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We study the superradiant instability in scalar-tensor theories of gravitation, where matter out-
side a black hole provides an effective mass to the scalar degree of freedom of the gravitational
sector. We discuss this effect for arbitrarily spinning black holes and for realistic models of trun-
cated thin and thick accretion disks (where the perturbation equations are nonseparable), paying
particular attention to the role of hot coronal flows in the vicinity of the black hole. The system
qualitatively resembles the phenomenology of plasma-driven superradiant instabilities in General
Relativity. Nevertheless, we show that the obstacles hampering the efficiency of plasma-driven su-
perradiant instabilities in General Relativity can be circumvented in scalar-tensor theories. We find
a wide range of parameter space where superradiant instabilities can be triggered in realistic scenar-
ios, and discuss the constraints on scalar-tensor theories imposed by this effect. In particular, we
argue that the existence of highly spinning accreting black holes is in tension with some scalar-tensor
alternatives to the dark energy, e.g. symmetron models with screening.

I. INTRODUCTION

A. Motivation

Scalar-tensor theories are among the most interesting
and well-studied extensions of General Relativity (GR).
In this class of theories, the gravitational sector includes
one or more scalar fields which are nonminimally coupled
to the standard metric. A quite general action of scalar-
tensor theories with one scalar field reads [1]:

S =
1

16πG

∫
d4x
√
−g[F(φ)R− Z(φ)gµν∂µφ∂νφ−

− U(φ)] + Sm(ψm, gµν) , (1)

where R is the Ricci scalar, gµν is the metric, φ is a
scalar field, and the last term denotes the action of mat-
ter fields minimally coupled to the metric. Depending on
the expressions of the functions F , Z, and U , it is possi-
ble to recover different theories. For example, for F = φ,
Z ∝ φ−1, and U = 0, Eq. (1) represents Brans-Dicke
theory. Actions with scalar fields nonminimally coupled
to gravity also arise from string theory, Kaluza-Klein-like
theories, and braneworld scenarios. These theories have
been intensively investigated in cosmology [2, 3]. Like-
wise, astrophysical implications of scalar-tensor theories
for compact objects have been explored in detail [4].

A crucial requirement for these theories is that their
weak-field limit, i.e. length scales between the microm-
eter and the astronomical unit, must be consistent with
GR, which in this regime has been tested with extreme
precision [4, 5]. Typically, scalar-tensor theories with in-
teresting cosmological phenomenology must feature some
screening mechanism, hiding the scalar field on local
scales [6, 7]. It is thus relevant to study the phenomenol-
ogy of these theories in the strong gravity regime, where
deviations from GR might be more dramatic. In this
work, we perform a detailed analysis of matter-triggered
superradiant instabilities for spinning black holes (BHs)
in scalar-tensor theories (see [8] for an overview on BH
superradiance). This effect was unveiled in [9, 10], where

it was shown that the presence of matter outside BHs can
trigger either spontaneous scalarization or a superradiant
instability in the system, due to the scalar field acquir-
ing an effective mass squared proportional to the trace
of the stress-energy tensor of the surrounding matter.
The scope of this work is to investigate whether this su-
perradiant instabilities can arise if one considers realistic
models of accreting BHs. A similar analysis was recently
performed in [11] in the context of plasma-driven [12, 13]
superradiant instabilities of photons in GR for BHs ac-
creting a tenuous plasma, using a spin-0 toy model (see
also [14] for an extension to the Proca case, and [15, 16]
for a recent analysis of photon-plasma interactions in
curved spacetime). It was shown in [11] that the com-
plex geometry of accretion disks and the high values of
plasma density near the BH can significantly quench the
instability.

Nevertheless, we show that this problem can be
circumvented in scalar-tensor theories for realistic
accretion-disk configurations, because the effective mass
depends also on the scalar-tensor coupling. For a cold,
collisionless plasma the effective photon mass corre-
sponds to the plasma frequency [12, 13, 15, 16]:

ωp =

√
4πe2ne
me

≈ 10−12

√
ne

10−3cm−3
eV , (2)

where ne is the number density of the free electrons (with
mass me and charge e) in the plasma. BH superradi-
ant instabilities are most effective when the gravitational
coupling ωpM ∼ O(0.1), where M is the BH mass, and
highly suppressed if ωpM � 1. For astrophysically rel-
evant BHs with M > M�, this condition on the cou-
pling implies ωp . 10−11 eV. Thus, the effective mass
lies in a range able to trigger superradiant instabilities if
ne ∼ 10−3 − 10−2 cm−3, i.e. for plasma densities typi-
cal of the interstellar medium [13]. The plasma density
near an accreting BH is several orders of magnitude big-
ger [11]. In this case, the effective mass is too large to
induce an instability on a sufficiently short time scale.

However, as we shall later discuss, in scalar-tensor the-
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ories the effective mass squared is [9, 10]

µ2
eff = −2αT ∼ 2αρ , (3)

where T is the trace of the stress-energy tensor, ρ =
mNne is the matter-energy density of the gas (with nu-
cleon mass mN ), α is a free parameter related to the
nonminimal coupling of the scalar field, and the last step
above is valid for a nonrelativistic disk (see details be-
low). Thus, in the scalar-tensor case the effective mass

depends on n
1/2
e as in the standard photon-plasma case

but, crucially, also on a free effective coupling α. As we
shall discuss, depending on the value of α, the effective
mass can be in the optimal range to trigger a superradi-
ant instabilities for realistic plasma configurations around
BHs.

Another effect that can drastically quench plasma-
driven BH superradiant instabilities are nonlineari-
ties [17]. While transverse waves with frequency ω < ωp
do not propagate in a cold plasma within linear theory,
nonlinear effects make the plasma transparent if the elec-

tric field is higher than Ecrit = me
e

√
ω2
p − ω2 [18, 19].

This effectively corresponds to the fact that the plasma
frequency is decreased by a Lorentz boost factor aris-
ing from the backreaction of the plasma four-velocity.
During the superradiant growth of the electric field the
Lorentz factor can be significantly large, severely limiting
the angular momentum and energy extraction through
plasma-driven superradiant instabilities within GR [17].
As we shall later discuss, the situation is radically differ-
ent in the case of scalar-tensor theory. Also in this case
the backreaction induces a change in the plasma four-
velocity but, because the effective mass depends only on
the trace of the stress-energy tensor, it is not suppressed
by a Lorentz factor.

Throughout this paper, we use G = c = 1 units and
the (−,+,+,+) signature.

