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Abstract. Fog and Edge Computing are two paradigms specifically
suitable for real-time and time-critical applications, which are usually
distributed among a set of nodes that constitutes the core idea of both
Fog and Edge Computing. Since nodes are heterogeneous and subject to
different traffic patterns, distributed scheduling algorithms are in charge
of making each request meet the specified deadline. In this paper, we
exploit the approach of Reinforcement Learning based decision-making for
designing a cooperative and decentralized task online scheduling approach
which is composed of two RL-based decisions. One for selecting the node
to which to offload the traffic and one for accepting or not the incoming
offloading request. The experiments that we conducted on a cluster of
Raspberry Pi 4 show that introducing a second RL decision increases
the rate of tasks executed within the deadline of 4% as it introduces
more flexibility during the decision-making process, consequently enabling
better scheduling decisions.

Keywords: Fog Computing · Online Scheduling · Distributed Scheduling
· Reinforcement Learning.

1 Introduction

Fog Computing is a paradigm that links edge devices to cloud computing data
centers by offering processing, storage, and networking resources [14]. It might
be viewed as an addition to cloud computing rather than as a substitute, and its
main objective is to support services and applications that are not supported
by cloud computing [6], such as those which need predictable and low latency,
geographically distributed, require quick responses from mobile devices, and
require large-scale distributed control systems. The three primary layers of an
IoT environment (Edge Processing, Fog Computing, and Cloud Computing) can
be considered a hierarchical arrangement of network resources, computing, and
storage.
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Recently Fog Computing applications drastically increased due to the unique
solution it provides with time-critical applications [12], as over the past few years,
cloud computing and native cloud services were used for deploying applications
due to the fast deployment methods, and the provided scalability options by the
cloud providers, in addition to the ready maintained packages for configuring the
infrastructure according to every application-specific needs. One of the important
flaws to be considered in this approach is that the application is deployed in
one of the cloud provider’s centers which are placed evenly all over the globe
to serve applications from anywhere in the world, and it does not behave very
well with the time-critical applications due to network (and geographic) latency.
Use cases like real-time face detection applications, machine learning-based
applications, or general applications which are time critical [10], [5], [7] and need
some computational effort would not get much use of the basic cloud services,
this is when fog computing comes into action. Fog computing would be an
optimal solution for applications and use cases which are time critical, need some
computational power to be executed successfully and most importantly could
be executed in a distributed fashion by dividing and delegating the tasks to
other geographically nearby servers [23], [2], [9] to execute the function in the
shortest time possible, this has multiple benefits, the work could be split among
different servers which speed up the execution process, also the tasks allocations
process [21] could be scheduled in an optimized way to serve the overall execution
of the task with respect to multiple things, the servers geographical locations,
the complexity of the tasks, and the servers capability in terms of memory
and computational power. Many scheduling algorithms were used to solve this
problem, and most focused on using Reinforcement Learning approaches [15]
which, in this particular context, allows for adapting the scheduling policy in a
very dynamic context that can regard Edge or Fog Computing, where nodes can
unpredictably go down or saturate due to high traffic.

This work focuses on designing an improved approach [16] for a cooperative,
decentralized, and online scheduling of tasks among a set of nodes using Rein-
forcement Learning. We suppose that clients request tasks to be executed on
the nodes, and each task has defined a specific deadline that makes the task
usable by the clients. Each node can be seen as a worker and a scheduler that
takes decisions according to the RL model. The model is used to make two
kinds of decisions. Figure 1 shows our double-step decision model during the
cooperation. Firstly, when (1) Node A (which we call the “originator node”)
receives a task to be executed by the client, the node decides whether to execute,
reject or forward it to another neighbor node, suppose Node B (which we call
the “delegated node”). When the task is forwarded, even node Node B decides
whether to execute it locally or reject it. Both decisions are made with an online
learning RL model, and we suppose a task cannot be forwarded more than once
since every forwarding step adds network delay to tasks that already have a
deadline.

The rest of the paper is organized as follows. In Section 2, we present some
related work, then in Section 3, we show the model of the system, in Section 4, we
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Fig. 1: The proposed double-decision scheme for cooperative and decentralized
scheduling. Node A receives a task to be executed and decides whether to forward
it to another node; when the task is forwarded, even Node B makes the decision
whether to accept or reject it.

present the double-step RL-based algorithm for online scheduling and in Section 5
we show the experimental results of the proposed approach. Finally, we draw the
conclusions in Section 6.

