application of IS-MPC to autonomous Tractor-
Trailer vehicles, which are affected by jackknifing, a phenomenon that consists in
the divergence of the trailer hitch angle and ultimately causes the vehicle to fold
up. This phenomenon is particularly severe in the case of backward motions, where
it appears also at low speeds. With reference to this specific context, we present
a control method that drives the vehicle along generic reference Cartesian trajec-
tories while avoiding the divergence of the hitch angle. This is obtained thanks
to a feedback control law that combines two actions: a tracking term, computed
using input-output linearization, and a corrective term, generated via IS-MPC. The
successful performance of the proposed anti-jackknifing control is verified through
simulations and experiments on a purposely built one-trailer prototype. To show
the generality of the approach, we also apply and test the proposed method on
a two-trailer vehicle. The contents of this chapter have been originally presented
in [10].

1.1 Contribution and overview 5

The second part of the thesis is concerned with the problem of robustifying mo-
tions against parametric uncertainties. The application of choice is that of aerial
robots (Quadrotors), although the method can be applied to generic nonlinear sys-
tems.

In Chapter 6, we introduce the notion of closed-loop sensitivity suitable for
describing the effect of parametric uncertainties over the state and input trajectories
of a system. This notion, which takes the label closed-loop due to the explicit
modeling of the effect of the feedback action, can be used to robustify the system
behavior in several ways. We provide an experimental validation of these concepts
in the context of robust flight control for a quadrotor equipped with the popular
PX4 controller. In particular, we assess how the optimization of the reference
trajectory w.r.t. these sensitivity metrics and the use of input tubes (to guarantee
the feasibility of the actuation constraints) can improve the closed-loop system
performance against model uncertainties commonly affecting the quadrotor systems.
To accomplish this, we present a series of experiments designed to validate our
optimization approach on two distinct trajectories, with the primary aim of assessing
its precision in guiding the quadrotor through the center of a window at relatively
high speeds. The contents of this chapter have been originally presented in [11].

Chapter 7 then introduces a computationally efficient Robust MPC scheme for
controlling nonlinear systems affected by parametric uncertainties in their models.
The approach leverages the notion of closed-loop sensitivity and the associated el-
lipsoidal tubes of perturbed trajectories for taking into account online time-varying
restrictions on state and input constraints. This makes the MPC controller “aware”
of potential additional requirements needed to cope with parametric uncertainty,
thus significantly improving the tracking performance and success rates during nav-
igation in constrained environments. One key contribution lies in the introduction
of a computationally efficient robust MPC formulation with a comparable compu-
tational complexity to a standard MPC (i.e., an MPC not explicitly dealing with
parametric uncertainty). An extensive simulation campaign is presented to demon-
strate the effectiveness of the proposed approach in handling parametric uncertain-
ties and enhancing task performance, safety, and overall robustness. The versatility
and efficiency of the proposed method make it therefore a valuable tool for real-time
control of robots subject to non-negligible uncertainty in their models. The contents
of this chapter have been submitted in [12].

Finally, Chapter 8 serves as a summary of the applications described in Chapters
4–7 and discusses a series of possible future research directions.

6

Chapter 2

The Optimization-Based
Approach to Motion Generation

In this chapter, we review the general formulation of Optimal Control Problems
that are aimed at motion generation. Moreover, we delve into some of the direct
methods for solving such problems and discuss their use in the context of real-time
control of trajectories through Model Predictive Control (MPC).

2.1 Preliminaries
Consider a continuous-time dynamical system with state xc ∈ Rnx and control
input uc ∈ Rnu whose evolution is described by the system of first-order ordinary
differential equations

ẋc(t) = fc(xc(t),uc(t), t), ∀t ∈ [t0,∞), (2.1)

with initial condition xc(t0) = xc,0.
Being system (2.1) a controlled non-autonomous system, the evolution of xc(t)

starting from the initial condition, also named state trajectory, is governed by the
input trajectory uc(t).

Optimal Control deals with the problem of generating trajectories through the
optimization of performance criteria, such as tracking error norm, energy consump-
tion, or time required to execute the motion, among others. The desired behavior
is encoded by a cost functional that assigns to each control uc(t) a scalar cost

L(uc(t)) =
∫ tf

t0
ℓ(τ,xc(τ),uc(τ))dτ + ℓf (tf ,xc(tf)),

where ℓ and ℓf , termed running and final cost respectively, are functions designed
to have minimum value in correspondence of the desired behaviors, and tf is the
final time, which will be assumed fixed —- a common assumption in the context of
real-time optimal control —- but which can in principle be optimized as well.

While the optimization of the performance criteria encoded by the cost function
can be used to synthesize complex behaviors [13], the ability to constrain the state
and input evolution is what enables modern optimization-based control to excel

2.1 Preliminaries 7

when compared to traditional control methods. Many systems of interest are subject
to actuation constraints, meaning that the control trajectory is bounded to a set
U ⊂ Rnu , which can often be encoded via double-sided box constraint:

umin ≤ uc ≤ umax, (2.2)

with umin and umax encoding the lower an upper bounds for the control action.
Similarly, it can be desirable to impose limits on (part of) the state vector as

well, e.g., to set the maximum longitudinal or lateral velocity of an autonomous
vehicle for safety reasons, or to account for physical limitations of the system such
as joint limits. In this case, it is possible to set lower and upper bounds xmin and
xmax for the state, imposing the constraint:

xmin ≤ xc ≤ xmax. (2.3)

More in general, constraints can be used to encode complex behaviors such
as avoiding obstacles, enforcing passivity, or avoiding self-collision in articulated
robots, which can often be formulated through a possibly time-varying condition of
the kind

g(xc,uc, t) ≤ 0. (2.4)

The combination of these conditions, along with the optimization of the cost
functional, defines the Optimal Control Problem (OCP):

minimize
uc(·)

∫ tf

t0
ℓ(τ,xc(τ),uc(τ))dτ + ℓf (tf ,xc(tf))

subject to xc(t0) = xc,0

ẋc = fc(xc(t),uc(t), t) ∀t ∈ [t0, tf]
xmin ≤ xc(t) ≤ xmax ∀t ∈ [t0, tf]
umin ≤ uc(t) ≤ umax ∀t ∈ [t0, tf]
g(xc(t),uc(t), t) ≤ 0 ∀t ∈ [t0, tf]
gf (xc(tf)) ≤ 0

(2.5a)

(2.5b)
(2.5c)
(2.5d)
(2.5e)
(2.5f)
(2.5g)

In this OCP, the input trajectory uc(t) is optimized to minimize the cost func-
tion (2.5a) while satisfying constraints (2.5b)–(2.5g). Among these constraints, it
is always necessary to specify the initial state (2.5b) and the dynamics constraint
(2.5c) linking the evolution of the input and state trajectories. Depending on the
particular problem, the aforementioned box constraints (2.5d) and (2.5e) on the
state and inputs can be introduced, as well as the general nonlinear (path) con-
straints (2.5f) and the terminal constraint (2.5g) acting on the final state x(tf).
Although in general (2.5f), (2.5g) can be made of equality and/or inequality con-
straints, here we prefer the inequality constrained formulation since it can easily
incorporate equality constraints as well. In general, the objective function and the
constraints are assumed to be at least twice continuously differentiable.

Note that the existence of an input trajectory u∗
c(t) solution to problem (2.5),

i.e., the so-called feasibility, is not always guaranteed and the problem has to be
designed to be feasible by construction or modified, for instance by relaxing the
constraints, to make it feasible.

2.1 Preliminaries 8

2.1.1 Examples

Depending on the specific application, OCP (2.5) can assume many different forms
which differ in terms that are present in the cost function and/or the constraints.
We propose two illustrative examples here for reference.

Point-to-point planning with obstacle avoidance

Consider the problem of steering a mobile robot from the initial state xc,0 to a final
state xf in the fixed time interval [t0, tf]. We may be interested in doing so while
using a minimal amount of control effort to limit energy consumption, component
wear, or to provide some intrinsic degree of smoothness to the resulting motion. To
this end, one can minimize the integral of the squared 2-norm of the control input
uc, providing a smooth convex running cost. Assuming that the environment is
occupied by obstacles and that the robot has to keep a minimum clearance ρmin
to be safe, one can impose an inequality constraint on the distance d(xc) between
the robot and the closest obstacle to generate a safe motion. Additionally, one may
impose input constraints to account for saturation. This can be summarized in the
following OCP, providing the input trajectory that steers the system to the desired
state: 

minimize
uc(·)

∫ tf

t0
∥uc(τ)∥2dτ

subject to xc(t0) = xc,0

ẋc = fc(xc(t),uc(t), t) ∀t ∈ [t0, tf]
umin ≤ uc(t) ≤ umax ∀t ∈ [t0, tf]
d(xc(t)) ≥ ρmin ∀t ∈ [t0, tf]
xc(tf) = xf

Output tracking

Instead of specifying only a final state xf and letting the state trajectory evolve
with no other criteria, in many applications it is of interest for a function of the
state y(t) = h(xc(t)) — often termed as output — to track a possibly time varying
reference yd(t). In this case, the performance criteria is to minimize the so-called
tracking error, i.e., the norm of the difference between the actual and the desired
output. If a feedforward input ud(t) is available, its tracking error can also be in-
corporated in the cost function. In its most basic form the output tracking problem
can be expressed as

minimize
uc(·)

∫ tf

t0
∥y(τ)− yd(τ)∥2 + ∥uc(τ)− ud(τ)∥2dτ

subject to xc(t0) = xc,0

ẋc = fc(xc(t),uc(t), t) ∀t ∈ [t0, tf]

but it is clearly possible to include additional constraints. If the desired output
can be followed exactly from the initial state xc,0, then the solution to the problem
is trivially uc(t) = ud(t). More often however, this kind of formulation is used

2.2 Model Predictive Control 9

in the absence of a feedforward input ud, which has then to be generated. In
other instances, if the system does not start from an initial condition for which
h(xc,0) = yd(0), the solution to the problem will be a trajectory that converges
to the desired one, according to the cost function. Finally, the desired trajectory
might not feasible for the system dynamics, in which case the OCP would provide
the best approximation of the desired output, according to the cost function.

2.2 Model Predictive Control
At its core, MPC revolves around the idea of making predictions about the future
behavior of a system and using these predictions to determine the optimal control
actions. Unlike traditional control methods that operate reactively, MPC considers
a finite prediction horizon, allowing for the explicit incorporation of a prediction of
the system dynamics and constraints into the control process. This forward-looking
approach endows MPC with the ability to address complex, time-varying problems,
making it particularly well-suited for applications in robotics.

More in detail, the MPC framework aims at formulating a controller that, at
each time tk and with a fixed rate ft, computes the control action uk solving an OCP
of the type (2.5) from the current state x̂k. Clearly, this provides a feedback action
from the current state that allows the system to evolve in closed-loop, providing
the disturbance rejection and reactive capabilities typical of feedback controllers.
The problem is solved over a finite time interval [tk, tk + Tc], with Tc being the
so-called control horizon. As time passes, the “window” of time that is concerned
in the trajectory optimization moves while keeping the same duration Tc following
the receding horizon principle. Thus, the OCP solved at each control instant tk is:

minimize
uc(·)

∫ tk+Tc

tk

ℓ(xc(τ),uc(τ))dτ + ℓf (xc(tk + Tc))

subject to xc(tk) = x̂k

ẋc = fc(xc(t),uc(t)) ∀t ∈ [tk, tk + Tc]
g(xc(t),uc(t)) ≤ 0 ∀t ∈ [tk, tk + Tc]
gf (xc(tk + Tc)) ≤ 0,

(2.6a)

(2.6b)
(2.6c)
(2.6d)
(2.6e)

where we dropped the explicit dependence on time and grouped all state and input
constraints over the control horizon in (2.6d). Once the problem has been solved,
the optimal input u∗

c(t) is applied to the system for a duration δt = 1/ft, while
waiting for the next feedback measurement to become available for repeating the
procedure. It should be noted that the choice of ft — and of δt as a byproduct
— is of paramount importance in the design of an MPC controller. Since the time
available to carry out the computations is δt, it is necessary to compromise between
a frequency ft that is high enough (short δt) to capture the evolution of the system’s
fast dynamics and low enough (long δt) so that the computations required to solve
the problem are carried out in time.

As the MPC action is computed in discrete time intervals, it can be convenient
to formulate the problem directly in discrete-time. Moreover, as will be discussed
in Sect. 2.4, the infinite-dimensional continuous-time OCP (2.6) is typically solved

2.2 Model Predictive Control 10

numerically using a finite-dimensional approximation — obtained discretizing over
time. To this aim, we divide the control horizon Tc in C sampling intervals of
duration δt, such that Tc = C · δt. Consider then the discretized dynamics obtained
from the continuous time model (2.1) by integrating it numerically over [tk, tk+1)
with tk+1 = tk + δt and with constant inputs over the interval:

xk+1 = f(xk,uk). (2.7)

Then, the state and input trajectories x(t), u(t) over the control horizon [tk, tk+C]
are determined by the sequences x = (x0, . . . ,xC) and u = (u0, . . . ,uC−1).

The discrete-time OCP solved at each control instant is:

minimize
u

C−1∑
i=0

ℓ(xi,ui) + ℓf (xC)

subject to x0 = x̂k

xi+1 = f(xi,ui) ∀i ∈ IC−1
0

g(xi,ui) ≤ 0 ∀i ∈ IC−1
0

gf (xC) ≤ 0

(2.8a)

(2.8b)
(2.8c)
(2.8d)
(2.8e)

Once the problem has been solved, the first input u∗
0 of the optimal sequence is

selected and commanded to the system until the next feedback measurement x̂k+1
at time tk+1 = tk + δt becomes available for repeating the procedure. In this
formulation, we make the assumption that the sampling time δt is small enough
such that any constraint of type (2.8d) being imposed at the discrete time samples
(tk, tk+1, . . . , tk+C) is also satisfied over the continuous time interval [tk, tk+C].

Remark 2.2.1. In the MPC formulation, note how the subscript i refers to the
predicted time of the trajectory over the control horizon with tk+i ∈ [tk, tk+C] (for
i = 0, . . . , C), that is always reset to zero at each MPC iteration. On the other
hand, the subscript k on the time tk and the current state x̂k refer to the actual
time of the closed-loop system evolving with the dynamics (2.7) under the action of
the MPC controller.

With the exception of some particular formulations, such as the unconstrained
Linear Quadratic Regulator [14], finding an analytical solution to the MPC prob-
lems (2.6), (2.8) is virtually impossible. For this reason, it is common to resort to
numerical (possibly approximate) methods.

There are three main classes of methods used for the numerical solution of OCP.
The first class consists of the Dynamic Programming (DP) and the Hamilton-Jacobi-
Bellman (HJB) [15] approaches. Both methods are based on the computation of
the level sets of the OCP value function in discrete and continuous time, respec-
tively. These methods suffer from the so called curse of dimensionality as they are
practically applicable only to systems with a small number of states.

The second class consists of the indirect methods. These methods are based on
the application of Pontryagin’s minimum principle [16], which provides optimality
conditions for the solution of the OCP. The application of such methods usually

2.3 Constrained optimization 11

consists in finding the (numerical) solution of a multi-point boundary value prob-
lem [17]. Although they can lead to highly accurate numerical solutions, indirect
methods are not normally applied to on-line implementations, such as MPC [18].

The third class consists of the direct methods or transcription methods. These
methods first transcribe the infinite-dimensional continuous-time OCP to a Non-
Linear Program (NLP) of finite dimensions, which is then solved using tailored
numerical optimization algorithms [18]. Direct methods are more popular for the
on-line solution of an OCP, allowing to utilize high-performance implementations
of optimization algorithms designed for broader classes of problems after a suitable
transcription of the OCP has been applied. Direct methods are classified by the
way in which they transcribe the OCP into an NLP, their differences consisting
of the way in which the state and inputs are discretized, as well as the choice of
which quantities will be selected as decision variables in the resulting NLP. The
three approaches are direct collocation [19], direct single shooting [20] and direct
multiple shooting [21].

In general, the NLP resulting from the application of a direct transcription
method can be solved, for instance, with Interior Point (IP) or Sequential Quadratic
Programming (SQP) algorithms [22], both of which would solve a sequence of ap-
propriately linearized approximations of the problem up to convergence to a local
minimizer. In an MPC context however, the time-budget to solve the optimiza-
tion problem is at most the sampling time δt, and reducing the control delay is
of paramount importance. For this reason, a number of techniques that are not
designed to solve the problem up to convergence, but to solve a sufficiently accurate
approximation of it in a reduced amount of time, have been developed [23–26]. In
essence, most of these techniques are designed to find a linear approximation of
the problem, whose solution can be found in a reasonable and predictable amount
of time. In fact, if the prediction model and constraints are linear and the cost
function quadratic, the OCP can be transcribed into a Quadratic Program (QP),
which can be solved using efficient algorithms even on embedded hardware.

Throughout this thesis, we make use of transcription methods and formulate
a suitable approximation of the original problem that can be solved in real-time.
In particular, two different methods have been used to transform a the OCP into
a QP. At the most basic level, all revolve around the linearization of the problem
around a trajectory or setpoint, but they differ in the way the problem is first
formulated. In one case, the problem is first linearized, formulated as an OCP and
then transcribed into a QP. In the second case, the nonlinear OCP is formulated
and then appropriately linearized to yield a QP. It is worth noting that, depending
on the way the transcription and linearization are performed, the two approaches
can result in the same QP.

2.3 Constrained optimization
Before illustrating the formulation of approximate MPC problems, we review the
basics of constrained (nonlinear) optimization. The treatment follows that of [22].

2.3 Constrained optimization 12

Consider the compact-form NLP:
minimize

w
φ(w)

subject to E(w) = 0
G(w) ≤ 0,

(2.9)

where w ∈ Rnw are the decision variables — or primal variables — of the problem,
φ(w) is the scalar cost function and E(w) ∈ Rne , G(w) ∈ Rng are the vectors
stacking equality and inequality constraints, respectively. Functions φ(·), E(·) and
G(·) are assumed twice continuously differentiable.

Definition 2.3.1 (Feasible set). The feasible set Ω is the set that contains all points
satisfying the constraints:

Ω = {w ∈ Rnw : E(w) = 0, G(w) ≤ 0} .

Definition 2.3.2 (Feasible point). The point w̄ ∈ Rnw is a feasible point if and
only if w̄ ∈ Ω.

When solving the optimization problem (2.9), we are interested in finding feasi-
ble points that locally minimize the cost function φ(w).

Definition 2.3.3 (Local minimizer). The point w∗ is a local minimizer iff it is a
feasible point and there exists a neighborhood N of w∗, such that

∀w ∈ Ω ∩N : φ(w) ≥ φ(w∗).

It turns out that the set N needed to verify if a point is a local minimizer or
not depends on the inequality constraints which are active locally.

Definition 2.3.4 (Active constraint). An inequality constraint is termed active at
a feasible point w̄ ∈ Ω iff

Gi(w̄) = 0.

Definition 2.3.5. (Active set) The active set is an index set

A(w̄) ⊂ {1, . . . , ng},

where the indices specify the inequality constraints that are active.

These definitions are needed to establish the constraint qualification conditions
for which the First-Order Necessary Conditions (FONC) can be stated.

Definition 2.3.6 (LICQ). The linear independence constraint qualification (LICQ)
holds at a feasible point w̄ iff all vectors ∇Ei(w̄), for i = 1, . . . , ne and ∇Gi(w̄) for
i ∈ A(w̄) are linearly independent.

This condition can also equivalently stated as the Jacobian of G̃(w) — i.e., the
stack of the equality and active inequality constraints — being full row rank.

An essential ingredient for constrained optimization in the so-called Lagrangian
function.

2.3 Constrained optimization 13

Definition 2.3.7. The Lagrangian function of (2.9) is defined as

L(w,λ,µ) = φ(w) + λTE(w) + µTG(w),

with λ ∈ Rne and µ ∈ Rng being the Lagrange multipliers — or dual variables.

The Lagrangian function is used to formulate the famous Karush-Kuhn-Tucker
(KKT) conditions, providing first order necessary conditions for the optimality of
the solution of problem (2.9).

Theorem 2.3.1 (KKT conditions). Let w∗ be a local minimizer of NLP (2.9) for
which the LICQ holds. Then, there must exist Lagrange multipliers λ∗ and µ∗ for
which

∇wL(w∗,λ∗,µ∗) =∇wφ(w∗) +∇wE(w∗)λ∗ +∇wG(w∗)µ∗ = 0 (2.10a)
∇λL(w∗,λ∗,µ∗) = E(w∗) = 0 (2.10b)
∇µL(w∗,λ∗,µ∗) = G(w∗) ≤ 0 (2.10c)

µ∗ ≥ 0 (2.10d)
µ∗
iGi(w∗) = 0 i ∈ Ing

1 ,
(2.10e)

holds. If some y∗ = (w∗,λ∗,µ∗) satisfy the KKT conditions, then it is also a
solution to the primal and dual problems.

In constrained optimization, Eq. (2.10a) is denoted as stationarity condition,
Eq. (2.10b) and (2.10c) as the primal feasibility, Eq. (2.10d) as the dual feasibility
and Eq. (2.10e) as the complementarity slackness. These condition define a nons-
mooth manifold in which the solution lives. In particular, the non-smoothness is
characterized by the activation or not of the inequality constraints at the solution.
For this reason, we denote with the term strictly active constraints that are active
with µ∗

i > 0. Conversely, a constraint which is active with µ∗
i = 0 is called weakly

active.

Definition 2.3.8 (Strict complementarity). Let y∗ = (w∗,λ∗,µ∗) be a KKT point.
Strict complementarity holds at y∗ iff all active constraints are strictly active.

When a problem is strictly convex, the KKT conditions are necessary and suf-
ficient for the existence of a unique solution to the problem [27]. In general, it
is instead necessary to resort to Second-Order Optimality Conditions, composed of
two results: the Second-Order Necessary Conditions (SONC) and the Second-Order
Sufficient Conditions (SOSC).

Theorem 2.3.2 (Second-Order Optimality Conditions). Let y∗ be a KKT point
and assume that LICQ and SC hold. Regard as Z the basis matrix of the null space
of ∇wG̃(w∗)T .

The two following statements hold:

• (SONC) If w∗ is a local minimizer, then

ZT∇2
wL(w∗,λ∗,µ∗)Z ≥ 0.

2.4 Approximate methods for real-time MPC 14

• (SOSC) If ZT∇2
wL(w∗,λ∗,µ∗)Z > 0, then w∗ is a local minimizer. This

minimizer is unique in its neighborhood, i.e., a strict local minimizer, and
stable against small differentiable perturbations of the problem data.

The matrix∇2
wL(w,λ,µ) is referred to as the Hessian, whileZT∇2

wL(w,λ,µ)Z
is usually termed reduced Hessian.

2.4 Approximate methods for real-time MPC
In the following, we illustrate the two approaches for formulating approximate MPC
problems, providing rather generic formulations which can be used as reference for
the following chapters.

2.4.1 Linearized Time Varying MPC

Let us first concentrate on the case of Linearized Time Varying MPC, which is
obtained from a nonlinear problem by linearizing the dynamics and constraints
over a suitable auxiliary trajectory. The intermediate result is an OCP with linear
(time-varying) dynamics and constraints, which can then easily be transcribed into
a QP.

Consider the prediction model (2.7) and possibly an output function y(t) =
h(x(t)). Let (xaux(t),uaux(t)), t ∈ [tk, tk+C] be the auxiliary trajectory around
which the system is going to be linearized. This trajectory can be, for instance,
a reference trajectory for the state (if available), it could be obtained by some
online trajectory generation module, or it could be obtained at each iteration of the
algorithm by considering the predicted trajectory at the previous MPC iteration,
possibly shifted in time.

We now analyze the choice of the cost function, of the prediction model and of
the constraints to formulate the final problem, and the different ways of transcribing
the OCP into a QP.

Prediction model

Starting from continuous time dynamics (2.1), the model can be linearized with
two different approaches, depending if the linearization is performed before or after
the discretization. For convenience, we work on the variation with respect to the
auxiliary trajectory, however everything can be easily recasted in the original coor-
dinates if deemed more convenient. Define the variations ∆x and ∆u by applying
the change of coordinates ∆x = xc − xaux and ∆u = uc − uaux.

First discretize, then linearize Starting from the already discretized prediction
model (2.7), the linearized model is simply:

Ak+i = ∂f

∂x

∣∣∣∣
xaux(tk+i),uaux(tk+i)

Bk+i = ∂f

∂u

∣∣∣∣
xaux(tk+i),uaux(tk+i)

. (2.11)

2.4 Approximate methods for real-time MPC 15

First linearize, then discretize Alternatively, one can first linearize the con-
tinuous time dynamics (2.1):

Ac(tk+i) = ∂fc
∂x

∣∣∣∣
xaux(tk+i),uaux(tk+i)

Bc(tk+i) = ∂fc
∂u

∣∣∣∣
xaux(tk+i),uaux(tk+i)

.

Then, assuming piecewise constant inputs over the sampling interval, apply for
instance the discretization:

Ak+i = eAc(tk+i)δt ,

Bk+i =
∫ δt

0
eAc(tk+i)τdτBc(tk+i).

(2.12)

For the output function y(t) = h(x(t)), it is sufficient to apply the chain rule
to obtain a linear time-varying approximation:

yi = ∂h

∂x

∣∣∣∣
xaux(tk+i)︸ ︷︷ ︸
Hk+i

∆xi + h(xaux(tk+i))︸ ︷︷ ︸
hk+i

. (2.13)

Finally, applying either method (2.11) or (2.12) and linearizing the output as in
(2.13), the linearized prediction model for the state and output over the prediction
horizon [tk, tk+C] is:

∆xi+1 = Ak+i∆xi +Bk+i∆ui
yi = Hk+i∆xi + hk+i,

Constraints

For the generic constraint g(xi,ui) ≤ 0 and the terminal constraint gf (xC) ≤ 0,
apply the chain rule to obtain the linear constrains

Ck+i∆xi +Dk+i∆ui + gk+i ≤ 0,
Ck+C∆xC + gk+C ≤ 0,

where

gk+i = g(xaux(tk+i),uaux(tk+i))

Ck+i = ∂g

∂x

∣∣∣∣
xaux(tk+i),uaux(tk+i)

Dk+i = ∂g

∂u

∣∣∣∣
xaux(tk+i),uaux(tk+i)

gk+C = gf (xaux(tk+C))

Ck+C = ∂gf
∂x

∣∣∣∣
xaux(tk+C)

.

Concerning the initial state condition x0 = x̂k, we have

∆x0 = x̂k − xaux(tk)︸ ︷︷ ︸
∆xk

.

2.4 Approximate methods for real-time MPC 16

Cost function

In order to construct a QP, we limit ourselves to the choice of a quadratic cost
function. For example, consider a cost

L(∆u) =
C−1∑
i=0

(
∥yi − yd(tk+i)∥2Wy

+ ∥∆ui∥2Wu

)
+ ∥yC − yd(tk+C)∥2Wy

(2.14)

in which we minimize the tracking error for the output y(t) and the variation with
respect to the auxiliary input uaux(t) over the control horizon with some positive-
definite weight matrices Wy, Wu, which can be time-dependent or not.

The resulting problem

Finally, we can formulate the resulting OCP, consisting of the cost function, the
prediction model for the state and output, and the constraints

minimize
∆u(·)

1
2L(∆u)

subject to ∆x0 = ∆xk
∆xi+1 = Ak+i∆xi +Bk+i∆ui ∀i ∈ IC−1

0

yi = Hk+i∆xi + hk+i ∀i ∈ IC0
Ck+i∆xi +Dk+i∆ui + gk+i ≤ 0 ∀i ∈ IC−1

0
Ck+C∆xC + gk+C ≤ 0

(2.15a)

(2.15b)
(2.15c)
(2.15d)
(2.15e)
(2.15f)

At each control instant, the current state x̂k is used to compute the initial condition
∆xk = x̂k − xaux(tk) in (2.15b). Once the problem has been solved, the optimal
input trajectory equates to u∗(tk+i) = uaux(tk+i) + ∆u∗

i , for i = 0, . . . , C − 1 and
the current input u∗(tk) is commanded to the system.

Transcription of the OCP into a QP

Let us now analyze the different ways how OCP (2.15) can be recasted into a
QP. We consider a sparse and a dense formulation that differ in the choice of
decision variables. We first illustrate the sparse formulation, as the dense one can
be obtained from the sparse through the elimination of dynamic constraints, an
operation referred to as condensing [28].

Sparse formulation In the sparse formulation, we transcribe the problem by
defining the decision variables vector as the sequences of both states and inputs.
Let the decision variables be

ws = (∆x,∆u) = (∆x0, . . . ,∆xC ,∆u0, . . . ,∆uC−1),

consisting of the state and the input trajectories. With this choice, only the output
has to be expressed as a function of the decision variables and substituted. To this
aim, let the output trajectory be

y = (y0, . . . ,yC)

2.4 Approximate methods for real-time MPC 17

and the output drift h = (hk, . . . ,hk+C). Then the output trajectory y can be
expressed in terms of the decision variables in matrix form as

y =

Hk

. . .
Hk+C


︸ ︷︷ ︸

H

∆x+ h

The cost function (2.14) can also be rewritten in matrix form. Let

Qy =

Wy

. . .
Wy

 , Qu =

Wu

. . .
Wu

 .
Then

L(ws) = 1
2w

T
s Qsws + cTsws,

where

Qs =
(
HTQyH 0

0 Qu

)
,

cs =
(
HT (h− yd)

0

)
.

The constraints can be easily written in matrix form as well. In fact the stack of
equality constraints (2.15b) and (2.15c) is:

Inx 0 · · · 0 0 · · · 0

−Ak Inx

. −Bk
.

. 0 . . . 0
−Ak+C−1 Inx −Bk+C−1


︸ ︷︷ ︸

E

ws =


Inx

0
...
0

∆xk

︸ ︷︷ ︸
η

. (2.16)

Similarly, for the inequality constraints (2.15e) and (2.15f):
Ck Dk

.
Ck+C−1 Dk+C−1

Ck+C 0nx×nu


︸ ︷︷ ︸

Gs

ws +


gk
...

gk+C−1
gk+C


︸ ︷︷ ︸

gs

≤ 0.

(2.17)
The QP problem can then be written in compact form

minimize
ws

1
2w

T
s Qsws + cTsws

subject to Ews + η = 0
Gsws + gs ≤ 0.

(2.18)

2.4 Approximate methods for real-time MPC 18

This Quadratic Program is said to be sparse since the HessianQs and the constraint
matrices E, Gs are by construction sparse. In particular, it can be noted how they
present block diagonal sparsity patterns due to the link between successive states
though the dynamics. This is a characteristic of OCPs transcribed using multiple
shooting, which can be exploited to solve the problem by applying a backward
Riccati recursion [29].

Clearly, the use of nx · (C + 1) +nu ·C decision variables ws in this formulation
is non minimal, as the sequence of inputs u uniquely determines the state evolution
x from the initial condition x̂k. While this can in principle increase the cost of
solving the problem, sparse QP solvers like OSQP [30] or ProxQP [31] can exploit
the sparsity to reduce the computational cost to a level comparable of that of solving
a reduced problem with the dense formulation, to be illustrated next.

Dense formulation From the sparse formulation, it is possible to eliminate the
dynamics constraint (2.16) and explicitly express the dependence of the state tra-
jectory ∆x on the input trajectory ∆u and the initial value ∆xk. Let

Φm,n = Ak+n−1 · · ·Ak+m,

with Φm,m = Inx and

Ψn =
n−1∑
j=0

Φj+1,nBk+j∆uj .

From linear system theory, it is well known that the sequence of states from the
initial condition ∆x0 = ∆xk satisfies

∆xi = Φ0,i∆xk + Ψi, for i = 0, . . . , C.

This can also be rewritten in matrix form as

∆x =


0nx×nu 0nx×nu . . . 0nx×nu

Φ1,1Bk 0nx×nu . . . 0nx×nu

Φ1,2Bk Φ2,2Bk+1 . . . 0nx×nu

...
...

Φ1,CBk Φ2,CBk+1 . . . ΦC,CBk+C−1


︸ ︷︷ ︸

Ψ

∆u+


Inx

Φ0,1
Φ0,2

...
Φ0,C


︸ ︷︷ ︸

Φ

∆xk. (2.19)

This expression can be used to eliminate the dynamics constraint from the QP
problem (2.18) and rewrite the cost function and remaining constraints as a function
of the inputs only. In fact, let wd = u and substitute

ws =
(

Ψwd + Φ∆xk
wd

)
.

Then the cost function becomes

L(wd) = 1
2w

T
dQdwd + cTdwd + d,

2.4 Approximate methods for real-time MPC 19

where

Qd = ΨTHTQyHΨ +Qu

cd = ΨTHTQy (h− yd +HΦ∆xk)

d = ∆xTk ΦT
(
HTQyHΦ∆xk +HTQy (h− yd)

)
+ 1

2 (h− yd)T Qy (h− yd) .

Again, the same can be done for the constraints:

Gs

(
Ψwd + Φ∆xk

wd

)
+ gs = Gs

(
Ψ
I

)
︸ ︷︷ ︸

Gd

wd +Gs

(
Φ∆xk

0

)
+ gs︸ ︷︷ ︸

gd

.

Finally, the dense QP problem becomes
minimize

wd

1
2w

T
dQdwd + cTdwd

subject to Gdwd + gd ≤ 0.
(2.20)

In this case, matrices Qd and Gd are dense as they are obtained from the
product of sparse and dense matrices. Compared to the sparse formulation, the
number of decision variables is reduced to nu · C as only the input sequence is free
to be optimized, and the nx ·(C+1) equality constraints of the dynamics and initial
condition have been eliminated.

Again, it is worth pointing out that the two formulations provide the same
result1 and that the computational cost is comparable if the sparsity of the first
formulation is exploited by, e.g., the use of sparse QP solvers. Ultimately, the
choice between one of the two boils down to the availability of a specific solver or to
specific hardware requirements, e.g., to limit memory usage on embedded platforms.

2.4.2 The Real-Time Iteration scheme

The second approximate method for MPC we describe is the Real-Time Iteration
scheme (RTI), originally introduced by Diehl [32,33]. A tutorial on the method and
its similarities with the linearized MPC approach can be found in [26].

The basis of RTI is the application of SQP to the NLP resulting from a multiple
shooting transcription of the OCP. RTI then performs one iteration of SQP per
sampling instant, solving the QP subproblem obtained from the linearization around
the current solution guess, possibly using a Hessian approximation. In this way, the
solution time is drastically reduced with respect to performing SQP iterations up
to convergence and the method becomes applicable to real-time control.

First, we perform a multiple shooting transcription of the OCP into a NLP. If the
OCP has already been formulated in discrete time, this procedure is straightforward;
if the problem is instead formulated in continuous time, the first step is to discretize
the dynamics to obtain (2.7).

1The state trajectory x∗ can be obtained in the dense formulation by applying the optimal input
u∗ to equation (2.19) or simply by integrating the dynamics recursively.

2.4 Approximate methods for real-time MPC 20

Then, let
w = (x,u) = (x0, . . . ,xC ,u0, . . . ,uC−1)

be the decision variables of the NLP, consisting of the state and the input trajectories
over the time horizon. Then, the transcription of OCP (2.8) into an NLP takes the
form: 

minimize
w

φ(w)

subject to E(w, x̂k) = 0
G(w) ≤ 0,

(2.21)

where

φ(w) =
C−1∑
i=0

ℓ(xi,ui) + ℓf (xC),

E(w, x̂k) =


x0 − x̂k

x1 − f(x0,u0)
...

xC − f(xC−1,uC−1)

 ,
and

G(w) =


g(x0,u0)

...
g(xC−1,uC−1)

gf (xC)

 .
Note the dependence of the equality constraints vector E(w, x̂k) on the initial
condition x̂k. In fact, the NLP can be interpreted as a parametric optimization
problem with respect to the current state [28].

The SQP method solves the general NLP (2.21) by iterating over the solution of
a QP obtained linearizing functions φ(w), E(w, x̂k) and G(w) around a solution
guess. Starting with an initial guess (w0,λ0,µ0), at each step of the algorithm a
new candidate solution is computed through the update rule:

wκ+1 = wκ+α∆wκ, λκ+1 = λκ+α
(
λQP
κ − λκ

)
, µκ+1 = µκ+α

(
µQP
κ − µκ

)
,

where α ∈ (0, 1] is the step length, determined using a globalization strategy such
as trust region [34], line search [35], or filter methods [36], and

(
∆wκ,λ

QP
κ ,µQP

κ

)
are the primal-dual solution of the following QP:

minimize
∆w

1
2∆wTBκ∆w +∇wφ(wκ)T∆w

subject to E(wκ, x̂k) +∇wE(wκ, x̂k)∆w = 0
G(wκ) +∇wG(wκ)∆w ≤ 0.