II. SETUP

A. General equations and framework

The action in Eq. (1) is in the so-called Jordan frame,
where the scalar field is nonminimally coupled to the met-
ric. By performing a conformal transformation of the
metric and a field redefinition for the scalar field,

gEµν = F(φ)gµν , (4)

Φ(φ) =
1

4π

∫
dφ

[
3

4

F ′(φ)2

F(φ)2
+

1

2

Z(φ)

F(φ)

]1/2

,

A(Φ) = F−1/2(φ) ,

V (Φ) =
U(φ)

F2(φ)
,

it is possible to describe the system in the so-called Ein-
stein frame, where the action takes the form:

S =

∫
d4x
√
−gE

(
RE

16π
− 1

2
gEµν∂

µΦ∂νΦ− V (Φ)

16π

)
+ S(ψm,A(Φ)2gEµν) . (5)

In the Einstein frame, the scalar field is minimally cou-
pled to the gravity sector, but matter fields are coupled
to the effective metric A(Φ)2gEµν , so that the weak equiv-
alence principle is preserved while its strong version is
violated. In this frame, we assume a generic analytic be-
havior for the potentials around a GR solution with a
constant value Φ(0) of the scalar field1,

V =
∑
n=0

Vn(Φ− Φ(0))n , (6)

A =
∑
n=0

An(Φ− Φ(0))n . (7)

Then, by expanding the field equations for ϕ ≡ Φ −
Φ(0) � 1, it is possible to rearrange the field equation
for the scalar field in a GR background as (see [9, 10] for
details)

[2E − µ2
eff(r, θ)]ϕ = 0 , (8)

with an effective mass squared term

µ2
eff(r, θ) =

V2

8π
− 2αTE(r, θ) , (9)

where α = A2/A0 Following [10] we focus on
asymptotically-flat spacetimes (which requires V0 = V1 =
0) and on theories admitting GR vacuum solutions
(which requires A1 = 0). For the rest of this analysis
we will also assume V2 = 0. This term is related to a
standard bare mass, and neglecting it corresponds to as-
suming a massless field.

We are therefore left with a Klein-Gordon equation
with an effective mass squared proportional to the trace
of the stress-energy tensor of the surrounding matter.
Since the matter backreaction on the metric is typically
negligible, and owing to BH no-hair theorems in this class
of theories [20], the background is described by the Kerr
solution. The sign of the parameter α has a crucial im-
pact on the phenomenology of the system [9, 10]. If α < 0
the effective mass squared in Eq. (8) is negative, and leads

1 We consider the field equations in the Einstein frame but labo-
ratory clocks and rods refer to the Jordan-field metric gµν =
A2g2µν . Physical asymptotic quantities related to the metric
(e.g., masses and angular momementa) are obtained from their
Einstein-frame counterpart by rescaling the latter with suitable
powers of A(Φ(0)). In practice, recovering GR in the weak-field
regime requires A(Φ(0)) ≈ 1 so the distinction between Einstein-
and Jordan-frame asymptotic quantities is negligible for our pur-
poses.
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to a possible tachyonic instability and to a scalarization
of the BH. If instead α > 0, the effective mass squared
is positive and the system can undergo a superradiant
instability. In this work we are interested in the latter
case.

Indeed, it is well known that spinning compact ob-
jects are unstable against massive bosonic degrees of
freedom (see [8] for an overview). For a bosonic field
with mass term µ . 0.1/M , the spectrum is approxi-
mately hydrogenic and modes are unstable when their
frequency ωR ≈ µ satisfies the superradiance condition
0 < ωR < mΩH , where ΩH is the BH angular velocity
and m is the azimuthal number of the mode. As a re-
sult of this instability, a macroscopic bosonic condensate
forms around the BH, extracting energy and angular mo-
mentum from the latter. The same physical effect occurs
if the bosonic field possesses an effective mass, although
in such case the instability depends also on the geometry
of the effective-mass term, as we shall discuss.

B. Effective mass

1. Stress-energy tensor of accretion disks

As previously discussed the effective mass-squared
term depends on the trace of the stress-energy tensor of
the matter fields surrounding the BH. In this section we
characterize this term for realistic accretion disk profiles.

We consider different types of effective mass. In gen-
eral, the stress energy-tensor of an accretion disk can be
fully described by four different components [21]:

Tµν = (Tµν )FLU + (Tµν )VIS + (Tµν )MAX + (Tµν )RAD , (10)

which are, respectively, the fluid component, the viscos-
ity component, the electromagnetic component, and the
radiation one. Most models of accretion disks assume a
particular form of the stress energy-tensor. For exam-
ple, thick accretion disk models rely on a perfect fluid
approximation, which states that (Tµν )VIS = (Tµν )MAX =
(Tµν )RAD = 0. Throughout this work, we will consider
this assumption, in which the stress energy-tensor reads

(Tµν )FLU = (ρuµ)(Wuν) + δµνP , (11)

where ρ, W , P are respectively the mass-energy density,
enthalpy, and pressure. By neglecting the internal en-
ergy density of the fluid, the stress-energy tensor trace
reads T = −ρ + 3P . Note that while the perfect fluid
approximation holds for thick disks, in our case we can
use the same approximation also for thin disks. Thin
disks have a nonvanishing stress part, which for example
in the Shakura-Sunyev model can be described using a
nearly-linear viscosity approximation [22]. However, the
stress part can be written as (Tµν )VIS ∝ σµν , where σµν

is the shear tensor of the four-velocity of the fluid. Since
the shear tensor is by definition traceless, the effective
mass is independent of the viscosity.

In what follows we will also neglect the effect of pres-
sure, as it is subdominant. Indeed, if one for example as-
sumes the equation of state of an ideal gas, then P = c2sρ,
where cs is the speed of sound of the fluid. Since for
accretion disks cs is at least two orders of magnitude
smaller than the speed of light, we are in the nonrela-
tivistic regime, P � ρ, and we can safely neglect pres-
sure corrections to the effective mass. Thus, the trace of
the stress-energy tensor in our models is simply T ≈ −ρ.

2. Accretion disks features: truncation, typical densities,
and coronae

In the following, we will be interested in accretion envi-
ronments that exhibit a sharp cut-off sufficiently far away
from the BH horizon. In these models the disk creates
a cavity that can potentially trap scalar modes leading
to an instability. A system that satisfies this require-
ment is the truncated disk accretion model. Truncated
disk models are commonly used in BH accretion physics
and, depending on the accretion rate, the location of the
truncation can be close to the Innermost Stable Circular
Orbit (ISCO) (high/soft state) or very far from it, even
at 200− 400M or more (low/hard state). Whenever this
happens, in the region within the truncation radius and
down to the vicinity of the BH, only a hot coronal flow
can exist (see e.g. [23–27]). The Comptonization of hot
electrons in the coronal medium is believed to explain the
hard, X-ray tail that follows the black-body like emission
spectrum of the disk. For this reason, the truncated disk
+ corona model succeeds in explaining features in the
emission spectrum [24].

Another ideal configuration producing sufficiently wide
cavities in the density profile near the BH are counter-
rotating disks that extend all the way to the ISCO. In this
case, the ISCO is sufficiently far away from the horizon
(6 ≤ rISCO/M ≤ 9 depending on the BH spin) so that
the cavity is able to trap modes. Finally, another inter-
esting possibility are magnetically-arrested disks, where
a strong poloidal magnetic field disrupts the disk at a
relatively large radius, creating a cavity. Also this model
supports the presence, inside the cavity, of a hot, low-
density coronal flow [28]. In general, these flows are al-
ways very tenuous and quasispherical, and their density
is lower than the disk’s one by some orders of magni-
tude (see [29] for an estimate or, e.g., [30, 31] for GR
magneto-hydrodynamics simulations). In what follows,
we shall therefore describe truncated thin and thick disks
by taking into account an additional coronal structure.

