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Tackling new psychoactive 
substances through metabolomics: 
UHPLC‑HRMS study on natural 
and synthetic opioids in male 
and female murine models
Gaia Di Francesco 1, Camilla Montesano 1*, Flaminia Vincenti 1, Sabrine Bilel 2, Giorgia Corli 2, 
Greta Petrella 3, Daniel Oscar Cicero 3, Adolfo Gregori 4, Matteo Marti 2,5 & Manuel Sergi 1

Novel psychoactive substances (NPS) represent a broad class of drugs new to the illicit market that 
often allow passing drug-screening tests. They are characterized by a variety of structures, rapid 
transience on the drug scene and mostly unknown metabolic profiles, thus creating an ever-changing 
scenario with evolving analytical targets. The present study aims at developing an indirect screening 
strategy for NPS monitoring, and specifically for new synthetic opioids (NSOs), based on assessing 
changes in endogenous urinary metabolite levels as a consequence of the systemic response following 
their intake. The experimental design involved in-vivo mice models: 16 animals of both sex received 
a single administration of morphine or fentanyl. Urine was collected before and after administration 
at different time points; the samples were then analysed with an untargeted metabolomics LC-HRMS 
workflow. According to our results, the intake of opioids resulted in an elevated energy demand, 
that was more pronounced on male animals, as evidenced by the increase in medium and long chain 
acylcarnitines levels. It was also shown that opioid administration disrupted the pathways related to 
catecholamines biosynthesis. The observed alterations were common to both morphine and fentanyl: 
this evidence indicate that they are not related to the chemical structure of the drug, but rather on the 
drug class. The proposed strategy may reinforce existing NPS screening approaches, by identifying 
indirect markers of drug assumption.

New psychoactive substances (NPS) are a complex and diversified group of drugs, mainly of synthetic origin1, 
with pharmaco-toxicological properties that emulate the traditional drugs of abuse.

NPSs are not under control by the United Nations Drug Conventions but they have the potential to become a 
danger for public health comparable or even higher than the traditional drugs2. Despite being classified as drugs 
of abuse, NPS still may escape consistent legislation; this is mainly due to their complexity and the rate at which 
they are released in the global market each year, hampering their detection in seizures and biological samples3. 
These designer drugs are being subdivided into six main categories in relation to their effects: stimulants, syn-
thetic cannabinoid receptor agonists, hallucinogens, dissociatives, sedatives and novel synthetic opioids (NSOs)4. 
This latter class is among the most dangerous and fastest-growing group worldwide; from 2009 about 57 NSOs 
were identified in the European market5. It has been estimated that in 2020, among 68,630 opioid-related deaths 
recorded, 56,516 involved NSOs6. Nowadays the main NSOs include fentanyl derivatives (such as acetylfentanyl, 
carfentanyl) and non-fentanyl opioids like isotonitazene and brorphine7.

Due to the enormous number of substances synthesised every year, the complexity and variety of chemical 
structures of NSOs, the lack of analytical standards, and the unknown metabolic pathways by which they are 
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excreted, identifying and quantifying NSOs, or more generally NPS, in biological fluids takes on a high degree 
of complexity. The target methods, typically based on low resolution mass spectrometry (LRMS), are not able to 
reveal NPS, which may present slight modifications respect to known molecules, nor to identify their metabolites; 
therefore, target methods require frequent database updates to include new substances, followed by subsequent 
re-validation of analytical methods. In order to mitigate these issues, untargeted high-resolution MS (HRMS) 
represents an alternative approach for the development of new screening strategies; in fact, untargeted methods, 
have the potential to not be tied to the chemical structure of the compounds and are then more suitable for NPS 
analysis8. Specific mass spectrometric approaches have been recently identified as valuable strategies for some 
NPS class detection9,10, but they generally rely on structure similarity to known molecules.