(2.22)

Here, ∇wE(·) and ∇wG(·) denote the constraint Jacobians, being evaluated at wκ.
The matrixBκ denotes the exact Hessian of the Lagrangian, that is∇2

wL(wκ,λκ,µκ),
or an Hessian approximation, and ∇wφ(·) is the gradient of the cost function. The
procedure is in general repeated up to convergence with an adaptive step length.

It is interesting to note how one SQP iteration essentially consists in solving
a linearized version of the original problem, with the constraints being satisfied

2.4 Approximate methods for real-time MPC 21

to their first-order after one iteration. This is a particularly enticing proposition
in the context of real-time control, where often a guess based on the solution to
the problem at the previous control instant is close to the optimal solution, and
computing such an approximate solution provides a sufficiently accurate policy for
feedback control, considering that the solution is going to be refined after a short
amount of time.

Concerning the Hessian matrix of the QP subproblem (2.22), while using the
exact Hessian ∇2

wL(wκ,λκ,µκ) is possible, it is often avoided due to the need for
computing expensive second-order derivatives of the Lagrangian and for regulariza-
tion strategies to ensure that the resulting QP is convex [22]. On the other hand,
using the exact Hessian has the advantage of providing quadratic convergence in
the vicinity of the optimal solution, and has been successfully used in the con-
text of robot motion generation, for instance in [37, 38]. Another popular choice
is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update, which consists in iter-
atively approximating the exact Hessian using only first-order derivatives of the
Lagrangian, thus reducing the computational cost. While this technique only pro-
vides a superlinear convergence rate, it has been successfully employed in a variety
of works [39–41].

Another common Hessian approximation, that will be used in the following, is
based on the so-called Gauss-Newton method. This techniques provides a multiplier-
free approximation, thus not being affected by their initialization. The method
applies to cost functions expressed in a nonlinear least squares form:

φ(w) = 1
2∥R(w)∥2,

with R(w) being called the residual vector. Then, the Gauss-Newton Hessian
approximation is Bκ = ∇wR(wκ)∇wR(wκ)T , being obtained using only first-order
derivatives. This approximation provides linear convergence in a neighborhood of
the solution, and has proven to be a computationally efficient and valid choice in a
range of robotic applications [42,43].

The RTI method consists in performing one iteration of SQP with full step
length (α = 1) and a Gauss-Newton Hessian approximation. The current solution
guess around which the problem is linearized, that we denote with w̄ = (x̄, ū),
is obtained from the solution of the MPC at the previous control cycle, possibly
shifting the trajectory of one step in time [29].

Define the decision variables vector for the QP as ∆w = w − w̄. The MPC
controller then solves the problem:

minimize
∆w

1
2∆wTH∆w + cT∆w

subject to ∆x0 + x̄0 − x̂k = 0
∆xi+1 −Ai∆xi −Bi∆ui + fi = 0 ∀i ∈ IC−1

0
Ci∆xi +Di∆ui + gi ≤ 0 ∀i ∈ IC−1

0
CC∆xC + gC ≤ 0

2.4 Approximate methods for real-time MPC 22

where
H = ∂R

∂w

∣∣∣∣T
w̄

∂R

∂w

∣∣∣∣
w̄

c = ∂R

∂w

∣∣∣∣T
w̄
R(w̄)

Ai = ∂f

∂x

∣∣∣∣
x̄i,ūi

Bi = ∂f

∂u

∣∣∣∣
x̄i,ūi

fi = x̄i+1 − f(x̄i, ūi)

Ci = ∂g

∂x

∣∣∣∣
x̄i,ūi

Di = ∂g

∂u

∣∣∣∣
x̄i,ūi

gi = g(x̄i, ūi)

CC = ∂gf
∂x

∣∣∣∣
x̄C

gC = gf (x̄C).

(2.23)

Finally, let us rewrite the QP problem in compact form by stacking and grouping
the equality and inequality constraints into matrices E and G, respectively, by
letting η(x̂k) = (x̄0 − x̂k,f0, . . . ,fC−1) and g = (g0, . . . , gC), in order to express
everything with respect to the decision variables vector ∆w:

minimize
∆w

1
2∆wTH∆w + cT∆w

subject to E∆w + η(x̂k) = 0
G∆w + g ≤ 0.

(2.24)

Here, matrices E and G are sparse [28] with block diagonal non-zero entries, having
the same structure as matricesE andGs in (2.16) and (2.17), which can be exploited
by QP solvers to efficiently compute the solution to the problem.

By solving this problem at each control instant, the MPC algorithm computes
an optimal state and input trajectory w∗ = w̄ + ∆w∗ from the current state at
time tk to the end state at time tk+C .

Since the optimization problem (2.21) depends linearly on the current state x̂k,
it is possible to construct the RTI approximation (2.24) of the problem, except for
the vector η(x̂k) without the need for knowing the initial state. This allows the
split in the so-called preparation phase and feedback phase aimed at reducing the
control delay introduced by the algorithm [26]. In fact, in the preparation phase,
all the derivatives can be evaluated before the state x̂k is made available. Then,
when the state is measured, the feedback phase computes the solution of the already
constructed problem. This can provide a substantial reduction in the control delay
since the preparation phase is reported to be up to an order of magnitude more
computationally expensive than the feedback phase.

23

Part I

Motion Generation Using
Intrinsically Stable MPC

24

Chapter 3

Intrinsically Stable MPC

In many applications, the main objective of the control system is to generate com-
mands to realize a desired motion. Very often, this desired motion is expressed
by some low-dimensional function (or subset) of the states. This is the case, for
instance, of redundant articulated robots, e.g., a 7 degrees of freedom robot ma-
nipulator controlling the position of its end-effector [44], or a legged robot whose
feet have to follow the desired footsteps to locomote [45], where by definition the
output function has a dimension lower that the degrees of freedom of the system.
This problem, denoted as output tracking, is typically intended asymptotically; that
is, if due to the initial conditions or to disturbances the system is not able to in-
stantaneously perform exact tracking of the desired motion, this is at least achieved
after a sufficiently long time.

In the control literature, the notion of zero dynamics, akin to that of zeros of a
linear system, serves the purpose of describing the unobservable internal subsystem
that could arise when tracking a desired output [46]. This notion, that has been
introduced in the context of input-output linearization of nonlinear systems, is not
only relevant in the case of inversion using feedback linearization, but is actually
useful in describing any system that is forced to track a desired output. For this
reason, the question of controlling the behavior of the zero dynamics of the system
becomes relevant also in the case of optimization-based motion generation.

Systems whose zero dynamics is unstable are called non-minimum phase. Con-
trolling non-minimum phase nonlinear systems poses additional challenges over min-
imum phase systems [47, 48], as the evolution of the internal dynamics can be un-
bounded [49], possibly leading to control saturation or to the complete failure of
the control system. In this thesis, we explore the use of methods where a stability
condition based on the theory of linear Stable Inversion is imposed on the MPC
optimization problem after having appropriately linearized the nonlinear dynamics.
While providing only a local approximation, this proved to be an efficient means of
providing stability while controlling non-minimum phase systems using MPC.

The main methodology, i.e., the so-called Intrinsically Stable Model Predictive
Control (IS-MPC), has been introduced in the context of gait generation of Hu-
manoid Robots (we refer to [50] for an extensive presentation of this application),
where the Linear Inverted Pendulum (LIP) model is used to describe the evolution
of the Center of Mass of a humanoid with respect to the Zero Moment Point (ZMP)

3.1 Preliminaries 25

— or alternatively the Center of Pressure — at the foot. In the LIP model, which
can be seen as the inverse of the Cart-Table model [51], the ZMP acts as the forcing
input, whose trajectory is typically determined from the position of the footsteps.
The CoM trajectory is however unstable, with the LIP model having an unstable
eigenvalue. IS-MPC was then introduced to generate gaits (ZMP trajectories and
footstep positions) in which the CoM trajectory remains bounded with respect to
the ZMP trajectory, allowing the humanoid robot to walk without falling.

The chapter is organized as follows. Sect. 3.1 provides a short overview of
the theory of nonlinear systems, input-output feedback linearization, and the zero
dynamics. In Sect. 3.2 we discuss the origin of the stability condition at the center
of the proposed method. Then, Sect. 3.3 contains a concise and general overview
of the IS-MPC method, which is finally showcased through the application to a
Wheeled Inverted Pendulum robot in Sect. 3.3.1.

3.1 Preliminaries
In this section, we provide the necessary preliminaries on the input-output lineariza-
tion of nonlinear systems and the zero dynamics arising when tracking a desired
output. The treatment follows that of [52, Chapter 4] and is proposed in the case
of single input single output (SISO) systems for brevity and ease of exposition.
The discussion and results however can be easily replicated for the multiple input
multiple output (MIMO) case, for which we refer the reader to [52, Chapter 5].

Consider the nonlinear input-affine SISO system

ẋ = f(x) + g(x)u
y = h(x),

(3.1)

where x ∈ Rn and u, y ∈ R.

Definition 3.1.1 (Relative Degree). System (3.1) is said to have relative degree r
at x′ if

1. LgLkfh(x) = 0 for all x in a neighborhood of x′ and all k < r − 1,

2. LgLr−1
f h(x′) ̸= 0,

where Lab(x) denotes the Lie derivative of function b(x) along the vector field a(x),
that is, Lab(x) = ∂b

∂xa.

The notion of relative degree plays a pivotal role in defining a change of coordi-
nates that transforms the system in the so-called Byrnes-Isidori normal form. This
particular output-focused normal form will highlight the input-output structure of
the system, allowing to apply straightforward control laws to control the output
evolution and eventually characterizing the behavior of the (possible) internal un-
observable dynamics.

3.1 Preliminaries 26

Proposition 3.1.1. Suppose the system has relative degree r ≤ n at x′. Set

ϕ1(x) = h(x)
ϕ2(x) = Lfh(x)

...
ϕr(x) = Lr−1

f h(x).

(3.2)

The row vectors
dϕ1(x′), dϕ2(x′), . . . , dϕr(x′)

are linearly independent. If r is strictly less than n, it is always possible to find
n− r more functions ϕr+1(x), . . . , ϕn(x) such that the mapping

Φ(x) =

ϕ1(x)
...

ϕn(x)

 (3.3)

has a Jacobian which is non-singular at x′ and therefore qualifies as a local coor-
dinate transformation in a neighborhood of x′. Moreover, it is always possible to
choose ϕr+1(x), . . . , ϕn(x) in such a way that

Lgϕi(x) = 0 for all r + 1 ≤ i ≤ n and all x around x′.

Proof. The proposition is an adaptation of Lemma 4.1.1 and Proposition 4.1.3 of
[52], the proof of which can be found therein.

We now apply the change of coordinates defined by mapping (3.3) to system
(3.1). Let the new coordinates be z = (z1, . . . , zn) with zi = ϕi(x) for 1 ≤ i ≤ n.
Then, for the first r coordinates, recalling (3.2) and Definition 3.1.1 we obtain

dz1
dt

= ∂ϕ1
∂x

dx

dt
= ∂h

∂x

dx

dt
= Lfh(x) = ϕ2(x) = z2

...
dzr−1
dt

= ∂ϕr−1
∂x

dx

dt
=
∂Lr−2

f h

∂x

dx

dt
= Lr−1

f h(x) = ϕr(x) = zr

dzr
dt

= ∂ϕr
∂x

dx

dt
=
∂Lr−1

f h

∂x

dx

dt
= Lrfh(x) + LgL

r−1
f h(x)u.

(3.4)

For the last equation, it is still necessary to apply the inverse coordinate transfor-
mation to express it as a function of z, i.e., x = Φ−1(z). Then, by defining

a(z) = LgL
r−1
f h(Φ−1(z))

b(z) = Lrfh(Φ−1(z))

the equation becomes
dzr
dt

= b(z) + a(z)u.

Concerning the last n − r equations, no special structure arises in general. In
fact, for r + 1 ≤ i ≤ n:

dzi
dt

= ∂ϕi
∂x

(f(x) + g(x)u) = Lfϕi(x) + Lgϕi(x)u.

3.1 Preliminaries 27

Again, we must express the right-hand side of the equation as a function of z. To
this aim, for r + 1 ≤ i ≤ n define

pi(z) = Lgϕi(Φ−1(z))
qi(z) = Lfϕi(Φ−1(z))

such that
dzi
dt

= qi(z) + pi(z)u. (3.5)

Finally, the full state-space representation obtained by combining (3.4) and
(3.5), that we denote as normal form is:

ż1 = z2

ż2 = z3...
żr−1 = zr

żr = b(z) + a(z)u
żr+1 = qr+1(z) + pr+1(z)u...
żn = qn(z) + pn(z)u,

(3.6)

with output y = z1. As stated in Proposition 3.1.1, it is always possible to find
a change of coordinates such that Lgϕi(x) = 0 for r + 1 ≤ i ≤ n, which would
result in the last n − r equations of the dynamics not depending explicitly on the
input1. However, since constructing such functions involves solving a system of n−r
partial differential equations, it is often not easy to find a solution which satisfied
this additional requirement, which is often neglected.

3.1.1 Linearization via feedback

By analyzing the normal form (3.6), it is readily apparent how in these new co-
ordinates the input-output relationship can be made linear by means of (static)
state feedback. This procedure, denoted with Input-Output Feedback Linearization,
allows to impose any arbitrary r-order dynamics to the output, posing the basis to
solving the output regulation problem.

Consider the state feedback law

u = 1
a(z) (−b(z) + v) , (3.7)

where v is an external reference input. Note that by construction a(z) ̸= 0 in a
neighborhood of x′, so the control law is always (locally) well-defined if the system

1They would still be, in general, coupled with the rest of the dynamics.

3.1 Preliminaries 28

has relative degree r. Applying this control law to system (3.6), one obtains

ż1 = z2

ż2 = z3...
żr−1 = zr

żr = v

żr+1 = qr+1(z) + pr+1(z)
a(z) (−b(z) + v)

...
żn = qn(z) + pn(z)

a(z) (−b(z) + v) .

(3.8)

This system is clearly composed of a linear subsystem of dimension r which de-
termines the input-output behavior and of a (in general) nonlinear subsystem that
albeit being forced by the input v does not affect the output — being, in fact, not
observable. In particular, the linear subsystem now has the trivial transfer function

H(s) = 1
sr
.

From this, it is possible to apply any linear control technique to impose a desired
behavior to the output.

Remark 3.1.1. If the system has relative degree r = n, then the feedback law (3.7)
transforms the full system into a linear and controllable one. In fact, it is possible
to do so if and only if there exists an output λ(x) with respect to which the system
has relative degree n [52, Lemma 4.2.1].

Remark 3.1.2. Note that the feedback law (3.7) can also be expressed directly in
the original coordinates, taking the form

u = 1
LgL

r−1
f h(x)

(−Lfh(x) + v) .

3.1.2 The zero dynamics

Having analyzed the input-output relationship highlighted by the coordinate trans-
formation and how this can be controlled by means of state feedback, we now analyze
the role of the residual nonlinear dynamics described by the last n− r equations of
the normal form. For convenience, we partition the coordinates of the normal form
as:

z = (ξ,η) = (z1, . . . , zr︸ ︷︷ ︸
ξ

, zr+1, . . . , zn︸ ︷︷ ︸
η

).

With this notation, the normal form can be rewritten as

ż1 = z2

ż2 = z3...
żr−1 = zr

żr = b(ξ,η) + a(ξ,η)u
η̇ = q(ξ,η) + p(ξ,η)u.

(3.9)

3.1 Preliminaries 29

Without loss of generality, one can assume that the mapping (3.3) is such that
ξ = 0 and η = 0 at x′. Then, if x′ is an equilibrium point, (ξ,η) = (0,0) is an
equilibrium point as well.

Consider the case in which the system is supposed to track an identically zero
output. We are interested in finding all the initial states x◦ and input functions u◦(·)
such that the corresponding output y(t) is identically zero for all t in a neighborhood
of t = 0.

Recalling that in normal form the output is y(t) = z1(t) and the first r equations
of the coordinate transformation (3.2), the constraint y(t) = 0 for all t clearly implies

ż1(t) = ż2(t) = · · · = żr(t) = 0,

that is ξ(t) = 0 for all t.
Then, the input u(t) must be the unique solution to the equation ξ̇(t) = 0 for

all t, with initial condition ξ(0) = ξ◦ = 0:

0 = b(0,η(t)) + a(0,η(t))u(t). (3.10)

The remaining part of the state η(t) is governed by the dynamics

η̇ = q(0,η) + p(0,η)u, (3.11)

where the initial condition η(0) = η◦ can be chosen arbitrarily as it does not affect
the output evolution.

Equation (3.10) has the solution

u(t) = − b(0,η(t))
a(0,η(t)) ,

which, plugged into (3.11) yields the dynamics describing the evolution of η(t):

η̇(t) = q(0,η(t))− p(0,η(t)) b(0,η(t))
a(0,η(t)) , η(0) = η◦. (3.12)

This dynamics is the so-called zero dynamics of the system, describing the internal
behavior — unobservable from the output point of view — that the system exhibits
when forced to follow the desired output.

It is worth noting that the unique input that satisfies condition (3.10) depends
on η(t) and, ultimately, on the initial condition η◦.

This derivation of the zero dynamics has followed a “closed-loop” approach, in
which a feedback control law is devised to track the desired output from a suitable
initial condition. On the other hand, it is important to notice that the concept of
zero dynamics allows also for an “open-loop” definition as the dynamical system that
characterizes the internal behavior of a system once initial conditions and inputs
are chosen in such a way as to constrain the output to be identically zero [53]. This
definition implies that, in fact, a zero dynamics might arise whenever the system
is following an output trajectory independently on the way the commanded input
has been generated. For this reason, it is natural to consider the effect of the zero
dynamics on the system also when controlled using optimization-based methods
such as MPC.

3.2 Boundedness condition for LTI systems 30

All the discussions around the zero dynamics are not limited to the case in which
the output is y(0) = 0. In fact the concept of zero dynamics can be extended to
the case in which the system is forced to track any arbitrary function yd(t). In such
case, this forced dynamics describes the internal behavior of the system when the
input and initial conditions are those such that the output is exactly equal to yd(t).

Definition 3.1.2 (Minimum and non-minimum phase system). A system is said
to be minimum phase if its zero dynamics is stable. Conversely, a system is said to
be non-minimum phase if its zero dynamics is unstable.

It is well known that non-minimum phase systems pose a variety of challenges
and limitations when designing feedback controllers [54]. In our context, it is impor-
tant to stress the fact that, when trying to regulate the output of a non-minimum
phase system two undesired things might occur:

• The internal dynamics, being unstable, might lead η(t) to diverge;

• As a consequence to the divergence of η(t), the input u(t) required to follow
the desired output might be unbounded.

In the following, we will try to address these problems by analyzing under which
conditions the evolution of the zero dynamics and of the input remain bounded, and
ultimately exploit these conditions to appropriately design MPC algorithms that are
able to control systems which are non-minimum phase.

The following two remarks provide an additional perspective into the naming
of the zero dynamics, which can be justified by an interesting parallel with linear
systems:

Remark 3.1.3. It can be shown that the zeros of the transfer function of a linear
system coincide with the eigenvalues of its linear zero dynamics — when the system
is converted in normal form.

Remark 3.1.4. The linear approximation at η = 0 of the zero dynamics of a
system coincides with the zero dynamics of the linear approximation at x = 0, thus
to the zeros of its transfer function. That is, the operations of linearization and the
computation of the zero dynamics commute.

In light of these two remarks, it also becomes apparent how the application of
linear systems theory over the linearized zero dynamics can provide an effective,
albeit local, tool to deal with systems which posses a zero dynamics.

Subsequently, the focus now shifts to linear time-invariant (LTI) systems, ex-
ploring the conditions under which the system evolution remains bounded. These
conditions will play a pivotal role in devising stability constraints for implementing
MPC in systems featuring an unstable zero dynamics.

3.2 Boundedness condition for LTI systems
In this section, we analyze the condition under which the evolution of a forced linear
system remains bounded, even if the system is unstable. This condition will pose

3.2 Boundedness condition for LTI systems 31

the basis to formulate a so-called stability constraint to be imposed in the MPC
problem in order to ensure that the evolution of the system does not diverge.

The following results are based on the contributions regarding the so-called
stable inversion of linear systems [55]. These results have been used to generate
stable feedforward trajectories, e.g., in the context of tracking control of flexible
link robots [56], and have been later extended to control non-minimum phase non-
linear systems [57–60]. In [61], the concept was used for gait generation and was
named as the boundedness condition, consisting in a proper initial condition for
the LIPM that prevents the state from diverging, given a desired ZMP trajectory.
Further investigations have also been carried in [62] for the time-varying dynam-
ics of the Variable Height Inverted Pendulum model, where it was possible to find
an exponential dichotomy to decouple the stable and unstable components of the
dynamics.

While for the linear time invariant case the main result is a closed-form – albeit
anticausal – condition, in the nonlinear case the most successful works have only
been able to produce a iterative procedure to numerically generate such trajectories,
also requiring a (possibly difficult to find) dichotomic split [63] of the system into
stable and unstable subsystems for the time-varying case [60]. Arguably, this has
narrowed the range of applicability of such methods to the case of real-time planning,
and justifies our study of the linear version of the condition which will then be
applied to the approximate linearization of a nonlinear system.

Consider a time-invariant linear system

ẋ = Ax+Bu

with x ∈ Rnx and u ∈ Rnu .
Without loss of generality, we can suppose that the input u is generated to track

a desired output y = Cx. In such case, the system represents the inverse of the
original one, possibly possessing a (linear) zero dynamics.

Assume that A has no eigenvalues with zero real part (i.e., the origin is a
hyperbolic equilibrium point). Then, there exists a change of coordinates(

xs
xu

)
=
(
Ts
Tu

)
x = Tx

such that the stable and unstable subsystems are decoupled:(
ẋs
ẋu

)
=
(

Λs 0
0 Λu

)(
xs
xu

)
+
(
Gs
Gu

)
u,

with Λs and Λu characterized by the eigenvalues of A with negative and positive
real part, respectively.

Clearly, in the decoupled system, the stable component xs has an evolution that
is bounded if the input is bounded, and converges to the origin in free evolution.
On the contrary, the unstable component xu will in general diverge2.

The following lemma is essentially an adaptation of a result given in [66].
2The unstable component xu plays in our context a similar role to that of the capture point [64]

(also known as the divergent component of motion [65]) in humanoid locomotion.

3.2 Boundedness condition for LTI systems 32

Lemma 3.2.1. Assume that the input u(t) is such that ∥Guu(t)∥∞ ≤ µ, for some
µ > 0. Then, the state evolution x∗

u(t) starting from the initial state

x∗
u(t0) = −

∫ ∞

t0
e−Λu(τ−t0)Guu(τ)dτ (3.13)

is bounded, i.e., there exists β > 0 such that ∥x∗
u(t)∥∞ ≤ β.

Proof. The generic evolution of the unstable component xu starting from xu(t0)
with input u(t) can be written as

xu(t) = eΛu(t−t0)
(
xu(t0) +

∫ t

t0
e−Λu(τ−t0)Guu(τ)dτ

)
.

Choosing the initial condition (3.13), the evolution becomes

x∗
u(t) = −

∫ ∞

t
eΛu(t−τ)Guu(τ)dτ.

Since all eigenvalues of Λu have strictly positive real part, there exist γ, α > 0 such
that

∥eΛu(t−τ)∥∞ ≤ γ eα(t−τ) for t ≤ τ.
We can then write

∥x∗
u(t)∥∞ ≤

∫ ∞

t

∥∥∥eΛu(t−τ)Guu(τ)
∥∥∥

∞
dτ

≤
∫ ∞

t

∥∥∥eΛu(t−τ)
∥∥∥

∞
∥Guu(τ)∥∞ dτ

≤ γµ
∫ ∞

t
eα(t−τ)dτ = γµ

α
= β.

The interpretation of this lemma is the following: although the system includes
an unstable part, for any bounded input there exists a particular initial condition
from which the state evolution remains bounded. Such initial condition is anticausal,
in the sense that it depends on the future values of the input.

The initial condition being anticausal also allows for an inverted perspective on
the problem. Suppose that the initial condition x∗

u(t0) is fixed, which is typically
the case in the context of feedback control. Then, the future evolution of the input
must satisfy condition (3.13) in order to make the state trajectory bounded. This
can be used, for instance, in the context of MPC, where the algorithm has to find
the future evolution of the system that satisfies the constraints and minimizes the
cost function, starting from the initial state at time tk.

In this case, since the control horizon is limited, the integral can be split over
two time intervals, the control horizon, and the so-called tail:

x∗
u(tk) = −

∫ ∞

tk

e−Λu(τ−tk)Guu(τ)dτ

= −
∫ tk+C

tk

e−Λu(τ−tk)Guu(τ)dτ︸ ︷︷ ︸
control horizon

−
∫ ∞

tk+C

e−Λu(τ−tk)Guu(τ)dτ︸ ︷︷ ︸
tail

.

3.3 The IS-MPC approach 33

Denote with uMPC the input u(t) ∈ [tk, tk+C] and with utail the input u(t) ∈
[tk+C ,∞] after the end of the control horizon. From this, it is clear how this anti-
causal condition depends, in principle, on a term that can be directly manipulated
by the MPC controller via uMPC, being a function of the inputs during the control
horizon, plus a term which depends on the future evolution of the input after the
control horizon utail, about which we can only conjecture.

On the other hand, the condition at time tk can be integrated over the control
horizon, yielding the equivalent condition

x∗
u(tk+C) = −

∫ ∞

tk+C

e−Λu(τ−tk+C)Guutail(τ)dτ (3.14)

on the terminal state xu(tk+C). Notably, the integral condition here depends only
on utail, with the dependence of xu(tk+C) on uMPC being implicit.

3.3 The IS-MPC approach
We now introduce the IS-MPC method in general, before examining its usage
through a series of application examples. Suppose we want to design an MPC con-
troller able to perform output tracking while generating bounded state trajectories
for a system

ẋ = fc(x,u). (3.15)

While not being a requirement, one can assume that system (3.15) may have been
obtained after having performed some form of feedback linearization over the orig-
inal system, possibly decoupling its zero dynamics with respect to the linearized
outputs. In such case, IS-MPC will be designed over this transformed dynamics
and the input u will be mapped to the original input using the appropriate feed-
back transformation.

The MPC controller has to be designed to satisfy the two objectives:

• execute the main task with minimum tracking error;

• ensure that the system trajectories remain bounded.

Concerning the first point, it is typically sufficient to design the cost function to
minimize deviations from the reference output. In some instances, if a preliminary
feedback controller is used and IS-MPC is tasked with applying only a stabilizing
corrective action — as is the case in the application described in Chapter 5 — it
is sufficient to minimize the IS-MPC correction. As for the second point, we are
interested in ensuring that the closed-loop trajectories of the system do not diverge
for all future times. In the context of receding horizon control, simply imposing
constraints on the limited control horizon might not be sufficient, as the terminal
state might be such that no bounded feasible trajectory exists after the control
horizon; In fact, in the case of simple regulation, terminal set constraints have
been used to prove the stability of the closed-loop system [29, Chapter 2]. Such
arguments are however difficult to apply in the case of tracking problems without
relying on excessively conservative conditions, which might not be compatible with
the first goal, or on the knowledge of a reference state trajectory, which might not be

3.3 The IS-MPC approach 34

available. Some methods that regulate the full state rely on a terminal cost obtained
from the value function of an equivalent LQ problem. However, to obtain practical
stabilization, artificial bounds on the controlled variables might still be introduced,
leading to overly conservative limitations to the resulting motion (see Sect. 5.5.2
for an example of this in the Tractor-Trailer system). For this reasons, IS-MPC
relies on Lemma 3.2.1 to impose a (terminal) condition that is exact — in the linear
case — and that only constraints the unstable component of the dynamics, thus
minimizing the impact on the tracking error.

In order to apply the method to a nonlinear system, we use the Linearized Time
Varying MPC approach described in Sect. 2.4.1, linearizing the dynamics and the
constraints around an auxiliary trajectory (xaux(t),uaux(t)). Moreover, we define a
LTI approximation of the dynamics for t ∈ [tk+C ,∞]:

ẋ = A∗x+B∗u,

that will be used to impose the stability condition. This linearization can be cho-
sen, for example, as the linearization around the auxiliary trajectory at the end of
the control horizon (xaux(tk+C),uaux(tk+C)) or, more in general, around a suitable
equilibrium.

Assuming that the conditions for the application of Lemma 3.2.1 hold, namely
that the resulting dynamics is hyperbolic3, we can decouple the unstable components
of the dynamics with the projection matrix Tu, satisfying

ẋu = Λ∗
uxu +G∗

uu, t ∈ [tk+C ,∞],

where Λ∗
u has all unstable eigenvalues. Then, impose the terminal condition (3.14)

to obtain the stability constraint:

xu(tk+C) = Tuxk+C = −
∫ ∞

tk+C

e−Λ∗
u(τ−tk+C)G∗

uutail(τ)dτ (3.16)

at the final time of the predicted MPC trajectory.
This condition imposes that the unstable component xu at the end of the control

horizon lands on a state for which its future evolution (after the control horizon)
forced by the input utail remains bounded. Clearly, compared to any constraint
on the evolution of the state over the control horizon only, this provides additional
guarantees over the future evolution of the system and on the fact that the action
planned by the MPC controller will make the evolution of the closed-loop system
bounded. This becomes especially relevant when the control horizon of the MPC is
relatively short, which could otherwise result in myopic actions that can eventually
lead the system to diverge, even it the predicted trajectory is bounded (over the
control horizon). We summarize the IS-MPC approach as follows:

1. Start by designing a controller to execute the desired task. This can be a
preliminary feedback controller or can be part of the MPC itself.

3As will be shown later through an example, if the system can be decoupled into an hyperbolic
and non-hyperbolic — but stabilizable through other means — part the procedure can be applied
on the hyperbolic subsystem only.

3.3 The IS-MPC approach 35

2. Design the cost function of the MPC and the state/input constraints to exe-
cute the task.

3. Find an appropriate LTI approximation of the dynamics for t ∈ [tk+C ,∞];

4. Identify the stable and unstable components of the dynamics.

5. Impose the terminal stability constraint on the unstable component using the
most suitable tail.

To best illustrate the method, we apply IS-MPC in the simple setting of a planar
Wheeled Inverted Pendulum, an underactuated and unstable system that manifests
its non-minimum phase nature when controlling the base position.

3.3.1 Application to a Wheeled Inverted Pendulum

Consider a planar Wheeled Inverted Pendulum robot (see Fig. 3.1) consisting of a
wheel of radius R moving without slipping over the flat horizontal ground and of a
rigid body hinged at the wheel axis. The system is described by the two generalized
coordinates x, representing the position of the center of the wheel or equivalently of
the contact point with the ground, and ϕ, representing the angle of the body with
respect to the vertical position.

The wheel has a mass mw and moment of inertia Iw with respect to its axis,
where the center of mass is also assumed to be placed; the body has a mass mb

and moment of inertia Ib with respect to its center of mass, which is assumed to be
placed at a distance l from the wheel axis.

Assume that the wheel is actuated by a motor and that the body is attached to
the motor casing4. For convenience, we consider a control input u = τ/R, where τ
is the motor torque.

The equations of motion of the system can be obtained using the Lagrangian
formalism with respect to the generalized coordinates q = (x, ϕ), yielding:(

mb +mw + Iw
R2 mbl cos(ϕ)

mbl cos(ϕ) Ib +mbl
2

)
︸ ︷︷ ︸

M(q)

q̈ =
(
mbl sin(ϕ)ϕ̇2

mblg sin(ϕ)

)
︸ ︷︷ ︸

c(q,q̇)

+
(

1
−R

)
︸ ︷︷ ︸

b

u, (3.17)

where M(q) is the symmetric and positive-definite inertia matrix and c(q, q̇) is
vector of Coriolis and gravity forces acting on the system.

Being system (3.17) a second-order mechanical system, it can be easily trans-
formed into its state-space formulation by setting x = (q, q̇) = (x, ϕ, vx, vϕ) ∈ Rnx ,
with nx = 4, and left-multiplying the Lagrangian dynamics for the inverse of the
inertia matrix:

ẋ =
(

q̇
M−1(q) (c(q, q̇) + bu)

)
= f(x) + g(x)u,

(3.18)

4This choice makes the body directly affected by the reaction forces. Alternatively, the body
could be assumed to be on an axial bearing, making the joint passive — yet still coupled with the
rest of the dynamics.

3.3 The IS-MPC approach 36

Figure 3.1. Graphical description of the Planar Wheeled Inverted Pendulum system.

where

f(x) =



vx
vϕ

mbl(Ib +mbl
2) sinϕ ϕ̇2 −m2

b l
2g cosϕ sinϕ

detM
(mb +mw + Iw/R

2)mblg sinϕ−m2
b l

2 cosϕ sinϕ ϕ̇2

detM

 ,

g(x) =


0
0

Ib +mbl
2 +mblR cosϕ
detM

−(mb +mw + Iw/R
2)R+mbl cosϕ

detM

 ,

and
detM = (Ib +mbl

2)(mw + Iw/R
2) +mbIb +m2

b l
2 sin2 ϕ.

It can be easily verified that the origin x = 0 is an unstable equilibrium of the
system.

The task of choice is the tracking of a time-varying reference yd(t) for the base
position x. Being the system underactuated, this is not a trivial task to perform if
we are also interested in keeping the main body upright — i.e., in a vicinity of the
upward equilibrium.

To this end, we will first perform the input-output linearization described in
Sect. 3.1.1, linearize the zero dynamics around the upward equilibrium, and apply
IS-MPC to the linearized system by designing a terminal stability constraint that
stabilizes the system around the upward equilibrium.

3.3 The IS-MPC approach 37

Input-output linearization

It is straightforward to notice that the system has relative degree r = 2 with respect
to the single output y = h(x) = x. Being r = nx−2, we know that a two-dimensional
zero dynamics will arise. Moreover, it is possible to put the system in normal form
via the simple reordering of state variables (ξ,η) = (x, vx, ϕ, vϕ), and the input
transformation

u = 1
LfLgh(x)

(
v − L2

fh(x)
)
,

where v ∈ R is the virtual input, resulting in

ξ̇ =
(

0 1
0 0

)
ξ +

(
0
1

)
v, (3.19)

η̇ =

 η2
mbl(g +Rη2

2) sin η1
Ib +mbl(l +R cos η1)

+

 0

−(mb +mw + Iw/R
2)R+mbl cos η1

Ib +mbl(l +R cos η1)

 v.
(3.20)

From this, it would be possible to make the base position converge exponentially to
the desired trajectory yd(t) using the linear feedback

v(t) = ÿd(t) + kp(yd(t)− ξ1(t)) + kd(ẏd(t)− ξ2(t)),

with kp, kd > 0. However, as intuition suggests, this would result in the WIP falling
to the ground as a result of the forced zero dynamics being unstable, thus diverging
uncontrollably from the upward equilibrium.

To complete the task while keeping the body upright, it is instead necessary to
make sure that the evolution of the (linearized) zero dynamics remains bounded.

Linearization around the upright equilibrium

For simplicity, we will linearize the dynamics around the upright equilibrium. That
is, the auxiliary trajectory equates to (xaux(t),uaux(t)) = (04, 0), thus ∆x = x,
∆u = v, so the MPC formulation can be equivalently expressed in the original
coordinates. We use this linearization point for both the MPC prediction model
and for the stability condition.

As a result of the input-output linearization, the dynamics of the base position
(3.19) are that of a double integrator controlled by the virtual input v.

As far as the zero dynamics (3.20) is concerned, we perform a linearization
around the equilibrium η = 0, which results in a linearized dynamics

η̇ =
(

0 1
α2 0

)
η +

(
0
β

)
v = Aηη +Bηv, (3.21)

where α =
√

mblg
Ib+mbl2

and β = −mbl+(mb+mw+Iw/R2)R
Ib+mbl(l+R) . The matrix Aη has two

eigenvalues λ1,2 = ±α, confirming that η = 0 is an unstable equilibrium for the
zero dynamics and that the system is non-minimum phase.