3. Plasma profiles

We consider different models of density profiles, dis-
cussed below. In all models, since the time scales of in-
terest are much shorter than the typical BH accretion
time scales [16], we shall neglect the time dependence of
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FIG. 1. Radial profile of the effective mass in Model I with
αρCM

2 = 0.9, αρHM
2 = 20 and r0 = 8M (solid blue) and

Model III with β = 500 (dashed orange). The profiles are sim-
ilar, but in Model III the sharp cutoff is smoothed out. For
convenience, we have chosen unrealistic values to better high-
light the three fundamental parameters (r0, αρC , αρH) that
govern the salient features of the geometry.

the matter fields. Moreover, we shall restrict to axisym-
metric configurations in which ρ = ρ(r, θ) (that of course
reduce to spherical configurations for purely radial pro-
files).

Model I describes a thick disk+corona system where
the corona is described by a constant asymptotic term.
The full profile reads

µ2
eff,I(r, θ) = α

[
ρHΘ(r − r0)

(
1− r0

r

)(r0

r

) 3
2

+ ρC

]
,

(12)
where Θ(x) is the Heaviside step function. When the
scalar coupling α = 1, this model coincides with the
one studied in [11] with a suitable choice of the param-
eters ρH , ρC , and r0. In order to investigate the role of
the mass at spatial infinity, in Model II we truncate the
corona at r0:

µ2
eff,II(r, θ) = α

[
ρHΘ(r − r0)

(
1− r0

r

)(r0

r

) 3
2

+ ρCΘ(r0 − r)
]
. (13)

In Model III we investigate the effects of the sharp cut-off
produced by the Heaviside function in Models I and II
by replacing it with a sigmoid-like function:

µ2
eff,III(r, θ) =

αρH
1 + e−2(r−r0)

1− r0

r
(

1 + β
r4

)
(r0

r

) 3
2

.

(14)
Figure 1 shows that, with a suitable choice of β,

Model III is very similar to Model I, except that the
effective mass does not display a sharp cutoff.

Model IV describes a realistic scenario for a standard,
truncated thin disk with an additional structure made
by an ADAF-type corona which extends in the inner
zones where the disk evaporates [32, 33]. We there-
fore model the disk using the Shakura-Sunyev solution
and the corona by the self-consistent solution described
in [34]. In our analysis, we vary the coronal density by
several orders of magnitude to investigate its effect on
the instability. Furthermore, in thin disks the thickness
is H/R � 1. To try to capture this effect we multiply
the radial Shakura-Sunyev profile by a sin2 θ [11]. As a
matter of fact, even more thinner profiles can be consid-
ered, but they would require higher angular resolution
when computing the spectrum (see Sec. III). As for the
ADAF-type corona, the geometry is quasispherical so we
can safely neglect deviations from spherical symmetry.
Therefore, in Model IV we consider the following effec-
tive mass:

µ2
eff,IV(r, θ) = α

[
ρHΘ(r − r0)

(
1−

√
r0

r

) 11
20 (r0

r

) 15
8 ×

sin2 θ + ρC

(
1

r

) 3
2 ]
. (15)

Finally, to explore the difference between the radial ge-
ometry of a thin and a thick disk, in Model V we also
consider a radial profile typical of a thick-disk axisym-
metric model with the same corona as in Model IV:

µ2
eff,V(r, θ) = α

[
ρHΘ(r − r0)

(
1− r0

r

)(r0

r

) 3
2

sin2 θ

+ ρC

(
1

r

) 3
2 ]
. (16)

Note that the salient features of these models can be
qualitatively captured by three parameters, which, on
physical grounds, should produce the following effects
(see also Fig. 1):

• Parameter ρH represents the height of the barrier.
If this value is high enough, it can naturally confine
the scalar modes into a cavity. The higher the ρH
the more efficient the confinement. As ρH repre-
sents a potential barrier rather than a bare mass
(at variance with the standard superradiant insta-
bility from massive bosons), increasing ρH should
not stabilize the modes, but only confine them bet-
ter.

• Parameter r0 is the width of the cavity. If it is
large enough, the barrier can efficiently confine the
modes. In particular, a necessary requirement is
that the width of the cavity must be greater than
(or at least comparable to) the Compton wave-
length of the modes [35]. In the following we con-
sider two representative truncation values: r0 =
8M and r0 = 14M .
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• Parameter ρC , instead, represents an offset that in-
troduces an effective asymptotic mass to the scalar
field, thus contributing to stabilizing the modes.
Note also that, if the barrier is high enough and
the modes are strongly confined in it, ρC should be
relevant only inside the cavity, because the part of
the scalar field transmitted outside should be neg-
ligible. This effect will be explored by comparing
Model I with Model II.

In particular, as we shall later discuss, in the disk
µeffM ∼

√
αρHM should be sufficiently large for the bar-

rier to confine the mode efficiently, whereas in the corona
µeffM ∼ √αρCM corresponds to the gravitational cou-
pling that governs the effective mass of the field inside
the cavity. As such,

√
αρCM � O(0.1) for the instabil-

ity not to be quenched.

III. NUMERICAL METHODS FOR
NON-SEPARABLE EQUATIONS IN

ARBITRARILY SPINNING SPACETIME

In this section we present the numerical methods used
to compute the spectrum of accreting spinning BHs in
scalar-tensor theories. We assume a stationary back-
ground and a e−iωt time dependence for the perturba-
tion, where ω = ωR+iωI is the (complex) eigenfrequency.
Unstable modes correspond to solutions having ωI > 0,
which exponentially grow in time. In the specific case of
superradiant instabilities, this exponential growth is trig-
gered if the mode satisfies the superradiant condition [8],
i.e. 0 < ωR < mΩH = ma

r2++a2
, where aM is the BH an-

gular momentum, r+ is the radius of its event horizon,
and m is the azimuthal number of the mode.

We use a procedure consisting in two different numer-
ical methods, both in the frequency domain. We first
use a direct shooting method [36] for finding solutions
of Eq. (8) in the case of spherical symmetry, i.e. for
nonspinning BHs and when the effective mass profile de-
pends only on the radial coordinate. Imposing suitable
boundary conditions at the horizon and at infinity, the
shooting method allows us to solve the eigenvalue prob-
lem. Then, the wavefunctions and eigenfrequencies are
used as starting guess solutions for computing the spin-
ning case, by applying a numerical method suitable for
nonseparable differential equations. In particular, fol-
lowing [37], we express Eq. (8) as a nonlinear eigenvalue
problem which we solve with the nonlinear inverse itera-
tion algorithm [38] (see below for details). Starting with
the spherical symmetric case, we can iteratively solve the
problem by gradually increasing the spin until we obtain
the desired spinning configuration. With this method we
can study also quasiextremal BHs and generic nonsepa-
rable equations.