In this context, metabolomics-driven approaches that do not directly focus on the chemical structure of the 
drugs but rather on the impact of NPS on the metabolome11,12 may be successful. Additionally, by identifying 
specific metabolic fingerprints related to drug consumption, more insights into the mechanisms by which the 
drug acts can be drawn and it may be helpful to underline metabolic perturbations associated with drug addic-
tion. A few studies have already demonstrated the applicability of this strategy for illicit drugs investigations, 
including, for example, GHB13, MDMA14, and synthetic cannabinoids15. However, changes observed on the 
endogenous level appear relatively small and unspecific, suggesting that more well-designed studies in animals 
are strongly needed11.

Metabolomics can be undertaken through targeted and untargeted methods; in this last case the objective 
is to characterize as many metabolites as possible (often more than 10,000 features). Currently, the state-of-
the-art technologies employed in untargeted metabolomics are nuclear magnetic resonance (NMR) and mass 
spectrometry (MS), often coupled with separation techniques.

Liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) is often used to detect 
hundreds or thousands of metabolites in a single sample in a highly sensitive and reproducible manner16.

The goal of this study was to identify characteristic metabolic fingerprints arising from the consumption of 
traditional and synthetic opioids. This class of drugs was selected considering the high number of available sub-
stances with diversified structures along with the recent rise in acute intoxication and overdose deaths linked to 
NSOs. These molecules are particularly difficult to identify in biological matrices, posing a difficult challenge for 
forensic chemists. This is mainly due to three aspects: (i) the variety of substances in the market and the speed 
with which new NSOs are introduced; (ii) the rapidity with which opioids are transformed into their metabolites; 
(iii) the low concentrations in biological fluids mainly due to the high psychoactive and analgesic potency of the 
substances even in low doses17. The development of alternative strategies that can counteract the illicit spread of 
NSOs is, therefore, of great interest. The experimental design involved in-vivo mice models: several mice, both 
males and females received a single administration of vehicle, morphine or fentanyl. Clinical effects were initially 
investigated to evaluate the doses of the two drugs that induced similar effects. Urine samples, collected before 
and after administration, at different time points, were then analyzed by LC-HRMS, with a robust untargeted 
metabolomics workflow. Finally, multivariate statistical classification methods were applied to the obtained data-
sets to recognize specific alterations in the endogenous metabolite pathways, connected to opioid consumption.

Results and discussion
Study of the clinical effects induced by morphine and fentanyl
In order to be able to compare the two opioids by metabolomic analysis, we used a dose of morphine (30 mg/
kg) and fentanyl (6 mg/kg) capable of causing the same pharmaco-toxicological effects both as analgesia and 
respiratory depression in male and female mice. These doses were chosen based on previous studies in CD-1 
male mice18,19; through several tests the equivalence of these doses was demonstrated.

Systemic administration of morphine (30 mg/kg) and fentanyl (6 mg/kg) equally increased the threshold to 
acute mechanical pain stimulus in the tail pinch test (Fig. 1A, D). The mechanical analgesia was significantly 
affected by treatment [F(2, 147) = 484.8, p < 0.0001], time [F(6, 147) = 54.05, p < 0.0001] and time × treatment 
interaction [F(12, 147) = 14.65, p < 0.0001].

Another observation was that the differential doses of the two opioids equally increased the threshold to acute 
thermal pain stimulus in the tail withdrawal test (Fig. 1B, D). The thermal analgesia was significantly affected 
by treatment [F(2, 147) = 590.1, p < 0.0001], time [F(6, 147) = 107.5, p < 0.0001] and time × treatment interaction 
[F(12, 147) = 31.16, p < 0.0001]. Morphine (30 mg/kg) or fentanyl (6 mg/kg) induces the same mechanical and 
analgesic effect on male and female mice (data not reported). The analgesic effects of morphine and fentanyl 
were previously investigated demonstrating the central role of the mu opioids receptors in the analgesia effects 
of opioids18,19.

In addition, morphine (30 mg/kg) and fentanyl (6 mg/kg) equally reduce the respiratory rate in mice (Fig. 1C, 
D). The respiratory rate was significantly reduced by treatment [F(2, 1512) = 81.32, p < 0.0001], time [F(71, 
1512) = 11,20, p < 0.0001] and time × treatment interaction [F(142, 1512) = 5 650, p < 0.0001]. Finally, the tested 
doses of the two opioids induces the same inhibition of respiratory rate in male and female mice (data not 
reported). Respiratory depression is a common adverse effect observed with many opioids. The effect of morphine 
and fentanyl on this parameter is well-established demonstrating a central role of the mu opioid receptors on 
this negative effect. In addition, in case of respiratory depression induced by fentanyl (6 mg/kg, i.p.), naloxone 
(mu opioid receptor antagonist) redosing was necessary to block this impairment18.