3.3 The IS-MPC approach 38

IS-MPC formulation

The goal of the MPC is to generate a sequence of inputs that minimize the position
tracking error and that maintain the WIP upright during the motion. Concerning
the tracking task, we consider a cost function

L(v) =
C−1∑
i=0

(
∥yi − yd(tk+i)∥2 +Qv∥vi − ÿd(tk+i)∥2

)
+ ∥yC − yd(tk+C)∥2,

where Qv is the input weight used to penalize deviations from the feedforward input.
To stabilize the system we impose a stability constraint on the unstable compo-

nent of the zero dynamics. In fact, since the zero dynamics is completely decoupled
from the output dynamics, we can impose the terminal condition (3.16) simply on
the linearized zero dynamics (3.21). First, we note that we can apply the coordinate
transformation (

ηs
ηu

)
= Tη =

(
Ts
Tu

)
η =

(
1 −1/α
1 1/α

)
η

to obtain the diagonalized dynamics(
η̇s
η̇u

)
=
(
−α 0
0 α

)(
ηs
ηu

)
+
(
−β/α
β/α

)
v.

Applying Lemma 3.2.1, we obtain that the unique bounded solution of the un-
stable subsystem has to satisfy the terminal condition

ηu(tk+C) = −β
α

∫ ∞

tk+C

e−α(τ−tk+C)vtail(τ)dτ.

As discussed, being this integral the product of the evolution of the input vtail(t)
outside the time horizon, the MPC problem does not have a direct way to control
this evolution, so we must perform some assumption on it. We consider two cases:

• Anticipative tail: if the evolution of the feedforward input ÿd(t) is assumed to
be known for at least a preview window tp after the control horizon5, than we
can set vtail(t) = ÿd(t) to compute the anticipative tail

η∗
u = −β

α

∫ tk+C+tp

tk+C

e−α(τ−tk+C)ÿd(τ)dτ,

by assuming that the input will be equal to the desired one with no correction;

• Truncated tail: if no particular assumption can be made on the input, we
consider vtail(t) = 0, yielding the truncated tail

η∗
u = 0.

5Thanks to the exponentially decreasing term in the integral, there is always in practice a
preview time tp after which the integral can be safely truncated with minimal impact on the result.

3.3 The IS-MPC approach 39

Regardless of the choice of tail, we impose on the predicted state at the end of the
control horizon a stability constraint of the kind

TuηC = η∗
u.

It is worth noting that this condition does not constrain the state evolution to end
at one particular state, as there are infinite combinations of η = (ϕ, vϕ) that could
satisfy the constraint. For this reason, this is less restrictive than simply imposing
a terminal state constraint η = 0 to stabilize the system. Moreover, although the
resulting evolution of η is bounded, we do not set an explicit hard constraint on
the pitch angle ϕ nor on its velocity, which would unnecessarily restrict the range
of motion of the system.

Let A and B be the state and input matrices describing the discrete-time pre-
diction model obtained by the discretization of (3.19) and (3.21), so that xk+1 =
Axk +Bvk. The resulting IS-MPC formulation for this example is:

minimize
v

L(v)

subject to x0 = xk

xi+1 = Axi +Bvi ∀i ∈ IC−1
0

vmin ≤ vi ≤ vmax ∀i ∈ IC−1
0

TuηC = η∗
u

If not for the stability constraint, the MPC controller would simply track the desired
output, leaving the zero dynamics to diverge. With the introduction of the terminal
condition, the MPC will be able to correct the motion so that the evolution of the
unstable component remains bounded, and the robot body remains close to the
upright configuration.

In order to showcase the peculiarities of this method, we compare it with what
is the typical naive approach used to stabilize systems of this kind in the context
of MPC, i.e., instead of using the stability constraint, we simply add to the cost
function a regularization term penalizing the deviation of the pitch angle ϕ from
the equilibrium:

minimize
v

L(v) +
C−1∑
i=0

Qϕϕ
2
i +Qϕ,Cϕ

2
C

subject to x0 = xk

xi+1 = Axi +Bvi ∀i ∈ IC−1
0

vmin ≤ vi ≤ vmax ∀i ∈ IC−1
0

Here, we consider two weights Qϕ, for the pitch angle over the control horizon, and
Qϕ,C for the pitch angle at the terminal state to allow the possibility of having a
comparatively larger Qϕ,C in order to reduce the penalization of the tracking error
over the first part of the control horizon, improving on the closed-loop performance.

Results

We simulate system (3.18) under the action of both controllers in MATLAB, with
a control frequency of 100 Hz. The dynamic parameters of the model are: mw =

3.3 The IS-MPC approach 40

0 5 10 15 20
-2

-1

0

1

2

x
[m

]

IS-MPC
MPC: Q? = 0:1

0 5 10 15 20

time [s]

-0.2

-0.1

0

0.1

0.2

?
[r
ad

]

Figure 3.2. Comparison between IS-MPC and MPC with a control horizon Tc = 1.5 s.
Reference yd(t) in black.

2.4 kg, Iw = 0.0106 kg m2, mb = 18.36 kg, Ib = 1.5 kg m2, l = 0.35 m, R = 0.13 m.
The desired task is the tracking of the sinusoidal reference yd(t) = sin(2πfst) with
frequency fs = 0.125 Hz. The input is assumed to be limited to (vmin, vmax) =
(−1, 1) m/s2

In the first test, we use a relatively long control horizon Tc = 1.5 s. For the cost
functions, we set Qv = 0.01, Qϕ = Qϕ,C = 0.1. As for the tail, we first consider
the conservative choice of a truncated tail. The resulting (x, ϕ) trajectory, reported
in Fig. 3.2, shows how in the case of a long control horizon, both methods provide
essentially the same performance. This can easily be justified by the fact that —
with long horizons — for IS-MPC the effect of a terminal constraint is small over the
first steps of the trajectory and using a truncated tail is sufficient, while for MPC
the regularization term over the pitch angle ϕ is enough to stabilize the motion
around the unstable equilibrium while not perturbing the tracking of the reference
position.

When a shorter control horizon Tc = 0.8 s is considered, the fundamental differ-
ence between the two methods starts to emerge from the results (see Fig. 3.3): In
this case, IS-MPC experiences a larger tracking error, but the trajectory remains
bounded. On the other hand, the standard MPC with Qϕ = 0.1 diverges and the
WIP falls to the ground. Only increasing the regularization cost to Qϕ = 1 yields
again a bounded trajectory, albeit with an unsatisfactory tracking error. It is then
natural to try to tune the cost function to improve the tracking performance. For
instance, this can be done by lowering the regularization cost Qϕ to reduce the effect
on the tracking error and increasing the terminal cost Qϕ,C to penalize diverging
behaviors. However, as can be observed in Fig. 3.4, we are not able to obtain a
satisfactory performance by following this route, even though all cases result in a

3.3 The IS-MPC approach 41

0 5 10 15 20 25 30
-2

-1

0

1

2

x
[m

]

IS-MPC
MPC: Q? = 0:1
MPC: Q? = 1

0 5 10 15 20 25 30

time [s]

-0.2

-0.1

0

0.1

0.2

?
[r
ad

]

Figure 3.3. Comparison between IS-MPC and MPC with a control horizon Tc = 0.8 s.
Reference yd(t) in black.

bounded trajectory. Indeed, this is one of the pitfalls of optimization-based control
when the cost function has to be tuned to account for conflicting objectives.

For IS-MPC, on the other hand, it is possible to introduce a stability constraint
based on an anticipative tail. In this case, reported in Fig. 3.5, it is possible to
obtain a satisfactory tracking performance, with a residual error being the effect of
linearization6.

In conclusion, while IS-MPC does not provide substantial benefits over a more
naive approach as adding a regularization term when the control horizon is long
enough, it becomes quite clear that, when the horizon shortens, the ability to impose
a constraint on the evolution of the unstable component can be extremely effective.
The strength of the approach is twofold:

1. Since the stability is enforced via a constraint, it is not affected by the cost
function weights and no tuning is involved, simplifying the MPC design.

2. As the constraint is imposed over the unstable component xu, i.e., a lower-
dimensional linear combination of the states, the effect of the constraint is
minimal, since there exist infinite combinations of the state that can satisfy
the constraint, allowing for the tracking error to be simultaneously minimized.

6In fact it can be shown that if the linearized model is used to simulate the closed-loop system,
IS-MPC is able to achieve zero tracking error, while MPC has a residual error at all times.

3.3 The IS-MPC approach 42

0 5 10 15 20 25 30
-2

-1

0

1

2

x
[m

]

Q? = 0:1 Q?;C = 10
Q? = 1 Q?;C = 10
Q? = 0:01 Q?;C = 100

0 5 10 15 20 25 30

time [s]

-0.2

-0.1

0

0.1

0.2

?
[r
ad

]

Figure 3.4. Result of tuning the cost function of the MPC problem with a control horizon
Tc = 0.8 s. Reference yd(t) in black.

0 5 10 15 20 25 30
-2

-1

0

1

2

x
[m

]

truncated
anticipative

0 5 10 15 20 25 30

time [s]

-0.2

-0.1

0

0.1

0.2

?
[r
ad

]

Figure 3.5. Result of the use of an anticipative tail as opposed to a truncated tail in
IS-MPC, with a control horizon Tc = 0.8 s. Reference yd(t) in black.

43

Chapter 4

Stable Tracking Control of
Articulated Balancing Robots

Balancing mobile robots are constituted by a statically unstable body, typically
mounted on wheels, which can perform manipulation tasks by leveraging one or
more actuated arms with multiple degrees of freedom. These platforms offer several
advantages with respect to statically stable mobile robots. They are more suitable
to traverse uneven terrains and they can perform fast and dynamic motions while
carrying weights, moving at speeds comparable to those of humans. However, these
capabilities implicitly require that the robot is able to maintain dynamic balance
at all times in order to prevent falls. The underactuation of the dynamics renders
this a rather complex control problem.

Early research studies on balancing mobile robots, both including transporta-
tion vehicles [67] and manipulators [68–70], highlighted the potentialities of these
platforms which encouraged research groups to develop articulated robots that can
also deliver manipulation capabilities, such as Golem Krang [71], or the more recent
ALTER-EGO [72] shown in Fig. 4.1, and Boston Dynamics’ Handle1.

4.1 Related works
In the literature, several approaches have been proposed to control robots of this
kind. It is possible for instance to model the platform as an inverted pendulum
with the only goal of maintaining balance, and account for the manipulator motion
as a disturbance to be compensated by the mobile base, e.g., via sliding mode
control [73]. In [74] a PD control law has been used for balancing coupled with a PID
controller for navigation while performance has been improved with a disturbance
observer. Others, such as [75], propose a whole-body control law for balancing,
which also allows the robot to gently interact with the environment. Task-space
control was demonstrated to be applicable to WIP-based platforms in [76], allowing
to maintain balance while controlling the end effector. This approach was further
investigated by [77], where task-space control has been extended to the class of
planar WIP robots in which the wheel motors are connected to the robot base

1https://youtu.be/5iV_hB08Uns?si=_v2DYWOJHXW396Of

https://youtu.be/5iV_hB08Uns?si=_v2DYWOJHXW396Of

4.2 Contribution 44

Figure 4.1. ALTER-EGO, a prototype WIP robot developed at the University of Pisa [72].

link that is then subject to the wheel reaction torque. Being these methods based
on classic (nonlinear) control, they do not allow to incorporate constraints, e.g.,
to account for input saturation, which can be an issue when performing dynamic
motions.

A few works have also explored the use of MPC. Feedback linearization in con-
junction with MPC was used in [78] for a wheeled inverted pendulum without arms.
In [79] a hierarchical structure is proposed, composed by an MPC-based reference
trajectory generator and an inverse dynamics controller to track the reference tra-
jectories. Whole-body MPC algorithms instead allow to jointly perform re-planning
and control, but their implementation can be cost-demanding due to the complex
dynamics of the robots. Remarkable results were achieved in [80] for a Ballbot-like
omnidirectional mobile manipulator, where real-time performance was achieved by
exploiting custom nonlinear solvers. These methods, although proven to be effective,
do not directly address the stability problem related to the unstable balancing dy-
namics. In fact, it is often required for the MPC to have a long prediction horizon in
order to generate stable behaviors, either by regulating to zero the body pitch angle
— possibly limiting performance — or by tracking a pre-computed pitch trajec-
tory — which unavoidably requires an additional level of trajectory planning which
might limit the flexibility in the application of the method to dynamic scenarios.

4.2 Contribution
In this chapter, we illustrate a whole-body MPC controller for WIP robots which
explicitly addresses the instability problem using the IS-MPC method. The scheme
has a general formulation that can accommodate different objectives. In particular,
we report examples of navigation and loco-manipulation tasks. In order to reshape

4.3 The control problem 45

the system in a convenient way, we perform MPC on a partially feedback-linearized
system. This structure allows us to address the instability problem by introducing
an explicit stability constraint on the pitch dynamics based on the boundedness con-
dition of Sect. 3.2. The key advantages of the proposed method can be summarized
as follows:

• it can be applied to 3D WIP robots with any number of arms and degrees of
freedom;

• the motion generation is achieved in real-time and fully online, only requiring
a desired task trajectory;

• the use of the explicit stability constraint on the unstable component of the
dynamics allows for short prediction times and reduces the effect of tuning on
the stability of the system;

• being based on MPC, it is possible to include state/input constraints or other
general task constraints, such as collision avoidance.

The chapter is organized as follows. Section 4.3 gives some background concepts
by introducing the robot model, the partial feedback linearization and the generic
task definition. Section 4.4 contains an overview of the proposed approach and
describes in detail the IS-MPC algorithm. Simulation results obtained performing
two different tasks are reported in Sect. 4.5.

4.3 The control problem
In this section we introduce the dynamic model of the considered WIP robot, de-
scribe the partial feedback linearization procedure and define the task to be exe-
cuted.

4.3.1 Modeling

The configuration of a WIP robot is defined as q = (x, y, θ, ϕ, qr, ql), where (x, y)
is the position of the differential-drive robot base in the world frame, θ and ϕ are
respectively the yaw angle and the pitch angle of the body, and qr ∈ Rnr and
ql ∈ Rnl are the right and left arm joint angles, respectively. The total number of
dofs in the arms is na = nr + nl. Figure 4.2 shows the schematic of an example
WIP robot having nr = nl = 2.

Denote the velocity vector by ν = (v, ω, vϕ,vr,vl), where v is the pseudovelocity
of the robot base, ω = θ̇, vϕ = ϕ̇, vr = q̇r and vl = q̇l. The robot state is then
x = (q,ν).

A reduced-order dynamic model of the WIP robot can be expressed in compact
form as [81]

q̇ = G(q)ν (4.1)
ν̇ = −M−1(q)(c(q,ν)−E τ), (4.2)

4.3 The control problem 46

Figure 4.2. Generalized coordinates for a WIP robot with nr = nl = 2 (left arm coordi-
nates are omitted for clarity). Note the displaced point on the ground (xP , yP) used for
navigation tasks.

whereG is a matrix whose columns span the null space of the Pfaffian nonholonomic
constraint on the robot base, M is the inertia matrix, c is a force vector containing
the gravity, centrifugal and Coriolis contributions, E is the actuator selection matrix
and τ ∈ R2+na are the torques acting on the base wheels and the arm joints.

Due to the presence of the articulated arms and the associated inertial couplings,
the above model is considerably more complicated than in the case of a WIP with no
arms (see [82] for a model of the latter). Therefore, we omit the explicit expression
of the various matrices in eqs. (4.1–4.2), with the exception of the actuator selection
matrix which takes the form

E =


1/R 1/R 0Tna

a/R −a/R 0Tna

−1 −1 0Tna

0na 0na Ina

 ,
where R is the wheel radius and a is the semi-distance between the wheels. The
linear dependence of the first and third rows is a consequence of the fact that
the pitch angle ϕ is not independently actuated — which makes the WIP robot an
underactuated system. In general, full expressions for the dynamics can be obtained
in symbolic form by the use of tools such as the MATLAB Symbolic Toolbox or
Wolfram Mathematica. Alternatively, libraries such as Pinocchio [83] can be used to
efficiently compute the full dynamics and its derivatives numerically — from exact
analytical expressions — starting from a representation of the system dynamics and
kinematics in a text file.

4.3 The control problem 47

4.3.2 Partial feedback linearization

To simplify the design of our control scheme, we perform a partial feedback lin-
earization of model (4.1–4.2).

Let us focus on the following subset of equations from (4.2):
v̇
ω̇
v̇r
v̇l

 = α(x) + Ψ(x)τ .

Define the following input transformation

τ = Ψ−1(x)(u−α(x)), (4.3)

where u are the new transformed inputs. Using (4.3) in (4.1–4.2) results in a
partially linearized dynamics which is conveniently reordered as

ẋ = v cos θ
ẏ = v sin θ
θ̇ = ω

v̇ = u1

ω̇ = u2
(4.4)

q̇r = vr

v̇r = u3

q̇l = vl

v̇l = u4

η̇ = fη(x,u),

having set η = (ϕ, vϕ). The vector field describing the pitch dynamics is now

fη(x,u) = r(x) + S(x)Ψ−1(x) (u−α(x)) ,

where r and S are respectively the drift and the input matrix characterizing the
original pitch dynamics in (4.1–4.2).

As intuition suggests, the pitch dynamics is inherently unstable in this kind of
system [84]. For instance, one may easily verify that in a WIP robot the linearized
pitch dynamics around the static equilibrium (CoM over the wheel axis) has a
positive eigenvalue. A similar situation holds when the linearization of the pitch
dynamics is computed around generic trajectories.

4.3.3 Task definition

We will consider general task functions defined as

r = h(q), (4.5)

4.4 The proposed approach 48

desired task trajectory
IS-MPC QP

partial feedback
linearization

auxiliary
state trajectory

joint
torques

predicted
state
trajectory

current state

stability constraintlinear
approximation

z { 1

input constraints

cost function

transformed
inputs

Figure 4.3. A block scheme of the proposed approach. The z−1 block stores the solution
of each iteration and makes it available at the next, after replacing its first sample with
the current state, see (4.6).

with r ∈ Rm. By differentiating (4.5) we obtain

ṙ = ∂h(q)
∂q

q̇ = ∂h(q)
∂q

G(q)ν = J(q)ν,

where J(q) is the m× (3 + na) task Jacobian.
For the simulations, we will consider two specific task functions. The first (nav-

igation task) describes the coordinates (xP , yP) of a point P on the ground which is
displaced2 from the base by a distance d along the sagittal axis (see Fig. 4.2). The
task function and the associated task Jacobian are easily computed as

h(q) =
(
xP
yP

)
=
(
x+ d cos θ
y + d sin θ

)
,

J(q) =
(

cos θ −d sin θ 0Tna+1
sin θ d cos θ 0Tna+1

)
.

While the values of the arm generalized coordinates have no instantaneous effect on
the navigation task, arm motions can dynamically contribute to the stabilization of
the pitch dynamics.

The second task function used in the simulations will be the position of the
end-effector, chosen as one of the two hands (loco-manipulation task). In this case,
all generalized coordinates directly contribute to the task.

4.4 The proposed approach
In this section we discuss the proposed method for controlling WIP robots. We
will first provide a general overview of the solution approach and then proceed to a
detailed discussion of its main component, the IS-MPC controller.

4.4.1 Overview

The problem we address is that of generating in real-time a whole-body motion of
the WIP robot such that:

2A nonzero displacement guarantees that J(q) will be full rank, which is an implicit requirement
of our MPC-based approach.

4.4 The proposed approach 49

• the task function r(t) tracks a desired reference trajectory rd(t);

• balance is maintained;

• constraints on both states (joint limits, velocity limits) and inputs (torque
limits) are satisfied.

A block scheme of the proposed solution approach is shown in Fig. 4.3. The
input is the task trajectory rd(t) to be tracked. At each iteration, the IS-MPC al-
gorithm solves an optimization problem over a receding control horizon to compute
the transformed inputs u, from which the original torque inputs τ will be recon-
structed. To achieve real-time performance, the optimization problem is formulated
as a Quadratic Program (QP) using the Linearized Time Varying MPC approach,
with an auxiliary trajectory obtained from the solution predicted at the previous
iteration, and using the same trajectory to compute the cost function as well as to
map torque limits to linear constraints on the transformed inputs.

An essential component of the IS-MPC algorithm is the explicit stability con-
straint included in the QP. Such constraint will avoid the onset of instability in the
pitch dynamics, ultimately guaranteeing that the robot maintains balance while
executing the assigned task.

In the next section we describe in detail the IS-MPC algorithm and its various
components.

4.4.2 IS-MPC

Below we introduce the prediction model, the stability constraint, the input con-
straints and the resulting MPC formulation.

Prediction model

At the k-th iteration, the prediction model is obtained by linearizing (4.4) around
an auxiliary trajectory defined as follows. Denote by

(xk−1,xk|k−1,xk+1|k−1 . . . ,xk+C−1|k−1)

the predicted state trajectory at the (k− 1)-th iteration, where xk−1 is the current
state at tk−1 and the following samples xk|k−1,xk+1|k−1 . . . ,xk+C−1|k−1 are obtained
by injecting the MPC solution inputs at tk−1 into the corresponding prediction
model3. From this trajectory, we can build the auxiliary trajectory (x̄k, . . . , x̄k+C)
by letting

x̄k+i =


xk i = 0,
xk+i|k−1 i = 1, . . . , C − 1
x̄k+C−1 i = C.

(4.6)

The current state xk = x(tk) is used as first sample of the auxiliary trajectory
to increase its precision and therefore the accuracy of the subsequent linearization
procedure. Note also that the auxiliary trajectory is prolonged up to tk+C by

3At the first iteration, when the system is at rest and a previous solution is not available, the
inputs are simply set to zero.

4.4 The proposed approach 50

replicating the last sample xk+C−1|k−1 of the predicted state trajectory at the (k−1)-
th iteration. The auxiliary input is the MPC solution at tk−1:

(ūk, . . . , ūk+C−1).

The prediction model at tk can now be computed as the linear approximation
of the partially feedback-linearized dynamics (4.4) around the auxiliary trajectory.
Since the base position will not appear explicitly in the MPC prediction, we intro-
duce the reduced state vector ξ = (v, θ, ω, qr,vr, ql,vl,η) to define the discrete time
prediction model used in the MPC.

In particular, for the pitch dynamics we will use the following model

ηi+1 = Āη,k+iηi + B̄η,k+i ui + f̄η,k+i, (4.7)

for i = 0, . . . , C − 1, where Āη,k+i, B̄η,k+i and f̄η,k+i are obtained discretizing the
linearization:

Āη,c(tk+i) = ∂fη
∂η

∣∣∣∣
x̄k+i,ūk+i

, B̄η,c(tk+i) = ∂fη
∂u

∣∣∣∣
x̄k+i,ūk+i

,

f̄η,c(tk+i) = fη(x̄k+i, ūk+i)− Āη,c(tk+i)η̄k+i − B̄η,c(tk+i)ūk+i.

Note that this approximation neglects the effect of the variation of the arm coordi-
nates qr, ql with respect to the auxiliary trajectory, decoupling the pitch dynamics
from the rest of the system.

Combining the discretized linear dynamics of (4.4) with (4.7), we can define the
prediction model for the reduced dynamics:

ξi+1 = Aξ,k+iξi +Bξ,k+iui + fξ,k+i, (4.8)

where

Aξ,k+i =

Abase
Aarms

Āη,k+i

 , Bξ,k+i =

Bbase
Barms
B̄η,k+i

 , fξ,k+i =

 0
0

f̄η,k+i

 ,

Abase =

1 0 0
0 1 δt
0 0 1

 , Bbase =

δt 0 0Tna

0 δ2
t
2 0Tna

0 δt 0Tna

 ,

Aarms =


Inr δtInr 0 0
0 Inr 0 0
0 0 Inl

δtInl

0 0 0 Inl

 , Barms =


0nr×2

δ2
t
2 Inr 0

0nr×2 δtInr 0
0nl×2 0 δ2

t
2 Inl

0nl×2 0 δtInl

 .

Stability constraint

As already mentioned, the pitch dynamics in a WIP robot is unstable. This is
obviously true also for its linear approximation (4.7). To cope with this instability,

4.4 The proposed approach 51

we include in the MPC formulation a constraint in order to guarantee that the evo-
lution of ϕ does not diverge. Note that this is conceptually different from enforcing
a box constraint on ϕ, which would unnecessarily restrict the range of admissible
motions for the system. To formulate such a constraint, we will retain the time-
varying prediction model (4.7) for t < tk+C , and use a time-invariant approximation
for t ≥ tk+C .

In particular, let x∗ = (q∗,03+na) and

q∗ = (x̄k+C , ȳk+C , θ̄k+C , ϕ
∗, q̄r,k+C , q̄l,k+C). (4.9)

where the configuration at the last sample of the auxiliary trajectory has been used,
with the exception of ϕ̄k+C which has been replaced by ϕ∗, the value of the pitch
angle that puts the WIP in static equilibrium when the arms are at q̄r,k+C , q̄l,k+C .
The time-invariant approximation that we will use for t ≥ tk+C is defined as

η̇ = A∗
ηη + f∗

η (4.10)

where the dynamic matrix and the constant drift, respectively

A∗
η = ∂fη

∂η

∣∣∣∣
x∗,0

, f∗
η = fη(x∗,0)−A∗

ηη
∗,

are computed at x = x∗ and u = 0, and we have set η∗ = (ϕ∗, 0).
The particular choice of the state and inputs at which the linear approximation

is frozen can be justified by noting that the state x∗ is a static equilibrium for
system (4.4) which requires no input (u = 0). In the terminology of [50], this
corresponds to using a truncated tail to derive the stability constraint. In practice,
this is the most viable option due to the fact that the value of the input at tk+C
is neither a decision variable in the current QP nor available from the solution of
the previous QP, and, in the context of our problem with a generic task, there is
no particular input trajectory that could be assumed to be a suitable candidate to
anticipate the behavior of the system to use an anticipative tail.

At this point, let us perform a coordinate transformation(
ηs
ηu

)
=
(
T ∗

s
T ∗

u

)
η = T ∗η,

with T ∗ chosen in such a way that the unstable component ηu evolves according to

η̇u = λ∗
uηu + f∗

u , (4.11)

where λ∗
u > 0 is the positive eigenvalue of A∗

η in the time-invariant linearized pitch
dynamics (4.10) and f∗

u is the corresponding constant drift on ηu.
As discussed in Sect. 3.2, in spite of the instability of (4.11) the trajectory of

η(t) in (4.10) is guaranteed to be bounded for t > tk+C provided that the following
stability condition is satisfied

ηu(tk+C) = −
∫ ∞

tk+C

e−λ∗
u(τ−tk+C)f∗

u dτ.

4.4 The proposed approach 52

In this case, due to the presence of the constant drift with a truncated tail, the
integral can be computed in closed form, yielding the stability condition:

T ∗
uηC = −f

∗
u
λ∗

u
. (4.12)

Note that this condition is updated at each control cycle to reflect the changes
in the local linearization (4.10), the coordinate transformation matrix T ∗ and the
resulting unstable dynamics (4.11).

Torque constraints

The input constraints account for the physical limitations of the robot actuators,
which take the form

−τM ≤ τk+i ≤ τM i = 0, . . . , C − 1, (4.13)

where τM is the vector of symmetric torque limits. In view of the nonlinear map-
ping (4.3) between torques τ and inputs u, to transform (4.13) into a linear con-
straint on u we simply evaluate the mapping along the auxiliary trajectory, obtain-
ing (

Ψ̄k+i
)−1

ᾱk+i − τM ≤
(
Ψ̄k+i

)−1
ui ≤

(
Ψ̄k+i

)−1
ᾱk+i + τM (4.14)

where Ψ̄k+i = Ψ(x̄k+i) and ᾱk+i = α(x̄k+i).
Since in the auxiliary trajectory we have set x̄k = xk, the linear constraint (4.14)

on the first input uk — which is the only one actually applied in a MPC algorithm
— is exactly equivalent to the original constraint (4.13) on τk.

Cost function

The cost function of our QP is built by adding three different terms aimed at solving
the tracking problem.

The first term is designed in such a way to implement a kinematic control law
for the task variables r(t). In particular, we let

ṙr(t) = ṙd(t) +K (rd(t)− r(t)), (4.15)

where K is a positive definite diagonal matrix, and ask IS-MPC to generate inputs
that force ṙ to track4 ṙr. Based on this, we let

Lr =
C∑
i=1
∥ṙi − ṙr(tk+i)∥2Qr

=
C∑
i=1
∥J(q̄k+i)νi − (ṙd(tk+i) +K (rd(tk+i)− h(q̄k+i)))∥2Qr

.

(4.16)

Note that:
4In fact, one may easily verify that if ṙ converges to ṙr as given by (4.15), then r will converge

to the desired trajectory rd(t).

4.4 The proposed approach 53

• the nonlinearity of J(·) and h(·) is dealt with by evaluating these terms over
the auxiliary trajectory q̄k+i;

• thanks to the partial feedback linearization and to the linearized of the pitch
dynamics (4.7), all components of the velocity vector νi depend linearly on
the transformed input samples (i.e., the decision variables at tk).

To regularize the optimization problem and to decrease the control effort, the cost
function includes a second term

Lu =
C−1∑
i=0
∥ui∥2Qu

. (4.17)

Finally, a third term introduces preferred positions and velocities for the arm joint
coordinates

La =
C−1∑
i=0
∥q{r,l},i∥2Qp

+ ∥q̇{r,l},i∥2Qv
. (4.18)

This last term will typically have a small weight as it is only introduced to resolve
arm redundancy.

MPC formulation

The IS-MPC algorithm solves at each iteration the following OCP, obtained com-
bining the cost function (4.16–4.18), the prediction model (4.8), the input con-
straints (4.14), and the stability constraint (4.12):

minimize
u

Lr + Lu + La

subject to ξ0 = ξ̂k

ξi+1 = Aξ,k+iξi +Bξ,k+iui + fξ,k+i ∀i ∈ IC−1
0

Ψ̄−1
k+iᾱk+i − τM ≤ Ψ̄−1

k+iui ≤ Ψ̄−1
k+iᾱk+i + τM ∀i ∈ IC−1

0

T ∗
uηC = −f

∗
u
λ∗

u

Being the cost function quadratic and the constraints linear, the MPC can easily
be transcribed into a QP. To extend this formulation, one can easily add joint
constraints by rewriting them as linear constraints on the decision variables by
means of the prediction model (4.8).

As usual with MPC, only the first input of the solution is applied to the robot.
To this end, the first sample u∗

0 of the optimal input is used to compute the joint
torque command

τk = Ψ−1(xk)(u∗
0 −α(xk)). (4.20)

The remaining input samples in the solution are used to predict the auxiliary tra-
jectory for the next iteration.

4.5 Results 54

4.5 Results
The proposed method was validated by MATLAB simulations on the ALTER-EGO
WIP robot shown in Fig. 4.1. For each arm, we have considered only two degrees
of freedom, namely the shoulder pitch angle and the elbow angle. The robot has an
overall mass m = 21.32 kg, with the arm links contributing respectively for 1.8 kg
and 1.0 kg. The wheel radius is R = 0.13 m and the semi-distance between the
wheels is a = 0.248 m. The torque limits are set to ±10 Nm for the wheels, ±6 Nm
for the shoulders and ±1.1 Nm for the elbows.

The sampling time is chosen as δt = 0.02 s while the MPC control horizon is
Tc = 0.5 s. Using a dense formulation, each QP contains 150 decision variables
and is solved using the quadprog function in MATLAB. The entire control loop
runs in real-time (i.e., each iteration requires less than 0.02 s) on a standard laptop
computer, so one can confidently expect an optimized C++ implementation to
provide full real-time performance on an experimental platform at a high control
frequency.

The accompanying video5 contains clips of all the simulations.

4.5.1 Navigation task

In the first simulation, the proposed method is applied to a navigation task. The
desired ground trajectory is a sine wave in x, y, with an amplitude of 0.2 m and
a a wavelenght of 1 m. The desired velocity along the x direction is 0.3 m/s. As
explained in Sect. 4.3.3, for navigation tasks it is necessary to use as task function
the position of a point displaced from the base; in particular, we have set d =
0.2 m. The weight matrices used in the QP cost function are Qr = 50 I, Qu =
diag{0.05, 0.05, 1, 1, 1, 1} and Qp = Qv = I, while the gain in Eq. (4.15) is set to
K = I.

Figure 4.4 is a stroboscopic view of the generated motion, while Fig. 4.5 shows
the norm of the tracking error exy and the input torques. At the start of the
simulation, there is an initial error due to the fact that the robot state is not matched
with the desired trajectory. This error increases at first, a behavior which represents
the typical undershoot characterizing the response of non-minimum phase systems.
In fact, in order to achieve a stable forward acceleration of the base, the robot has
to first move backwards so as to tilt the pitch angle in the forward direction. After
this transient, the desired trajectory is followed with good accuracy.

The torque plots show that the arm actuators are actively involved in the con-
strained minimization of the cost function, confirming the whole-body nature of our
approach.

Figures 4.6 and 4.7 report additional results for the case of a circular ground
trajectory. Note how, in this case, the system is able to achieve zero tracking error
after an initial transient. An animation of the generated motion is included in the
accompanying video, where it is also shown that removing the stability constraint
leads to the robot immediately losing balance. The video also contains simulation
results for the additional scenario of reaching a navigation set-point.

5https://youtu.be/PyyoZNOeklE

https://youtu.be/PyyoZNOeklE

4.5 Results 55

Figure 4.4. Navigation task with ALTER-EGO following a sinusoidal trajectory: Strobo-
scopic view of the generated motion with actual (red) and desired (green) task trajec-
tories.

0 5 10 15 20
0

0.1

0.2

0.3

0 5 10 15 20
-2

-1

0

1

0 5 10 15 20

-3

-2

-1

0

1

Figure 4.5. Navigation task with ALTER-EGO following a sinusoidal trajectory: tracking
error norm (top), arm torques (center), wheel torques (bottom). Torque limits are not
shown since all actuators are far from saturation.

4.5.2 Loco-manipulation task

The second simulation deals with a loco-manipulation task. In particular, we assign
as desired trajectory for the right hand a helix with a radius r = 0.2 m, placed at
an average height of 0.9 m from the ground.

4.5 Results 56

Figure 4.6. Navigation task with ALTER-EGO following a circular trajectory: Strobo-
scopic view of the generated motion with actual (red) and desired (green) task trajec-
tories.

Figure 4.7. Navigation task with ALTER-EGO following a sinusoidal circular: tracking
error norm (top), arm torques (center), wheel velocities (bottom). Torque limits are
not shown since all actuators are far from saturation.

The weight matrices for the QP cost function are Qp = diag{10−4, 0.8, 1, 1},
Qv = diag{0.01, 0.1, 1, 1}, Qu = diag{0.1, 0.025, 0.05, 0.01, 1, 1}, and Qr = 20 I,
while the gain in eq. (4.15) is again set to K = I.

A stroboscopic view of the generated motion is shown in Fig. 4.8, with the

4.5 Results 57

Figure 4.8. Loco-manipulation task with ALTER-EGO: Stroboscopic view of the gener-
ated motion with actual (red) and desired (green) task trajectories.

0 5 10 15 20
0

0.2

0.4

0.6

0 5 10 15 20
0

2

4

6

0 5 10 15 20

-1

0

1

2

3

Figure 4.9. Loco-manipulation task with ALTER-EGO: tracking error norm (top), arm
torques (center), wheel torques (bottom). Arm torque limits are shown by dashed lines,
while wheel torque limits are outside the plot range.

tracking error norm exyz and the input torques reported in Fig. 4.9. Again, the
tracking error exhibits an initial transient after which is reduced essentially to zero,
with some negligible fluctuations. In the right arm, the shoulder torque is doing
most of work, by hovering around 4 Nm to compensate gravity, while the elbow
torque saturates to the upper limit, fully confirming the validity of the input con-
straint transformation procedure discussed in Sect. 4.4.2. Left arm torques are much

4.5 Results 58

Figure 4.10. Loco-manipulation task with ALTER-EGO: Stroboscopic view of the gener-
ated motion with actual (red) task trajectory and desired end-effector position (green
ball).