For the case of effective mass profiles having a θ-
dependence through sin2 θ, the field equations are non-
separable even for a nonspinning BH. In this case we

introduce an extra iterative cycle in the procedure. We
express the generic effective mass of any of the previous
models as

µ2
eff(r, θ) = µ2

r(r)(1− k cos2 θ) + µ2
0(r) , (17)

where we introduced the fictitious parameter k connect-
ing purely radial profiles (k = 0) with θ-depending pro-
files (k = 1), whereas µ2

0(r) comes from the BH corona.
The extra cycle consists in applying the nonlinear inverse
iteration to finding the mode of a nonspinning BH with a
nonspherical density profile (k = 1), using solutions with
k = 0 as starting guess: at each iteration we gradually
increase k and use the previous result as a guess, until
we obtain the desired configuration with k = 1 and zero
BH spin. Finally, we use the latter solution as a starting
guess to find the modes of a spinning BHs with k = 1, as
previously explained. Details of the numerical methods
outlined below are given in the next subsections.

1. Nonspinning BHs with radial density profiles: direct
shooting method

In the direct shooting method, the system is integrated
from the horizon to infinity. In particular, using the
ansatz

ϕ(t, r, θ, φ) =
∑
l,m

Rlm(r)

r
e−iωtYlm(θ, φ) (18)

in spherical symmetry, the Klein-Gordon equation can be
rearranged to obtain a Schrödinger-like equation

DRlm = 0 (19)

where f(r) = 1 − 2M/r, M is the mass of the BH, and

we defined the differential operator D ≡ d2

dr2∗
+ ω2 −

f(r)
(
l(l+1)
r2 + 2M

r3 + µ2
eff

)
, where r∗ is the tortoise co-

ordinate given by dr/dr∗ = f(r). Owing to the spherical
symmetry of the system, modes with different multipole
numbers l,m are decoupled. This equation is then solved
by direct integration imposing suitable boundary condi-
tions. In particular, at the horizon the solution must be
a purely ingoing wave, given that the horizon behaves as
a one-way membrane,

Rlm ∼ e−iωr∗
∑
n

bn(r − 2M)n , (20)

while at infinity, the leading-order general solution reads:

Rlm ∼ Be−k∞r∗ + Ce+k∞r∗ , (21)

where k∞ =
√
µ2
∞ − ω2 and µ∞ = lim

r→∞
µeff(r, θ). Usu-

ally, in the context of massive boson superradiant insta-
bilities, the appropriate condition is C = 0, implying ex-
ponentially damped solutions at infinity, i.e. quasibound
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states. Nevertheless, in our system the confinement is
provided by a potential barrier in the vicinity of the BH,
instead that by an asymptotic mass. In particular, in
realistic accretion models the effective mass at infinity
vanishes. The condition C = 0 therefore would not cor-
respond to damped solutions at infinity, but to ingoing
waves from infinity. Clearly this solution is not physi-
cal, as it would correspond to an energy injection from
infinity. Therefore, we must set the opposite conditions
B = 0, which is the one that corresponds to quasinor-
mal modes (QNMs), i.e. outgoing waves at infinity (see
Ref. [39] for a review). In some sense, we are hence look-
ing for modes that were supposed to behave as QNMs if
we did not have any effective mass; however, due to the
scalar coupling to matter, these modes are confined by a
barrier in the vicinity of the BH, and are thus prone to
the superradiant instability if the BH spins sufficiently
fast.

We have also adapted a variation of the classical shoot-
ing method, where we integrate from the horizon to a
fixed point and from infinity to the same point, and im-
pose regularity of the wavefunction and its derivative to
solve the equations [12]. We checked that the result is in-
dependent on the matching point and that the two meth-
ods give the same results.

2. Nonseparable perturbations: Čebyšëv interpolation and
nonlinear eigenvalue problem

Let us now consider the case of nonseparable perturba-
tions, which is relevant for both spinning BHs and even
for nonspinning BHs if the effective mass depends on the
angular coordinate θ.

We assume an axisymmetric (Kerr) background so that
perturbations have a definite azimuthal number m. We
rewrite Eq. 8 in the following form:{

1

∆(r)
[L2 + a2 cos2 θ(µ2

eff(r, θ)− ω2)]− 1

∆(r)

∂

∂r

[
∆(r)

∂

∂r

]
− ω2 −

P 2
+

(r − r+)2
−

P 2
−

(r − r−)2
+

A+

r − r+
− A−
r − r−

+ µ2
eff(r, θ)

(
1 +

B+

r − r+
− B−
r − r−

)}
ϕ(t, r, θ, φ) = 0 ,

(22)

where A± = ∓2ω2M +
P 2

++P 2
−−(8M2−a2)ω2

r+−r− , B± =

2M2−a2
r+−r− ±M , limr→∞ µr(r) = 0, r± = M ±

√
M2 − a2,

P± = ma−2ωMr±
r+−r− , L2 = − 1

sin θ
∂
∂θ

(
sin θ ∂∂θ

)
− 1

sin2 θ
∂2

∂φ2 ,

and ∆(r) = (r − r+)(r − r−). Note that the dependence
on k is contained inside µ2

eff(r, θ) in the above equation.
At the horizon we must have ingoing waves,

ϕ ∼ (r − r+)iP+ , (23)

whereas, as previously discussed, we impose that there

are no waves coming from infinity,

ϕ ∼ r−1−
M(2ω2−µ2∞)

k∞ ek∞r . (24)

We apply the following ansatz for the scalar field [37]:

ϕ(t, r, θ, φ) = F (r)
∑
l,m

Blm(ζ(r))Ylm(θ, φ)e−iωt , (25)

where

F (r) =

(
r − r+

r − r−

)iP+

(r−r−)−1−
M(2ω2−µ2∞)

k∞ ek∞(r−r+)

(26)

captures the asymptotic behaviors of the solution.
Henceforth for simplicity we drop the index m from Blm.
In the numerical results presented in the next section we
will always consider the case m = 1. In the above ansatz
Bl(ζ(r)) are radial functions depending on the auxiliary
radial coordinate ζ ∈ (−1, 1), defined by the following
mapping

ζ(r) =
r −

√
4r+(r − r−) + r2

−

r − r−
, (27)

r(ζ) =
4r+ + r−(ζ2 − 1)

(ζ − 1)2
. (28)

By performing a spherical harmonics decomposition of
Eq. 22, we obtain an infinite cascade of coupled radial
equations:[

∂2

∂ζ2
+ C

(1)
l (ζ)

∂

∂ζ
+ C

(2)
l (ζ)

]
Bl(ζ)

+

4∑
j=−4

C
(3)
l,j (ζ)Bj(ζ) = 0 , (29)

where we have the following expressions for the couplings

C
(3)
l,j (ζ) = −

c
(1)
l,j

ζ ′2(r(ζ))

{
a2[µ2

r(r(ζ)) + µ2
0(r(ζ))− ω2]

∆(r(ζ))

−kµ2
r(r(ζ))

[
1 +

B+

r(ζ)− r+
− B−
r(ζ)− r−

]}
+

kc
(2)
l,j a

2µ2
r(r(ζ))