Metabolomic study design
In this work we studied the alteration of the urinary metabolic profile of 16 female and male mice (CD-1®) 
treated with two opioids: morphine (a natural opioid) and fentanyl (a synthetic opioid) as summarized in Fig. 2. 
These two substances were selected because their therapeutically use and their pharmacological effects have 
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been extensively studied. Furthermore, the pharmacological effect that they exert on the central nervous system 
is known, and is common to most opioids (synthetic and natural)20 allowing to focus on common metabolic 
changes induced by their administration.

Reliable detection of drug influence on the metabolome, requires standardized conditions to exclude con-
founding factors and in this context, animal research provides a degree of experimental control and precision 
not usually feasible in studies using human subjects.

Different doses of the drugs were administered (30 mg/kg for morphine and 6 mg/kg for fentanyl) but they 
can be considered as “equivalent” regarding the main opioid effects on the threshold to thermal and mechanical 
pain and respiratory activity, as discussed in the previous paragraph. Moreover, these effects overlap in male 
and female mice.

Figure 1.   Effect of the systemic administration of morphine (30 mg/kg i.p.) and fentanyl (6 mg/kg i.p.) on the 
tail pinch test (A), tail withdrawal (B), respiratory rate (C) of the mouse. Overall mean effects of both opioids 
on mechanical (5 h mean effect) and thermal (5 h mean effect) analgesia and respiratory rate (2 h mean effect) 
were also reported (D). Data are expressed as percentage of maximum effect (see “Materials and methods”) and 
represent the mean ± SEM of eight determinations for each treatment. Statistical analysis was performed by two-
way ANOVA followed by the Bonferroni’s test for multiple comparisons. *p < 0.05, versus vehicle.

Figure 2.   Schematic representation of the animal groups, outlining the number of samples collected.
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Analytical strategy and data quality
Two different chromatographic systems, reverse phase (RP) and hydrophilic interaction liquid chromatography 
(HILIC), both in positive and negative ionisation mode, were featured to achieve a maximum coverage of the 
entire metabolome. In addition, all samples were analysed in random order to avoid systematic effects on the 
instrument performance during the batch run.

Considering the high number of samples analysed within the study, robust quality assurance of the LC-
HRMS data was crucial. Pooled QCs samples were injected every six samples to provide signal drift correction 
for each metabolic feature detected; signal correction was performed by Compound Discoverer software which 
provided normalized areas.

Internal standard (ISWS-A and ISWS-B) were spiked into all samples and QCs at equal concentration; samples 
were quantitatively processed before data analysis and IS peak area was calculated in order to verify the variability 
due to sample processing or any analytical platform operation. IS peak areas and Rt were used to create Shewhart 
control charts in excel. Median area values were calculated, and it was verified that IS area and Rt were within 
median ± 2σ for each analysed sample. No outliers were found in the analysed batch and all samples were then 
maintained for the following statistical evaluation.