2 Related Work

Dynamic scheduling solutions address scheduling issues the most when the
scheduler lacks precise knowledge of the jobs. Starting from the classic Job-shop
scheduling problem [3], lots of techniques and algorithms were introduced to
solve this problem.

Various sets of heuristic algorithms are used for the job scheduling process,
popular algorithms include the genetic algorithm, ant colony optimization, bee
life [18] and symbiotic organization used to optimize the scheduling process [13].
However these categories belong to static scheduling techniques which need all
the details about the task to be known beforehand, and this is in general not
optimal for online and real-time scheduling. In some studies multi-agent-based
models were introduced to evaluate task scheduling based on a priority rule, the
work introduced by Hosseinioun et al. [8] has the objective of minimizing energy
consumption, as it’s a major factor when working in a fog environment, and the
approach was pivoted around dynamic voltage and frequency scaling (DVFS)
methodology [4] which does not care much about the tasks’ deadline as much
as the energy consumption. Wang and Chen [22] also contributed to optimizing
resource allocation but without experimenting with the model in a real-world
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application. There was also a significant contribution to using neural networks
with the task scheduling problem [11] [1]. Witanto et al. [24] proposed neural
network based on adaptive selection of VM consolidation algorithms which selects
the most adequate algorithm based on a specified priority, also CNNs started
getting involved in task scheduling but with very limited use cases compared
to other popular neural networks models [20]. the main characteristic of NN
approaches is that it optimizes for energy consumption but it lacks speed due to
the high inference latency when dealing with task deadline-critical applications.

The main focus of this work is to improve the algorithm introduced in [16],
which implemented a decentralized distributed system for efficient job scheduling.
It used the concept of task deadlines and online scheduling to determine which
node in the cluster should execute the task. Nodes communicate in a peer-to-peer
fashion and the node which executes that task gets rewarded based on whether
the task is executed by the predefined deadline or not, then the client is able to
train the node based on the knowledge of the node’s state when the task was
sent, the scheduling action taken by the node, and the reward gained based on
the task deadline. Consequently, based on this reinforcement learning approach,
the environment is not modeled, and the state of each node is determined online
in a real deployment.

3 System Model

The system model is formulated using a Markov decision process, which does
not require the knowledge of any previous states, but only the current one
is meaningful. For learning the policy, since we use a model-free approach in
which we do not know the probabilities p(s′, r|s, a), we rely on a time differential
approach. Therefore the agent needs to interact directly with the environment,
obtain the reward and train the model. This basic RL framework comprises the
environment, the agent, and the reward, which we will now see in detail.

3.1 Environment

The system is composed of a set N of nodes with the same capabilities (same
computing power and memory), the nodes are aware of each other’s existence,
the nodes are communicating only in a peer-to-peer fashion, no consensus or
broadcast communication algorithms are used, all the nodes have the same
configuration settings of tasks concurrent execution and queuing. Also, all the
computing nodes have predefined functions to execute different types of tasks.
The main purpose of this distributed system is to collaborate to execute as many
tasks as possible within the deadline by executing these tasks locally or delegating
them to other peers to achieve optimal performance in aggregate.

3.2 Agent

Each node is seen as an independent agent responsible for making a decision based
on the current state of the node, and this is a powerful capability of the system
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as the nodes have independent agents, so they communicate in a peer-to-peer
fashion. The node’s state is calculated when a new task arrives, and a scheduling
decision must be taken. Equation 1 shows the state of node i when the k-th task
arrives at the node at time t. The state St

ik is a triple composed by the type of
the task k (we suppose υk

i ∈ Υ ), the load of node i at time t which is lti (where
lti ∈ N and 0 ≤ lti ≤ K) and the node to which the client sent the task at first
(nk

if ∈ N ), the originator node.

St
ik = {υk

i , lti , nk
if} (1)

The node’s actions also depend on its role in the execution flow. Since we
allow only one hop, if a node i receives the task k from a client (and therefore
nk
if ̸= i) it can reject the request (action Re), execute it locally (action Ex),

forward the request to a random node (action Fw), or to delegate the request to
another peer, otherwise, if the same node i receives the task k from another peer
node (suppose j ̸= i and nk

if ) then it only can execute the task locally or reject
it. Equation 2 shows the formalization of the set of the actions that node i can
execute on task k at time t.