ζ ′2(r(ζ))∆(r(ζ))
, (30)

with the Clebsch-Gordan coefficients:

c
(1)
l,j = 〈l,m| cos2 θ |j,m〉 =

=
1

3
δlj +

2

3

√
2j + 1

2l + 1
〈j, 2,m, 0| l,m〉 〈j, 2, 0, 0| l, 0〉 ,

(31)
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c
(2)
l,j = 〈l,m| cos4 θ |j,m〉 =

=
1

5
δlj +

4

7

√
2j + 1

2l + 1
〈j, 2,m, 0| l,m〉 〈j, 2, 0, 0| l, 0〉

+
8

35

√
2j + 1

2l + 1
〈j, 4,m, 0| l,m〉 〈j, 4, 0, 0| l, 0〉 , (32)

and the following expressions for the remaining functions

C
(1)
l (ζ) =

(
1

r(ζ)− r+
+

1

r(ζ)− r−

)
1

ζ ′(r(ζ))
+

1

ζ ′(r(ζ))

2F ′(r(ζ))

F (r(ζ))
+
ζ ′′(r(ζ))

ζ ′2(r(ζ))
, (33)

C
(2)
l (ζ) =

1

ζ ′2(r(ζ))

{
F ′′(r(ζ))

F (r(ζ))
+

[
1

r(ζ)− r+
+

1

r(ζ)− r−

]
F ′(r(ζ))

F (r(ζ))
+

P 2
+

[r(ζ)− r+]2
+

P 2
−

[r(ζ)− r−]2

−
[
µ2
r(r(ζ)) + µ2

0(r(ζ))
] [

1 +
B+

r(ζ)− r+
− B−
r(ζ)− r−

]
− A+

r(ζ)− r+
+

A−
r(ζ)− r−

+ ω2 − l(l + 1)

∆(r(ζ))

}
. (34)

The couplings c
(1)
l,j are nonzero for j ∈ {l, l ± 2}, while

c
(2)
l,j are nonzero for j ∈ {l, l ± 2, l ± 4}, thus each l-mode

is coupled with 4 other differing ones. In order to find
solutions we truncate the infinite tower to some L (i.e.
we neglect perturbations with l ≤ L) and transform the
remaining (finite) set of radial equations into a matrix
form. The radial coordinate is then discretized through
a Čebyšëv interpolation, which is defined by the following
polynomials

pn(ζ) =

∏
q 6=n(ζ − ζq)∏
q 6=n(ζn − ζq)

=
p(ζ)wn
ζ − ζn

, (35)

p(ζ) =

N∏
q=0

(ζ − ζq) , (36)

with Čebyšëv nodes

ζn = cos

(
π(2n+ 1)

2(N + 1)

)
, (37)

and corresponding weights [37, 40, 41]

wn =
1

p′(ζn)
= (−1)n sin

(
π(2n+ 1)

2(N + 1)

)
. (38)

where N + 1 is the number of interpolation points and
n ∈ [0, N ]. The radial functions Bl are hence described
by a set of (L+ 1)(N + 1) coefficients Bl(ζk), that define
a (L + 1)(N + 1)-dimensional array B, while the radial

equations take the form

N∑
q=0

[
p′′q (ζn)Bl(ζq) + C

(1)
l (ζn)p′q(ζn)Bl(ζq)

]
+

C
(2)
l (ζn)Bl(ζn) +

4∑
j=−4

C
(3)
l,j (ζn)Bj(ζn) = 0 (39)

By exploiting the second barycentric form of the La-
grange polynomials, we can get numerically robust dif-
ferentiation matrices [37, 40, 41]:

p′q(ζn) =


wq/wn
ζn−ζq n 6= q

−
N∑

b,b6=n
p′b(ζn) n = q

(40)

p′′q (ζn) =


2p′q(ζn)

(
p′n(ζn)− 1

ζn−ζq

)
n 6= q

2p′q(ζn)p′n(ζn) +
N∑

b,b6=n

2p′b(ζn)
ζn−ζb n = q

(41)
At the end of this procedure we obtain a nonlinear eigen-
value problem in ω and B,

A(ω)B = 0 , (42)

to be solved through nonlinear inverse iteration [38].

IV. RESULTS

A. Models I: key ingredients for the instability

We start by studying the first three models with the
same density profiles considered in [11], to show that the
obstacles existing in plasma-driven superradiant instabil-
ities can be circumvented in scalar-tensor theories. Fig-
ure 2 shows the modes of Model I with ρH = 4/M2, ρC =
0.09/M2, r0 = 8M , and different values of α. For α = 1
we recover the results obtained in [11]. In this case, su-
perradiance does not appear before a/M = 0.99. How-
ever, if we consider lower values of α the effective mass
of the scalar field (and hence the superradiant mode fre-
quency) decreases and the superradiant condition is ful-
filled for smaller values of the spin. This is evident by
looking at the real part of the mode in the left panel of
Fig. 2. As the coupling α decreases, the real part becomes
smaller, eventually entering the superradiance condition.
Therefore, while in plasma-driven superradiant instabili-
ties in GR a small increase of the coronal mass is sufficient
to quench the instability [11], in scalar-tensor theories
decreasing α is sufficient to circumvent this obstacle and
recover an efficient superradiant regime, as also discussed
more in detail below.
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FIG. 2. Real (left panel) and imaginary (right panel) part of the modes in Model I as a function of the BH spin for different
values of the coupling α. For lower values of this parameter, ωR decreases and the modes become superradiantly unstable for
smaller values of the BH spin.

Nevertheless, by decreasing α too much, the poten-
tial barrier becomes too low and is not able to confine
the modes. For the case of Model I, we numerically find
that when α < 0.15 the eigenfunctions start having a
nonnegligible amplitude even after the potential barrier,
suggesting that the confinement starts becoming ineffi-
cient.

Assuming a high spinning BH, the superradiant insta-
bility can therefore be quenched in the following cases:

• If the density of the corona is high enough to sta-
bilize the system. In Model I and for the chosen
parameters, this happens when

√
αρCM > 0.42.

• If the barrier is not high enough to confine modes.
This starts happening when

√
αρHM < 0.76.

• If the width of the cavity is not sufficiently large
as to support quasibound states inside it. Indeed,
when the effective mass within the cavity is neg-
ligible (i.e.,

√
αρCM � 0.1), this system resem-

bles the original BH bomb, where the frequencies
scale as the inverse of the width of the cavity,
ωR ∼ 1/r0 [35]. In Fig. 3 we show that we recover
the same scaling in our system.

Reversing the argument, if the barrier is high enough
and the cavity wide enough, modes can be confined ef-
ficiently. If in addition the coronal density is tenuous
enough not to provide modes in the cavity with a too
large effective mass, then an efficient superradiant insta-
bility can develop around an accreting spinning BH. We
shall come back to this point in Sec. V.

For the time being we wish to stress that the main
difference with respect to [11] is the free parameter α ap-
pearing in scalar-tensor theories. In [11], it was shown
that, even though the disk can create a cavity where
superradiant modes can develop, an extremely tenuous
plasma inside this cavity (of the order of ne ∼ 10−2cm−3

for M = 10M�) is sufficient to quench the instability.