0 5 10 15 20
0

0.5

1

1.5

0 5 10 15 20

0

2

4

6

0 5 10 15 20

-2

0

2

4

Figure 4.11. Loco-manipulation task with ALTER-EGO: tracking error norm (top), arm
torques (center), wheel torques (bottom). Arm torque limits are shown by dashed lines,
while wheel torque limits are outside the plot range.

smaller, but still actively involved in motion generation.
We also report results for a setpoint regulation task, in which the right hand

4.5 Results 59

has to reach a fixed position target (see Fig. 4.10 and 4.11). In this case, the end-
effector converges to the target in around 5 s, with the arm motion starting from
the beginning of the movement thanks to the whole-body nature of the controller.
Also, the right arm elbow torque reaches its upper limit as the arm is fully stretched.
Animations of these motions are also included in the accompanying video, along with
one additional loco-manipulation scenario of tracking a mid-air circular trajectory
with the right hand.

60

Chapter 5

Anti-Jackknifing Control of
Tractor-Trailer Vehicles

Trailers are added to ground vehicles to increase their payload capacity without
sacrificing too much of their maneuverability. Still, it is quite obvious that driv-
ing and controlling a tractor-trailer system is more challenging than a single-body
vehicle [85]. One phenomenon that may arise during the motion of vehicles with
trailers is the so-called jackknifing. This term denotes a situation in which the hitch
angle between the tractor and trailer grows until the vehicle folds on itself, losing
controllability and possibly causing collisions (see Fig. 5.1).

Jackknifing is a serious issue during backup maneuvers, as any truck driver
knows by experience. It may also arise in forward motion, for example when a
truck brakes or turns abruptly. The nature of the phenomenon is however different
in the two cases: jackknifing in backward motion is essentially a kinematic issue
which occurs at any speed, while in forward motion it is a high-speed inertial effect
related to slippage.

5.1 Related works
In the literature, the control problem for tractor-trailer vehicles has been addressed
following two categories of approaches: in the first, the reference motion is a path or
trajectory in Cartesian space, while in the second it is given in configuration space.
From a control viewpoint, the two approaches correspond respectively to output and
state tracking.

Works belonging to the first category include [86], where a feedback control
scheme is proposed to drive a general (i.e., nonzero-hooked) one-trailer system along
backward trajectories by transforming the control inputs of a virtual vehicle mov-
ing forward along the same trajectory; [87], which introduces a two-level trajectory
tracking controller for a zero-hooked one-trailer system; and [88], where the trajec-
tory tracking problem is considered for a general n-trailer vehicle whose last trailer
must track a linear/circular trajectory. More recent work includes [89], which ad-
dresses the problem by defining the last trailer as a virtual tractor, and [90], which
proposes a curvature-based method for both forward and backward path following
in the presence of sideslip.

5.2 Contribution 61

Figure 5.1. Tractor-Trailer vehicle having crashed after jackknifing.

Coming to the second category, a first subgroup consists of works where the
reference state path/trajectory corresponds to specific (linear/circular) Cartesian
motions. This includes [91], where a zero-hooked one-trailer system is controlled
via input/state linearization and time scale transformation; [92, 93], which tackle
the general one-trailer system using linear and Lyapunov-based design, respectively;
and [94,95], that consider path tracking for the general two trailer-system.

The second subgroup of state tracking approaches deals with generic reference
paths/trajectories in configuration space. Among these, we mention [96], where a
low-level hitch angle controller is designed to simplify the general one-trailer system
model and the associated control problem, and [97], that uses a Linear Quadratic
(LQ) controller for driving a general two-trailer system along a backward path gen-
erated by composing motion primitives. This subgroup also includes works using
Model Predictive Control, such as [98, 99], where only forward motions are consid-
ered, and [100], which focuses on the case of the general two-trailer system.

5.2 Contribution
The control method presented in this chapter belongs to the first category, i.e.,
tracking in Cartesian (output) space. We favor this approach because it is closer to
the typical problems arising in applications. Indeed, using a method of the second
category for Cartesian motion control would require a preliminary conversion of the
reference motion to a stable path/trajectory in configuration (state) space, and this
is a non-trivial problem that can only be solved in closed form in very special cases,
such as linear/circular motions.

In particular, we focus on the kinematic jackknifing that occurs along backward
motions. The starting observation is that such phenomenon is a manifestation of the
instability of the residual internal dynamics associated to output trajectory tracking;
or, in other words, of the non-minimum phase nature of the system in backward
motion. Therefore, we propose to build a feedback control law as the combination
of two actions: a Cartesian trajectory tracking term, computed using input-output
linearization, and a corrective term, aimed at avoiding the internal state divergence

5.2 Contribution 62

and generated via MPC. For the latter, we apply the IS-MPC method described in
Chapter 3.

Since the stability condition in IS-MPC applies to linear systems, we compute
the linear approximation of the tractor-trailer system around a suitable state tra-
jectory and use it as a prediction model for IS-MPC. The latter includes an explicit
stability constraint whose role is to counteract the divergence of internal dynamics.
The resulting method has been verified in simulation and experimentally validated
on a purposely built prototype.

With respect to the above mentioned literature, the proposed control method
has the following beneficial features:

• since we directly address the tracking problem in Cartesian space, the reference
trajectory can be completely generic and no preliminary conversion is required
to a stable trajectory in configuration space;

• the method applies with any number of trailers, with any combination of zero-
and nonzero-hooking;

• in contrast to most previous works, our method requires almost no tuning, as
the only control parameters are the gains of the Cartesian tracking controller;

• use of MPC allows enforcing state and input constraints to take into account
vehicle kinematic limitations (joint limits), avoid workspace obstacles during
the motion, or comply with the presence of actuator saturations;

• the jackknifing problem is directly tackled by avoiding the onset of the diver-
gence of the zero dynamics via an explicit stability constraint.

With reference to the last point, it should be emphasized that methods belonging
to the second category (state tracking) still require the introduction of artificial
thresholds on the tracking error to avoid jackknifing, e.g., see [100]. Identifying
these thresholds requires an initial campaign of simulations or experiments, and in
any case their use may prove to be exceedingly conservative, in the sense that it
prevents the vehicle from executing motions that are actually feasible.

Another interesting aspect of the proposed approach is that the resulting con-
troller works for both forward and backward trajectory tracking, thereby eliminating
the necessity of using specialized controllers for the two cases. In fact, in forward
motion the stability constraint automatically disappears (the dimension of the un-
stable zero dynamics goes to zero), and the QP problem at the core of our MPC (see
Sect. 5.4.4) will produce a corrective term whose only role is to guarantee kinematic
and actuation feasibility.

The chapter is organized as follows. In Section 5.3 we introduce the considered
control problem, describing the vehicle kinematic model and offering an interpre-
tation of the jackknife phenomenon associated to tracking control. In Section 5.4,
we describe in general terms the proposed control approach, and then in detail the
generation of the auxiliary trajectory, the approximate linearization procedure and
the IS-MPC algorithm for computing the corrective control term. Simulations and
experiments are presented in Sect. 5.5.1 and 5.5.3, respectively. The extension to a
two-trailer vehicles is outlined in Sect. 5.6.

5.3 The control problem 63

Á

Ã
µ

`

tractor

P
`h

d

`1

trailer

x xP

yP

y

Figure 5.2. The considered tractor-trailer vehicle. Note the nonzero hooking.

5.3 The control problem
In this section we introduce the considered vehicle, state the control problem and
provide an interpretation of the jackknife phenomenon in this context.

5.3.1 Modeling

Consider the vehicle shown in Fig. 5.2 consisting of a car-like tractor towing a single1

trailer. Denote by x, y the coordinates of the tractor rear axle midpoint, and by
θ, ϕ and ψ respectively the tractor heading, the steering angle and the hitch angle
(i.e., the relative orientation of the trailer with respect to the tractor). We denote
with qr = (x, y, θ, ψ, ϕ) the configuration vector of the system. Also, let ℓ and ℓ1
be the length of the tractor and the trailer, and ℓh the distance between the tractor
rear axle midpoint and the hitch joint axis. We will consider the general case in
which ℓh ̸= 0 (nonzero hooking).

If no wheel slip occurs (an assumption that is consistent with the low speed
typically associated to backup maneuvers), the kinematic model [81] of the vehicle
is derived by imposing constraints on the velocity of the wheels along the wheel
axis directions. These can be written as three independent Pfaffian constraints in
matrix form as:

AT (qr)q̇r =

 sin θ − cos θ 0 0 0
sin(θ + ϕ) − cos(θ + ϕ) −ℓ cosϕ 0 0
sin(θ + ψ) − cos(θ + ψ) ℓh cosψ + ℓ1 ℓ1 0

 q̇r = 0. (5.1)

The generalized coordinates are constrained to belong to the 2-dimensional null
space of matrixAT (qr). The equations of motion of the system can then be obtained
by finding a basis (g1(qr), g2(qr)) of N

(
AT (qr)

)
, resulting in a kinematic model

of the form
q̇r = g1(qr)v + g2(qr)ω,

1The control design to be presented does not exploit in any way the fact that a single trailer is
present. Therefore, our method is applicable to vehicles with more than one trailer, including the
so-called general n-trailer system. See Section 5.6 for the application to the two-trailer system.

5.3 The control problem 64

where v and ω are respectively the driving and steering velocities, taken as control
inputs and collected in the vector ν = (v, ω). Then, it is straightforward to verify
that the following model satisfies the constraints (5.1):

ẋ = v cos θ
ẏ = v sin θ

θ̇ = v tanϕ
ℓ

(5.2)

ψ̇ = −v tanϕ
ℓ

(
1 + ℓh

ℓ1
cosψ

)
− v sinψ

ℓ1

ϕ̇ = ω.

5.3.2 Internal instability under tracking control

Assume that a Cartesian reference trajectory (xref(t), yref(t)) is assigned to be
tracked by the vehicle. From a control viewpoint, this is simply an output tra-
jectory — an associated state trajectory is not given.

The most direct way to design a tracking controller is to use input-output lin-
earization via feedback. Ideally, one would like to track the reference trajectory
with the vehicle representative point (x, y). However, this cannot be achieved by
static feedback because the decoupling matrix turns out to be singular. A possible
workaround is to choose as output a different point P with coordinates (xP , yP), as
shown in Fig. 5.2. One easily finds(

ẋP
ẏP

)
= D(θ, ϕ)

(
v
ω

)

with
D(θ, ϕ) =

(
cθ − tϕ

ℓ (ℓsθ + d sθ+ϕ) −d sθ+ϕ
sθ + tϕ

ℓ (ℓcθ + d cθ+ϕ) d cθ+ϕ

)
setting for compactness sα = sinα, cα = cosα, tα = tanα from now on. Since
detD = d/cϕ, matrix D is invertible if d is nonzero. Under this assumption, one
can achieve input-output linearization by using the feedback transformation(

v
ω

)
= D−1(θ, ϕ)u (5.3)

where u = (u1, u2) is the new control vector. The input-output linearized dynamics
is expressed in normal form (cfr. Sect. 3.1) as

ẋP = u1

ẏP = u2

θ̇ = sϕ
ℓ

(cθ+ϕ u1 + sθ+ϕ u2) (5.4)

ψ̇ = − 1
ℓ ℓ1

(ℓhsϕ cψ + ℓ1sϕ + ℓcϕ sψ) (cθ+ϕ u1 + sθ+ϕ u2)

ϕ̇ = −
(
cθ+ϕ sϕ

ℓ
+ sθ+ϕ

d

)
u1 −

(
sθ+ϕ sϕ

ℓ
− cθ+ϕ

d

)
u2.

5.3 The control problem 65

By setting

u = utrack =
(
ẋref + kx(xref − xP)
ẏref + ky(yref − yP)

)
(5.5)

with kx, ky > 0, the tracking error will converge exponentially to zero for any initial
condition.

However, the evolution of variables θ, ψ and ϕ is not controlled in this scheme.
Additional insight can be gained by looking at the zero dynamics of (5.4–5.5), i.e.,
the closed-loop dynamics of θ, ψ and ϕ along the reference trajectory:

θ̇ = sϕ
ℓ

(cθ+ϕ ẋref + sθ+ϕ ẏref)

ψ̇ = −ℓhsϕ cψ + ℓ1sϕ + ℓcϕ sψ
ℓℓ1

(cθ+ϕ ẋref + sθ+ϕ ẏref) (5.6)

ϕ̇ = −
(
cθ+ϕ sϕ

ℓ
+ sθ+ϕ

d

)
ẋref −

(
sθ+ϕ sϕ

ℓ
− cθ+ϕ

d

)
ẏref .

Consider for example the case in which the vehicle must track the linear trajec-
tory

xref = vref t, yref = 0, (5.7)

with vref < 0, starting from xP = yP = 0 [m], and θ = ψ = ϕ = 0 [rad]; i.e.,
point P is on the desired trajectory but the vehicle points in the opposite direction
(tracking in backward motion). The behavior of the vehicle can be predicted by
setting ẋref = vref and ẏref = 0 in the zero dynamics (5.6), and deriving2 its linear
approximation around the origin, whose eigenvalues are positive and, in particular,
easily found to be {−vref/ℓ,−vref/ℓ1,−vref/d}. From this, we can deduce several
interesting facts:

• The presence of three positive eigenvalues indicates that the origin is unstable
for the zero dynamics — one also says that system (5.4–5.5) is non-minimum
phase in this case. This entails that the evolution of the internal variables is
not bounded when tracking in backward motion. In fact, a simple simulation
reveals that in practice θ, ψ and ϕ will diverge from zero as the vehicle moves.
This will severely affect the vehicle’s maneuvrability, because the hitch angle
will engage its mechanical joint limit or a self-collision will occur between the
tractor and the trailer.

• Not surprisingly, the zero dynamics instability is emphasized at higher speeds
(large |vref |), for shorter vehicles (small ℓ, ℓ1) or when P is closer to the wheels
(small d).

• If vref > 0 in eq. (5.7), the reference trajectory moves in the direction of
the positive x axis, with the vehicle initially pointing in the same direction
(tracking in forward motion). Based on the eigenvalue analysis, the origin
of the zero dynamics is now asymptotically stable, so that θ, ψ and ϕ are
bounded — in fact, they converge to zero.

2For this computation, one may use the general expression of the linear approximation of sys-
tem (5.4) given in Sect. 5.4.3, setting q̃ = (vref t, 0, 0, 0, 0), ucorr = 0, and focusing on the last three
equations.

5.4 The proposed approach 66

-2 -1 0 1 2
-1

-0.5

0

0.5

1

[m
]

t = 0 s

tracking in
backward motion

tracking in
forward motion

-2 -1 0 1 2
-1

-0.5

0

0.5

1

[m
]

t = 3:5 s

-2 -1 0 1 2

[m]

-1

-0.5

0

0.5

1

[m
]

t = 4:8 s

Figure 5.3. For system (5.4–5.5), tracking in backward motion is unstable and leads
to jackknifing, whereas tracking in forward motion is internally stable (tractor in red,
trailer in blue).

The simulations in Figure 5.3 summarize the above discussion (see the accom-
panying video3 for an animation).

In practice, the divergence of the angular variables, and in particular of ψ,
corresponds to the occurrence of the jackknife phenomenon for the vehicle. Its
control interpretation is therefore straightforward: jackknifing is a manifestation of
the instability of the zero dynamics of system (5.4–5.5) when tracking in backward
motion.

5.4 The proposed approach
In this section we discuss the proposed method for avoiding the jackknife phe-
nomenon in backward motion. We will first provide a general overview of the solu-

3https://youtu.be/ImG1ZV1EYBs

https://youtu.be/ImG1ZV1EYBs

5.4 The proposed approach 67

linear
approximation

auxiliary
trajectory
generation

IS-MPC

inverse input
transformation

tracking
controller

anti-jackknifing
controller

Figure 5.4. A block scheme of the proposed anti-jackknifing control approach. Note
that at each instant t we must compute q[t,t+Tc]

aux , u[t,t+Tc]
aux , the portion of the auxiliary

trajectory and associated input that are contained in the IS-MPC control horizon, and
A[t,t+Tc], B[t,t+Tc], the time-varying matrices of the approximate linearization in the
same interval.

tion approach and then proceed to a detailed discussion of its main components.

5.4.1 Overview

Let us start with the tractor-trailer system in the input-output linearized form (5.4)
thanks to the feedback transformation (5.3). The basic idea is to add to the pure
tracking control

utrack =
(
ẋref + kx(xref − xP)
ẏref + ky(yref − yP)

)
(5.8)

a corrective action aimed at avoiding the onset of instability:

u = utrack + ucorr. (5.9)

In our approach, ucorr is generated using the IS-MPC method. Since model (5.4)
is nonlinear, we compute in real time its linear approximation around an auxiliary
trajectory qaux, whose construction is illustrated in Sect. 5.4.2, and we feed it to
the IS-MPC block. Since the latter operates over a control horizon Tc, both the
auxiliary trajectory and the linear approximation — which is obviously time-varying
— must be made available over the same time interval. Figure 5.4 shows a block
scheme of the proposed approach.

Note that the idea of adding a corrective term to avoid jackknifing may also be
of interest in a mixed-initiative control context, in which the human driver would
essentially provide the basic tracking control action and the proposed algorithm
could be used to design an anti-jackknifing ADAS (Advanced Driving Assistance
System, e.g., see [101]).

5.4.2 Generation of the auxiliary trajectory

The reference output trajectory does not entail a trajectory for the state variables;
this is related to the fact that the Cartesian coordinates x, y (or xP , yP) do not
represent a flat output for the tractor-trailer system. Therefore, we must identify
an auxiliary state trajectory qaux(t) around which to compute an accurate linear

5.4 The proposed approach 68

retrograde
initialization

¶pref

(t), t 2 [tk { T , tk]

pref

(tk { T) = pref

(tk + T)¶

.
pref

(tk { T) = { pref

(tk + T)
.

¶

current
configuration

pref

(t), t 2 [tk , tk + T]

pref

(tk)

Figure 5.5. Definition of the retrograde initialization (tractor in red, trailer in blue). For
compactness we have let pref = (xref , yref). In this figure, the current configuration of
the vehicle is such that point P matches its reference value; however, this will not be
true in general.

approximation of the nonlinear system (5.4). To this end, we generate a stable state
trajectory (i.e., a trajectory along which θ, ψ and ϕ do not diverge) compatible with
the reference output trajectory using the following procedure.

1. Call tk the current time instant at which the computation is performed. Given
a T > 0, let tk−T be the (past) initial time instant, and initialize the auxiliary
trajectory at

qaux(tk − T) =


xref(tk + T)
yref(tk + T)

ATAN2(−ẏref(tk + T),−ẋref(tk + T))
0
0


i.e., point P matched to the (future) value of the reference trajectory at tk+T ,
tractor oriented as the backward tangent to the reference trajectory, trailer
aligned with the tractor, and zero steering angle (see Fig. 5.5).

2. Generate the state trajectory qaux(t) for t ∈ [tk−T, tk] by integrating model (5.4)
from the retrograde initialization qaux(tk−T) up to tk under the pure tracking
(no correction) control law (5.5). In doing this, the reference trajectory must
be reverted by replacing xref(t) and yref(t) with x′

ref(t) = xref(2tk − t) and
y′

ref(t) = yref(2tk − t), respectively. The resulting control law will define the
input uaux = utrack(qaux) associated to the auxiliary trajectory4. Since this
tracking is in forward motion, trajectory qaux(t) for t ∈ [tk − T, tk] is stable.

3. The auxiliary trajectory qaux(t) for t ∈ [tk, tk + T] is finally obtained by
reverting the stable trajectory qaux(t) for t ∈ [tk − T, tk]. This is simply
obtained by setting qaux(t) = qaux(2tk − t).

Figure 5.6 describes the above procedure in a nutshell.
Note that the specific choice of θ, ψ and ϕ in the retrograde initialization

qaux(tk − T) is not important as long as it leads to tracking the reference tra-
jectory in forward motion; the above choice is an example. As for T , it should be

4Note that uaux will only consist of the feedforward component as the retrograde initialization
is matched to the reference trajectory.

5.4 The proposed approach 69

x

y

t = tk

t = tk { T

current
configuration

output
trajectory

stable state

forward

µ,',Ã

t = tk

t = tk + T

motion

trajectory

reference

retrograde
initialization

x

y

t = tk

t = tk + T

current
configuration

output
trajectory

auxiliary state

backward

µ,',Ã

t = tk

t = tk + T

motion

trajectory

reference

Figure 5.6. Starting from the retrograde initialization of Fig. 5.5, a stable state trajectory
is generated by pure tracking of the reversed output trajectory in forward motion. Then,
this stable trajectory is itself reversed to produce the auxiliary state trajectory.

sufficiently large for the transient to be practically over in tk; moreover, it should
be larger than the control horizon of the MPC (see Sect. 5.4.4).

5.4.3 Linearization around the auxiliary trajectory

At this point, it is possible to compute the linear approximation of model (5.4),
subject to the control law (5.9), around the auxiliary trajectory qaux, for t ∈ [tk, tk+
T]. Letting ε = q − qaux, one obtains a linear system which is time-varying due to
the dependence on the auxiliary trajectory:

ε̇ = A(t)ε+B(t)ucorr. (5.10)

The nonzero elements Aij of A(t) and Bij of B(t) are given in the following ex-
pressions, where A(t), B(t) are deduced by setting q̃(t) = qaux(t) and ˙̃xP = ẋref ,
˙̃yP (t) = ẏref(t).

5.4 The proposed approach 70

A11 = −kx A22 = −ky A31 = −kx
ℓ
sϕ̃cθ̃+ϕ̃

A32 = −ky
ℓ
sϕ̃sθ̃+ϕ̃ A33 =

sϕ̃
ℓ

(
−sθ̃+ϕ̃

˙̃xP + cθ̃+ϕ̃
˙̃yP
)

A35 = 1
ℓ

(
cθ̃+2ϕ̃

˙̃xP + sθ̃+2ϕ̃
˙̃yP
)

A41 =
kxcθ̃+ϕ̃
ℓℓ1

(
ℓhsϕ̃cψ̃ + ℓ1sϕ̃ + ℓcϕ̃sψ̃

)
A42 =

kysθ̃+ϕ̃
ℓℓ1

(
ℓhsϕ̃cψ̃ + ℓ1sϕ̃ + ℓcϕ̃sψ̃

)
A43 = 1

ℓℓ1

(
ℓhsϕ̃cψ̃ + ℓ1sϕ̃ + ℓcϕ̃sψ̃

) (
sθ̃+ϕ̃

˙̃xP − cθ̃+ϕ̃
˙̃yP
)

A44 = − 1
ℓℓ1

(
−ℓhsϕ̃sψ̃ + ℓcϕ̃cψ̃

) (
cθ̃+ϕ̃

˙̃xP + sθ̃+ϕ̃
˙̃yP
)

A45 = − 1
ℓℓ1

(
ℓhcϕ̃cψ̃+ ℓ1cϕ̃ − ℓsϕ̃sψ̃

)(
cθ̃+ϕ̃

˙̃xP + sθ̃+ϕ̃
˙̃yP
)

+ 1
ℓℓ1

(
ℓhsϕ̃cψ̃+ ℓ1sϕ̃ + ℓcϕ̃sψ̃

)(
sθ̃+ϕ̃

˙̃xP − cθ̃+ϕ̃
˙̃yP
)

A51 = kx

(cθ̃+ϕ̃sϕ̃
ℓ

+
sθ̃+ϕ̃
d

)
A52 = ky

(sθ̃+ϕ̃sϕ̃
ℓ

−
cθ̃+ϕ̃
d

)
A53 =

(sθ̃+ϕ̃sϕ̃
ℓ

−
cθ̃+ϕ̃
d

)
˙̃xP −

(cθ̃+ϕ̃sϕ̃
ℓ

+
sθ̃+ϕ̃
d

)
˙̃yP

A55 = −
(cθ̃+2ϕ̃

ℓ
+
cθ̃+ϕ̃
d

)
˙̃xP −

(sθ̃+2ϕ̃
ℓ

+
sθ̃+ϕ̃
d

)
˙̃yP

and

B11 = 1 B22 = 1 B31 = 1
ℓ
sϕ̃cθ̃+ϕ̃ B32 = 1

ℓ
sϕ̃sθ̃+ϕ̃

B41 = − 1
ℓℓ1

(
ℓhsϕ̃cϕ̃ + ℓ1sϕ̃ + ℓcϕ̃sψ̃

)
cθ̃+ϕ̃

B42 = − 1
ℓℓ1

(
ℓhsϕ̃cϕ̃ + ℓ1sϕ̃ + ℓcϕ̃sψ̃

)
sθ̃+ϕ̃

B51 = −
cθ̃+ϕ̃sϕ̃
ℓ
−
sθ̃+ϕ̃
d

B52 = −
sθ̃+ϕ̃sϕ̃
ℓ

+
cθ̃+ϕ̃
d

.

Since the proposed framework includes an MPC module (see Fig. 5.4), our algo-
rithm works in discrete-time, producing control inputs u that are piecewise-constant
over sampling intervals of duration δt.

We then approximate (5.10) with the following piecewise-time-invariant system

ε̇ = A(tk)ε+B(tk)ucorr,k t ∈ [tk, tk+1].

This 5-dimensional system is partitioned in a 2- and a 3-dimensional system:(
ε̇s
ε̇u

)
=
(

Ass 02×3
Aus(tk) Auu(tk)

)(
εs
εu

)
+
(

I2
Bu(tk)

)
ucorr,k. (5.11)

5.4 The proposed approach 71

While it is Ass = diag{−kx,−ky}, the three eigenvalues of Auu(tk) have positive
real part when tracking in backward motion, and thus the dynamics of θ, ψ and ϕ
are unstable. This was proven analytically for linear trajectories in Sect. 5.3.2. We
do not give a general proof of this claim, which can however be verified numerically.

5.4.4 MPC-based control correction

In the proposed control scheme (Fig. 5.4), the role of IS-MPC is to compute the
control correction term ucorr so as to avoid the onset of instability — and hence
jackknifing.

As a prediction model, we use the following:

ε̇ = A(tk+i)ε+B(tk+i)ucorr i = 0, . . . , C − 1 (5.12)
ε̇ = A(tk+C)ε+B(tk+C)ucorr i ≥ C, (5.13)

i.e., the piecewise-time-invariant system (5.11) within the control horizon and the
same system frozen at tk+C after that.

In order to transcribe the MPC problem into a QP, we discretize (5.12) to obtain
the prediction model valid over the control horizon Tc:

εi+1 = Ak+iεi +Bk+iucorr,i, i = 0, . . . , C − 1, (5.14)

with Ak+i and Bk+i being obtained from the discretization of A(tk) and B(tk),
respectively, using (2.12).

Stability constraint

We now introduce a stability condition which guarantees that the internal dynamics
does not diverge (it is the condition under which the free evolution exactly cancels
the divergent component of the forced evolution). To this end, we need a preliminary
transformation of the model equations.

For the prediction model after time tk+C (5.13), which is time-invariant, one can
use a change of coordinates η = Tε, with

T =
(
I2 02×3

Tu

)
,

such that the system becomes block-diagonal:(
η̇s
η̇u

)
=
(
Ass 02×3
03×2 Λu,k+C

)(
ηs
ηu

)
+
(

I2
Gu,k+C

)
ucorr,

with Λu,k+C collecting the unstable eigenvalues of Auu(tk+C).
Following the boundedness condition in Sect. 3.2, we have that if the unstable

component ηu satisfies

ηu(tk+C) = −
∫ ∞

tk+C

e−Λu,k+C(τ−tk+C)Gu,k+Cucorr(τ)dτ

Then, the evolution of ε will remain bounded if the inputs ucorr are bounded.

5.4 The proposed approach 72

The stability condition can be rewritten as the constraint on the transformed
final state of the MPC prediction:

TuεC = η∗
u = −

∫ ∞

tk+C

e−Λu,k+C(τ−tk+C)Gu,k+Cucorr(τ)dτ. (5.15)

Since the left-hand side depends the decision variables of the MPC problem, i.e.,
ucorr,i for i = 0, . . . , C− 1, eq. (5.15) can be regarded as a stability constraint. Note
that the right-side depends on the corrective actions ucorr,i for i ≥ C, i.e., after
the control horizon. The latter, collectively referred to as the tail, are obviously
unknown, and they must be conjectured in order to obtain a causal constraint that
can be computed at tk. Possible tails in IS-MPC include the truncated tail, which
corresponds to setting ucorr,i = 0 for i ≥ k, and the periodic tail, obtained by
replication of the corrective actions within the control horizon as ucorr,i = ucorr,i−C
for i ≥ C. This replication may be infinite or finite; in the second case, the remaining
part of the tail is truncated.

Wrapping up, eq. (5.15) is a 3-dimensional linear constraint in the MPC decision
variables. At each control cycle the coordinate transformation Tu and the integral
η∗

u are recomputed using the auxiliary trajectory.

Other constraints

In addition to the stability constraint, the MPC framework allows to introduce
practically relevant constraints on the hitch angle ψ and the steering angle ϕ:

|ψi| ≤ ψmax |ϕi| ≤ ϕmax i = 1, . . . , C, (5.16)

where ψmax and ϕmax are the mechanical limits on the corresponding joints. These
constraints are still linear when expressed in the transformed state coordinates
εi = qi − q̃i.

One may also have box constraints on the velocity inputs:

|vi| ≤ vmax |ωi| ≤ ωmax i = 0, . . . , C − 1.

In view of (5.3) and (5.9), these constraints can be written at the generic sampling
instant tk+i ∈ [tk, tk+C−1] as

−
(
vmax
ωmax

)
≤D−1(θi, ϕi)(utrack,i + ucorr,i) ≤

(
vmax
ωmax

)
.

To transform this into a linear constraint on the MPC decision variable ucorr,i,
we replace D−1(θi, ϕi) and utrack,j with two constant quantities D̄−1

i and ūtrack,i,
obtained by substituting the predicted state at tk+i with its value according to the
MPC solution at tk−1, which is known. Therefore, the velocity input constraints
finally become

−
(
vmax
ωmax

)
− D̄−1

i ūtrack,i ≤ D̄−1
i ucorr,i ≤

(
vmax
ωmax

)
− D̄−1

i ūtrack,i. (5.17)

5.5 Results 73

IS-MPC formulation

The IS-MPC algorithm solves at each iteration the following OCP, obtained combin-
ing the prediction model (5.14), the stability constraint (5.15), the state constraints
(5.16) and the input constraint (5.17):

minimize
ucorr

C−1∑
i=0
∥ucorr,i∥2

subject to ε0 = ε̂k

εi+1 = Ak+iεi +Bk+iucorr,i ∀i ∈ IC−1
0

D̄−1
i ucorr,i ≤

(
vmax
ωmax

)
− D̄−1

i ūtrack,i ∀i ∈ IC−1
0

D̄−1
i ucorr,i ≥ −

(
vmax
ωmax

)
− D̄−1

i ūtrack,i ∀i ∈ IC−1
0

|ψi| ≤ ψmax ∀i ∈ IC1
|ϕi| ≤ ϕmax ∀i ∈ IC1
TuεC = η∗

u

The choice of the cost function reflects the fact that the corrective action ucorr
in (5.9) will perturb exact tracking, and therefore it should be limited to the min-
imum necessary. Being the cost function quadratic and the constraints linear, the
MPC can easily be transcribed into a QP.

The actual expression of the stability constraint (5.15) will depend on the chosen
tail (truncated, infinite-periodic, finite-periodic). As customary with MPC, only the
first corrective action ucorr,0 is actually used as real-time control, and a new QP
problem is set up and solved at the next sampling instant.

5.5 Results

5.5.1 Simulations

As a preliminary validation of the proposed method, we have performed numerical
simulations in MATLAB for a tractor-trailer vehicle having the same kinematic
parameters of our physical prototype, which will be described in detail in the next
section. Accordingly, we have set ℓ = 0.255 m, ℓh = 0.065 m, ℓ1 = 0.263 m,
ψmax = π/4 rad, ϕmax = π/12 rad, vmax = 0.5 m/s, ωmax = 1.5 rad/s. As for the
control scheme, we have chosen d = 0.1 m and kx = ky = 1. The sampling interval
is δt = 0.1 s, while the MPC control horizon is Tc = 5 s. A finite-periodic tail with
2 replications was used in the stability constraint (5.15). The accompanying video5

contains clips of all the simulations.
In the first simulation, the vehicle starts from q0 = (6, 0.01, 0, 0, 0) [m, m, rad,

rad, rad] and must track in backward motion the linear reference trajectory

xref = 6 + vref t, yref = 0,
5https://youtu.be/ImG1ZV1EYBs

https://youtu.be/ImG1ZV1EYBs

5.5 Results 74

-1 0 1 2 3 4 5 6 7

[m]

-1

-0.5

0

0.5

1
[m

]

t = 0t = 5t = 10t = 15t = 20

Figure 5.7. Simulation 1: Stable backward tracking of a linear trajectory by the proposed
method (tractor in red, trailer in blue).

0 10 20

time [s]

-0.3

-0.2

-0.1

0

[m
/
s]

vtrack

vcorr

v

0 10 20

time [s]

-0.1

0

0.1

0.2
[r
a
d
/
s]

!track

!corr

!

Figure 5.8. Simulation 1: Driving and steering velocities.

with vref = −0.3 m/s6. In the absence of a corrective action (u = utrack), jackknifing
will occur, similarly to what happens in Fig. 5.3. The inclusion of the corrective
action generated by IS-MPC in the control law (u = utrack + ucorr) successfully
prevents the phenomenon, producing stable tracking of the reference trajectory, see
Fig. 5.7. The tracking error reaches a transient peak value of 0.012 m in norm and
then converges to zero. The driving and steering velocities plots of Fig. 5.8 indicate
that in this case only the steering velocity ω is affected by the corrective action,
which tends to counteract the feedback component of the tracking action. For
completeness, we have also run the same simulation for the case vref = −0.8 m/s.
The obtained results, which are only shown in the accompanying video, confirm
that the proposed method is effective independently of the reference speed.

In the second simulation, a circular trajectory with a radius of 5 m and a tan-
gential velocity of 0.25 m/s must be tracked in backward motion starting from
q0 = (0, 0.01,−0.07, 0.03, 0.05) [m, m, rad, rad, rad]. The proposed strategy is
again effective, as shown by the results in Figs. 5.9–5.10; note how in this case also
the driving velocity is involved in the corrective action. In this case, the transient

6Since the total length of our vehicle is around 60 cm, the speed-over-length ratio is 0.5. For a
typical tractor-trailer truck, whose average length in the US is 22 m, this would correspond to a
speed of 40 km/h circa.

5.5 Results 75

-5 0 5

[m]

0

2

4

6

8

10

[m
]

t = 0
t = 5

t = 15

t = 30

t = 55

t = 80

t = 110

Figure 5.9. Simulation 2: Stable backward tracking of a circular trajectory by the proposed
method.

0 10 20

time [s]

-0.3

-0.2

-0.1

0

[m
/
s]

vtrack

vcorr

v

0 10 20

time [s]

-2

0

2

[r
a
d
/
s]

!track

!corr

!

Figure 5.10. Simulation 2: Driving and steering velocities.

peak of the tracking error is 0.052 m. Under pure tracking control, jackknifing
would instead occur at the very start of the motion (see the accompanying video).

Finally, in the third simulation the vehicle must track in backward motion an
eight-shaped reference trajectory starting from q0 = (0, 0.05, 3.92,−0.09, 0) [m, m,
rad, rad, rad]. The results, shown in Figs. 5.11–5.13, confirm that the proposed
method can avoid the jackknifing phenomenon over generic trajectories, including
those with variable curvature. The peak value of the Cartesian error during the
transient is 0.1 m. Figure 5.12, right, also proves that state constraints are cor-
rectly taken into account by the MPC algorithm; the same is true for the input
constraints. As before, jackknifing immediately occurs without corrective action,
see the accompanying video.

Overall, the above simulation confirm that the inclusion of the stability con-

5.5 Results 76

-5 0 5

[m]

-3

-2

-1

0

1

2

3

[m
] t = 0

t = 5

t = 15

t = 50

t = 100

t = 120

t = 170

t = 200

Figure 5.11. Simulation 3: Stable backward tracking of an eight-shaped trajectory by the
proposed method.

0 10 20

time [s]

-0.4

-0.2

0

0.2

0.4

?
[r
ad

]

Constrained
Unconstrained

Figure 5.12. Simulation 3: Evolution of the steering angle ϕ; note the saturation in
the early part of the motion. Also shown is the steering angle (red) generated by the
proposed method if the state and input constraints are removed.

0 50 100

time [s]

-0.2

-0.1

0

[m
/
s]

vtrack

vcorr

v

0 50 100

time [s]

-2

0

2

[r
a
d
/
s]

!track

!corr

!