At
ik =

{
{Ex,Re, Fw} ∪ N if nk

if ̸= i

{Ex,Re} otherwise
(2)

3.3 Reward

As shown in Table 1, the reward is calculated by evaluating if the task is executed
within the deadline, and it’s calculated on the client side to consider the network
latency. This is how the node’s location and network capabilities are considered
in the learning process, and time is calculated on the client side, from sending
the request until the response is returned. As the execution flow might involve
one or two nodes based on the action of the node which receives the request
from the client whether to forward the task or not, in this case, both nodes get
the same reward (which is equal to one) also depending on whether the task is
executed within the deadline or not. This approach makes sense as in the case
of having two nodes in the task execution flow, both nodes act as a team, and
they should collaborate to execute the task within the deadline, and therefore
they’ll get the same reward. Also, this is the best abstraction from a client’s
point of view as it should not know how the execution flow works and the client
should only care about the task execution time. We do not choose to use a more
articulated reward, since once the task is over the deadline we suppose to become
useless to the client as it would be in a real-time image processing application.

4 Reinforcement Learning based Scheduling

Recalling the RL-based scheduler in [16], when the node’s action is to forward
the task to another node, the node receiving the task always executes the task
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Originator Node
Action

Task Result
Reward on Node

Originator Delegated

Rejected - 0 -

Executed Locally
Within-Deadline 1 -
Over-Deadline 0 -

Forwarded
Within-Deadline 1 1
Over-Deadline 0 0

Table 1: Summary of reward assignment. The reward is positive when the task is
completed within the deadline and when forwarded, the reward is assigned to
both nodes.

locally unless it is fully utilized so, in this case, the task is not executed. The
proposed approach introduces an extra learning step to be done on the delegated
node side so that instead of having only one option, which is to execute the
task locally, it can now choose if it executes the task locally or rejects it. This
approach enhanced the system as the delegated node could be trained in such a
way that if the task is achievable within the deadline so the node executes the
task, and the system works the same as before, and if the task would not be
executed within the deadline so the node would reject it, and a node rejecting a
task gets the same reward as executing a task which does not meet the deadline
but in this case rejecting the task is better as this would save more time for the
cluster to execute other tasks which would meet the deadline, and hence improve
the overall system efficiency, which is maximizing the number of successfully
executed tasks in a time unit. Therefore, the node’s state and actions selections
are based on the node’s role in the task execution flow as described in equations
1 and 2

The reinforcement learning algorithm used for training the agent uses Sarsa
properly adapted for continuous learning. The average reward is used as a
baseline for directing the policy in such approaches. Therefore, given a node i
which receives a task k and its current state St

ik, the optimal policy π selects an
action At

ik, a reward r is obtained, and the long-term reward is maximized [19].
Given the state description in Equation 1, the set of states is finite and can

be stored in a Q table. Therefore, the Q-table is used as a function approximator
mechanism. The average-reward concept is used in Differential Semi-Gradient
Sarsa Algorithm, and the table is updated according to Equation 3.

Q(St, At)← Q(St, At) + α∆t (3)

Where Q(St, At) is the Q value of the state St and an action At, and it gets
updated by using ∆t defined in equation 4 multiplied by a hyper-parameter α as
follows:

∆t = [Rt+1 − R̄t+1 +Q(St+1, At+1)−Q(St, At)] (4)
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Here, Rt+1 is the immediate reward, and R̄ is the average reward which
is updated according to the following Equation 5, given β as another hyper-
parameter of the algorithm.

R̄t+1 = R̄t + β∆t (5)

In the proposed double decision scheduler, the execution flow starts when the
client sends a request to execute a task to a node in the cluster and records the
task’s start timestamp, then the node executes Algorithm 1, which calculates the
current node state according to the node’s current load and the type of the task,
it also stamp the request with a generated request number, which is enumerated
in an ascending order, then the node sends the state to the learner for inference,
it receives an action which could be one of the following:

– deliberately rejecting the request;
– executing the task locally;
– picking random node, and if this node is less loaded than the current node,

the random node executes the task. Otherwise, the task is executed locally
by the current node;

– the task is forwarded to a random node in the nodes’ list, including the
current node itself.