��� ��� ��� ��� ����

����

����

����

����

��

�
�
ω
�

— Numerical Data

- - Linear Fit

FIG. 3. Real part of the modes in Model I as a function of
r0 for αρHM

2 = 4, αρCM
2 = 0, and a = 0. The real part

decreases linearly with 1/r0, as can be observed by comparing
the numerical result with a linear fit.

Given that realistic coronal densities are orders of mag-
nitude higher, the instability is strongly suppressed. On
the other hand, as discussed in detail in Sec. V below, in
our system there are large unconstrained ranges of α in
which the effective mass due to the corona is negligible
and, yet, the disk barrier is sufficiently high.

B. Models II and III: truncation of the corona and
smoothness of the profiles

Model II aims to quantitatively verify that only the
coronal density inside the cavity is relevant for providing
an additional effective mass. For this reason, we trun-
cate the corona at r0, where the disk begins. We ob-
tain numerical results which almost coincide with those
of Model I, confirming that what is really relevant to in-
crease the effective mass – and hence to possibly quench
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FIG. 4. Real and imaginary parts of modes respectively from
Model I (blue) and Model III (orange). By replacing the step
function with a sigmoid, the profile becomes more regular and
the corners disappear.

the instability – is only the density inside the cavity.
Finally, in Model III we replace the step function of

the inner edge by a sigmoid, in order to show that the
corners in both the real and imaginary parts shown in
Fig. 2 are an artifact of the Heaviside function used in
modelling the density profile. In Fig. 4 we show that
when the barrier is instead described by a smooth sig-
moid, the corners disappear, and the resulting modes are
also smooth functions of the model parameters.

C. Models IV and V: role of the corona density

In these models, we study the impact of different coro-
nal density by parametrizing ρC = γρH and varying
the parameter γ in the realistic range 10−6 − 10−1 (see
e.g. [29, 30, 32]). Figure 5 show the imaginary part of
the solutions for γ = 10−6, r0 = 14M , ρH = 4/M2

obtained by varying the parameter α in Model IV and
Model V. By varying α across two orders of magnitude
the instability is preserved with qualitatively similar fea-
tures: this is because the coronal density is so low that
it remains negligible, while the disk density is sufficiently
high to confine the modes in this range of α. Thus, if
the coronal density is strongly suppressed with respect
to the disk one, it is possible to have an instability in a
wide range of the coupling α. Also note that assuming
a larger truncation radius yields a smaller spin threshold

for the instability. This is because, akin to the original
BH bomb phenomenon, the real part of the frequency
decreases with the truncation radius ωR ∼ 1/r0 [35] (see
Fig. 3).

Finally, Fig. 6 shows the imaginary part of the modes
as a function of α for different density ratios γ in Model V
with ρH = 4/M2 and r0 = 8M . Note that, for certain
values of α (e.g. α ≈ 1 for the parameters chosen in
Fig. 6) the modes are independent of γ in the γ � 1
limit. This is because the coronal density in this regime
is subdominant and does not affect the mode. On the
other hand, as the α parameter grows, the coronal effec-
tive mass eventually becomes relevant and quenches the
instability. In particular, for the chosen parameters the
instability is suppressed when αγ & O(10−1).

V. CONSTRAINTS ON SCALAR-TENSOR
THEORIES FROM SPINNING BH

OBSERVATIONS

After having explored the parameter space of our mod-
els and having identified the key features of the plasma-
triggered superradiant instability in scalar-tensor theo-
ries, we are now in a position to draw a general picture
and use it to identify the parameter space of scalar-tensor
theories in which the instability is effective.

The first key ingredient is a sufficiently dense disk that
extends down to the BH up to some truncation radius
r0 > O(few)M , as predicted in various models. The
requirement that the disk can effectively confine scalar
modes implies

√
αρHM & 1 . (43)

For a standard thin disk the typical outer density is [22,
42]:

ρ ≈ 169
f

11
20

Edd

(r/M)
15
8

(
1−

√
r0

r

) 11
20
(

0.1

β

) 7
10

M
− 7

10
6 kg/m

3
,

(44)
where r0 is the truncation radius, β is the viscosity pa-
rameter, fEdd = Ṁ/ṀEdd is the mass accretion Edding-
ton ratio, and we defined M6 = M/(106M�). Using the
above normalization, Eq. (43) yields a lower bound on
the scalar coupling,

α & αc =
1

ρHM2
≈ 3× 106M

−13/10
6 , (45)

so that supermassive BHs would yield a smaller lower
bound.

The above condition is necessary but not sufficient.
In the presence of a corona with characteristic density
ρC = γρH , one should also require that the effective mass
inside the cavity be not too large, namely,

√
αρCM . 1 . (46)
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FIG. 5. Superradiant modes of Model IV (left) and Model V (right) for r0 = 14M and γ = 10−6 as functions of the dimensionless
spin parameter for different values of α. Even by varying α across two orders of magnitude, the instability is preserved.
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FIG. 6. Imaginary part as a function of α in Model V for
different values of the density ratio γ between the corona and
the disk for a spinning BH with a = 0.97M . When αγ &
O(10−1), the instability is suppressed. Hence, the lower γ,
the more efficient the instability is across several orders of
magnitudes in α.

This condition can be written as a upper bound on the
scalar coupling,

α .
αc
γ
≈ 3

γ
× 106M

−13/10
6 . (47)

Since the corona is much less dense than the disk, γ � 1
and condition 43 has always some overlap with condi-
tion 46. In particular, provided the disk truncation is
not too close to the BH horizon, the superradiant insta-

bility can occur when

3× 106 . αM
13/10
6 . 3

(
10−4

γ

)
1010 , (48)

where we have normalized the typical coronal density
such that γ = ρC/ρH = 10−4.

Remarkably, different classes of BHs could constrain
different ranges of α, extending roughly from α ∼ O(100)
for M ∼ 109M� up to α ∼ O(1017) for M ∼ 5M�. Fur-
thermore, as shown in the previous section the instability
time scale, τ = 1/ωI , is typically very short compared
to astrophysical time scales. The instability can there-
fore be effective to change the dynamics of the system
(see [8, 43] for the phenomenology of the BH superradi-
ant instability in various systems).

This implies that, providing the accretion flow can be
accurately modelled, constraints on scalar-tensor theories
coming from the observation of highly-spinning accret-
ing BHs can rule out scalar-tensor theories with positive
couplings in a very wide range. Interestingly, while there
exists stringent constraints on α < 0 coming from sponta-
neous scalarization and the absence of dipolar radiation
in binary pulsars [9, 10, 44], the regime where α > 0 is
essentially unconstrained and is relevant for cosmology.

The α� 1 regime is particularly interesting for certain
scalar-tensor theories. For example, in the symmetron
model [6] the conformal factor reads2 A(φ) = 1 + αφ2/2

2 The bare mass term and scalar self-interactions of this cosmo-
logical model are negligible for astrophysical BHs [45, 46], so the
approximations assumed in Sec. II apply.



11

and requiring the Milky Way to be screened imposes
α & 106 − 108 [46–48], which perfectly lies in the range
that can be potentially excluded by accretion-driven BH
superradiance.