Figure 5.13. Simulation 3: Driving and steering velocities.

straint in our MPC formulation guarantees that the whole zero dynamics (i.e., the
steering angle, the vehicle orientation and the hitch angle) will be stable during the

5.5 Results 77

motion. In particular, this means that also the trailer orientation (which is the sum
of the vehicle orientation θ and the hitch angle ψ) is guaranteed to be bounded.

5.5.2 Comparison with an alternative method

To highlight the peculiarities of the proposed method, we have implemented the
anti-jackknifing MPC controller originally presented by Ljungqvist et al. in [100]
and performed a comparison of the simulation results.

The alternative method is substantially different to the proposed one, since the
addressed control problem is to track in backward motion a path in state space (i.e.,
the configuration space), as opposed to tracking in output space. This is much more
convenient in most applications, where the objective is simply to track a Cartesian
trajectory, while the motion of the vehicle in terms of the angular state variables
(θ, ψ, ϕ) is not assigned a priori. In this case, the method in [100] would require to
plan in advance a feasible, stable state trajectory associated to the desired output
trajectory; however, while this is relatively easy for special trajectories (e.g., linear,
circular) and special systems (e.g., differentially flat), no technique is available for
solving this problem in general.

To achieve local stabilization, a terminal state cost is set as the value function
solution of the discrete-time algebraic Riccati equation (DARE) of the associated
infinite-horizon Linear Quadratic Regulator [29].

In this case, we do not perform any input-output feedback linearization, but
we linearize model (5.2) after having applied the change of coordinates (x, y) →
(xP , yP), obtaining a model of the form

q̇ = F (t)q +G(t)ν. (5.18)

To perform the tracking task, a desired state trajectory qd(t) is selected, with
a feedforward input νd(t) used to generate such trajectory. Then, the MPC cost
function is designed as

L(ν) = ∥qC − qd(tk+C)∥V ∗ +
C−1∑
i=0
∥qi − qd(tk+i)∥Q + ∥νi − νd(tk+i)∥R, (5.19)

WhereQ andR are positive-definite diagonal weighting matrices, V ∗ is the solution
to the DARE of the LQR problem (F̄ , Ḡ,Q,R), with F̄ , Ḡ being the discretized
version of dynamics (5.18) around a straight path. The DARE is solved offline using
the idare function in MATLAB.

To avoid jackknifing, an artificial upper bound ψ∗ on the hitch angle is enforced
as a constraint in the MPC problem; such upper bound is empirically determined
by considering many different initial conditions and verifying by simulation which
of them trigger the jackknifing phenomenon.

5.5 Results 78

Finally, the MPC problem for the alternative controller is:

minimize
ν

L(ν) from (5.19)

subject to q0 = q̂k

qi+1 = Fk+iqi +Gk+iνi ∀i ∈ IC−1
0

−
(
vmax
ωmax

)
≤ νi ≤

(
vmax
ωmax

)
∀i ∈ IC−1

0

|ψi| ≤ ψ∗ ∀i ∈ IC1
|ϕi| ≤ ϕmax ∀i ∈ IC1

For the following simulations, we have set Q = diag(5, 50, 5, 1, 1) and R =
diag(1, 0.2), while the rest of the parameters are set equal to IS-MPC.

In the first simulation, the vehicle must track in backward motion a rectilinear
Cartesian trajectory. For this case, it is trivial to find a compatible state trajectory
which is stable (all angular variables should be zero). As already explained, our
method does not introduce any artificial bound on the hitch angle other than the one
derived from mechanical limits, as the onset of jackknifing is avoided thanks to the
stability constraint. The results, shown in Fig. 5.14, demonstrate how our IS-MPC
method achieves faster convergence and more accurate tracking of the reference
trajectory; in particular, the hitch angle with IS-MPC safely exceeds the artificial
upper bound (shown as a dashed line in the ψ plot) without any consequence in
terms of jackknifing.

In the second simulation the vehicle must track in backward motion a circular
trajectory. Also in this case it is easy to compute a compatible state trajectory
which is stable. The results, shown in Fig. 5.15, show that the method in [100]
cannot track this trajectory because the artificial upper bound on the hitch angle
does not allow it. Conversely, IS-MPC achieves perfect tracking. As before, ψ

0 1 2 3 4 5 6

[m]

-0.5

0

0.5

[m
]

IS-MPC
Ljungqvist et al.

0 5 10 15 20

time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

e x
y

[m
]

IS-MPC
Ljungqvist et al.

0 5 10 15 20

time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

A
[r
a
d
]

IS-MPC
Ljungqvist et al.

Figure 5.14. Tracking a linear trajectory in backward motion: comparison between [100]
and the proposed IS-MPC method.

5.5 Results 79

-1.5 -1 -0.5 0 0.5 1 1.5

[m]

4

4.5

5

5.5

6

6.5

[m
]

IS-MPC
Ljungqvist et al.

0 5 10 15 20

time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

e x
y

[m
]

IS-MPC
Ljungqvist et al.

0 5 10 15 20

time [s]

-0.3

-0.25

-0.2

-0.15

A
[r
ad

]
IS-MPC
Ljungqvist et al.

Figure 5.15. Tracking a circular trajectory in backward motion: comparison between [100]
and the proposed IS-MPC method.

safely exceeds the artificial bound of [100] during the motion but no jackknifing
phenomenon is experienced.

5.5.3 Experiments

To perform an experimental validation of the proposed method, we have built a
prototype tractor-trailer system starting from a commercial radio-controlled model,
the Carson Unimog U300, a 1:12 replica of the Mercedes Unimog U300 truck. The
kinematic parameters of the vehicle have been given at the beginning of the previous
section. The model was extensively modified and instrumented as needed in order
to implement the antijackknifing controller. In particular:

• the original electronics were replaced with two Arduino Uno microcontroller
boards in a master-slave configuration, connected via the I2C protocol;

• an H-bridge was added for driving the two DC motors;

• encoders were mounted on the trailer wheels as well as on the hitch joint;

• a USB/Bluetooth module was added for communication between the master
board and the external computer where the antijackknifing controller runs.

5.5 Results 80

anti-jackknifing
controller

reference
trajectory
generation

odometric
localization

PI
controller

steering
motor

driving velocity
reconstruction

Z

PI
controller

hitch encoder
data

steering angle
potentiometer data

wheel encoders
data

PWM driving
motor+

PWM +

xref

yref

vrec

! Á

¿drive

¿steer

Árec

v {+

+ {

Figure 5.16. The overall control architecture of the vehicle, with input signals and output
signals shown in green and orange, respectively. The anti-jackknifing controller runs on
an external computer that communicates with the vehicle via Bluetooth.

The external computer is a standard laptop that receives from the master board
the current odometric estimate of the robot configuration, obtained from encoder
measurements via 2nd-order Runge-Kutta integration of model (5.2). It then exe-
cutes in real time the IS-MPC algorithm in MATLAB, using quadprog as QP solver,
and sends the resulting velocity commands v and ω back to the master board. This
high-level control cycle runs at a rate of 10 Hz.

The master board sends the velocity commands to the slave board, which runs
the low-level PI controllers of the motors. In particular, the driving velocity error
is computed by comparing v with vrec, the current driving velocity of the tractor
as reconstructed from trailer wheel encoder data. As for the steering motor, ω is
integrated to provide a reference for the steering angle ϕ, which is then compared
with ϕrec, the current steering angle as reconstructed via odometric localization.
The PI loops for the driving speed and the steering angle run respectively at 20 and
100Hz.

Figure 5.16 shows how the anti-jackknifing block of Fig. 5.4 has been merged in
the overall control architecture of the vehicle.

The control parameters d and kx, ky are the same of the simulations, but the
MPC control horizon Tc has been reduced to 1 s to decrease control delay and
ensure that the controller runs comfortably in real-time in spite of the additional
communication overhead.

Figures 5.17 and 5.18 show the results obtained on linear and circular trajec-
tories, respectively. It is clear that the proposed method achieves stable backward
tracking in both cases, fully corroborating the positive outcome of the simulations
and ultimately proving its robustness to the inevitable uncertainties and perturba-
tions that affect such a low-cost experimental setup. See the accompanying video7

for clips and data plots of these experiments.

7https://youtu.be/ImG1ZV1EYBs

https://youtu.be/ImG1ZV1EYBs

5.6 Extension to the two-trailer system 81

Figure 5.17. Experiment 1: Stable backward tracking of a linear trajectory by the pro-
posed method (top, reference trajectory in blue); jackknife occurs if no corrective action
is added (bottom, zoom on the initial part of the motion).

5.6 Extension to the two-trailer system
The proposed method can be extended in principle to a vehicle towing any number
of trailers. For illustration, we present below some results for the case of two trailers.

Consider the vehicle in Fig. 5.19, in which a second trailer of length ℓ2 has been
hooked at a distance ℓh1 from the wheel axle midpoint of the first trailer. Corre-
spondingly, the state vector q is augmented by including the ψ2 angular coordinate.

5.6 Extension to the two-trailer system 82

Figure 5.18. Experiment 2: Stable backward tracking of a circular trajectory by the
proposed method (top, reference trajectory in blue); jackknife occurs if no corrective
action is added (bottom, zoom on the initial part of the motion).

The kinematic model can be written as
ẋ = v cθ

ẏ = v sθ

θ̇ = v tϕ
ℓ

(5.20)
ψ̇1 = −v tϕ

ℓ

(
1 + ℓh

ℓ1
cψ1

)
− v sψ1

ℓ1

ψ̇2 = v ℓh1tϕ
ℓ ℓ2

((ℓ1 + ℓh1)cψ1cψ2

ℓ1
+ ℓ2cψ1

ℓ1
− cψ1+ψ2

)
+v sψ1

ℓ1

(
1 + (ℓ1 + ℓh1)cψ2

ℓ2

)
− v sψ1+ψ2

ℓ2

ϕ̇ = ω.

5.6 Extension to the two-trailer system 83

Á

Ã1
µ

`

tractor

trailer2

P
`h

d

`1

Ã2

`h1

`2
trailer1

Figure 5.19. A vehicle composed by a tractor and two trailers.

The developments for this model (input-output linearization, generation of the aux-
iliary trajectory, linearization around it, and MPC-based control correction) are es-
sentially the same of Sect. 5.4, the only notable difference being that the dimension
of the unstable subsystem in (5.11), corresponding to the number of eigenvalues
with positive real part, is now increased to 4. For an n-trailer system, this number
would be n+ 2.

To validate experimentally the above extension, a second trailer identical to
the first was added to our vehicle, with an encoder measuring the corresponding
hitch angle ψ2. The proposed method was successfully tested over linear, circular
and spline trajectories (Figs. 5.20–5.22), producing stable backward tracking in all
cases. See the accompanying video8 for clips of these experiments.

8https://youtu.be/ImG1ZV1EYBs

https://youtu.be/ImG1ZV1EYBs

5.6 Extension to the two-trailer system 84

Figure 5.20. Experiment 4: Stable backward tracking of a linear trajectory for a two-
trailer vehicle.

Figure 5.21. Experiment 5: Stable backward tracking of a circular trajectory for a two-
trailer vehicle (reference trajectory in black).

5.6 Extension to the two-trailer system 85

Figure 5.22. Experiment 6: Stable backward tracking of a spline trajectory for a two-
trailer vehicle (reference trajectory in black).

86

Part II

Robust Motion Generation
using Sensitivity-Based Tubes

87

Chapter 6

Closed-Loop Sensitivity

Aerial robotics has experienced a growing interest propelled by advancements in re-
search, resulting in numerous practical uses. A primary concern with aerial robots
is to improve system autonomy and ensure safety during motion tasks. Never-
theless, attaining high levels of autonomy for flying robots remains an enduring
challenge due to the need to operate in unpredictable and uncertain real-world con-
ditions. Despite efforts to create precise models, real-world complexities introduce
several uncertainties among which are inaccuracies in the model parameters, which
can potentially disrupt the system behavior during task execution. The pursuit of
greater autonomy, precision, and safety in aerial robotics requires bridging the gap
between theoretical models and practical real-world conditions. In many cases of
interest, a model of the robot/environment can be considered available with the
main source of uncertainty lumped in the inaccurate knowledge of some model pa-
rameters. In these cases, the uncertainty is not generic but it has a very specific
structure which, if exploited, can lead to better predictions of its effects on the robot
motion. Adaptive [102–104] or robust control [105,106] are typical methods to deal
with parametric uncertainty, either through online parameter estimation or by intro-
ducing trade-offs between performance and robustness vs. parametric uncertainty.
When MPC is employed, its effectiveness depends on the model, and thus parame-
ters, accuracy [2, 107]. Uncertainties in these parameters can significantly impact
both the controller performance and robot behavior. Instead of simply reacting to
disturbances to counteract their effect, another possibility is to plan feedforward
trajectories with minimal state sensitivity, as in [108–110] to minimize the effect of
uncertainties over the state trajectory. However, these approaches operate in an
open-loop fashion and thus do not consider the presence and strengths/weaknesses
of the motion controller that is eventually implemented on the robot.

In light of these considerations, some recent works [111–116] have introduced
and exploited the notion of closed-loop state sensitivity matrix: this quantity lo-
cally captures how deviations in the model parameters (w.r.t. their nominal values)
affect the evolution of the robot/environment states in closed-loop, i.e., by also tak-
ing into account the strengths/weaknesses of the particular control action chosen for
executing the task. A norm of the state sensitivity can, for instance, be minimized
for generating reference trajectories that result by construction minimally sensitive
to parametric uncertainties, thus increasing the intrinsic robustness of their tracking

6.1 Parametric sensitivity of closed-loop systems 88

in closed-loop. This is particularly relevant whenever the task requirements allow
for some redundancy in the reference trajectory that can be optimized w.r.t. the
sensitivity metrics, e.g., in case of collision-free navigation in cluttered environments
or regulation tasks. The notion of state sensitivity has been later extended to also
consider the effects of uncertainties on the control inputs [112], by defining and
minimizing the so-called input sensitivity: this allows, for instance, to better cope
with actuation limits that might otherwise be violated when the robot deviates from
its nominal trajectory [115]. Finally, it is also possible to leverage the sensitivity
matrix to obtain time-varying bounds (tubes) on the state and/or input evolution
assuming a (known) range of variation for the parameters. This makes it possible
to plan robust trajectories that, at least locally, ensure the feasibility of the re-
sulting motion (against state/input constraints) also in the presence of parametric
uncertainties.

While these methods have shown promise in simulated case studies, only in [116]
the notion of closed-loop state/input sensitivity was applied to real-world experi-
ments with a robotic manipulator. Notably, there have been no real implementa-
tions using Quadrotors executing a motion task yet.

In this chapter, we will first review the basics on the closed-loop sensitivity
metric and on the computation of tubes of perturbed trajectories, based on such
metric, to then present an experimental validation of its use in the planning of robust
reference trajectories for a Quadrotor. Although the discussion revolves around
the offline optimization of the reference trajectory, to be tracked by a traditional
controller, the main results are still relevant to the online MPC case, which will be
discussed in the next chapter.

6.1 Parametric sensitivity of closed-loop systems
Consider a discrete-time dynamical system described by

xk+1 = f(xk,uk,p) (6.1)

under the action of a controller having the generic form

ξk+1 = ζ(xk, ξk,pc)
uk = µ(xk, ξk,pc),

(6.2)

where xk ∈ Rnx and uk ∈ Rnu denote the state and input vectors, ξk ∈ Rnξ the
internal states of the possibly dynamic controller, p ∈ Rnp the (uncertain) model
parameters, and pc ∈ Rnp the nominal parameters used by the controller. The
combination of (6.1) and (6.2) determines the closed-loop system

xk+1 = f(xk,uk,p)
ξk+1 = ζ(xk, ξk,pc)
uk = µ(xk, ξk,pc)

(6.3)

and the map ϕk(x0, ξ0) := ϕ(x0, ξ0, tk) = xk denotes the state solution of (6.3)
at time tk starting from an initial condition (x0, ξ0) at t0. Given a known initial

6.1 Parametric sensitivity of closed-loop systems 89

condition (x0, ξ0), the closed-loop trajectory of the system will depend on the actual
value of the parameters p. We denote with x̄ the closed-loop trajectory obtained
in the nominal case, i.e., when p = pc, and with ξ̄, ū the associated nominal
trajectories. In general, however, p ̸= pc because of parametric uncertainty and,
therefore, the actual state/input trajectories (x, u) will deviate from the nominal
ones (x̄, ū).

Following [111, 112], we use the notion of closed-loop sensitivity to describe
how changes in the parameters affect the state trajectory under the action of the
controller. Define the state sensitivity Π ∈ Rnx×np as

Πk = dϕk(x0, ξ0)
dp

∣∣∣∣
p=pc

. (6.4)

A closed-form expression for (6.4) is, in general, not available but, as shown in [111],
it is possible to obtain the following update rule

Πk+1 = dϕk+1(x0, ξ0)
dp

= df(ϕk(x0, ξ0),uk,p)
dp

= ∂f

∂x

dϕk(x0, ξ0)
dp

+ ∂f

∂u

duk
dp

+ ∂f

∂p

= ∂f

∂x
Πk + ∂f

∂u

duk
dp

+ ∂f

∂p
, (6.5)

i.e., a discrete-time prediction model for the state sensitivity Πk with initialization
Π0 = 0 since the initial state is assumed known and by definition ϕ0(x0, ξ0) = x0.

From (6.5) we also define matrix Θ ∈ Rnu×np

Θk = duk
dp

∣∣∣∣
p=pc

= ∂µ

∂x
Πk + ∂µ

∂ξ

dξk
dp

and Πξ ∈ Rnξ×np

Πξ = dξk
dp

∣∣∣∣
p=pc

which, applying the same reasoning of (6.5), has the prediction model

Πξ,k+1 = ∂ζ

∂x
Πk + ∂ζ

∂ξ
Πξ,k,

with initial condition Πξ,0 = 0. Matrix Θk, denoted as input sensitivity, represents
the indirect effect of a parameter change on the control action by means of feedback,
which can be seen as a measure of how the input in closed-loop will deviate from its
nominal trajectory ū. In case the controller has internal states, the input sensitivity
depends on matrix Πξ,k, which represents the sensitivity of the controller states.

Finally, let

Ak = ∂f

∂x

∣∣∣∣
x̄k,ūk,pc

Bk = ∂f

∂u

∣∣∣∣
x̄k,ūk,pc

Mk = ∂f

∂p

∣∣∣∣
x̄k,ūk,pc

Fk = ∂µ

∂x

∣∣∣∣
x̄k,ξ̄k,pc

Gk = ∂µ

∂ξ

∣∣∣∣
x̄k,ξ̄k,pc

Zk = ∂ζ

∂x

∣∣∣∣
x̄k,ξ̄k,pc

Yk = ∂ζ

∂ξ

∣∣∣∣
x̄k,ξ̄k,pc

6.2 Tubes of perturbed trajectories 90

such that the closed-loop sensitivity prediction model can be compactly rewritten
as

Πk+1 = AkΠk +Bk (FkΠk +GkΠξ,k) +Mk, (6.6)
Πξ,k+1 = ZkΠk + YkΠξ,k, (6.7)

Θk = FkΠk +GkΠξ,k. (6.8)

In the case in which the controller is static, the sensitivity model is significantly
simplified. In fact, for a static control law uk = µ(xk,pc) no internal state ξ
is present, and the corresponding sensitivity Πξ,k disappears from the previous
equations:

Πk+1 = (Ak +BkFk) Πk +Mk, (6.9)
Θk = FkΠk. (6.10)

An interesting interpretation can be given to matrix Fk. Suppose that the
system deviates from the nominal state x̄k to a perturbed state xϵ,k. Then, Fk
represents the state feedback gains of the first-order Taylor approximation of the
control law (6.2) since, for a small enough perturbation, the control action uϵ,k =
µ(xϵ,k, ξk,pc) can be expanded as

uϵ,k ≃ ūk + Fk(xϵ,k − x̄k).

With this in mind, we will refer to Fk as the (feedback) gains of the controller.
Additionally, it is worth mentioning that, from (6.6) and (6.8), one can also

define the sensitivity of any function of the state and inputs to characterize its local
behavior to changes in the parameters. Letting γ(x,u) ∈ Rnγ be a generic function,
its closed-loop sensitivity to parameters is simply:

Γk = dγ

dp

∣∣∣∣
p=pc

= ∂γ

∂x
Πk + ∂γ

∂u
Θk. (6.11)

6.2 Tubes of perturbed trajectories
One of the possible uses of the closed-loop sensitivities just introduced is to map
a set of parameter deviations to a set of perturbed trajectories of the closed-loop
system. In particular, we are interested in obtaining an ellipsoidal approximation
of the bundle of perturbed trajectories for the states and the inputs — or for any
function of these quantities.

Assume a (known) maximum parameter deviation ∆pmax for each component
of the vector p, that is, the parameters are supposed to belong to the set

P = {p ∈ Rnp : −∆pmax ≤ p− pc ≤ ∆pmax} (6.12)

centered at the nominal value pc, and let W = diag(∆p2
max,i). To estimate the

effect of a parameter deviation on the closed-loop trajectory, we define a mapping
from the parameter space to the state space through ellipsoids. Let the parameter
ellipsoid with matrix W ∈ Rnp×np centered at pc be

Ep =
{
p ∈ P : ∆pTW−1∆p ≤ 1

}
(6.13)

6.2 Tubes of perturbed trajectories 91

with ∆p = p−pc. From a first-order approximation around the nominal trajectory
x̄, one has

∆xk = xk − x̄k ≃ Πk∆p, (6.14)

which, assuming that p ∈ Ep ⊂ P, can be exploited to obtain the corresponding
uncertainty ellipsoid in the state space at a given time tk. To do this, we pseudo-
invert (6.14) to map feasible state deviations to parameter deviations:

∆p = Π†
k∆xk. (6.15)

We use the term feasible to highlight the fact that in case nx > np — thus system
(6.14) is overdetermined — only state deviations which are in the range space of
Πk will provide an exact solution. This is however always the case in our treatment
since we assume that all state deviations satisfy (6.14).

Applying (6.15) to (6.13), and noting that Π†T
k W

−1Π†
k =

(
ΠkWΠT

k

)†
, we

obtain the uncertainty ellipsoid in state space:

∆xTk
(
ΠkWΠT

k

)†
∆xk ≤ 1. (6.16)

Moreover, the same reasoning applies to the input deviation ∆uk = uk−ūk resulting
in the input space ellipsoid

∆uTk
(
ΘkWΘT

k

)†
∆uk ≤ 1. (6.17)

Note that both the state and the input ellipsoids are time-varying, as the respective
sensitivities follow the evolution given by (6.6) and (6.8). The evolution of these
ellipsoids over time is what we will refer to as state and input tubes in the following.
Under assumptions (6.13)–(6.14), the closed-loop trajectories will evolve inside the
tubes centered around the nominal trajectory (see Fig. 6.1 for an illustrative exam-
ple), that is, the state/input at time tk will belong to their corresponding ellipsoid
at tk. One can then make use of these tubes for several purposes, e.g., for shaping
the closed-loop trajectory so that the state/input ellipsoids do not violate any state
or input constraint.

In many cases of interest, one needs to determine the maximum deviation along
a particular direction of interest n in the state/input space (for instance, for evalu-
ating the deviation of a particular component of the state/input). Given an ellipsoid
with matrix K, the ellipsoid radius ρ ∈ R along a direction n can be obtained as

ρn =
√
nTKn. (6.18)

More in detail, consider the ellipsoid Eq centered at q̄ ∈ Rnq defined as

Eq =
{

∆q ∈ Rnq : ∆qTK†∆q ≤ 1
}
, (6.19)

where ∆q = q − q̄ and K ∈ Rnq×nq is a symmetric positive semi-definite matrix.
Given a direction n ∈ Rnq , we are interested in finding the maximum deviation

from the center of the ellipsoid along n. More formally, we want to find the smallest
scalar α > 0 such that

∀∆q ∈ Eq nT∆q ≤ α.

6.2 Tubes of perturbed trajectories 92

Figure 6.1. Qualitative visualization of a perturbed state trajectory x(t) (blue) and
the ellipsoidal tubes (red) centered around the nominal trajectory x̄(t). Note how, in
general, the tube radius does not necessarily monotonically increase thanks to the effect
of the feedback action, and despite the cumulative effect of uncertainties over time.

Note that, being Eq in (6.19) a convex set, we can focus our search on its boundary
region ∂Eq.

Finding α can be rephrased as solving the problem:
minimize

α,∆q
α

subject to nT∆q = α
∆q ∈ ∂Eq,

(6.20)

that admits the solution

α∗ =
√
nTKn,

∆q∗ = Kn√
nTKn

.

Proof. One can solve (6.20) by finding a saddle point of its Lagrangian

L(α,∆q,λ) = α+ λ1(nT∆q − α) + λ2(∆qTK†∆q − 1),

which entails solving the system of equations ∇L = 0 :

1− λ∗
1 = 0, (6.21a)

λ∗
1n

T + 2λ∗
2(∆q∗)TK† = 0, (6.21b)
nT∆q∗ − α∗ = 0, (6.21c)

(∆q∗)TK†∆q∗ − 1 = 0. (6.21d)

From (6.21a), it is trivial to find λ∗
1 = 1. By substituting (6.21b) into (6.21c) one

obtains
α∗ = nT∆q∗ = −2λ∗

2(∆q∗)TK†∆q∗.

6.3 Robust trajectory planning for a Quadrotor 93

Noting that (∆q∗)TK†∆q∗ = 1, we obtain

λ∗
2 = −α

∗

2 . (6.22)

We can then substitute (6.22) back into (6.21b) and right-multiply by K to obtain

∆q∗ = Kn

α∗ ,

which, plugged into (6.21d), finally yields

α∗ =
√
nTKn,

corresponding to the radius of the ellipsoid in the desired direction.

Considering a set of directions of interest, one can then compute the radius along
each direction for obtaining a vector of radii ρ which can be used as a measure of
the worst-case deviation of the system along these directions. For illustration let us
consider w.l.o.g. the case of input tubes. Once the evolution of the input sensitivity
Θ has been obtained, one can compute the input ellipsoid matrix Ku

k = ΘkWΘT
k .

Then, using (6.18) with n spanning the canonical basis of the input space Rnu , it
is possible to obtain

ρuj,k =
√
Ku
jj,k, ∀j ∈ Inu

1 , ∀k ∈ IC−1
0 . (6.23)

The quantities ρuj,k, collected in vector ρuk , are the radii of the input ellipsoid along
each axis j and represent, therefore, the worst-case deviations of each input compo-
nent j w.r.t. its nominal value due to parametric uncertainty. Note that at the start
of the trajectory ρu0 = 0 by construction, since Π0 = 0 and, therefore, Θ0 = 0.

The same reasoning can clearly be applied to the states to find the associated
radii from the state sensitivity (6.6) and, using (6.11), to any function of the state
and inputs to find its worst-case deviation along the nominal trajectory.

6.3 Robust trajectory planning for a Quadrotor
This section presents an experimental validation of the concepts of closed-loop state
and input sensitivity in the context of robust flight control for a Quadrotor (UAV)
equipped with the popular PX41 autopilot. The objective is to experimentally assess
how the optimization of the reference trajectory with respect to these sensitivity
metrics can improve the closed-loop system performance against model uncertain-
ties commonly affecting the Quadrotor systems. To accomplish this, we present a
series of experiments designed to validate our optimization approach on two distinct
trajectories, with the primary aim of assessing its precision in guiding the Quadrotor
through the center of a window at relatively high speeds. This approach provides
some interesting insights for increasing the closed-loop robustness of the robot state
and inputs against physical parametric uncertainties that may degrade the system’s
performance. See Fig. 6.2 for an example of the results.

1https://px4.io/

 https://px4.io/

6.3 Robust trajectory planning for a Quadrotor 94

Figure 6.2. Drone trajectory tracking under parametric uncertainties (green) to pass
through a target sd(tw) (blue sphere). Non-optimized (INIT , left) and optimized
(OPTa, right) trajectories are compared. The closest positions reached to the desired
target after each experiment (small red sphere) is visualized in PyBullet where the drone
passes through a circular window at relatively high speed. A video of the experiments
is available at https://youtu.be/QFnrQ_O2BiU.

The employed Quadrotor is controlled by the widely used open-source autopilot
PX4. While PX4 is used by numerous research groups, companies, and enthusiasts
for its valuable features, there are several instances where its control performance
can fall short of meeting user requirements. Users often attempt to enhance con-
trol by customizing the autopilot, sometimes opting for a model-based approach.
However, such customization is not straightforward and demands a strong grasp
of firmware architecture and proficient programming skills. Having this in mind,
our objective is to employ the closed-loop state/input sensitivity metric (and derived
quantities) on a drone controlled by PX4 default controller to assess how proper ref-
erence trajectory planning, designed to be robust against parametric uncertainties,
can enhance the performance of a standard drone.

In the following, we first review the dynamic model of a Quadrotor, we then
illustrate the equations of the PX4 controller, and present the proposed optimization
problem. Finally, we report simulation and experimental results.

6.3.1 Quadrotor model

To account for the typical perturbations that are present in real-world systems, we
consider a 3D Quadrotor model with displaced center of mass [117]. Let FW =

https://youtu.be/QFnrQ_O2BiU

6.3 Robust trajectory planning for a Quadrotor 95

Table 6.1. Quadrotor model parameters

Symbol Value
mr 1.535 kg
gC (0, 0, 0) m

(Ixx, Iyy, Izz) (29.125, 29.125, 55.225) · 10−3 kg·m2

kf 5.86 · 10−6 N/(rad/s)2

km 0.06
l 0.28 m
β π/3 rad

{OW ,xW ,yW , zW} denote the world inertial frame, and FB = {OB,xB,yB, zB}
represent the body frame attached to the Quadrotor geometric center. We define:
r = (x, y, z) ∈ R3 as the drone position in FW , v = (vx, vy, vz) ∈ R3 as its linear
velocity in FW , q = (qw, qx, qy, qz) ∈ S3 as the unit-norm quaternion representing
the orientation of FB relative to FW , and ω = (ωx, ωy, ωz) ∈ R3 as the angular
velocity of FB with respect to FW , expressed in FB. The Quadrotor state vector
is then x = (r,v, q,ω) ∈ R6 × S3 × R3.

Let w2
i be the squared speed of the i-th propeller and define the Quadrotor

control input as u = (w2
1, . . . , w

2
4). An allocation matrix T is used to relate the

inputs u to the thrust/torques (f, τ) in body frame:

(
f
τ

)
= Tu = kf


1 1 1 1
0 l sin β 0 −l sin β

−l cosβ 0 l cosβ 0
km −km km −km

u, (6.24)

where l is the length of the Quadrotor arms, kf and km are the thrust and the
drag aerodynamic coefficients of the propellers [117, 118], and β is the angle de-
termining the equivalent arm length. We assume that a payload of mass mp

might be attached to the Quadrotor with mass mr at a position dp = (0, 0, dz)
in FB, with the total mass then being m = mr + mp. We denote with J =
diag

(
Ixx +mpd

2
z, Iyy +mpd

2
z, Izz

) ∈ R3×3 the Quadrotor body frame inertia ma-
trix about the geometric center OB. We finally consider that the Quadrotor center
of mass GB is displaced w.r.t. the geometric center OB by a displacement denoted
as gC = (gx, gy, gz) in FB. From [117], the total force ftot acting on the Quadrotor
in FB includes the propeller total thrust f , gravitational effects, and an additional
fictitious force due to the displaced gC :

ftot = fzW −mgR(q)TzW −m[ω]×[ω]×gC .

For the total torque τtot (expressed in FB), one has:

τtot = τ −mg[gC]×R(q)TzW − [ω]×Jω,

where τ represents the propeller torque from (6.24) and R(q) ∈ SO(3) is the
rotation matrix associated to the quaternion q. By defining the spatial inertia

6.3 Robust trajectory planning for a Quadrotor 96

matrix as
M =

(
mI3 −m[gC]×

m[gC]× J

)
one can finally obtain the following relation(

ν
α

)
= M−1

(
ftot
τtot

)

from which the Quadrotor dynamic model with displaced center of mass can be
obtained

ẋ = fc(x,u,p) =



ṙ = v

v̇ = R(q)ν(x,u,p)

q̇ = 1
2q ⊗

(
0
ω

)
ω̇ = α(x,u,p).

(6.25)

The continuous-time dynamics (6.25) is then discretized using a fixed-step 4th
order Runge-Kutta integration to obtain the discrete-time model. The model used in
simulation is based on the 3DR Iris drone2, whose nominal parameters are reported
in Tab. 6.13.

6.3.2 PX4 controller

It is well known that the position r and the yaw angle ψ are flat outputs for
the Quadrotor model (6.25), as explained in, e.g., [119]. Based on this fact, the
PX4 controller is designed to track a desired position rd(t) and a yaw angle ψd(t)
trajectories by generating suitable propeller speeds u. More in detail, the controller
has a cascaded structure consisting of four stages (as illustrated in Fig. 6.3):

1. the position controller in which the desired position rd is first transformed
into an equivalent acceleration setpoint asp,

2. the attitude generator responsible for producing both a combined thrust f
and an attitude setpoint qsp derived from the desired yaw angle ψd and the
previously computed acceleration setpoint,

3. the attitude controller determining the desired body torques and, finally,

4. the control allocation where thrust and body torques are transformed in pro-
peller speeds via the inverse of the nominal allocation matrix (6.24).

Following the available documentation and open-source code4, is is possible to derive
an equivalent continuous-time controller to be integrated in the sensitivity-aware
planning scheme. Note that in the PX4 controller, the inertial and the body frames

2https://www.arducopter.co.uk/iris-quadcopter-uav.html
3These parameters follow the ones reported in the PX4 Gazebo package https://github.com/

PX4/PX4-SITL_gazebo-classic
4https://github.com/PX4/PX4-Autopilot

https://www.arducopter.co.uk/iris-quadcopter-uav.html
https://github.com/PX4/PX4-SITL_gazebo-classic
https://github.com/PX4/PX4-SITL_gazebo-classic
https://github.com/PX4/PX4-Autopilot

6.3 Robust trajectory planning for a Quadrotor 97

Figure 6.3. Block diagram of the PX4 controller, composed of four stages: the position
controller (red), the attitude generator (blue), the attitude controller (yellow), and the
control allocation (green).

are expressed using the North-East-Down (NED) convention, so (simple) conver-
sions are needed if one chooses to express the dynamic model in different frames.
The position controller in the PX4 consists of a P and a PID action on the position
and velocity errors, respectively. The latter introduces two 3-dimensional internal
states ξv and ξa to realize the integral and the low-pass-filtered derivative actions.
Denoting with Ωp the low-pass filter cutoff pulsation and with Pr, Pv, Iv, Dv the
diagonal matrix gains, the position controller equations can be expressed as

ξ̇v = ṙd − v
ξ̇a = −Ωpξa − Ω2

pv

asp = r̈d + Pv(ṙd − v + Pr(rd − r))−Dv(ξa + Ωpv) + Ivξv.

The attitude generator receives the acceleration setpoint asp = (ẍsp, ÿsp, z̈sp) and
computes the collective thrust f . Let bz = (−ẍsp,−ÿsp, g)

∥(−ẍsp,−ÿsp, g)∥ and tsp = bz
bz,z

(
z̈sp

ht
g − ht

)
,

where ht ∈ (0, 1) denotes the nominal normalized hovering thrust so that the com-
puted thrust is f = −∥tsp∥. The attitude setpoint qd is then computed by aligning
the z-axis of the body frame to the desired thrust tsp and rotating of an angle ψd
around such axis [120]. To generate the body torques, let the quaternion error vec-
tor be qe = q−1 ⊗ qsp. The angular rate setpoint is then computed proportionally
to the error as ωsp = 2Pqsign(qe,w)qe,v, with Pq denoting the proportional gains.
Finally, the equations of the PID controller tracking the attitude rate ωsp are

ξ̇ω = ωsp − ω
ξ̇α = −Ωaξα − Ω2

aω

τ = Pω(ωsp − ω)−Dω(ξα + Ωaω) + Iωξω,

where ξω and ξα are the 3-dimensional internal states of the controller, Ωa is the
cutoff pulsation of the low-pass filter, and Pω, Iω, Dω are the diagonal matrix gains.
Lastly, the control input u is reconstructed from the allocation matrix as

u = T−1
(
f
τ

)

where, of course, the matrix T from (6.24) is evaluated on the nominal values of
the parameters pc (which may differ from the actual p because of inaccuracies in
the Quadrotor model).