If the action is to send the request to another node, then the other node (or,
as we call it, the delegated node) does the following:

– calculates the current state with respect to the following:

• node’s current load;
• the type of the task;
• the sender node id;

– It stamps the request with a generated request number, which is enumerated
in an ascending order;

– It sends the state to the learner for inference;
– It receives an action that could be either deliberately rejecting the request or

executing the task locally;
– If the latter is the case, then it executes the task;
– it sends back its state, which action is executed, and the task execution result

if the chosen action was to execute the task;

Finally, the peer node returns the response to the client with all the learning
information.

As mentioned before, each node could act as an originator node (receiving the
request from the client) or a delegated node (receiving the request from another
peer) based on its role in the execution flow, so the algorithm should be compact
to accommodate for both roles, and this is done by using the requestIsExternal
Boolean, if it’s true so the node acts as a delegated node, otherwise, it acts as
the originator node.
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Algorithm 1 Double Learner Scheduler

Require: Node, Task, A, qTable, requestIsExternal, SenderNodeId
if requestIsExternal then (Get State for Delegated Node)

s← aggregate(Node.getLoad(), Task.getType(), SenderNodeId)
else

s← aggregate(Node.getLoad(), Task.getType())
end if
a← max(qTable.getActionsList(s)) with prob. 1-e otherwise random(A)
if a == 0 then

Node.reject(Task)
else if a == 1 or requestIsExternal then

Node.execute(Task)
else if a == 2 then (Probe and Forward)

RandomNode ← pickRandom(Node.getNeighbors())
if RandomNode.getLoad() < Node.getLoad() then

forwardTo(RandomNode, Task)
else

Node.execute(Task)
end if

else
Node ← pickNode(a)
forwardTo(Node, Task)

end if

5 Experimental Results

The proposed algorithm has been implemented into the P2PFaas framework [17].
In particular, the modules that have been improved are the learner service which
implements the RL model and is also responsible for training the model and
the decision-making process, and the scheduler service, which implements the
actual scheduler algorithm. In this architecture, the client is not only responsible
for sending task requests to the cluster but also for parsing the learning entries
from the node’s returned state and action, calculating the reward, and training
the nodes. The client sends the learning parameters to every node in batches
that contain, in order: the request’s id, state, action, and reward. The node’s
learner service receives the batch, sorts it based on the request’s id, and starts
the learning process using the current average reward method.

Two studies have been performed comparing a single decision scheduler (where
the decision is made only in the originator node) and our proposed double decision
scheduler regarding performance. The first study was done by applying static
loads (requests/second) but not balanced over the nodes (heterogeneous loads),
and the second experiment is done using data extracted from the open data for
New York City as done in the previous work as well [16]. The performance metric
will always be the same: the number of completed tasks within the deadline per
second, also called “within-deadline rate”.
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The cluster consists of 11 Raspberry Pis 4 Model B, five of which are 8GB of
RAM, and the rest are 4GB of RAM. For each Raspberry, we installed a face
recognition FaaS (Function-as-a-Service) triggered upon the HTTP call with
an image as payload. The experiment is done using a script that generates 11
concurrent flows of requests to all the nodes in the cluster at different rates
(requests per second), and it uses two payloads as in Table 2.

Image A Image B

Resolution 320× 210 180× 118
Size (kB) 28.3 23.8
Processing Time (ms) 188.25 74.95

Table 2: Benchmark payload images used in the tests

To calculate the reward, the client has to set a deadline for the nodes executing
the tasks, calculates the node’s task execution time, and compare these values,
and consequently, the reward is assigned as described in Section 3.3. The assigned
deadlines setting are the Processing Time of the image multiplied by a factor
of 1.1, and it sends requests for Image A and Image B with a ratio of 1:1. The
benchmark time is set to 1800 seconds, and the nodes are loaded heterogeneously,
so every node is experiencing fixed traffic but loaded differently from the other
nodes, and this traffic is distributed with the following values (in requests per
second): 4, 6, 8, 12, 13, 14, 15, 16, 17, 18, 19. The “Dynamic Study” traffic is
extracted from open data of New York City data set, which estimates the average
taxi traffic across several locations in the city. The traffic data covers only six
nodes, so it is repeated for the other five nodes. As the traffic is normalized, it is
scaled by a range from 0 to 20, so, for example, when the traffic data at a point
in time is 0.9, the actual load on the node is 0.9 * 20 = 18.