VI. ON THE ROLE OF NONLINEARITIES FOR
PLASMA-DRIVEN SUPERRADIANT

INSTABILITY IN SCALAR-TENSOR THEORIES

As previously discussed, we find a wide range of pa-
rameter space prone to trigger matter-driven BH super-
radiant instabilities in scalar-tensor theories. Since dur-
ing the instability the amplitude of the scalar field grows
exponentially in a short timescale, linear theory eventu-
ally breaks down. It is therefore crucial to understand the
modifications that nonlinearities will introduce in the sys-
tem. This can be done by analysing the backreaction of
the superradiantly growing scalar field on to the plasma.
In the Jordan frame, plasma particles follow geodesics,
as it can be easily seen by the conservation of the matter
stress energy tensor:

∇νTµν = 0→ Duµ

Dτ
= uν∇νuµ = 0, (49)

where uµ is the plasma four velocity in the Jordan frame.
Switching to the Einstein frame, this equation can be
rewritten as (see e.g. [1]):

DuµE
DτE

= fνu
ν
Eu

µ
E − f

µ
E(uE µuE

µ), (50)

where uµE = dxµ/dτE and τE are the four velocity and
proper time in the Einstein frame, respectively, whereas
fν = −∂ν lnA(Φ) and fµE = gµνE fν . By expanding the

conformal factor around Φ ∼ Φ(0) as before, this equation
can be rewritten to the leading order as

DuµE
DτE

= −α
(
ϕ∂νϕu

µ
Eu

µ
E − g

µα
E ϕ∂αϕ(uE

νuE ν)
)
. (51)

From this equation it is possible to observe that the ac-
celeration of the plasma particles in the Einstein frame
depends on nonlinear terms in the scalar field ϕ, with
coupling constant α. By solving this equation it is then
possible to relate the backreaction on the four velocity
with the backreaction on the density via the continuity
equation of the fluid. Hence, nonlinear effects can mod-
ify the density of the fluid, which evolves dynamically.
The details on the evolution depend on the specific mod-
els and on higher-order scalar interactions in the scalar-
tensor theories.

Nevertheless, and most crucially, this system is safe
from another nonlinear effect, the relativistic trans-
parency, which severely hampers plasma-driven super-
radiant instabilities in GR [17]. Due to this nonlinear
correction, the effective photon mass in a plasma is mod-
ified in the relativistic regime [17–19]:

ω2
p =

4πe2n

me

√
1 + e2E2

m2
eω

2

. (52)

In the presence of large-amplitude electric fields, the
effective mass vanishes, which dramatically quenches
plasma-driven GR instabilities before a significant
amount of energy can be extracted from the BH [17].
This effect can be interpreted as a relativistic increase of
the relativistic electron mass-energy, and it is therefore
a completely different effect from the field backreaction
on the density distribution. We will now show that in
scalar-tensor theories the effective mass does not suffer
from a similar suppression. Indeed, in this system the
effective mass is the trace of the stress-energy tensor,
Tµν = ρuµuν . The crucial point is that, no matter what
the fluid four-velocity is, the trace of this tensor is al-
ways the rest-mass density, given that uµu

µ = −1 is a
relativistic invariant. Therefore, even if the plasma is ac-
celerated to relativistic velocities, the expression of the
effective mass does not change (although the density be-
comes a dynamical quantity as discussed before). This
follows from the fact that the trace of a tensor is a scalar
quantity, which is invariant under Lorentz boosts. Hence,
no Lorentz boost factor enters in the effective scalar mass
in the relativistic nonlinear regime, at variance with the
standard case of plasma-photon interactions.

VII. CONCLUSION AND EXTENSIONS

We have studied in detail the phenomenon of matter-
driven BH superradiant instabilities in scalar-tensor the-
ories. We have considered arbitrarily spinning BHs and
realistic models of truncated thin and thick accretion
disks. In general the linearized scalar equation is non-
separable, and we have discussed in detail an efficient
numerical method to find the unstable modes for this
system.

We found two interesting results: i) although the qual-
itative features of the instability are akin to the case of
plasma-driven electromagnetic superradiant instabilities
within GR, the obstacles preventing the latter (namely
suppression due to the corona [11] and nonlinearities [17])
can be circumvented in scalar-tensor theories; ii) Re-
markably, there exists a very wide range of (positive and
large) scalar couplings where BH superradiant instabil-
ities can be triggered in realistic scenarios. This range
is unconstrained by observations and it actually includes
the regime where certain scalar-tensor alternatives to the
dark energy, e.g. symmetron models with screening, can
evade solar system constraints while remaining cosmolog-
ically viable. Our results suggest that such theories could
be ruled out as dark-energy alternatives by the observa-
tion of highly spinning BHs, using the same technique
adopted to constrain ultralight bosons from BH mass-
spin observations [8, 49, 50]. However, at variance with
the ultralight boson case, here an accurate modelling of
the accretion flow around the BH is needed in order to
quantitatively characterize the instability.

Furthermore, the possibility of circumventing nonlin-
ear damping effects suggests that the models proposed
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for ordinary plasma-driven instabilities (e.g. as a possi-
ble explanation for fast radio bursts [13] or for constraints
on primordial BHs [12]) could actually work in the con-
text of scalar-tensor theories.

Although the quantitative features of the instability
depend on the geometry of the accretion flow near a
BH, the key ingredients are naturally predicted in various
models: i) a sufficiently dense disk with a sharp transition
from a low-density to a high-density region in the vicin-
ity of the ISCO; ii) A sufficiently tenuous corona in the
low-density region, such that its density is much smaller
than the one of the disk; iii) a BH spinning sufficiently
fast to make the quasibound modes unstable against the
superradiant instability.

The numerical method implemented to compute the
unstable modes in the absence of separable equations is
general and robust, and could find applications in other
contexts.

Another interesting finding is the fact that the unsta-
ble modes of this system resemble a quasibound state
in the vicinity of the BH but are in fact propagating
waves far from it. Therefore, one could imagine situa-
tions in which (perhaps during the superradiant growth)
the quasibound states are not efficiently trapped and

could propagate to infinity, possibly after several reflec-
tions within the cavity. The scalar modes in the Einstein
frame correspond to a (breathing) scalar polarization of
the gravitational waves in the Jordan frame. There-
fore, the phenomenology of this effect would be simi-
lar to the gravitational-wave echoes predicted for mat-
ter fields [51], near-horizon structures [52], and exotic
compact objects [53]. A more detailed study of this in-
teresting phenomenon, that we leave to the future, will
probably require a time-domain analysis.

Finally, an important follow-up of our work is to study
backreaction effects on the plasma and the full dynamics
of the system at the nonlinear leve.

ACKNOWLEDGMENTS

We thank Vitor Cardoso for comments on the
manuscript and Riccardo La Placa for useful conversa-
tions about accretion physics. We acknowledge the fi-
nancial support provided under the European Union’s
H2020 ERC, Starting Grant agreement no. DarkGRA–
757480. We also acknowledge support under the MIUR
PRIN and FARE programmes (GW- NEXT, CUP:
B84I20000100001).