6.3 Robust trajectory planning for a Quadrotor 98

6.3.3 Problem formulation

Letting s(x) ∈ Rns be a quantity of interest (e.g., the position of the robot center),
we consider the task of tracking a desired trajectory sd(a, t) defined for t ∈ [t0, tf]
and function of a finite set of trajectory parameters a ∈ Rna . The tracking task is
realized by a controller having the generic form (6.2), such as the PX4 controller of
the previous section. Note that the controller is implicitly a function of the trajec-
tory parameters a as well, as they define the desired trajectory that the controller
is designed to track.

The state and input space ellipsoids can be exploited for defining a “weighted
sensitivity norm” by considering the eigenvalues λi of the ellipsoid matrix ΠkWΠT

k

in (6.16). In particular we consider the following matrix norm

∥Πk∥W = max(λi(ΠkWΠT
k)) (6.26)

which represents the largest (worst-case) deviation of the state x assuming a para-
metric uncertainty as in (6.13). Alternative choices for the matrix norm to be used
include, for instance, the Frobenious norm [121], that does not require to perform
the eigenvalue decomposition and can therefore be more computationally efficient.
The effect that a particular choice of norm has on the solution is indeed a topic
that requires further study. Nonetheless, norm (6.26) provides a reasonable choice
by directly accounting for the worst-case deviation — a useful characterization in
the context of robust control. Furthermore, one can also exploit (6.16)–(6.17) and
(6.23) for obtaining the tubes of perturbed trajectories for the individual compo-
nents of the states and the inputs. Considering all the canonical directions in the
input space, one can obtain the tube radius ρu(t) such that

−ρu(t) ≤ u(t)− ū(t) ≤ ρu(t). (6.27)

Equation (6.27) bounds from above/below the envelope of perturbed inputs when
the parameter uncertainty is bounded as in (6.13), and an analogous upper/lower
bound can also be obtained for the generic state component xi(t).

In this example, we consider the following trajectory optimization problem:


minimize

a
∥Π(tw)∥W

subject to Ma = b

umin + ρu(t) ≤ ū(t) ≤ umax − ρu(t) ∀t ∈ [t0, tf].
(6.28)

We seek the optimal value a∗ of the shape parameter a of the reference trajectory
sd(a, t) for minimizing the weighted norm (6.26) at a specific time tw (e.g., for pass-
ing through a desired point like the center of a window with increased accuracy).
Minimization of this cost will increase the robustness of the closed-loop system
against parameter uncertainties at tw. The constraints consist of the boundary con-
ditions, such as some given initial/final conditions, for sd(a, t), represented by the
linear constraints Ma = b, and constraints that bound the envelope of perturbed
inputs within actuation limits [umin,umax], according to (6.27), ensuring that the
tracking of the optimized reference trajectory will be feasible for any value of the
uncertain parameters p in (6.13). Other objective functions can be considered such

6.3 Robust trajectory planning for a Quadrotor 99

x [m]
−2 0 2

y
[m

]

−2

0

2

z
[m

]

0

1

2

Traj1

Gazebo

Traj2

Experiment

Traj1

Gazebo

Traj2

Experiment

Traj1

Gazebo

Traj2

Experiment

Traj1

Gazebo

Traj2

Experiment

Traj1

Gazebo

Traj2

Experiment

Traj1

Gazebo

Traj2

Experiment

Traj1

Gazebo

Traj2

Experiment

Traj1

Gazebo

Traj2

Experiment

Traj1

Gazebo

Traj2

Experiment

Traj1

Gazebo

Traj2

Experiment

Traj1

Gazebo

Traj2

Experiment
INIT

x [m]
−2 0 2

y
[m

]

−2

0

2

z
[m

]

0

1

2

OPTa

x [m]
−2 0 2

y
[m

]

−2

0

2

z
[m

]

0

1

2

INIT

x [m]
−2 0 2

y
[m

]

−2

0

2

z
[m

]

0

1

2

OPTa

x
[m

]

−2

0

2

y [m]
−202

z
[m

]

0.0
0.5
1.0
1.5
2.0

x
[m

]

−2

0

2

y [m]
−202

z
[m

]

0.0
0.5
1.0
1.5
2.0

Desired Target: rd(tw)
Reference Trajectory

Nominal Controller tracking
Closest positions to target

p 6= pc Controller tracking with pertubation

x
[m

]

−2

0

2

y [m]
−202

z
[m

]

0.0
0.5
1.0
1.5
2.0

x
[m

]

−2

0

2

y [m]
−202

z
[m

]

0.0
0.5
1.0
1.5
2.0

Figure 6.4. Trajectory tracking results by PX4 controller for two trajectory types (1st

row: Traj1, 2nd row: Traj2) in simulation (first two columns) and experiments (last
two columns). All trajectories start from the black sphere at (−2,−2, 1). Cases include
INIT and OPTa. Perturbed runs consist of Np green trajectories, while the nominal
trajectory tracking (i.e. when p = pc) is denoted in red, all sharing an origin which
is the black sphere. Parameters p were randomly drawn from (6.13) in Gazebo sim-
ulation where it was implemented by modifying the Iris URDF model. However, the
experiments were carried out as in (Fig: 6.8) where actual modifications were done on
the drone that resemble the perturbations that will affect parameters p. Red spheres
at t = tw mark closest points to desired target rd(tw), forming a point cloud around it.

as the integral of the sensitivity norm along the trajectory to enhance tracking ac-
curacy during motion. Furthermore, one can easily include extra constraints like
obstacle avoidance by exploiting the tubes on the states, as shown in [114].

6.3.4 Results

A series of experiments and simulations were conducted to assess the effectiveness
of the proposed trajectory generation obtained by solving (6.28). The parameters
considered uncertain are then the set5 p = (kf , gx, gy, gz, mr) ∈ R5. We consider
no additional payload attached to the robot, thus mp = 0. Two distinct trajec-
tories sd(a, t) = (rd(a, t), ψd(a, t)), denoted as Traj1 and Traj2 in the following,
were used to guide the drone through a circular window at a relatively high speed
(2.0 ≤ ∥v(tw)∥ ≤ 2.5 m/s) (see Fig. 6.4) while complying with the initial/final state
constraints (rest-to-rest motions) and input saturations as in (6.28). Note that the
actual window was not introduced during the real experiments for practicality, but
it was used in PyBullet6 with the real flight data for visualization.

We start by generating a first trajectory — that will be referred to as INIT in
the following — constructed using piecewise Bezier curves, as discussed in [111,112,

5We did not include km since uncertainties in this parameter have a negligible impact compared
to the other parameters as shown in, e.g., [115].

6https://pybullet.org/

https://pybullet.org/

6.3 Robust trajectory planning for a Quadrotor 100

115, 122], by performing a preliminary trajectory optimization that minimizes the
snap of rd(a, t) over the whole time interval with the aim of obtaining a smooth
trajectory with minimal curvature changes and satisfying nominal constraints over
the state and inputs. Thus, all initial non-optimized trajectories INIT use the
minimum snap cost function defined as

minimize
a

∫ tf

t0

∥∥∥∥∥d4rd(a, τ)
dt4

∥∥∥∥∥
2

dτ

subject to Ma = b

umin ≤ ū(t) ≤ umax ∀t ∈ [t0, tf].

Our framework then modifies this trajectory by solving (6.28) with INIT as an
initial guess. The resulting trajectory is denoted as OPTa.

The main goal is to evaluate how close the drone gets to a specific target location,
labeled as rd(tw), which is right at the center of a predefined window. We want
to find out if the drone can safely go through the window even in the presence of
uncertainties in its parameters.

The two trajectories are chosen to test the system over different operating con-
ditions: Traj1, having a duration of 7 seconds, requires a relatively low initial ac-
celeration to reach the target; conversely, Traj2, which has a duration of 5 seconds,
requires a more significant initial acceleration to reach the target. Both trajectories
ensure a minimum speed of 2 m/s when they reach the target.

The framework is implemented in Python and utilizes the COBYLA [123] non-
linear optimizer from the nlopt toolbox by employing the symbolic toolbox for
symbolic system representation and making use of the Jitcode [124] framework for
just-in-time compilation of ordinary differential equations. Within this framework,
optimizing trajectories with the PX4 controller typically requires 4-6 minutes per
trajectory.

Simulation results

After obtaining the trajectories, dynamic simulations have been carried out in
Gazebo thanks to the software in the loop (SITL) feature of PX4, which allows
to simulate the autopilot and communicate through a ROS 2 application. This
application reads the desired trajectory and sends the series of setpoints (position,
velocity, and acceleration) to the drone at a frequency of 50 Hz. Starting from the
default model of the Iris Quadrotor, we performed a simulation running with the
nominal parameters. Then, we carried out Np = 11 simulations using uncertain pa-
rameters p generated by uniformly sampling the inner volume of the ellipsoid (6.13).
This is done for Traj1 and Traj2 and both INIT and OPTa cases. The uncertainty
intervals ∆pmax,i for the matrix W are chosen relative to the nominal parameters
pc as ∆kf = 0.1kf , ∆gx,y = 0.1l, ∆gz = 0.1h, and ∆mr = 0.1mr, where h is
the distance between the top and bottom plates of the drone chassis. Thus, the
optimization problem (6.28) will aim at minimizing the sensitivity of the Quadro-
tor position r(tw) at the instant of passing through the window center tw against
variations in the parameters kf , gx, gy, gz and mr. In our initial assessment, as
depicted in Fig. 6.4, we present the results for the Np “perturbed runs” for both

6.3 Robust trajectory planning for a Quadrotor 101

0.0 0.2 0.4 0.6
0

2

4

6
Traj1

Average: 0.14
Average: 0.09
INIT

OPTa

0.0 0.2 0.4 0.6

Traj2
Average: 0.30
Average: 0.12
INIT

OPTa

Gazebo

Distance to the desired target

Co
un

t

Figure 6.5. Histograms of two trajectory types (left: Traj1, right: Traj2) for both cases
(INIT in blue, OPTa in red) showing the distances to the desired target (∥rd(tw) −
r(tw)∥) and it’s average across Np runs in Gazebo.

Traj1 and Traj2 (1st and 2nd row, respectively) under the Gazebo label (first two
columns). The plots report the different targets that reach r(tw) (red dots) that
are the closest to rd(tw) (window center) for each of the perturbed simulations (in
green). The result is a point cloud around the desired rd(tw). It is worth noticing
that, when there is no parameter uncertainty affecting the system (i.e. when p = pc)
at nominal tracking (in red), the drone successfully traverses the window with an
accuracy below 0.12 m for all the trajectories and in both the optimized and the
non-optimized cases. However, the outcomes differ significantly for the perturbed
simulations. Specifically, the non-optimized INIT case displays greater deviations
from the desired target location rd(tw), when compared to the optimized OPTa
case, as expected. This difference is particularly pronounced in the 2nd trajectory,
which is more challenging (due to its higher accelerations).

By referring to Fig. 6.5, which displays the distance to the desired target for
both trajectories, we observe that the INIT case shows a larger average deviation
of 0.14 m for Traj1 and 0.3 m for Traj2, in contrast to the OPTa cases with averages
of 0.09 m for Traj1 and 0.12 m for Traj2. Furthermore, the INIT case exhibits
a significantly larger variance, with certain samples deviating 0.42 m in Traj1 and
0.75 m in Traj2. In contrast, OPTa samples tend to cluster around the average.
These findings emphasize the effectiveness of the optimization problem presented
in (6.28), which can capture how variations in the parameters affect deviations in
the considered states.

Experimental results

After the validation of the optimization problem (6.28) in simulation, we performed
real experiments using the Acanthis drone (see Fig. 6.6). Acanthis is an experi-
mental drone platform developed and maintained at Inria Rennes that utilizes the
PX4 firmware. The Np = 11 perturbed experiments were performed by physically
altering the system as depicted in Fig. 6.8 and were obtained by adding some tools
and weights on the extension rod of the Acanthis drone. This allowed us to modify
the set of parameters p = (kf , gx, gy, gz, mr) at each experiment. In particular,
the parameter kf is affected mainly by the tools that we added under the motors
that obstruct the airflow, while the other parameters are affected by the weights

6.3 Robust trajectory planning for a Quadrotor 102

Figure 6.6. Image of the prototype drone Acanthis.

0.0 0.1 0.2 0.3
0

1

2

3

4
Traj1

Average: 0.09
Average: 0.07
INIT

OPTa

0.0 0.1 0.2 0.3

Traj2
Average: 0.19
Average: 0.16
INIT

OPTa

Experiments

Distance to the desired target

Co
un

t

Figure 6.7. Histograms of two trajectory types (left: Traj1, right: Traj2) for both cases
(INIT in blue, OPTa in red) showing the distances to the desired target (∥rd(tw) −
r(tw)∥) and its average across Np experiments with Acanthis drone.

Figure 6.8. Acanthis drone in its nominal state (top left), and subject to 11 distinct
physical perturbations labeled as p1, ..., p11.

6.3 Robust trajectory planning for a Quadrotor 103

0 1 2 3 4 5

0.6

0.8

1.0

1.2 INIT

0 1 2 3 4 5
t [s]

0.6

0.8

1.0

1.2 OPTa

Tube upper bound
p = pc Nominal actuator

p 6= pc Perturbed actuator saturated
p 6= pc Perturbed actuator

Maximum speed

u
3(t

)N
or

m
al

ize
d

Figure 6.9. Experimental actuator speed comparison for Traj2: INIT (top) vs. OPTa

(bottom). The solid red line denotes nominal actuator speed, while the dashed black
line signifies the input tube upper bound (eq. 6.27). The horizontal dashed red line
represents the actuator limit. The dashed green and solid orange lines depict Np per-
turbation runs as in (Fig. 6.8): the solid orange lines indicate the cases in which the
actuation was saturated, and the green dashed lines the cases in which no saturation
occurred. Note how many fewer saturation cases are present in the OPTa case vs. the
INIT case thanks to the use of the input tubes in the constraints (6.28).

and location of the tools on the extension rod. In the last two columns of Fig. 6.4,
we present the results for Traj1 and Traj2 (1st and 2nd row), both for the optimized
and non-optimized cases. Notably, it is evident from Traj1 that the deviation is
more pronounced in the INIT case. In fact, the point cloud — representing the
different target reach locations r(tw) and denoted with red dots in Fig. 6.4 — is
larger when compared to the OPTa case.

Fig. 6.7 provides insights for Traj1 in the experiments, where we find that the
average distance to target for the INIT case is 0.09 m, while it reduces to 0.07 m
for the OPTa case. This reduction signifies an improvement of 2 cm on average.
Additionally, the OPTa case demonstrates less variance, further supporting its ef-
fectiveness.

Similar results are confirmed for Traj2. As it can be observed in Fig. 6.4, the
deviation from the target is both larger and more spread in the INIT case compared
to the OPTa case. Returning to Fig. 6.7, for Traj2, we find that the average distance
to target is about 0.19 m for the INIT case while it is around 0.16 m for the OPTa
case. However, it is important to note that the INIT case exhibits a higher variance
with deviations reaching up to 0.31 m, whereas the maximum deviation in the OPTa
case is around 0.21 m. These results highlight the significant improvements in terms
of the average distance to the target and the reduced spread achieved with the
optimized OPTa approach. Collisions with the virtual window occurred 50% of the
times in the INIT case while they were reduced to 25% for the optimized OPTa
case across the 12 experiments. For more detailed visualization, please refer to the
accompanying video7.

7https://youtu.be/QFnrQ_O2BiU

https://youtu.be/QFnrQ_O2BiU

6.3 Robust trajectory planning for a Quadrotor 104

To illustrate the impact of the input sensitivity on the constraints in the opti-
mization problem (6.28), we refer to Fig. 6.9. This figure reports the normalized
actuator speed u3(t) for Traj2 in real experiments, featuring both the INIT case
(top) and the OPTa case (bottom). In the nominal case p = pc (in red), both INIT
and OPTa maintained the actuator speeds well below their maximum limit, thus
ensuring satisfactory reaching of the target. However, the situation changes when
the perturbations in Fig. 6.8 act on the drone. In the non-optimized INIT case,
a considerable number of experimental perturbed runs (in orange) quickly reached
saturation of the maximum speed limit. In contrast, the OPTa case displayed a
quite better behavior, with only one of the Np perturbations reaching saturation
at the beginning (corresponding to p8 in Fig. 6.8), potentially exceeding the pre-
defined range of 10% deviation as per eq. (6.13). Furthermore, we observed that
the OPTa input evolution generally remained within the upper bound of the input
tube (indicated by the dashed black line) obtained from the input sensitivity ma-
trix (6.8). This highlights the significance of including input constraints (with their
corresponding tube radii) to ensure robustness against parameter variations of the
inputs, particularly for aggressive trajectories such as Traj2.

105

Chapter 7

Sensitivity-Aware Tube MPC

Even if successful in generating robust trajectories, the methodology presented in
the previous chapter and the references therein only considered the case of offline
planning. However, the ability to re-plan online can clearly offer an additional and
substantial improvement of the robustness against uncertainties. Therefore, the
main goal of this chapter is to study how to exploit the closed-loop state sensitivity
(and related/derived quantities) within an online planning scheme formulated as a
MPC problem. While MPC as a feedback controller is endowed with an inherent
robustness [125], practical MPC deployment can face significant challenges related
to feasibility and robustness to uncertainties, in particular when hard constraints
play an active role in the motion generation. Standard MPC, in fact, generates
an open-loop trajectory with no information regarding the ability to counteract the
effects of possible future disturbances. However, the ability to correctly predict the
future behavior of the robot by also accounting for the impact of feedback actions
is crucial. Whenever the robot deviates from the predicted trajectory, the feedback
controller will act against the disturbance to steer the robot back on the planned
motion. Although this positive effect can decrease the impact of the uncertainties, it
also requires, in general, an increased control effort that needs to be accurately taken
into account if input constraints are present. Planning a feasible robust motion must
then ensure that the predicted motion possesses enough control authority to satisfy
constraints amid potential disturbances.

7.1 Related works
The issue of robustness against uncertainties in MPC has motivated many research
efforts over the years to propose a variety of “robust MPC” schemes. The goal of
robust MPC is to guarantee the feasibility of the predicted trajectory for all possible
disturbance sequences [29, Chapter 3]. When dealing with uncertain systems, the
set of all possible trajectories can be seen as a bundle. Robust MPC methods
try to control the bundle of trajectories to guarantee feasibility. Since MPC acts
online as a controller, the time complexity of one iteration of any MPC algorithm
must be compatible with the real-time requirements of the controlled robot. This
requirement has naturally shaped MPC methods into searching for the best tradeoff
between optimality, robustness, and complexity.

7.1 Related works 106

A way to directly control the bundle of trajectories, referred to as the scenario-
tree approach [126], is to discretize the disturbance set and to control the evolution
of all the possible realizations of the system. This approach has, however, limited
practical applicability because of its computational complexity. A more practical
approach is to find an outer approximation of the bundle of perturbed trajectories
in the form of time-varying tubes. The so-called Tube MPC, first developed for
linear systems [127] and then extended to nonlinear ones [128,129], aims at finding
a tractable way to compute such tubes, possibly online. The tube computation
typically involves a propagation of the disturbances over the closed-loop dynamics.
In most cases, the computation of the tubes’ cross-section relies on an ancillary
control law providing disturbance rejection through feedback. Such controller can
be fixed a-priori [130–132] or it can be parameterized and determined online as part
of the algorithm in order to, for instance, minimize the tubes’ cross-section [129].
Typically, an ellipsoidal approximation of the tubes’ cross-section around the nom-
inal trajectory is used. In [129], the tubes’ cross-section is obtained, along with
the parameterized feedback gains, by solving a Semi-Definite Program point-wise
for each predicted sampling instant. Similarly, [130] defines a point-wise optimiza-
tion problem to find the direction and length of the ellipsoid axes for each state
dimension. In [131], an incremental Lyapunov function with a corresponding in-
crementally stabilizing feedback is precomputed offline and used by the MPC to
construct the tubes online. Moreover, this feedback action is then added to the
input computed by the MPC and applied to the system in closed-loop. In [132],
the zero-order Robust Optimization (zoRO) [133], which uses ellipsoidal uncertainty
sets to robustify the constraints while neglecting their sensitivities in the optimiza-
tion, is used in an MPC setting with a precomputed static feedback. The Tube MPC
in [134] uses a boundary layer sliding mode controller for the ancillary control law.
Notably, it optimizes both the state trajectory and the tubes at, however, a likely
high computational cost as pointed out in [133]. Also in the Stochastic Nonlinear
MPC setting, a prestabilizing infinite horizon LQR controller is added to the control
action to propagate uncertainties [135]. As an alternative to the use of an ancillary
controller altogether, [136] uses min-max differential inequalities to obtain Linear
Matrix Inequality constraints which are added to the MPC optimization problem
to make the (ellipsoidal) tubes forward invariant.

The previously mentioned methods address the Robust MPC problem by propos-
ing solutions on a spectrum with varying degrees of complexity. For example, some
methods trade performance for simplicity by fixing the ancillary controller with a
static linear feedback [130–132,135]. This helps in simplifying the uncertainty prop-
agation but can decrease the performance if the system is not operating close to the
linearization point. More complex methods can instead provide strong robustness
theoretical guarantees, but they also typically have limited practical applicability
due to their computation time complexity, which can exceed that of a standard
non-robust MPC by several orders, and their reliance on disturbance bounds that
can be challenging to certify [131, 136]. Motivated by these considerations and the
challenges posed by this problem, the main goal of this work was to propose a com-
putationally efficient and tractable Robust MPC scheme that falls in the middle of
this spectrum.

7.2 Contribution 107

7.2 Contribution
In this chapter, we introduce a method to robustify MPC control against parametric
uncertainties in the robot model by making use of sensitivity-based tubes. This allows
to optimize for the worst-case scenario of parameter uncertainty in the closed-loop
and to explicitly take into account the future feedback actions of the controller,
thus reducing conservativeness. We make use of the results of sensitivity analysis of
optimization problems [137,138] to compute online the equivalent gains of the MPC
action, thus freeing from the need for an (often) precomputed and unconstrained
ancillary controller, which does not necessarily capture well the effect of the actual
feedback action provided by the MPC scheme. Crucially, this allows our proposed
robust MPC scheme to be aware of how the presence of hard constraints affects
the feedback action itself, making the uncertainty prediction more accurate and
potentially less conservative.

Sensitivity analysis has often been used in the MPC context, for instance in
differentiating MPC policies for learning purposes [139], or to provide high-frequency
feedback to apply during the sampling interval in cases where the possibly complex
MPC controller cannot run sufficiently fast [6, 125, 140, 141]. Compared to these
works in which the MPC gains are only used for reactive control, we are instead
interested in approximating the MPC feedback action over the whole prediction
horizon for propagating the closed-loop sensitivity. This requires the development
of an efficient way of computing the predicted MPC gains, enabling the proposed
method to be suitable for real-time use. It is worth noting that numerical optimal
control methods based on the iterative Linear Quadratic Regulator (iLQR) naturally
provide linear feedback gains as a byproduct of the Riccati recursion performed
to solve the OCP; see e.g., [13] for the unconstrained case and [6, 142] for the
extension to equality and inequality constrained problems. In Sect. 7.3.2 (and proof
in Sect. 7.3.4) we present an alternative way of computing such gains in conjunction
with an off-the-shelf QP solver and a standard direct multiple shooting transcription
of the OCP. This makes the proposed method applicable to general constrained
MPC problems not necessarily relying on specialized solvers.

Moreover, the resulting “robust MPC” problem has a computational complexity
comparable to that of a standard non-robust MPC, with the only additional cost
of computing the MPC gains and propagating the closed-loop sensitivity which
proves to be computationally light. These features make the proposed MPC scheme
computationally efficient and suitable for real-time use in all those cases in which
a standard (non-robust) MPC could have been implemented for the robot under
consideration. These points, together with the fact that the closed-loop sensitivity
represents an accurate and straightforward quantity to analyze the effect of the
uncertainties on generic nonlinear systems, allow the application of the proposed
MPC scheme to complex robotic systems without having to rely on hand-crafted
robustness conditions or on unnecessary simplifications of the robot model. The
proposed robust MPC scheme offers a tractable and convenient approach for adding
a robustness layer to any standard, and possibly already available, MPC controller,
by thus increasing safety and performance during task execution with a very minor
computational overhead.

The rest of the chapter is structured as follows. In Sect. 7.3 we describe the

7.3 The proposed approach 108

proposed robust MPC algorithm and in Sect. 7.4 we showcase its application to
two case studies involving a Quadrotor affected by model uncertainties, providing
statistical simulation results over multiple scenarios.

7.3 The proposed approach
The safety and performance of the closed-loop system (robot + MPC controller) are
subject to two main conditions: (i) the ability of the MPC to find a feasible solution
and remain feasible during motion, and (ii) the satisfaction of the constraints in
closed-loop, i.e., whether or not predicting satisfaction of a constraint will result
in its actual satisfaction during motion. As previously discussed, a discrepancy
between the real parameters p of the robot and the nominal parameters pc used
by the MPC controller can result in a divergence between the actual closed-loop
trajectory and the one generated in the MPC prediction phase. In general, the MPC
will cope with this discrepancy by searching for an alternative (but still feasible)
optimal solution, and satisfaction of the state/input constraints plays a crucial role
in the determination of the feasibility of this MPC “corrective” action.

The goal of this section is to make use of the closed-loop sensitivity (and related
quantities) for generating a suitable restriction of the constraints over the prediction
horizon that can guarantee feasibility also in the presence of model uncertainties.
The aim of this restriction is to account for the fact that, in case of model uncer-
tainties, the state and the input trajectories will deviate from the predicted ones.
The proposed constraint restriction will instead force the MPC to plan trajectories
that optimize the worst-case deviations due to parameter uncertainty, thus ensur-
ing that enough control authority is always left available to counteract the effects
of uncertainties on the closed-loop system. This naturally introduces a possible
trade-off between robustness and performance that will be discussed in the results
of Sect. 7.4.

7.3.1 Overview

The proposed MPC scheme, denoted as Sensitivity-aware Tube MPC (ST-MPC),
consists of two main steps: (i) The sensitivity of the solution guess is evaluated
using (6.9) and (6.10), from which the sensitivity-based tube radii are obtained
as in (6.23) to find the worst-case predicted constraint deviation; (ii) When the
feedback for the current state x̂k is available, the following optimization problem

minimize
u

C−1∑
i=0

ℓ(xi,ui) + ℓf (xC)

subject to x0 = x̂k
xi+1 = f(xi,ui,pc) ∀i ∈ IC−1

0
h(xi,ui) + ρhi ≤ 0 ∀i ∈ IC−1

0
umin + ρui ≤ ui ≤ umax − ρui ∀i ∈ IC−1

0

(7.1)

is solved by approximating it as a QP using the RTI method described in Sect. 2.2.
Note how, in (7.1), the constraints are reduced by the tube radii ρhi (being the tube
radii for the task constraint function h(x,u)) and ρui that act as back-off terms to

7.3 The proposed approach 109

account for the effects of parametric uncertainty. These are obtained by following
the procedure described in Sect. 6.2 for the input case, and by simply repeating the
same procedure on the sensitivity of any function h(x,u) of interest for the case of
generic task constraints. Once the optimal solution is found, the input u∗

0 is sent
to the system and the algorithm is repeated.

In order to compute the tube radii ρ = (ρh, ρu) from the state and the input
sensitivities Π and Θ, one must first determine the feedback gains of the MPC
controller that describe how the solution of (7.1) varies w.r.t. changes in x̂k. In
the MPC context, we use the notation Fk|k to refer to the first-order approximation
of the MPC control action. More in general, the notation Fi|j is introduced to
express the dependence of the input at time ti on the state at a time tj ≤ ti. This
will become relevant shortly, when we will express how the predicted (future) input
depends directly on the initial condition.

The step of computing the MPC feedback gains is not straightforward and the
following Sect. 7.3.2 details the proposed procedure for obtaining the term Fk|k.
Finally, Sect. 7.3.3 provides a detailed description of the final algorithm.

7.3.2 Computing the MPC feedback gains

Consider the QP problem (2.24) obtained applying the RTI method to OCP (7.1)
and denote its optimal solution as y∗ = (∆w∗,λ∗,µ∗), collecting the primal and
dual variables and recall that the optimal state and input trajectory can be obtained
as w∗ = w̄ + ∆w∗, where w̄ is the solution guess around which the problem has
been linearized. Let us partition the output of the MPC controller as

w∗(x̂k,pc) =

x∗
i

u∗
0
u∗
i

 ∀i ∈ IC0

∀i ∈ IC−1
1

,

which renders explicit the control action u∗
0 to be applied to the system, the pre-

dicted optimal input trajectory u∗
i , and the associated state trajectory x∗

i , respec-
tively. Note that the MPC solution is essentially an open-loop trajectory to be
applied to the system with no information on the behavior of the controller in case
of disturbances that would make it deviate from the plan. The goal of this section
is to show how the main results of parametric optimization can be exploited to
approximate the control policy in the vicinity of the predicted trajectory, and how
this information can be leveraged to improve the robustness of the MPC controller
against model uncertainties.

The MPC feedback gains are obtained by differentiating the optimal solution y∗

and extracting the components relative to the first input u∗
0. In fact, note how the

whole optimization problem can be seen as a function of the initial state x̂k and of
the nominal model parameters pc. Under mild regularity assumptions [125,137,143],
one can compute the sensitivities as

dw∗(x̂k,pc)
dx̂k

=



dx∗
i

dx̂k
du∗

0
dx̂k
du∗

i

dx̂k

 =

Pk+i|k
Fk|k
Fk+i|k

 ∀i ∈ IC0

∀i ∈ IC−1
1

(7.2)

7.3 The proposed approach 110

by applying the implicit function theorem (IFT) to the first-order optimality con-
ditions of the problem, and noting that by definition dw∗

dx̂k
= d∆w∗

dx̂k
. More in detail,

assume that the LICQ, the SOSC, and SC hold at the solution y∗ (cfr. Sect. 2.3).
The optimal solution of (2.24) is characterized by the KKT conditions:

R(y, x̂k)|y∗ =

H∆w∗ + c+ETλ∗ +GT
Aµ

∗
A

E∆w∗ + η(x̂k)
GA∆w∗ + gA

 = 0, (7.3)

where subscript A denotes the set of active inequality constraints at the solution
y∗, and we have dropped for simplicity the dual feasibility and complementarity
slackness conditions as they are assumed to be satisfied and are not involved in the
following derivation, provided that SC holds. Under the conditions stated above,
we can apply the IFT to (7.3) and differentiate with respect to x̂k to obtain

d

dx̂k
R(y(x̂k), x̂k)|y∗ = 0,

∂R
∂y

dy

dx̂k
+ ∂R
∂x̂k

= 0, (7.4)

so that
dy

dx̂k
= −

(
∂R
∂y

)−1 ∂R
∂x̂k

. (7.5)

Note that ∂R
∂y , being the Jacobian of the KKT conditions (7.3), is nothing else

than the KKT matrix of the QP, i.e.,

K∗ = ∂R
∂y

=

H ET GT
A

E 0 0
GA 0 0

 . (7.6)

A crucial point here is that this quantity is already available from the construction
of the QP problem (2.24), having linearized around the solution guess (x̄, ū), by
simply removing the rows of G relative to the inactive constraints. We also note
that, in the general case, the inversion of the (large) matrix K∗ could have a non-
negligible computational cost. However, this is not the case in our context thanks
to its structured sparsity, which then allows to efficiently invert matrix K∗ and solve
(7.4) by relying on efficient factorization and solution algorithms for sparse linear
systems. Recalling (7.2), it is then trivial to extract the quantities

Fk|k, Fk+i|k, and Pk+i|k (7.7)

from (7.5), which correspond to the sensitivities of the control input u0, of the
predicted inputs, and of the predicted states w.r.t. x̂k.

We note, however, that the evaluation of the sensitivity (6.9) over the prediction
horizon of the MPC requires the availability of the controller gains Fk|k over the
whole future horizon, that is, availability of Fk+i|k+i, ∀i ∈ IC−1

1 . These quantities
represent the sensitivity of the future inputs uk+i with respect to a variation in
the future state x̂k+i and they are unfortunately not directly available from (7.7)

7.3 The proposed approach 111

that only provides the sensitivity of the full MPC solution with respect to the cur-
rent state x̂k. At first glance, the computation of Fk+i|k+i, i ∈ IC−1

1 would require
to solve (7.3–7.7) for each i ∈ IC−1

1 , which would quickly become computationally
unfeasible in the typically short time available. To circumvent this problem, we
propose to employ a suitable approximation of the future gains thanks to the in-
formation regarding the future inputs provided by the parametric sensitivity of the
MPC. In fact, once the full MPC sensitivity (7.7) has been obtained, one can utilize
the sensitivity of the future states and inputs to compute the future gains relative
to the current prediction horizon as

Fk+i|k+i ≃ F̃k+i|k+i = dui
dxi

= Fk+i|kP
−1
k+i|k ∀i ∈ IC−1

1 , (7.8)

which represent the predicted gains at the optimal solution, i.e., how a change in
the predicted state xi would affect the input ui at that time. The important point
here is that (7.8) reuses part of the sensitivities computed w.r.t. the initial state
x̂k, and it is thus much more computationally efficient and actually suitable for
real-time use.

A detailed proof of Eq. (7.8) will be discussed in Sect. 7.3.4. However, a sketch
is proposed here for the reader’s convenience. The IFT can be applied to the KKT
conditions (7.3) using as explicit variable any element xi of the state trajectory,
from which it would be straightforward to compute the sensitivity F̃k+i|k+i with
respect to that state similarly to (7.5). However, this requires inverting, for each
i, a large matrix obtained by differentiating (7.3) with respect to the remaining
implicit variables, which would make it computationally expensive. Instead, by
noting that this matrix can be written as a rank-nx correction to matrix K∗ (7.6),
one can utilize the Woodbury matrix identity [144] for obtaining an efficient formula
to compute F̃k+i|k+i. Moreover, after some simplifications related to the structure
of the problem, it is possible to extract (7.8), making explicit the dependence on
the previously computed sensitivities.

Remark 7.3.1 (Active constraints selection). The proposed computation of the
feedback gains depends on the (strongly) active constraint set A which characterizes
which inequality constraints are affecting, locally, the solution of the MPC problem,
and thus the MPC gains. As the MPC sensitivity is computed around the optimal
solution y∗, it is in general possible to trivially select the active constraints at the
solution to construct A by looking at the multipliers µ∗. However, since our main
goal is to obtain an approximation of the future gains (7.8), we employ a different
strategy as this choice would result in a more conservative approximation. In fact,
being the future input constraints restricted by the tubes, this will result in the con-
straint being active even when the nominal constraint without tubes is not, altering
the relative gains due to this input restriction. On the other hand, as the MPC con-
troller works with a receding horizon approach, the actual future input uk+i, first
input of the solution of the problem at time tk+i, will not see this restriction and
will effectively only have to satisfy the nominal input constraint. For this reason,
we select the active constraint set A by neglecting the input constraints which are
only active with ρu > 0. All the other constraints, e.g., state constraints to perform
obstacle avoidance, are instead taken into account.

7.3 The proposed approach 112

Remark 7.3.2 (KKT regularization). In some instances, although the optimization
problem is feasible, the KKT matrix might be ill-conditioned or singular due to the
LICQ condition not being satisfied at the solution. Most solvers rely on regulariza-
tion techniques to still be able to produce a solution. In our case, this is necessary
for computing the MPC sensitivity. Therefore, we employ a proximal regularization
of the Lagrange multipliers of the active inequality constraints [145,146]. Recall the
KKT matrix K∗ (7.6) and note that by construction the block(

H ET

E 0

)

is assumed full rank. In order to regularize the matrix we apply a proximal regu-
larization, obtaining the augmented Lagrangian LA(∆w,λ,µA) = L(∆w,λ,µA)−
ϱ
2∥µA − µ∗

A∥2Λ−1, where Λ = diag(µ∗
A), ϱ > 0, which results in a damping term in

the bottom right block as

K∗
reg =

H ET GT
A

E 0 0
GA 0 −ϱΛ−1

 . (7.9)

In practice, this can be interpreted as a normalized constraint relaxation that min-
imizes the Lagrange multipliers variation [147], ensuring that the KKT matrix is
non-singular so that the MPC gains (7.8) can be computed.