5.1 The Within-Deadline Rate Comparison

In Figures 2 and Figure 3, the comparison shows that the double decision scheduler
(called “Double Learner” in charts) is at least as good as the single decision
scheduler (called “Single Learner” in charts) on average for both the static and
the dynamic traffic.

In Figure 2, the single decision scheduler was better than the double decision
one at the first 200 seconds for most of the nodes before the double decision
taking over for the rest of the experiment. This behavior is expected as the double
decision needs some time for delegated node’s learner to take effect, starting from
time 200 seconds and upwards. The double decision scheduler within-deadline
rate was noticeably higher than the single decision for some nodes, the double
decision within-deadline rate is better than the single decision by 3% on average,
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and it has a within-deadline rate of 90% on average. For the dynamic study
shown in Figure 3, the results are the same as the static load study as the double
decision scheduler reacts the same for dynamic loads as the static loads, the
double decision is constantly performing over the single decision, for nodes 1, 2,
and 9, the performance is almost the same, but for the whole system on average,
the double decision rate was better by 4.1%
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Fig. 2: The within-deadline rate for the single decision vs double decision when
applied static loads in Raspberry Pis cluster, the double decision was better than
the single decision by 3% on average

However, it is also noticeable that when the loads increase, the double deci-
sion degrades to the performance of the single decision, as nodes 8, 9, and 10
performances were lower than nodes 5, 6, and 7 by 0.3%, and this is because the
double decision takes more time to execute the task in the general case, as it
involves extra inference step on the delegated node side. This latency takes effect
when the traffic increases and the double decision degrades.

5.2 Delegated Node Performance

A separate monitor has been applied to the decision behavior of all nodes but only
acting in the second node role during the task execution process. It was necessary
to be sure that the delegated node’s decision was getting better over time and it
is choosing a decision that maximized the number of successfully executed tasks
per second. Figure 4 describes the node’s execution in the “delegated node role”
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Fig. 3: The within-deadline rate for the single decision vs. double decision when
applied dynamic loads in Raspberry Pis cluster, the double decision was better
than the single decision by 4.1% on average
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Fig. 4: The within-deadline rate for nodes Raspberry Pis cluster with respect to
static loads when they act as delegated nodes as double learning is activated
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and how it behaves over time. It shows that the learning process starts low at
first and then it saturates by the time, and the average within-deadline rate for
nodes with lower loads for example, nodes from 0 to 4 is 81% which is by a small
amount better than the ones with nodes from 5 to 10 with 80%, so that the
within-deadline rate for the nodes with lower loads is 1% higher than the ones
with high loads (from node 5 to node 10), and this behavior is expected as the
more loads applied to the node, the less it achieves task within the deadline. It is
important to note that the more loads the node experiences, the more stochastic
the delegated node performance will be.
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Fig. 5: The within-deadline rate for nodes in Raspberry Pis cluster with respect to
dynamic loads when they act as delegated nodes as double learning is activated

It is shown in Figure 4 for the nodes which experience high loads (from node
5 to node 10), and it is also shown in Figure 5 as the more the loads are dynamic,
the more spikes and oscillations the delegated node experiences. The reason
for the within-deadline rate instability shown in Figure 5 is that the delegated
node is always trying to follow the dynamic loads by adapting it is policy. This
is normal, as shown in Figure 3. Figure 5 also shows that the delegated node
within-deadline rate is resilient to load changes for most of the nodes, as the node
is always trying not to fall below minimum effectiveness because of the varying
loads, keeping the average rate for all nodes equals to 1.06 requests/seconds.
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6 Conclusions

This paper proposes a double-decision online distributed scheduler using rein-
forcement learning and improves an online learner scheduler [16] with a second
decision if the node’s action is to delegate the task to another node so that now
the second node learns to choose the correct action between accepting or rejecting
the task based on its state and the originator node. The delegated node learns to
reject a task if it would not be executed within the deadline and therefore saving
time for executing other tasks which potentially can be completed within the
deadline. By performing different experiments implementing the approach in a
cluster of 11 Raspberry Pi we show that our approach increases the in-deadline
rate showing an improvement over the single decision scheduler performances.
However, different aspects could have a more detailed analysis. For example,
it could be further studied the energy aspect of the nodes which may make a
decision also based on the power consumption.
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