[1] Y. Fujii and K. Maeda, The scalar-tensor theory of
gravitation. Cambridge Monographs on Mathematical
Physics. Cambridge University Press, 7, 2007.

[2] V. Faraoni, Cosmology in scalar tensor gravity. 2004.
[3] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis,

“Modified Gravity and Cosmology,” Phys. Rept. 513
(2012) 1–189, arXiv:1106.2476 [astro-ph.CO].

[4] E. Berti et al., “Testing General Relativity with Present
and Future Astrophysical Observations,” Class. Quant.
Grav. 32 (2015) 243001, arXiv:1501.07274 [gr-qc].

[5] C. M. Will, “The Confrontation between General
Relativity and Experiment,” Living Rev. Rel. 17 (2014)
4, arXiv:1403.7377 [gr-qc].

[6] K. Hinterbichler and J. Khoury, “Symmetron Fields:
Screening Long-Range Forces Through Local Symmetry
Restoration,” Phys. Rev. Lett. 104 (2010) 231301,
arXiv:1001.4525 [hep-th].

[7] J. Khoury and A. Weltman, “Chameleon fields:
Awaiting surprises for tests of gravity in space,” Phys.
Rev. Lett. 93 (2004) 171104, arXiv:astro-ph/0309300.

[8] R. Brito, V. Cardoso, and P. Pani, Superradiance: New
Frontiers in Black Hole Physics, vol. 971. Springer,
2020. arXiv:1501.06570 [gr-qc].

[9] V. Cardoso, I. P. Carucci, P. Pani, and T. P. Sotiriou,
“Matter around Kerr black holes in scalar-tensor
theories: scalarization and superradiant instability,”
Phys. Rev. D 88 (2013) 044056, arXiv:1305.6936
[gr-qc].

[10] V. Cardoso, I. P. Carucci, P. Pani, and T. P. Sotiriou,
“Black holes with surrounding matter in scalar-tensor
theories,” Phys. Rev. Lett. 111 (2013) 111101,
arXiv:1308.6587 [gr-qc].

[11] A. Dima and E. Barausse, “Numerical investigation of
plasma-driven superradiant instabilities,” Class. Quant.
Grav. 37 no. 17, (2020) 175006, arXiv:2001.11484
[gr-qc].

[12] P. Pani and A. Loeb, “Constraining Primordial
Black-Hole Bombs through Spectral Distortions of the
Cosmic Microwave Background,” Phys. Rev. D 88
(2013) 041301, arXiv:1307.5176 [astro-ph.CO].

[13] J. P. Conlon and C. A. Herdeiro, “Can black hole
superradiance be induced by galactic plasmas?,” Phys.
Lett. B 780 (2018) 169–173, arXiv:1701.02034
[astro-ph.HE].

[14] Z. Wang, T. Helfer, K. Clough, and E. Berti,
“Superradiance in massive vector fields with spatially
varying mass,” arXiv:2201.08305 [gr-qc].

[15] E. Cannizzaro, A. Caputo, L. Sberna, and P. Pani,
“Plasma-photon interaction in curved spacetime I:
formalism and quasibound states around nonspinning
black holes,” Phys. Rev. D 103 (2021) 124018,
arXiv:2012.05114 [gr-qc].

[16] E. Cannizzaro, A. Caputo, L. Sberna, and P. Pani,
“Plasma-photon interaction in curved spacetime. II.
Collisions, thermal corrections, and superradiant
instabilities,” Phys. Rev. D 104 no. 10, (2021) 104048,
arXiv:2107.01174 [gr-qc].

[17] V. Cardoso, W.-d. Guo, C. F. Macedo, and P. Pani,
“The tune of the universe: the role of plasma in tests of
strong-field gravity,” arXiv:2009.07287 [gr-qc].

[18] P. Kaw and J. Dawson, “Relativistic Nonlinear
Propagation of Laser Beams in Cold Overdense
Plasmas,” Physics of Fluids 13 no. 2, (Feb., 1970)
472–481.

http://dx.doi.org/10.1017/CBO9780511535093
http://dx.doi.org/10.1017/CBO9780511535093
http://dx.doi.org/10.1007/978-1-4020-1989-0
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://arxiv.org/abs/1106.2476
http://dx.doi.org/10.1088/0264-9381/32/24/243001
http://dx.doi.org/10.1088/0264-9381/32/24/243001
http://arxiv.org/abs/1501.07274
http://dx.doi.org/10.12942/lrr-2014-4
http://dx.doi.org/10.12942/lrr-2014-4
http://arxiv.org/abs/1403.7377
http://dx.doi.org/10.1103/PhysRevLett.104.231301
http://arxiv.org/abs/1001.4525
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://arxiv.org/abs/astro-ph/0309300
http://dx.doi.org/10.1007/978-3-319-19000-6
http://dx.doi.org/10.1007/978-3-319-19000-6
http://arxiv.org/abs/1501.06570
http://dx.doi.org/10.1103/PhysRevD.88.044056
http://arxiv.org/abs/1305.6936
http://arxiv.org/abs/1305.6936
http://dx.doi.org/10.1103/PhysRevLett.111.111101
http://arxiv.org/abs/1308.6587
http://dx.doi.org/10.1088/1361-6382/ab9ce0
http://dx.doi.org/10.1088/1361-6382/ab9ce0
http://arxiv.org/abs/2001.11484
http://arxiv.org/abs/2001.11484
http://dx.doi.org/10.1103/PhysRevD.88.041301
http://dx.doi.org/10.1103/PhysRevD.88.041301
http://arxiv.org/abs/1307.5176
http://dx.doi.org/10.1016/j.physletb.2018.02.073
http://dx.doi.org/10.1016/j.physletb.2018.02.073
http://arxiv.org/abs/1701.02034
http://arxiv.org/abs/1701.02034
http://arxiv.org/abs/2201.08305
http://dx.doi.org/10.1103/PhysRevD.103.124018
http://arxiv.org/abs/2012.05114
http://dx.doi.org/10.1103/PhysRevD.104.104048
http://arxiv.org/abs/2107.01174
http://arxiv.org/abs/2009.07287
http://dx.doi.org/10.1063/1.1692942
http://dx.doi.org/10.1063/1.1692942


13

[19] C. Max and F. Perkins, “Strong Electromagnetic Waves
in Overdense Plasmas,” Phys. Rev. Lett. 27 no. 20,
(Nov., 1971) 1342–1345.

[20] T. P. Sotiriou and V. Faraoni, “Black holes in
scalar-tensor gravity,” Phys. Rev. Lett. 108 (2012)
081103, arXiv:1109.6324 [gr-qc].

[21] M. A. Abramowicz and P. C. Fragile, “Foundations of
black hole accretion disk theory,” Living Reviews in
Relativity 16 no. 1, (Jan, 2013) .
http://dx.doi.org/10.12942/lrr-2013-1.

[22] N. I. Shakura and R. A. Sunyaev, “Reprint of
1973A&A....24..337S. Black holes in binary systems.
Observational appearance.,” A&A 500 (June, 1973)
33–51.
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