7.3.3 The ST-MPC algorithm

With reference to Algorithm 1, we can now describe in detail the various steps of
the full ST-MPC scheme. First, we perform an offline initialization of the controller
and prepare the QP for its next iteration (lines 1-4). While online (lines 6-10),
we divide the solution of the problem into two phases: (i) a feedback phase (lines
6-7), in which the QP is solved when the current state becomes available, and (ii) a
preparation phase (lines 8-10), in which the tubes are computed and the QP for the
next iteration at tk+1 is constructed on the basis of the current solution guess (x̄, ū).
Note that, while the feedback phase needs to be performed when the current state
x̂k becomes available, the preparation phase for the next iteration of the scheme at
tk+1 does not require knowledge of next state x̂k+1, and it can thus be performed
just after having sent the input command to the system (line 7), reducing the control
delay of the scheme [26].

In more detail, Alg. 1 can be described line-by-line as follows:

L1 At the initial state x̂0, start from a trivial initial guess (x̄, ū) and ρ ≡ 0,
and solve the problem to find a feasible solution without considering the
constraint restrictions from the tubes;

L2 Compute the sensitivity of the MPC (7.5) and the future gains using (7.8).
Propagate the state and input sensitivities Π and Θ via (6.9–6.10), and
compute the evolution of the tube radii ρ over the predicted trajectory
using (6.23);

7.3 The proposed approach 113

Algorithm 1: ST-MPC
1 x∗,u∗,λ∗,µ∗ ← Initialize(x̂0)
2 ρ← ComputeTubes(x∗,u∗,λ∗,µ∗)
3 x̄, ū← x∗,u∗

4 PrepareQP(x̄, ū,ρ)
5 while running do
6 x∗,u∗,λ∗,µ∗ ← SolveQP(x̂k)
7 SendCommand(u∗

0)
8 ρ← ComputeTubes(x∗,u∗,λ∗, µ∗)
9 x̄, ū← ShiftSolution(x∗,u∗)

10 PrepareQP(x̄, ū,ρ)
11 end

L3-4 Prepare the QP for the next feedback phase, evaluating all the derivatives
and residuals (2.23), but this time by including the tubes;

L6-7 Given the current state x̂k, solve optimization problem (7.1) by solving
the associated RTI-QP (2.24) and send the control action u∗

0 to the robot;

L8 Compute the tube radii ρ as in L2;

L9-10 Shift the solution one step in time and prepare the QP for the next feedback
phase.

As a final remark, we highlight a strength of the proposed ST-MPC: since the
tubes are obtained during the preparation phase, the computational cost of their
evaluation is not added to the delay introduced by the MPC controller due to the
feedback phase. This feature, along with the fact that the optimization problem
has the same number of constraints and decision variables as a standard MPC,
makes the impact of the additional computations in ST-MPC practically negligible
compared to the computational time of a standard MPC. Therefore, if a standard
MPC is amenable to a real-time implementation, its ST-MPC version (with the
constraint restrictions from the tubes) will also typically be implementable in real-
time. This is, arguably, a major strength of the proposed approach: ST-MPC
represents a viable alternative to MPC schemes with an added inherent robustness
to model uncertainties.

7.3.4 Efficient computation of the MPC gains over the prediction
horizon

Before going further, we review the detailed proof of (7.8).
In the computation of the sensitivity of the MPC — described in Sect. 7.3.2 —

the sensitivity of the whole predicted trajectory (x,u) is computed with respect to
the initial state x̂k (or, equivalently, x0). We now show how the same reasoning
applies to all xi, and how the sensitivities for i = 1, . . . , C − 1 can be computed
without performing any additional KKT factorization and inversion.

7.3 The proposed approach 114

First, note that with a simple rearrangement of variables, one can apply the
implicit function theorem on the KKT system (7.3) with respect to the explicit
variable xi. Defining z = (x0, . . . , x̂k, . . . ,xC ,u,λ,µ) by replacing xi with x̂k, one
can then obtain

R(z(xi),xi)|z∗ = 0
d

dxi
R(z(xi),xi)|z∗ = 0

∂R
∂z

dz

dxi
+ ∂R
∂xi

= 0, (7.10)

from which it follows
dz

dxi
= −

(
∂R
∂z

)−1 ∂R
∂xi

.

We now show how, leveraging the availability of the inverse of the KKT matrix
∂R
∂y , the sought quantities can be computed without the need of inverting the large
matrix ∂R

∂z for each i. Noting that dz
dxi

contains dui
dxi

, we define the selection matrix
vui such that

F̃k+i|k+i = dui
dxi

= vui

dz

dxi
. (7.11)

Since ∂R
∂xi

is the i-th nx-dimensional column block of the KKT matrix (7.6), we can
also define vxi such that

∂R
∂xi

= ∂R
∂y
vxi .

We can then rewrite
∂R
∂z

= ∂R
∂y

+
(
∂R
∂x̂k

− ∂R
∂xi

)
vTxi

,

which makes it possible to compute the inverse of ∂R
∂z by only computing a rank-nx

correction via the Woodbury matrix identity [144]. Define

K = ∂R
∂y

, κi = ∂R
∂xi

, c = ∂R
∂x̂k

,

and di = c− κi. Then(
∂R
∂z

)−1
=
(
K + divTxi

)−1

= K−1 −K−1di
(
In + vTxi

K−1di
)−1

vTxi
K−1. (7.12)

We can now combine (7.10), (7.11) and (7.12) to find

dui
dxi

= −vuiK−1κi + vuiK−1di
(
In + vTxi

K−1di
)−1

vTxi
K−1κi. (7.13)

Note that, by definition

K−1κi = vxi ,

vuiK−1κi = vuivxi = 0,
vTxi
vxi = In.

7.4 Application to Quadrotor motion control 115

Then, having defined

Fk+i|k = vuiK−1c,

Pk+i|k = vTxi
K−1c,

Eq. (7.13) becomes

F̃k+i|k+i = vuiK−1c
(
vTxi

K−1c
)−1

= Fk+i|kP
−1
k+i|k,

finally yielding the desired MPC gains. We highlight again how this formula provides
an efficient mean for computing F̃k+i|k+i as it involves the inversion of the small
nx × nx matrix Pk+i|k instead of the inversion of the large matrix ∂R

∂z .

7.4 Application to Quadrotor motion control
In order to demonstrate the effectiveness of the proposed ST-MPC algorithm, we
present here a series of tests involving the control of a Quadrotor UAV subject
to parametric uncertainty. Indeed, Quadrotors are a very popular robotic plat-
form capable of agile and/or aggressive maneuvers but, at the same time, they are
also typically subject to some unavoidable degree of uncertainty in their dynamical
model because of, e.g., complex aerodynamics (resulting in uncertain drag/thrust
coefficients), or uncertain location of the center of mass (CoM). Moreover, the full
3D Quadrotor dynamics is highly nonlinear, which then contributes to showcase the
applicability of our framework to non-trivial systems.

The formulation (7.1) is quite general and includes both input saturation con-
straints umin ≤ u ≤ umax and more generic input/state constraints h(x,u) ≤ 0
with their corresponding tubes. However, in the following case studies we only
consider tubes on the input constraints since, in many instances, input constraints
are the main limiting factor for finding a feasible solution that also satisfies other
task constraints. Indeed, in many applications, presence of task constraints alone
does not threaten the recursive feasibility of the MPC which, given “infinite” con-
trol authority, is virtually able to always find a feasible solution. Also when only
actuation limits are present, for instance when MPC is used as a reference tracking
controller (as in the first of the following case studies), input constraints are still
the ones ultimately determining the performance of the system during the most
aggressive maneuvers (minimization of the tracking error typically tends to increase
the control effort which is limited by the input constraints).

The rest of this section is structured as follows. In Sect. 7.4.1, we describe the
two test scenarios, (i) tracking of aggressive trajectories and (ii) navigation through
a narrow aperture, and in Sect. 7.4.2 we discuss the associated ST-MPC formulation.
For each scenario, we performed a comparative statistical analysis (Sect. 7.4.3). In
the first scenario, where only input constraints are present, we highlight how the
proposed ST-MPC enhances the accuracy by reducing unwanted input saturation.
In the second scenario, we (purposely) introduce a strict positional constraint that
significantly limits the robot motion. This constraint can cause failures due to input
saturations if uncertainties are not properly accounted for. By using ST-MPC we
then show how our approach enhances the controller feasibility, thereby increasing
the overall success rate.

7.4 Application to Quadrotor motion control 116

Table 7.1. Trajectory tracking MPC settings

Sampling time δt 0.02 s
Control horizon C 25

Weights

Qr 80 I3

Qv 2 I3

Qq diag(10−2, 10−2, 1)
Qω 5 · 10−2 I3

Qu I4

Regularization ϱ 10−2

Max. parameter deviation ∆pmax (0.04, 0.04, 0.02, 0.1)

7.4.1 Test scenarios

In the following, we consider the dynamic model for the Quadrotor with shifted
CoM introduced in Sect. 6.3.1. In this case, we assume that a playload of mass
mp = 0.2 kg is attached at a distance dz = 0.15 m from the center of the Quadrotor.
With these settings, in the subsequent derivations, the set of parameters that is
supposed to be uncertain is p = (gx, gy, gz, mp) ∈ R4. This is motivated by a
series of empirical results and previous works on this topic, such as [112, 113, 115],
which highlighted how uncertainties in these parameters are, in practice, the most
important ones in affecting the closed-loop performance of a drone, as opposed to,
for instance, the thrust coefficients. Indeed the sensitivity w.r.t. the considered
parameters is at least one order of magnitude higher than the other ones, when also
accounting for the typical expected parameter deviation.

Tracking of aggressive trajectories

The first task consists of tracking a trajectory defined by a series of waypoints
Wd ∈ R3, assumed to be generated by an external planner guiding the Quadrotor
through the environment. The desired trajectory is obtained by linear interpola-
tion of the waypoints with constant velocity, resulting in a position and velocity
trajectory (rd(t), ṙd(t)). As for the orientation (yaw) we consider two possibilities:
(i) keeping a constant yaw angle with a desired orientation qd(t) ≡ q0 = (1, 0, 0, 0)
or (ii) keeping the yaw direction of the Quadrotor always pointing towards the
upcoming waypoint, i.e., by setting ψd(t) = Atan2(ẏd(t), ẋd(t)) which results in a
desired orientation qd(t) = (cos(ψd(t)/2), 0, 0, sin(ψd(t)/2)). This latter possibility
is meant to increase the actuation effort during tracking and, therefore, the chances
of incurring in actuation saturation. See Fig. 7.1 for a graphical depiction of this
scenario.

By construction, these trajectories have discontinuous Cartesian velocities —
due to the linear interpolation between the waypoints that are not continuous — and
are thus not initially dynamically feasible. As typical in these cases, we rely on the
MPC scheme for generating online a feasible motion that tracks at best the various
trajectory segments. This is obtained by designing the cost function of the MPC

7.4 Application to Quadrotor motion control 117

Figure 7.1. Stroboscopic view of the comparison between our proposed method (blue)
and a regular MPC controller (red) while performing trajectory tracking. The spread
of trajectories is generated by perturbing the physical parameters of a Quadrotor, high-
lighting how our proposed method is able to remain much closer to its nominal behavior.

controller to minimize the position, velocity, and orientation tracking errors together
with a regularization term on the angular velocity ω for smoothing, and with a
feedforward input equal to the nominal hovering condition uh = mg

4kf
14. Letting

the desired state and input be xd(t) = (rd(t), ṙd(t), qd(t),03) and ud(t) = uh, the
running cost then takes the form ℓ(x,u) = ℓx + ℓu, ℓf (x) = ℓf with

ℓx = ∥r − rd∥2Qr
+ ∥v − ṙd∥2Qv

+ ∥q − qd∥2Qq
+ ∥ω∥2Qω

, (7.14a)
ℓu = ∥u− uh∥2Qu

, (7.14b)
ℓf = ℓx. (7.14c)

The weights used in all the experiments of this scenario as well as the standard
MPC settings are reported in Tab. 7.1.

Passing through a narrow aperture

In the second scenario, illustrated in Fig. 7.2, the robot is tasked with reaching a
position goal rsp ∈ R3 placed on the opposite side of an aperture while avoiding
collisions with the aperture lower and upper sides. This is encoded as a constraint
on the z-position of the robot that is activated when the horizontal position (x, y)
is inside the aperture.

7.4 Application to Quadrotor motion control 118

Figure 7.2. Stroboscopic view of the Quadrotor reaching the desired target (red) while
passing through the aperture (safe region in light blue) with nominal parameters.

The cost function of the MPC problem is designed to make the system gener-
ate the required motion autonomously based only on the desired final state xd =
(rsp,03, q0,03) and the hovering input uh as available information. Again, the
running cost takes the form ℓ(x,u) = ℓx + ℓu, ℓf (x) = ℓf with

ℓx = ∥r − rsp∥2Qr
+ ∥v∥2Qv

+ ∥q − q0∥2Qq
+ ∥ω∥2Qω

, (7.15a)
ℓu = ∥u− uh∥2Qu

, (7.15b)
ℓf = 10 ℓx. (7.15c)

The weights used in all the experiments of this scenario as well as the common MPC
settings are reported in Tab. 7.2.

In order to avoid collisions with the environment, we design task constraints
that limit the position of the Quadrotor when passing through the aperture. Let
Afp ⊂ R2 be the (x, y) projection of the aperture on the ground, hz the z coordinate
of the center of the aperture, and az > 0 the maximum deviation that the center of
the robot can safely sustain from hz. Also, let the task constraint function be

ha(x) =
{
z − hz if (x, y) ∈ Afp
0 otherwise .

Then, the double-sided constraint

−az ≤ ha(xi) ≤ az ∀i ∈ IC1 , (7.16)

expressed in a form compatible with (7.1)

h(xi,ui) =
(

ha(xi+1)− az
−ha(xi+1)− az

)
, (7.17)

is able to encode the desired collision avoidance behavior.

7.4 Application to Quadrotor motion control 119

Table 7.2. Regulation MPC settings

Sampling time δt 0.02 s
Control horizon C {25, 35}

Weights

Qr I3

Qv {2, 5} · 10−2 I3

Qq 10−2 I3

Qω 10−2 I3

Qu 0.5 I4

Regularization ϱ 10−2

Max. parameter deviation ∆pmax (0.02, 0.02, 0.01, 0.1)

7.4.2 Application of ST-MPC to the test scenarios

We apply the proposed ST-MPC to the two above-mentioned test scenarios following
the procedure detailed in Sect. 7.3.3. For the second scenario, where the state
constraint (7.16) is present, we neglect the associated tube by setting ρh = 0 as
explained at the beginning of the section. Indeed, (7.16) is a stringent positional
constraint that has to be active while the Quadrotor is passing through the aperture.
Therefore, introducing an additional restriction might be counterproductive. On
the other hand, the input tubes radii ρu will still account for the constraint being
active, providing a sufficient level of robustness as demonstrated by the results in
Sect. 7.4.3.

The controller is then obtained as the solution of the following OCP:

minimize
u

C−1∑
i=0

ℓ(xi,ui) + ℓf (xC)

subject to x0 = x̂k
xi+1 = f(xi,ui,pc) ∀i ∈ IC−1

0
h(xi,ui) ≤ 0 ∀i ∈ IC−1

0
umin + ρui ≤ ui ≤ umax − ρui ∀i ∈ IC−1

0

(7.18)

with the cost function being either (7.14) or (7.15), the Quadrotor dynamic model
discretized from (6.25), the task constraint (7.17) for the second scenario, and the
input saturation constraints with (umin, umax) = (0, 1.3 · 106) for both scenarios.

For each scenario, we performed a comparative analysis of the performance be-
tween the proposed ST-MPC and a standard (non-robust) MPC controller denoted
in the following as standard MPC, obtained by neglecting the input tubes (i.e., by
setting ρui = 0). This is meant to highlight the benefits of considering the additional
constraint restrictions from the tubes on the performance and safety of the system.

Moreover, we are also interested in showing how the use of the full sensitivity
analysis of the KKT conditions described in Section 7.3.2 — which accounts for
the presence of active state constraints — is crucial for the success of the ST-
MPC scheme. In fact, one might wonder whether the use of an unconstrained
approximation of the feedback action of the controller, similar to applying a pre-
stabilizing action like the methods using an unconstrained ancillary controller (cfr.

7.4 Application to Quadrotor motion control 120

Sect. 7.1), could already provide enough information to compute the tubes. We
then build such an approximation by neglecting all the active inequality constraints
in the KKT conditions (7.3) and by computing the feedback gains (7.8) from this
reduced system. In analogy to the iterative Linear Quadratic Regulator (iLQR),
which yields similar gains over the prediction horizon, we then denote this variant
as ST-MPC-LQR.

We stress that this ST-MPC-LQR variant is introduced only as a mean to pro-
vide an additional baseline for comparison in the second test scenario, where ac-
counting for the positional constraint proves to be essential to obtain the maximum
performance. On the other hand, since the ST-MPC-LQR variant is essentially
equivalent to ST-MPC when only input constraints are present, we ignore it for
comparison in the first test scenario.

7.4.3 Results

We now present some statistical results for illustrating how the introduction of the
input tubes improves the tracking performance, the feasibility, and thus the safety
of the system. The simulations have been performed by integrating numerically
the Quadrotor dynamics (6.25) with various combinations of parameters p. The
accompanying video1 provides a visualization of the various simulations.

Tracking of aggressive trajectories

Two trajectories, denoted as A and B in Fig. 7.3 and Tab. 7.3, have been tracked
repeatedly by selecting 450 parameter perturbations ∆p ∈ P (see (6.12)) in a grid,
with ∆pmax = (0.04, 0.04, 0.02, 0.1), and by employing either the ST-MPC (with
input tubes) or the standard MPC (without input tubes) controllers. Note that
some of the parameter deviations generated in P will lie outside the corresponding
ellipsoid Ep. Therefore, the effect of their perturbation on the closed-loop trajectory
could be underestimated by the input tubes (which assume a parametric uncertainty
lying in Ep). This does not constitute an issue in this tracking task where only the
tracking error is affected by the uncertainty, but it will have an impact in the second
test scenario which also involves the feasibility of the motion.

For each trajectory, we further consider the case where the desired yaw is kept
constant ψd(t) = 0 (cases “A” and “B” in Fig. 7.3 and Tab. 7.3) and where the yaw
has to track a desired trajectory ψd(t) = Atan2(ẏd(t), ẋd(t)) (cases “A-yaw” and
“B-yaw” in Fig. 7.3 and Tab. 7.3).

Figure 7.3 visually depicts how, in particular for the case “A”, the spread of tra-
jectories obtained with ST-MPC remains much closer around the nominal behavior,
while the standard MPC produces much larger deviations during more aggressive
turns. This result is due to the input saturations that affect the Quadrotor because
of the modeling errors: thanks to the input tubes, these are much better accounted
for by ST-MPC which is able to generate a feasible trajectory more robust to model
uncertainties while, on the other hand, the standard MPC lacks this inherent ro-
bustness and ultimately deviates more from the nominal trajectory. Comparing
the two trajectories, for the case “A” the deviation is mostly localized in the first

1Available at https://youtu.be/ipfthFPdQLc

https://youtu.be/ipfthFPdQLc

7.4 Application to Quadrotor motion control 121

Figure 7.3. Spread of trajectories obtained for different parameter perturbations while
tracking the desired trajectory (with and without yaw). Note how the proposed ST-
MPC method (blue) yields a tighter spread than a standard MPC controller (red).

part of the trajectory, where input saturations are concentrated, while for the case
“B” deviations are sustained over the entirety of the trajectory. As expected, when
saturations are not involved in the motion generation, ST-MPC and MPC have a
similar behavior in the proposed scenario.

Fig. 7.4 shows an example of the resulting input trajectory for a particular
parameter deviation ∆p = (0.02,−0.02, 0.0, 0.05). Note how, after the first instants,
the standard MPC saturates three out of the four control inputs, resulting in a large
deviation from the nominal trajectory, measured with the Cartesian position error
er = r−rnom, with rnom being the trajectory obtained by performing the simulation
in the nominal case2, that is with ∆p = 0. On the other hand, ST-MPC minimizes
the deviation while still being able to utilize the full actuation capabilities. This is

2Note that, due to the receding-horizon nature of MPC, in general, this nominal trajectory
differs from the nominal predicted trajectory x̄.

7.4 Application to Quadrotor motion control 122

Table 7.3. Position Error while tracking discontinuous trajectories

Case Method RMSE deviation [m]
mean (± std. dev.)

Maximum
deviation [m]

Nominal
RMSE [m]

A
ST-MPC 0.049 (±0.018) 0.112 0.078

MPC 0.071 (±0.055) 0.697 0.062

A-yaw
ST-MPC 0.049 (±0.018) 0.126 0.079

MPC 0.072 (±0.056) 0.697 0.062

B
ST-MPC 0.057 (±0.022) 0.241 0.099

MPC 0.079 (±0.037) 0.395 0.070

B-yaw
ST-MPC 0.058 (±0.025) 0.226 0.099

MPC 0.080 (±0.039) 0.414 0.070

also due to the fact that the input tube ρu is by construction zero for the first input
u0 of the predicted trajectory. In fact, the tubes which encode the uncertainty over
the time horizon t ∈ [tk, tk+C] starting from the current state x̂k are always re-
computed around the current predicted trajectory (x̄, ū): since the state sensitivity
Π0 of the predicted trajectory is always zero at tk, it follows that ρu0 = 0 as well.
Therefore, for what concerns the first input u0 at time tk, the input constraint
always reduces to umin ≤ u0 ≤ umax.

Quantitative results are reported in Tab. 7.3, where in all cases the Root Mean
Square Error (RMSE) deviation with respect to the nominal trajectory rnom is
smaller in mean and standard deviation for ST-MPC. Similarly, the maximum
deviation is about 2-6 times larger for the standard MPC, confirming the better
performances of ST-MPC. The additional propeller speeds required to track a time-
varying yaw angle (A-yaw, B-yaw) can indeed lead to an increase in the maximum
deviation under perturbations. However, we do not observe a clear-cut trend with
one method outperforming the other, likely due to some particular correlation be-
tween the shape of the trajectory and the occurrence of the maximum deviation
point in different instances for the two methods. Similar considerations can also be
drawn by analyzing Fig. 7.5 that reports the evolution over time of the deviation
from the nominal trajectory ∥er∥. Looking at Fig. 7.5, it is clear how the standard
MPC experiences larger deviations in all cases and during the whole motion. Fi-
nally, we note from the last column of Tab. 7.3 how the RMSE for the tracking of the
desired position rd in the nominal (unperturbed) case is larger for ST-MPC: this is
expected and due to the trade-off between performance and robustness introduced
by the constraint restriction. Still, the overall performance in any non-nominal
(real-world) case is in clear favor of ST-MPC.

Passing through a narrow aperture

For this scenario, we performed repeated tests with 450 parameter perturbations
∆p ∈ P in a grid with ∆pmax = (0.02, 0.02, 0.01, 0.1). As the parameter variations
make the system deviate from the predicted trajectory, the MPC will have to pro-
gressively compensate to satisfy — at least in its prediction — the safety constraint.

7.4 Application to Quadrotor motion control 123

0.0

0.5

1.0

w
1

[r
ad

/s
]

×103

0.0

0.5

1.0

w
2

[r
ad

/s
]

×103

0.0

0.5

1.0

w
3

[r
ad

/s
]

×103

0.0

0.5

1.0

w
4

[r
ad

/s
]

×103

0 1 2 3 4

time [s]

0.0

0.2

‖e
r
‖

[m
]

ST-MPC

MPC

Figure 7.4. Executed propeller speed trajectory (top four) and norm of the devia-
tion from the nominal trajectory (bottom) while tracking trajectory A with ∆p =
(0.02,−0.02, 0.0, 0.05). Dashed grey lines indicate the rotor speed limits. Note how
even with the input restriction introduced by the tubes, ST-MPC fully utilizes the
actuation capabilities of the drone. See the accompanying video for an animation in-
cluding the predicted trajectory and tubes.

Since the system possesses limited control authority at any given time, the unfore-
seen deviation from the plan might lead it to enter states from which no feasible
solution exists, even for the nominal prediction model. This emerges as the main
cause of failure for the controller, which has no recursive feasibility guarantee [148].
We therefore assess the effectiveness of the proposed method using two metrics:

• The success rate, defined as the percentage of tests in which the Quadrotor is
able to safely reach the goal with no collision3;

• The time tp at which the Quadrotor has completely passed the aperture, in
order to measure the possible motion conservativeness introduced by adding
the tube radii restriction on the input constraints. Here we consider only

3We consider as failed any test in which either the closed-loop trajectory does not satisfy the
constraints or the MPC problem becomes infeasible.

https://youtu.be/ipfthFPdQLc

7.4 Application to Quadrotor motion control 124

0.0

0.2
A ST-MPC

MPC

0.0

0.2
A-yaw

0.0

0.2
B

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

time [s]

0.0

0.2
B-yaw

Mean and std.dev. of ‖er‖ [m]

Figure 7.5. Evolution of the mean and the standard deviation (shaded) of the position
deviation ∥er∥ from the nominal trajectory over the 450 perturbed simulations for the
four tested trajectories. Note how the proposed method achieves a smaller deviation in
all cases.

simulations that are successful for both the ST-MPC (also in the LQR variant)
and the standard MPC4.

To analyze the results, we distinguish between two different subsets of parameters:
(i) Pie when ∆p is inside of the ellipsoid Ep, and (ii) Pnie when it is outside.
Moreover, we denote as Pnie,nbs the subset of Pnie in which at least one of the
two controllers fails. The reason for introducing this distinction is that, in some
instances, even a large parameter variation lying outside the ellipsoid could result
in a motion for which the task is only slightly affected by the disturbance. These
favorable configurations result in both controllers completing the task but are not
necessarily indicative of the effect of the input tubes on the success rate.

The MPC design is based on nominal performance, i.e., the tuning of the cost
function weights is performed by trial and error simulating the nominal system dy-
namics. Also, the choice of the control horizon C naturally affects the performance
and feasibility even in the nominal case, although it is typically restricted by the
real-time requirements of the platform. Nonetheless, it is interesting to analyze the
increase (or lack thereof) in robustness related to changes in these settings, as they
can greatly affect both the nominal and the perturbed behaviors of the system. To

4This choice, aimed at performing a one-to-one comparison between the methods, has been
found to be slightly pejorative for ST-MPC, due to the exclusion of many data points in which
ST-MPC succeeds and the standard MPC does not.

7.4 Application to Quadrotor motion control 125

Table 7.4. Success Rate and Time required to pass through the aperture

Method
Settings Success rate [%] Time tp [s]

C Qv Pie Pnie (Pnie,nbs) total mean (± std. dev.)

ST-MPC
25

2 · 10−2 90.5 62.5 (31.3) 75.6 0.677 (±0.032)
5 · 10−2 99.5 84.2 (67.0) 91.3 0.730 (±0.039)

35
2 · 10−2 100 92.5 (85.5) 96.0 0.721 (±0.032)
5 · 10−2 97.1 92.9 (85.8) 94.9 0.732 (±0.037)

MPC
25

2 · 10−2 59.0 45.4 (0.0) 51.8 0.652 (±0.044)
5 · 10−2 68.6 52.1 (0.0) 59.8 0.695 (±0.049)

35
2 · 10−2 64.8 48.3 (0.0) 56.0 0.673 (±0.040)
5 · 10−2 67.6 50.4 (0.8) 58.4 0.682 (±0.041)

ST-MPC-
LQR 25

2 · 10−2 75.2 54.6 (16.8) 64.2 0.668 (±0.031)
5 · 10−2 94.8 69.2 (35.7) 81.1 0.724 (±0.036)

this end, Tab. 7.4 reports statistics on the success rates and times tp with different
settings for the velocity weight Qv = QvI3 and the control horizon C. Three differ-
ent methods are compared: (i) ST-MPC, i.e., the proposed method, (ii) a standard
MPC, and (iii) ST-MPC-LQR obtained, as explained, by neglecting all constraints
in the MPC gains computation.

From the analysis of Tab. 7.4, we can appreciate how the introduction of the
input tubes in ST-MPC is always followed by a significant improvement in robust-
ness, increasing from the 60-70% range to 90-100% when the parameter deviation is
in Ep (case Pie). Moreover, when the parameter deviation falls outside the ellipsoid
(cases Pnie and Pnie,nbs), all methods experience a lower success rate, confirming
that the satisfaction of the ellipsoid condition is important for the task success.
This also shows that the approximation (6.14) used for deriving the tubes is, in
fact, not too conservative since the effect of parameter deviations lying outside the
ellipsoid (6.13) are (correctly) not captured by the tubes.

Increasing the control horizon C from 25 to 35 leads to a marginal increase in
the success rate for both ST-MPC and the standard MPC. However, while ST-MPC
reaches almost 100% success rate, the standard MPC is limited to less than 60%,
indicating that the longer control horizon is not the main factor for substantially
improving the recursive feasibility of the system. Similarly, the increase of the
velocity weight Qv from 2·10−2 to 5·10−2 does not provide significant improvements,
although it would intuitively yield slower and more conservative trajectories (as
confirmed by the statistics on tp), and thus appear as an almost obvious means to
improve safety.

Concerning the performance in terms of speed and agility, we evaluate the time
tp at which the Quadrotor clears the aperture, independently of the fact that the
parameter variation is inside the ellipsoid or not. Although ST-MPC does indeed
generate a slightly more conservative motion with a ∼ 6% increase (at most) in the
average tp, this is met with an important improvement in the success rate, as already
discussed. Moreover, we note how for at least one setting (C = 25, Qv = 2 · 10−2)

7.4 Application to Quadrotor motion control 126

ST-MPC has a performance comparable to that of the standard MPC while still
providing more safety.

Lastly, the direct comparison between ST-MPC and its simplified variant ST-
MPC-LQR (performed with the C = 25 setting) shows how the latter is not able to
perform as well as ST-MPC with a total success rate reduced by 10% in all instances
and with a 15% reduction in the success rate for Pie in the Qv = 2·10−2 setting. This
is expected since ST-MPC-LQR does not account for the active obstacle avoidance
constraints (7.16) when computing the MPC gains, which does not allow to correctly
capture the behavior of the MPC in the presence of active constraints. This result
then further motivates the use of the proposed ST-MPC scheme.

In conclusion, it is clear how the proposed method can provide a substantial
improvement on the safety of the system with parameter uncertainty, which can be
traded for a reduction in performance (in terms of speed to execute the task), while
standard ways of robustifying the standard MPC, such as tuning the cost function
or increasing the control horizon, are not able to obtain the same results.

7.4.4 Implementation details

The proposed method has been implemented in C++ on a 11th Gen Intel® Core™
i7-11700 @ 3.60GHz by making use of the autodiff library [149] for Automatic
Differentiation (AD) and using the ProxQP sparse solver [31]. To solve the linear
system (7.4) yielding (7.5) we employ Eigen’s linear solver to perform a sparse
LU factorization. Considering the most demanding scenario (passing through the
aperture) with C = 25, one iteration of the algorithm runs in real-time at 50 Hz
(δt = 0.02 s), with the MPC gains and tubes computation only requiring 3-4 ms,
compared to the 1-10 ms to solve the QP during the feedback phase. Being the
structure of the OCP and the number of decision variables and constraints the same,
the only additional computational cost of ST-MPC compared to the standard MPC
is due to the computation of the tubes. This takes a few milliseconds in the current
implementation, thus making ST-MPC suitable for real-time use. Moreover, one
could further improve the current sensitivity computation, by leveraging Eigen’s
sparse linear solvers and more tightly integrating it with the QP solver for reusing
the KKT factorization performed by the solver itself or by using differentiable QP
solvers [150]. Additionally, it could be possible to exploit the structure of the
optimal control problem to compute the MPC gains more efficiently by adapting, for
instance, the work proposed in [142]. The sensitivity propagation can, on the other
hand, reuse the derivatives of the dynamics that have been computed to prepare
the QP. Compared to the current implementation based on AD, significant gains on
the computation of the derivatives of the dynamics could be expected by switching
to a library such as Pinocchio [83], particularly if more complex articulated robots
are considered.

127

Chapter 8

Conclusions

This thesis presented a series of motion generation strategies aimed at addressing
two fundamental issues arising in several robotics applications: (i) the instability
of systems that exhibit a non-minimum phase behavior, which has been addressed
through the application of the IS-MPC method; (ii) the robustness of the system
evolution against uncertainties in the model parameters, which has been shown to
be effectively described by the closed-loop sensitivity metric that has then been
exploited in the novel ST-MPC method.

To conclude, we recall the main results of Chapters 4, 5, 6, 7 and provide some
insight into possible future research directions.

Chapter 4 presented a general output tracking MPC controller for a WIP
balancing robot with arms, which utilizes IS-MPC to handle the unstable pitch
dynamics. We have discussed its application to navigation and loco-manipulation
tasks, and validated its performance by simulations in such scenarios. Results show
that the proposed approach is able to generate stable motions that guarantee ac-
curate task tracking. Still, the method in its current form presents the following
shortcomings:

• the working environment being limited to flat and even ground;

• the performance being limited by the use of a truncated tail.

To improve on the former, it could be possible to explicitly model the slope of the
ground to traverse e.g., ramps, and to robustify the method against disturbances
in the ground modeling by applying the methodology of [151]. Moreover, if the
controlled robot is equipped with legs (see, e.g., [152]), it could be possible to extend
the method to perform jumps, allowing the system to overcome steps and small gaps.
Concerning the latter, it could be straightforward to include an anticipative tail for
the navigation task, similarly to the planar WIP example of Sect. 3.3.1, which has
not been done to keep the formulation generic. When more complex tasks are
involved, it could be possible to include a pre-computed motion library [153] to
pick the most suitable trajectory from — albeit going against the online nature of
the method. Moreover, possible future work include the experimental validation, a
nonlinear formulation of the stability constraint based on [59], and the analysis of
recursive feasibility.

128

Chapter 5 introduced a control approach which actively prevents the onset
of jackknifing during backward trajectory tracking for Tractor-Trailer vehicles. In
particular, a feedback control law was designed as the combination of two actions:
a tracking term, computed using input-output linearization, and a corrective term,
generated via IS-MPC. The proposed method has been first verified in simulation
and then experimentally validated on a purposely built prototype. To show the
generality of the proposed approach, we have also presented successful experimental
results obtained for a two-trailer vehicle.

This work can be extended in several directions, among which we mention:

• designing a robust version of the anti-jackknifing controller which can handle
external disturbances, following the ideas in [151];

• modifying the IS-MPC formulation in order to perform obstacle avoidance
during tracking;

• studying the applicability of the proposed approach for counteracting the dy-
namic jackknife phenomenon associated to wheel slippage in high-speed for-
ward motion.

Chapter 6 first introduced the closed-loop sensitivity concept, allowing to con-
veniently express the effect that uncertainties in the model parameters have on the
closed-loop trajectories of a control system. We have illustrated how these quan-
tities can be used to construct ellipsoidal tubes which approximately envelop the
ensemble of possible trajectories that are generated when the model is perturbed.
From these tubes, it is then possible to compute the directional radius representing
the worst-case deviation of the perturbed trajectory along a direction of interest,
which can then be used to robustify constraints against, e.g, input saturation. We
have then experimentally validated an offline trajectory optimization problem in
which the effect of parametric uncertainties in a quadrotor model (quantified by
the notion of state sensitivity) can be minimized by acting on the reference tra-
jectory to be tracked. The experimental results demonstrate the effectiveness of
the proposed optimization in reducing the effects of uncertainties stemming from
physical parameter perturbations, enabling more precise target attainment at rel-
atively high speeds. We also showcased the significance of input sensitivity within
the constraints of our optimization problem. Indeed, by using the input tubes in
the constraints, one can ensure the robustness against unplanned input saturation
due to parametric uncertainties.

Chapter 7 introduced an efficient Robust Model Predictive Control algorithm,
denoted ST-MPC, for robots affected by parametric uncertainties, and showed its
effectiveness in improving the tracking performance and the success rate during nav-
igation in a tight environment. By leveraging the notion of closed-loop sensitivity
and ellipsoidal tubes for enveloping the perturbed trajectories, introduced in Chap-
ter 6, we were able to introduce a time-varying restriction on the input constraints
to make, at each instant, the MPC controller aware of the possible additional input
requirements needed to cope with parametric uncertainties. The resulting ST-MPC
has the same computational complexity as a standard MPC, only adding the com-
putation of the MPC gains and tube propagation during consecutive control instants

129

by analyzing the sensitivity of the previous MPC solution. Since this computation
is performed in the preparation phase, it does not introduce any additional delay.