Post‑acquisition probabilistic quotient normalization (PQN)
Urine normalization is crucial to account for variations in the overall concentration of metabolites caused by 
different dilutions. Dilution is a significant variation that affects the concentration of all metabolites by the 
same factor, it generally derives from water consumption and other physiological factors. On the other hand, 
metabolomic responses mainly affect some metabolites in body fluids and, consequently, only some peaks of 
the corresponding spectrum. These specific changes are visible as relative changes in the concentrations of a few 
metabolites relative to the concentrations of all other metabolites, representing the overall concentration of the 
sample. Before the normalization, the difference associated with several hydration profile could hide the vari-
ation of metabolites concentrations between distinct samples. Different normalization techniques, which can 
be used either pre-acquisition (preventive) or post-acquisition (curative), are commonly applied in LC-HRMS 
studies. Among the existing normalization approaches, PQN is a statistical method belonging to a data-based 
driven approach and is also demonstrated that PQN reduce the impact of concentration variability21. In general 
all standardization strategies performed equally at level of signal variance22 but just two, including PQN, main-
tained the highest level of performance at recovering peak intensities. This normalisation method considers that 
changes in a single metabolite concentration does not affect the final data, while changes in sample concentration 
(which corresponds to different hydration) determines alteration in the entire chromatogram. This algorithm 
is based on five steps: (i) perform an internal normalisation (use of internal standards); (ii) create a reference 
spectrum by calculating the median of each variable across all samples; (iii) calculate the quotient of all variables 
of interest in the chromatogram by dividing the initial concentration (or intensity in the case of MS data) by the 
median of each variable; (iv) calculate the median of these quotients; (v) divide the initial concentrations of each 
spectrum by the quotient calculated in the previous step. The choice of this post-acquisition strategy allowed a 
simple manipulation of the samples which were all diluted by the same factor before LC-MS/MS analysis. Urine 
was extensively diluted (dilution factor = 20) to avoid dissimilar matrix effects in the analysed samples as also 
confirmed by the ISs which had similar response in all the analysed samples.

Datasets acquisition and filtering
Following MS raw data acquisition, each batch was loaded into Compound Discoverer™ software separately for 
peak picking, alignment, data deconvolution and normalization to the pooled QC, resulting in four tables for 
each chromatographic separation and polarity. A higher number of features was detected in RP (both positive and 
negative ion mode) compared to HILIC conditions. The original HILIC and RP datasets included approximately 
15,000 and 23,000 metabolic features, respectively (total 37,000 hits when the four datasets were combined).

At that stage, PQN post-acquisition normalization of urine samples was carried out. Before implementing 
the filtration strategies, to keep only the information about the endogenous metabolites, all the hits belonging 
to morphine, fentanyl and their metabolites such as morphine-3-glucuronide, hydromorphone, norfentanyl, 
methoxyacetyl-norfentanil, β-hydroxyfentanyl and ω-hydroxynorphentanyl were removed from the MS data 
matrix. These features were identified based on their exact mass, isotopic pattern and MS/MS spectra.

Thus, two filtering processes were serially applied to reduce redundancy and noise. The first data reduction 
approach aimed at excluding from the dataset the noisy features; the rationale of this dilution/filtration strategy 
is that a linear relationship between MS signal intensity and metabolite concentration should exist for the fea-
tures that are useful to characterise metabolic variations in the biological samples23. Diluted QCs were prepared 
to distinguish between informative and uninformative signals; for each metabolic feature the correlation factor 
between the peak area and the dilution factor was calculated. Only the features which showed a coefficient > 0.8 
were maintained in the dataset while the others were filtered out; these signals are likely to occur in case of ioni-
zation competition, saturation effects, contamination from the solvents, column leak etc. Nearly 64% features 
were filtered out at this stage. Clustering of multiple ion types and fragments was then attempted by Pearson’s 
correlation of signal intensities24 by exploiting specific Excel functions. In this script HILIC and RP features were 
processed separately; features were listed based on their retention time (Rt) and a matrix correlating each couple 
of features that shared the same retention time was created. Accordingly, features with the same Rt and a r > 0.8 
were grouped together. Inside each group only the metabolic features with the highest intensity were maintained 
for the following statistical analysis. Actually, new datasets were built combining the non-correlated hits with 
the hits showing the highest intensity among the correlated ones. The new datasets consisted of 8119 (HILIC) 
and 11,211 (RP) features (total 19,330 hits). The filtered dataset was imported to SIMCA® for statistical analysis.
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Multivariate analysis and identification of relevant features
Statistical analyses were performed using SIMCA® (version 17.0, Sartorius, Göttingen, Germany). Pareto scaling 
was used since it augments the representation of the low concentration metabolites by dividing each variable 
by the square root of the standard deviation of the variable, without increasing the noise contribution to the 
model25. Normally PCA is the first approach allowing an identification of difference, or similarities, between 
samples without a prior knowledge of sample class. Instead, OPLS-DA, is used to maximize the separation 
between sample classes, focusing on extracting the significant variable for group separation. According to the 
multivariate analysis, the variables that mostly contribute to the classification can be recognized as the signifi-
cantly changed metabolites.