Being the first online application of robust trajectory optimization based on the
closed-loop sensitivity, it is possible to extend the method in several directions. For
instance:

• including an online optimization of a sensitivity metric for generating trajec-
tories that are minimally sensitive and, thus, reduce the tube radius;

• adding online parameter estimation schemes in the sensitivity calculation for
updating the nominal parameter values and thus reduce the conservativeness
of the motion.

From a computational point of view, a tight integration with the QP solver of choice
would allow to streamline the calculation of the sensitivity, strengthening even more
the ability to apply the method at a very little computational cost.

130

Bibliography

[1] D. Bicego, J. Mazzetto, R. Carli, M. Farina, and A. Franchi, “Nonlinear model
predictive control with enhanced actuator model for multi-rotor aerial vehicles
with generic designs,” Journal of Intelligent & Robotic Systems, vol. 100, pp.
1213–1247, 2020.

[2] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza, “A compara-
tive study of nonlinear mpc and differential-flatness-based control for quadro-
tor agile flight,” IEEE Transactions on Robotics, vol. 38, no. 6, pp. 3357–3373,
Dec. 2022.

[3] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous
racing of 1: 43 scale rc cars,” Optimal Control Applications and Methods,
vol. 36, no. 5, pp. 628–647, 2015.

[4] V. Vulcano, S. G. Tarantos, P. Ferrari, and G. Oriolo, “Safe robot navigation
in a crowd combining nmpc and control barrier functions,” in 2022 IEEE 61st
Conference on Decision and Control (CDC), 2022, pp. 3321–3328.

[5] S. G. Tarantos, T. Belvedere, and G. Oriolo, “Dynamics-aware navigation
among moving obstacles with application to ground and flying robots,”
Robotics and Autonomous Systems, vol. 172, p. 104582, 2024.

[6] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc for
torque-controlled legged robots,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2019, pp. 4730–4737.

[7] J. Carpentier and P.-B. Wieber, “Recent progress in legged robots locomotion
control,” Current Robotics Reports, vol. 2, no. 3, pp. 231–238, 2021.

[8] G. Romualdi, S. Dafarra, G. L’Erario, I. Sorrentino, S. Traversaro, and
D. Pucci, “Online non-linear centroidal mpc for humanoid robot locomotion
with step adjustment,” in 2022 IEEE International Conference on Robotics
and Automation (ICRA), 2022, pp. 10 412–10 419.

[9] M. Kanneworff, T. Belvedere, N. Scianca, F. M. Smaldone, L. Lanari, and
G. Oriolo, “Task-oriented generation of stable motions for wheeled inverted
pendulum robots,” in 2022 IEEE International Conference on Robotics and
Automation (ICRA), 2022, pp. 214–220.

Bibliography 131

[10] M. Beglini, T. Belvedere, L. Lanari, and G. Oriolo, “An intrinsically sta-
ble MPC approach for anti-jackknifing control of tractor-trailer vehicles,”
IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 4417–4428,
2022.

[11] A. Srour, S. Marcellini, T. Belvedere, M. Cognetti, A. Franchi, and P. Robuffo
Giordano, “Experimental validation of sensitivity-aware trajectory planning
for a quadrotor uav under parametric uncertainty,” in 2024 International Con-
ference on Unmanned Aircraft Systems (ICUAS), June 2024.

[12] T. Belvedere, M. Cognetti, G. Oriolo, and P. Robuffo Giordano, “Sensitivity-
aware Model Predictive Control for robots with parametric uncertainty,”
IEEE Transactions on Robotics, 2024, (submitted).

[13] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex
behaviors through online trajectory optimization,” in 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 2012, pp. 4906–4913.

[14] D. Liberzon, Calculus of variations and optimal control theory: a concise
introduction. Princeton University Press, 2012.

[15] J. Yong and X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB
equations. Springer Science & Business Media, 1999, vol. 43.

[16] R. F. Hartl, S. P. Sethi, and R. G. Vickson, “A survey of the maximum
principles for optimal control problems with state constraints,” SIAM review,
vol. 37, no. 2, pp. 181–218, 1995.

[17] J. T. Betts, Practical Methods for Optimal Control and Estimation Using Non-
linear Programming, 2nd ed. Society for Industrial and Applied Mathematics,
Jan. 2010.

[18] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct multiple
shooting algorithms for optimal robot control,” Fast motions in biomechanics
and robotics: optimization and feedback control, pp. 65–93, 2006.

[19] T. H. Tsang, D. M. Himmelblau, and T. F. Edgar, “Optimal control via
collocation and non-linear programming,” International Journal of Control,
vol. 21, no. 5, p. 763–768, May 1975.

[20] R. W. H. Sargent and G. R. Sullivan, “The development of an efficient optimal
control package,” in Optimization Techniques, ser. Lecture Notes in Control
and Information Sciences, J. Stoer, Ed. Berlin, Heidelberg: Springer, 1978,
p. 158–168.

[21] H. Bock and K. Plitt, “A multiple shooting algorithm for direct solution
of optimal control problems,” IFAC Proceedings Volumes, vol. 17, no. 2, p.
1603–1608, July 1984.

[22] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 2006.

Bibliography 132

[23] T. Ohtsuka, “A continuation/gmres method for fast computation of nonlinear
receding horizon control,” Automatica, vol. 40, no. 4, pp. 563–574, Apr. 2004.

[24] J. V. Kadam and W. Marquardt, “Sensitivity-based solution updates in
closed-loop dynamic optimization,” IFAC Proceedings Volumes, vol. 37, no. 9,
pp. 947–952, July 2004.

[25] L. Biegler, X. Yang, and G. Fischer, “Advances in sensitivity-based nonlin-
ear model predictive control and dynamic real-time optimization,” Journal of
Process Control, vol. 30, pp. 104–116, June 2015.

[26] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From linear
to nonlinear mpc: bridging the gap via the real-time iteration,” International
Journal of Control, vol. 93, no. 1, pp. 62–80, 2020.

[27] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge, UK;
New York: Cambridge University Press, 2004.

[28] M. Diehl, H. J. Ferreau, and N. Haverbeke, “Efficient numerical methods for
nonlinear mpc and moving horizon estimation,” in Nonlinear model predictive
control: towards new challenging applications, L. Magni, D. M. Raimondo,
and F. Allgöwer, Eds. Springer, 2009, pp. 391–417.

[29] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control: theory,
computation, and design. Nob Hill Publishing Madison, WI, 2017, vol. 2.

[30] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an
operator splitting solver for quadratic programs,” Mathematical Programming
Computation, vol. 12, no. 4, pp. 637–672, 2020. [Online]. Available:
https://doi.org/10.1007/s12532-020-00179-2

[31] A. Bambade, S. El-Kazdadi, A. Taylor, and J. Carpentier, “PROX-QP: Yet
another Quadratic Programming Solver for Robotics and beyond,” in RSS
2022 - Robotics: Science and Systems, New York, United States, June 2022.

[32] M. Diehl, “Real-time optimization for large scale nonlinear processes,” Ph.D.
dissertation, University of Heidelberg, 2001.

[33] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme for
nonlinear optimization in optimal feedback control,” SIAM Journal on control
and optimization, vol. 43, no. 5, pp. 1714–1736, 2005.

[34] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods. Society
for Industrial and Applied Mathematics, 2000.

[35] A. L. Tits, A. Wächter, S. Bakhtiari, T. J. Urban, and C. T. Lawrence,
“A primal-dual interior-point method for nonlinear programming with strong
global and local convergence properties,” SIAM Journal on Optimization,
vol. 14, no. 1, pp. 173–199, 2003.

[36] R. Fletcher and S. Leyffer, “Nonlinear programming without a penalty func-
tion,” Mathematical programming, vol. 91, pp. 239–269, 2002.

https://doi.org/10.1007/s12532-020-00179-2

Bibliography 133

[37] R. Quirynen, B. Houska, M. Vallerio, D. Telen, F. Logist, J. Van Impe,
and M. Diehl, “Symmetric algorithmic differentiation based exact hessian
sqp method and software for economic mpc,” in 53rd IEEE Conference on
Decision and Control, 2014, pp. 2752–2757.

[38] W. Huang, X. Huang, C. Majidi, and M. K. Jawed, “Dynamic simulation of
articulated soft robots,” Nature communications, vol. 11, no. 1, p. 2233, 2020.

[39] K. Erleben and S. Andrews, “Solving inverse kinematics using exact hessian
matrices,” Computers & Graphics, vol. 78, pp. 1–11, 2019.

[40] K. Pfeiffer, “Efficient Kinematic and Algorithmic Singularity Resolution
for Multi-Contact and Multi-Level Constrained Dynamic Robot Control,”
Theses, Université Montpellier, Dec. 2019. [Online]. Available: https:
//hal.science/tel-02867294

[41] M. Khadem, J. O’Neill, Z. Mitros, L. d. Cruz, and C. Bergeles, “Autonomous
steering of concentric tube robots for enhanced force/velocity manipulabil-
ity,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2019, pp. 2197–2204.

[42] M. Giftthaler, M. Neunert, M. Stauble, J. Buchli, and M. Diehl, “A family
of iterative gauss-newton shooting methods for nonlinear optimal control,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Madrid: IEEE, Oct. 2018, pp. 1–9.

[43] I. K. Erunsal, R. Ventura, and A. Martinoli, “Nonlinear model predictive con-
trol for formations of multi-rotor micro aerial vehicles: An experimental ap-
proach,” in Experimental Robotics (ISER 2020), ser. Springer Proceedings in
Advanced Robotics. 19, B. Siciliano, C. Laschi, and O. Khatib, Eds. Springer,
2021, pp. 449–461.

[44] O. Khatib, “A unified approach for motion and force control of robot manip-
ulators: The operational space formulation,” IEEE Journal on Robotics and
Automation, vol. 3, no. 1, pp. 43–53, 1987.

[45] P.-B. Wieber, R. Tedrake, and S. Kuindersma, Modeling and Control of Legged
Robots. Springer International Publishing, 2016, pp. 1203–1234.

[46] A. Isidori and C. H. Moog, On the nonlinear equivalent of the notion of
transmission zeros, ser. Lecture Notes in Control and Information Sciences.
Berlin/Heidelberg: Springer-Verlag, 1988, vol. 105, p. 146–158.

[47] C. Byrnes, A. Isidori, and J. Willems, “Passivity, feedback equivalence, and
the global stabilization of minimum phase nonlinear systems,” IEEE Trans-
actions on Automatic Control, vol. 36, no. 11, pp. 1228–1240, Nov. 1991.

[48] J. Chen, S. Fang, and H. Ishii, “Fundamental limitations and intrinsic limits
of feedback: An overview in an information age,” Annual Reviews in Control,
vol. 47, pp. 155–177, 2019.

https://hal.science/tel-02867294
https://hal.science/tel-02867294

Bibliography 134

[49] A. De Luca, S. Panzieri, and G. Ulivi, “Stable inversion control for flexible
link manipulators,” in Proceedings. 1998 IEEE International Conference on
Robotics and Automation (Cat. No.98CH36146), vol. 1, May 1998, pp. 799–
805 vol.1.

[50] N. Scianca, D. De Simone, L. Lanari, and G. Oriolo, “MPC for humanoid gait
generation: Stability and feasibility,” IEEE Trans. on Robotics, vol. 36, no. 4,
pp. 1171–1188, 2020.

[51] P.-B. Wieber, “Viability and predictive control for safe locomotion,” in 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice:
IEEE, Sept. 2008, pp. 1103–1108.

[52] A. Isidori, Nonlinear Control Systems. Springer, 1995.

[53] ——, “The zero dynamics of a nonlinear system: From the origin to the latest
progresses of a long successful story,” European Journal of Control, vol. 19,
no. 5, pp. 369–378, Sept. 2013.

[54] J. B. Hoagg and D. S. Bernstein, “Nonminimum-phase zeros - much to do
about nothing - classical control - revisited part ii,” IEEE Control Systems
Magazine, vol. 27, no. 3, pp. 45–57, 2007.

[55] P. Moylan, “Stable inversion of linear systems,” IEEE Transactions on Auto-
matic Control, vol. 22, no. 1, pp. 74–78, Feb. 1977.

[56] L. Lanari and J. Wen, “Feedforward calculation in tracking control of flexible
robots,” in 1991 Proceedings of the 30th IEEE Conference on Decision and
Control. Brighton, UK: IEEE, 1991, pp. 1403–1408.

[57] S. Devasia and B. Paden, “Exact output tracking for nonlinear time-varying
systems,” in Proceedings of 1994 33rd IEEE Conference on Decision and Con-
trol, vol. 3, Dec. 1994, pp. 2346–2355 vol.3.

[58] S. Devasia, D. Chen, and B. Paden, “Nonlinear inversion-based output track-
ing,” IEEE Transactions on Automatic Control, vol. 41, no. 7, pp. 930–942,
July 1996.

[59] L. Hunt and G. Meyer, “Stable inversion for nonlinear systems,” Automatica,
vol. 33, no. 8, pp. 1549–1554, Aug. 1997.

[60] S. Devasia and B. Paden, “Stable inversion for nonlinear nonminimum-phase
time-varying systems,” IEEE Transactions on Automatic Control, vol. 43,
no. 2, pp. 283–288, Feb. 1998.

[61] L. Lanari, S. Hutchinson, and L. Marchionni, “Boundedness issues in planning
of locomotion trajectories for biped robots,” in 2014 IEEE-RAS International
Conference on Humanoid Robots. Madrid, Spain: IEEE, Nov. 2014, pp.
951–958.

Bibliography 135

[62] S. Caron, A. Escande, L. Lanari, and B. Mallein, “Capturability-based pattern
generation for walking with variable height,” IEEE Transactions on Robotics,
vol. 36, no. 2, pp. 517–536, 2020.

[63] W. A. Coppel, “Dichotomies and reducibility,” Journal of Differential Equa-
tions, vol. 3, no. 4, pp. 500–521, Oct. 1967.

[64] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step
toward humanoid push recovery,” in 6th IEEE-RAS Int. Conf. on Humanoid
Robots, 2006, pp. 200–207.

[65] T. Takenaka, T. Matsumoto, and T. Yoshiike, “Real time motion generation
and control for biped robot - 1st report: Walking gait pattern generation,” in
2009 Int. Conf. on Intelligent Robots and Systems, 2009, pp. 1084–1091.

[66] S. Devasia, “Output tracking with nonhyperbolic and near nonhyperbolic in-
ternal dynamics: Helicopter hover control,” J. of guidance, control, and dy-
namics, vol. 20, no. 3, pp. 573–580, 1997.

[67] H. G. Nguyen, J. Morrell, K. D. Mullens, A. B. Burmeister, S. Miles, N. Far-
rington, K. M. Thomas, and D. W. Gage, “Segway robotic mobility platform,”
in Mobile Robots XVII, vol. 5609. SPIE, 2004, pp. 207–220.

[68] R. O. Ambrose, R. T. Savely, S. M. Goza, P. Strawser, M. A. Diftler, I. Spain,
and N. Radford, “Mobile manipulation using NASA’s Robonaut,” in 2004
IEEE Int. Conf. on Robotics and Automation, 2004, pp. 2104–2109.

[69] P. Deegan, B. J. Thibodeau, and R. Grupen, “Designing a self-stabilizing
robot for dynamic mobile manipulation,” Massachusetts University Amherst,
Dept. of Computer Science, Tech. Rep., 01 2006.

[70] S. Jeong and T. Takahashi, “Wheeled inverted pendulum type assistant robot:
design concept and mobile control,” Intelligent Service Robotics, vol. 1, no. 4,
pp. 313–320, 2008.

[71] M. Stilman, J. Olson, and W. Gloss, “Golem Krang: Dynamically stable hu-
manoid robot for mobile manipulation,” in 2010 IEEE Int. Conf. on Robotics
and Automation, 2010, pp. 3304–3309.

[72] G. Lentini, A. Settimi, D. Caporale, M. Garabini, G. Grioli, L. Pallot-
tino, M. G. Catalano, and A. Bicchi, “ALTER-EGO: a mobile robot with a
functionally anthropomorphic upper body designed for physical interaction,”
IEEE Robotics & Automation Magazine, vol. 26, no. 4, pp. 94–107, 2019.

[73] Y. Zhao, C. Woo, and J. Lee, “Balancing control of mobile manipulator with
sliding mode controller,” in 15th Int. Conf. on Control, Automation and Sys-
tems, 2015, pp. 802–805.

[74] Y.-G. Bae and S. Jung, “Balancing control of a mobile manipulator with
two wheels by an acceleration-based disturbance observer,” Int. Journal of
Humanoid Robotics, vol. 15, no. 03, p. 1850005, 2018.

Bibliography 136

[75] G. Zambella, G. Lentini, M. Garabini, G. Grioli, M. G. Catalano, A. Palleschi,
L. Pallottino, A. Bicchi, A. Settimi, and D. Caporale, “Dynamic whole-body
control of unstable wheeled humanoid robots,” IEEE Robotics and Automa-
tion Letters, vol. 4, no. 4, pp. 3489–3496, 2019.

[76] C. Acar and T. Murakami, “Multi-task control for dynamically balanced two-
wheeled mobile manipulator through task-priority,” in 2011 IEEE Int. Sym-
posium on Industrial Electronics, 2011, pp. 2195–2200.

[77] M. Zafar and H. I. Christensen, “Whole body control of a wheeled inverted
pendulum humanoid,” in 16th IEEE-RAS Int. Conf. on Humanoid Robots,
2016, pp. 89–94.

[78] M. Yue, C. An, and J.-Z. Sun, “An efficient model predictive control for tra-
jectory tracking of wheeled inverted pendulum vehicles with various physical
constraints,” Int. Journal of Control, Automation and Systems, vol. 16, no. 1,
pp. 265–274, 2018.

[79] M. Zafar, S. Hutchinson, and E. A. Theodorou, “Hierarchical optimization for
whole-body control of wheeled inverted pendulum humanoids,” in 2019 IEEE
Int. Conf. on Robotics and Automation, 2019, pp. 7535–7542.

[80] M. V. Minniti, F. Farshidian, R. Grandia, and M. Hutter, “Whole-body MPC
for a dynamically stable mobile manipulator,” IEEE Robotics and Automation
Letters, vol. 4, no. 4, pp. 3687–3694, 2019.

[81] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling,
Planning and Control. Springer, 2009.

[82] S. Kim and S. Kwon, “Dynamic modeling of a two-wheeled inverted pendulum
balancing mobile robot,” Int. Journal of Control, Automation and Systems,
vol. 13, no. 4, pp. 926–933, 2015.

[83] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux, O. Stasse,
and N. Mansard, “The pinocchio c++ library – a fast and flexible implemen-
tation of rigid body dynamics algorithms and their analytical derivatives,” in
IEEE International Symposium on System Integrations (SII), 2019.

[84] U. Nagarajan and R. Hollis, “Shape space planner for shape-accelerated bal-
ancing mobile robots,” The Int. Journal of Robotics Research, vol. 32, no. 11,
pp. 1323–1341, 2013.

[85] M. M. Michałek, “Agile maneuvering with intelligent articulated vehicles: a
control perspective,” IFAC-PapersOnLine, vol. 52, no. 8, pp. 458–473, 2019.

[86] F. Lamiraux and J. P. Laumond, “A practical approach to feedback control
for a mobile robot with trailer,” in 1998 IEEE Int. Conf. on Robotics and
Automation, 1998, pp. 3291–3295.

[87] A. González-Cantos and A. Ollero, “Backing-up maneuvers of autonomous
tractor-trailer vehicles using the qualitative theory of nonlinear dynamical
systems,” The Int. J. of Robotics Research, vol. 28, no. 1, pp. 49–65, 2009.

Bibliography 137

[88] W. Chung, M. Park, K. Yoo, J. I. Roh, and J. Choi, “Backward-motion control
of a mobile robot with n passive off-hooked trailers,” J. of Mechanical Science
and Technology, vol. 25, no. 11, pp. 2895–2905, 2011.

[89] J. Morales, J. L. Martínez, A. Mandow, and A. J. García-Cerezo, “Steering
the last trailer as a virtual tractor for reversing vehicles with passive on-and
off-axle hitches,” IEEE Trans. on Industrial Electronics, vol. 60, no. 12, pp.
5729–5736, 2013.

[90] Z. Leng and M. A. Minor, “Curvature-based ground vehicle control of trailer
path following considering sideslip and limited steering actuation,” IEEE
Trans. on Intelligent Transportation Systems, vol. 18, no. 2, pp. 332–348,
2016.

[91] M. Sampei, T. Tamura, T. Kobayashi, and N. Shibui, “Arbitrary path tracking
control of articulated vehicles using nonlinear control theory,” IEEE Trans.
on Control System Technology, vol. 3, no. 1, pp. 125–131, 1995.

[92] R. M. De Santis, “Path-tracking for articulated vehicles via exact and jacobian
linearization,” in IFAC Intelligent Autonomous Vehicles, 1998, pp. 159–164.

[93] A. Astolfi, P. Bolzern, and A. Locatelli, “Path-tracking of a tractor-trailer
vehicle along rectilinear and circular paths: A Lyapunov-based approach,”
IEEE Trans. on Robotics and Automation, vol. 20, no. 1, pp. 154–160, 2004.

[94] P. Bolzern, R. M. De Santis, A. Locatelli, and D. Masciocchi, “Path-tracking
for articulated vehicles with off-axle hitching,” IEEE Trans. on Control Sys-
tem Technology, vol. 6, no. 4, pp. 515–523, 1998.

[95] C. Altafini, A. Speranzon, and B. Wahlberg, “A feedback control scheme for
reversing a truck and trailer vehicle,” IEEE Trans. on Robotics and Automa-
tion, vol. 17, no. 6, pp. 915–922, 2001.

[96] C. Pradalier and K. Usher, “A simple and efficient control scheme to reverse
a tractor-trailer system on a trajectory,” in 2007 IEEE Int. Conf. on Robotics
and Automation, 2007, pp. 2208–2214.

[97] O. Ljungqvist, N. Evestedt, D. Axehill, M. Cirillo, and H. Pettersson, “A path
planning and path-following control framework for a general 2-trailer with a
car-like tractor,” J. of Field Robotics, vol. 36, no. 8, pp. 1345–1377, 2019.

[98] E. Kayacan, H. Ramon, and W. Saeys, “Robust trajectory tracking error
model-based predictive control for unmanned ground vehicles,” IEEE/ASME
Trans. on Mechatronics, vol. 21, no. 2, pp. 806–814, 2015.

[99] H. Guo, C. Shen, H. Zhang, H. Chen, and R. Jia, “Simultaneous trajectory
planning and tracking using an MPC method for cyber-physical systems: A
case study of obstacle avoidance for an intelligent vehicle,” IEEE Trans. on
Industrial Informatics, vol. 14, no. 9, pp. 4273–4283, 2018.

Bibliography 138

[100] O. Ljungqvist, D. Axehill, and H. Pettersson, “On sensing-aware model pre-
dictive path-following control for a reversing general 2-trailer with a car-like
tractor,” in 2020 IEEE Int. Conf. on Robotics and Automation, 2020, pp.
8813–8819.

[101] C. Sentouh, A. Nguyen, M. A. Benloucif, and J. Popieul, “Driver-automation
cooperation oriented approach for shared control of lane keeping assist sys-
tems,” IEEE Trans. on Control System Technology, vol. 27, no. 5, pp. 1962–
1978, 2019.

[102] K. J. Astrom and B. Wittenmark, “Adaptive control 2nd edition,” Addison-
Wesley Pub Co., vol. 1994, 1994.

[103] M. Achtelik, T. Bierling, J. Wang, L. Höcht, and F. Holzapfel, “Adaptive
control of a quadcopter in the presence of large/complete parameter uncer-
tainties,” in Infotech@ Aerospace 2011, 2011, p. 1485.

[104] A. Haseltalab and R. R. Negenborn, “Adaptive control for autonomous ships
with uncertain model and unknown propeller dynamics,” Control Engineering
Practice, vol. 91, p. 104116, 2019.

[105] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice hall Upper
Saddle River, NJ, 1998, vol. 104.

[106] R. Sanz, P. Garcia, Q.-C. Zhong, and P. Albertos, “Robust control of quadro-
tors based on an uncertainty and disturbance estimator,” Journal of Dynamic
Systems, Measurement, and Control, vol. 138, no. 7, p. 071006, 2016.

[107] D. Hanover, P. Foehn, S. Sun, E. Kaufmann, and D. Scaramuzza, “Perfor-
mance, precision, and payloads: Adaptive nonlinear mpc for quadrotors,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 690–697, 2021.

[108] A. Ansari and T. Murphey, “Minimum Sensitivity Control for Planning with
Parametric and Hybrid Uncertainty,” The International Journal of Robotics
Research (IJRR), vol. 35, no. 7, pp. 823–839, October 2016.

[109] S. Candido and S. Hutchinson, “Minimum Uncertainty Robot Path Planning
using a POMDP Approach,” in 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), December 2010, pp. 1408–1413.

[110] ——, “Minimum uncertainty robot navigation using information-guided
pomdp planning,” in 2011 IEEE International Conference on Robotics and
Automation. IEEE, 2011, pp. 6102–6108.

[111] P. Robuffo Giordano, Q. Delamare, and A. Franchi, “Trajectory generation
for minimum closed-loop state sensitivity,” in 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), 2018, pp. 286–293.

[112] P. Brault, Q. Delamare, and P. Robuffo Giordano, “Robust trajectory plan-
ning with parametric uncertainties,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), 2021, pp. 11 095–11 101.

Bibliography 139

[113] C. Bohm, P. Brault, Q. Delamare, P. Robuffo Giordano, and S. Weiss, “COP:
Control & Observability-aware Planning,” in 2022 IEEE International Con-
ference on Robotics and Automation (ICRA), 2022, pp. 3364–3370.

[114] S. Wasiela, P. Robuffo Giordano, J. Cortes, and T. Simeon, “A Sensitivity-
Aware Motion Planner (SAMP) to Generate Intrinsically-Robust Trajecto-
ries,” in 2023 IEEE International Conference on Robotics and Automation
(ICRA), 2023, pp. 12 707–12 713.

[115] A. Srour, A. Franchi, and P. Robuffo Giordano, “Controller and Trajec-
tory Optimization for a Quadrotor UAV with Parametric Uncertainty,” in
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2023, pp. 1–7.

[116] A. Pupa, P. Robuffo Giordano, and C. Secchi, “Optimal energy tank initial-
ization for minimum sensitivity to model uncertainties,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2023, pp.
8192–8199.

[117] G. Antonelli, E. Cataldi, F. Arrichiello, P. Robuffo Giordano, S. Chiaverini,
and A. Franchi, “Adaptive Trajectory Tracking for Quadrotor MAVs in Pres-
ence of Parameter Uncertainties and External Disturbances,” IEEE Trans. on
Control Systems Technology, vol. 26, no. 1, pp. 248–254, 2018.

[118] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling,
estimation, and control of quadrotor,” IEEE robotics & automation magazine,
vol. 19, no. 3, pp. 20–32, 2012.

[119] M. J. Van Nieuwstadt and R. M. Murray, “Real-time trajectory generation
for differentially flat systems,” International Journal of Robust and Nonlinear
Control, vol. 8, no. 11, pp. 995–1020, 1998.

[120] D. Brescianini, M. Hehn, and R. D’Andrea, “Nonlinear quadrocopter attitude
control: Technical report,” ETH Zurich, Tech. Rep., 2013.

[121] A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics. Springer
Science & Business Media, 2007, vol. 37.

[122] F. Zhou, B. Song, and G. Tian, “Bézier curve based smooth path planning
for mobile robot,” Journal of Information & Computational Science, vol. 8,
no. 12, pp. 2441–2450, December 2011.

[123] A. R. Conn, K. Scheinberg, and P. L. Toint, “On the convergence of derivative-
free methods for unconstrained optimization,” Approximation theory and op-
timization: tributes to MJD Powell, pp. 83–108, 1997.

[124] G. Ansmann, “Efficiently and easily integrating differential equations with
jitcode, jitcdde, and jitcsde,” Chaos: An interdisciplinary journal of nonlinear
science, vol. 28, no. 4, 2018.

Bibliography 140

[125] V. M. Zavala and L. T. Biegler, “The advanced-step nmpc controller: Opti-
mality, stability and robustness,” Automatica, vol. 45, no. 1, p. 86–93, Jan.
2009.

[126] B. Houska and M. E. Villanueva, Robust optimization for MPC. Springer,
2019.

[127] D. Q. Mayne, M. M. Seron, and S. Raković, “Robust model predictive con-
trol of constrained linear systems with bounded disturbances,” Automatica,
vol. 41, no. 2, pp. 219–224, 2005.

[128] D. Q. Mayne, E. C. Kerrigan, E. Van Wyk, and P. Falugi, “Tube-based ro-
bust nonlinear model predictive control,” International journal of robust and
nonlinear control, vol. 21, no. 11, pp. 1341–1353, 2011.

[129] M. Cannon, J. Buerger, B. Kouvaritakis, and S. Rakovic, “Robust Tubes
in Nonlinear Model Predictive Control,” IEEE Transactions on Automatic
Control, vol. 56, no. 8, pp. 1942–1947, Aug. 2011.

[130] G. Garimella, M. Sheckells, J. L. Moore, and M. Kobilarov, “Robust obstacle
avoidance using tube nmpc.” in Robotics: Science and Systems, 2018.

[131] J. Köhler, R. Soloperto, M. A. Müller, and F. Allgöwer, “A Computationally
Efficient Robust Model Predictive Control Framework for Uncertain Nonlinear
Systems,” IEEE Transactions on Automatic Control, vol. 66, no. 2, pp. 794–
801, Feb. 2021.

[132] Y. Gao, F. Messerer, J. Frey, N. v. Duijkeren, and M. Diehl, “Collision-free
Motion Planning for Mobile Robots by Zero-order Robust Optimization-based
MPC,” in 2023 European Control Conference (ECC), June 2023, pp. 1–6.

[133] A. Zanelli, J. Frey, F. Messerer, and M. Diehl, “Zero-Order Robust Non-
linear Model Predictive Control with Ellipsoidal Uncertainty Sets,” IFAC-
PapersOnLine, vol. 54, no. 6, pp. 50–57, 2021.

[134] B. T. Lopez, J.-J. E. Slotine, and J. P. How, “Dynamic Tube MPC for Non-
linear Systems,” in 2019 American Control Conference (ACC), July 2019, pp.
1655–1662.

[135] X. Feng, S. Di Cairano, and R. Quirynen, “Inexact adjoint-based sqp algo-
rithm for real-time stochastic nonlinear mpc,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 6529–6535, 2020.

[136] M. E. Villanueva, R. Quirynen, M. Diehl, B. Chachuat, and B. Houska,
“Robust mpc via min–max differential inequalities,” Automatica, vol. 77, p.
311–321, Mar. 2017.

[137] A. V. Fiacco, Introduction to sensitivity and stability analysis in non linear
programming. New York: Academic Press, 1983.

Bibliography 141

[138] A. Shapiro, “Sensitivity Analysis of Nonlinear Programs and Differentiability
Properties of Metric Projections,” SIAM J. Control Optim., vol. 26, no. 3, pp.
628–645, May 1988, publisher: Society for Industrial and Applied Mathemat-
ics.

[139] M. Zanon, V. Kungurtsev, and S. Gros, “Reinforcement Learning Based on
Real-Time Iteration NMPC,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 5213–
5218, 2020.

[140] J. Jäschke, X. Yang, and L. T. Biegler, “Fast economic model predictive
control based on nlp-sensitivities,” Journal of Process Control, vol. 24, no. 8,
p. 1260–1272, Aug. 2014.

[141] E. Dantec, M. Taïx, and N. Mansard, “First Order Approximation of Model
Predictive Control Solutions for High Frequency Feedback,” IEEE Robotics
and Automation Letters, vol. 7, no. 2, pp. 4448–4455, Apr. 2022.

[142] F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli, “An efficient
optimal planning and control framework for quadrupedal locomotion,” in 2017
IEEE International Conference on Robotics and Automation (ICRA), 2017,
pp. 93–100.

[143] C. Büskens and H. Maurer, Sensitivity Analysis and Real-Time Optimiza-
tion of Parametric Nonlinear Programming Problems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 3–16.

[144] H. V. Henderson and S. R. Searle, “On Deriving the Inverse of a Sum of
Matrices,” SIAM Rev., vol. 23, no. 1, pp. 53–60, Jan. 1981, publisher: Society
for Industrial and Applied Mathematics.

[145] J. Carpentier, R. Budhiraja, and N. Mansard, “Proximal and Sparse Resolu-
tion of Constrained Dynamic Equations,” in Robotics: Science and Systems
XVII. Robotics: Science and Systems Foundation, July 2021.

[146] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and trends in
Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[147] D. P. Bertsekas, “On penalty and multiplier methods for constrained mini-
mization,” SIAM Journal on Control and Optimization, vol. 14, no. 2, pp.
216–235, 1976.

[148] A. Boccia, L. Grüne, and K. Worthmann, “Stability and feasibility of state
constrained MPC without stabilizing terminal constraints,” Systems & Con-
trol Letters, vol. 72, pp. 14–21, 2014.

[149] A. M. M. Leal, “autodiff, a modern, fast and expressive C++ library for
automatic differentiation,” https://autodiff.github.io, 2018.

[150] A. Bambade, F. Schramm, A. Taylor, and J. Carpentier, “QPLayer: efficient
differentiation of convex quadratic optimization,” June 2023, working paper
or preprint. [Online]. Available: https://inria.hal.science/hal-04133055

https://inria.hal.science/hal-04133055

Bibliography 142

[151] F. M. Smaldone, N. Scianca, V. Modugno, L. Lanari, and G. Oriolo, “Gait
generation using intrinsically stable MPC in the presence of persistent dis-
turbances,” in 19th IEEE-RAS Int. Conf. on Humanoid Robots, 2019, pp.
682–687.

[152] H. Chen, B. Wang, Z. Hong, C. Shen, P. M. Wensing, and W. Zhang, “Un-
deractuated motion planning and control for jumping with wheeled-bipedal
robots,” IEEE Robotics and Automation Letters, vol. 6, no. 2, p. 747–754,
Apr. 2021.

[153] M. Bjelonic, R. Grandia, M. Geilinger, O. Harley, V. S. Medeiros, V. Pajovic,
E. Jelavic, S. Coros, and M. Hutter, “Offline motion libraries and online mpc
for advanced mobility skills,” The International Journal of Robotics Research,
vol. 41, no. 9–10, p. 903–924, Aug. 2022.

	List of Symbols
	Introduction
	Contribution and overview

	The Optimization-Based Approach to Motion Generation
	Preliminaries
	Examples

	Model Predictive Control
	Constrained optimization
	Approximate methods for real-time MPC
	Linearized Time Varying MPC
	The Real-Time Iteration scheme

	I Motion Generation Using Intrinsically Stable MPC
	Intrinsically Stable MPC
	Preliminaries
	Linearization via feedback
	The zero dynamics

	Boundedness condition for LTI systems
	The IS-MPC approach
	Application to a Wheeled Inverted Pendulum

	Stable Tracking Control of Articulated Balancing Robots
	Related works
	Contribution
	The control problem
	Modeling
	Partial feedback linearization
	Task definition

	The proposed approach
	Overview
	IS-MPC

	Results
	Navigation task
	Loco-manipulation task

	Anti-Jackknifing Control of Tractor-Trailer Vehicles
	Related works
	Contribution
	The control problem
	Modeling
	Internal instability under tracking control

	The proposed approach
	Overview
	Generation of the auxiliary trajectory
	Linearization around the auxiliary trajectory
	MPC-based control correction

	Results
	Simulations
	Comparison with an alternative method
	Experiments

	Extension to the two-trailer system

	II Robust Motion Generation using Sensitivity-Based Tubes
	Closed-Loop Sensitivity
	Parametric sensitivity of closed-loop systems
	Tubes of perturbed trajectories
	Robust trajectory planning for a Quadrotor
	Quadrotor model
	PX4 controller
	Problem formulation
	Results

	Sensitivity-Aware Tube MPC
	Related works
	Contribution
	The proposed approach
	Overview
	Computing the MPC feedback gains
	The ST-MPC algorithm
	Efficient computation of the MPC gains over the prediction horizon

	Application to Quadrotor motion control
	Test scenarios
	Application of ST-MPC to the test scenarios
	Results
	Implementation details

	Conclusions
	Bibliography