Initially, principal components analysis (PCA) was used as an unsupervised multivariate analysis method to 
visualize the data, eliminating possible outliers and controlling instrumental drift during the analysis. The PCA 
obtained for controls and treated animal urine samples is shown in Fig. 3. The score plot showed that drug-treated 
(in green) and vehicle-treated (in blue) mice formed two distinct clusters in accordance with the purpose of 
the study, and in addition it was possible to observe a difference between male and female animals. Contrarily, 
morphine and fentanyl treated samples were not separated in the PCA score plot, indicating that the metabolic 
signature upon administration of both opiates is similar.

In general, the analysis showed no outliers neither batch effect.

Changes in urine metabolites of mice administered with morphine and fentanyl
Morphine is a natural opioid while fentanyl is a synthetic molecule; they both bind to the opioid receptors in 
the brain, so that their intake is expected to induce changes at molecular, biochemical, and neural system levels. 
OPLS-DA was used to discriminate between vehicle and drug-treated animals. For this model, R2Y (cumula-
tive), Q2 (cumulative) and CV-Anova (p-value) were 0.979, 0.797 and 1.58 × 10−11 respectively, confirming the 
validity of the model. In addition, to rule out the non-randomness of separation between groups, a 100-iteration 
permutation test was performed and the result, showed in Fig. 4, further confirmed that the model was valid.

Figure 4 also displays the OPLS-DA scores plot for vehicle vs. treated animals. It should be noticed that in the 
drug-treated group, except for a few outliers, fentanyl and morphine treated mice formed two distinct clusters, 
while collection time did not affect sample distribution.

Possible biomarkers were identified by extrapolating the variables of importance in projection (VIP), i.e. those 
compounds that maximise group separation. OPLS-DA returned nearly 100 potentially interesting features with 
a VIP > 1.5, that were then tentatively elucidated in relation to their accurate mass, isotopic pattern, retention 
time and MS/MS spectra matching with accessible database (GNPS, HMDB, mzCloud, ChemSpider). In total, 10 
metabolites could be putatively identified with a confidence level of two according to the metabolomics standard 
initiative (MSI) and they are summarized in Table 1. Other significant features were failed to be annotated to 
known metabolites, because several candidates could match to the observed MS peak and MS/MS information 
was not sufficient (or not available) to provide additional identification power. It can be observed that the dif-
ferential metabolites were mainly involved in TCA cycle, tyrosine, phenylalanine and lipid metabolism.

While aconitic acid, 5-amino-pentanoic acid, 5-hydroxyhexanoic acid and 3-phenylacetic acid mainly 
decreased in concentration compared to vehicle, creatine and alanine increased. In addition, it was observed 
that fentanyl affected the metabolome more severely than morphine, normalized areas for the most altered 
metabolites are exemplarily depicted in Fig. 5.

These observations were generally in agreement with previous studies that explored the alterations in the 
human or animal metabolome following opioid consumption (mainly morphine or heroin) to shed light on their 

Figure 3.   PCA scores plot of the filtered data set (RP and HILIC pos and neg) displaying the partial separation 
between drug-treated (green) and vehicle-treated mice (blue). Male animals also showed separation from 
females as highlighted by the dotted lines.
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mechanism and toxicity26. In most cases the metabolic signature of opioids has been studied on the brain and it 
has been observed that morphine and heroin lead to profound alterations in the neurotransmitters levels as well 
as energy and amino acid metabolism27; in addition significant disturbances in the glutamine–glutamate–GABA 
(Gln–Glu–GABA) axis were a common finding28–30. Fewer studies investigated the biomolecular perturbations 
elicited by opioids in peripheral biofluids with translational value (e.g., blood, urine), which may allow for the 
identification of biomarkers of opioid assumption. Zaitsu et al. investigated the metabolic profiling of urine and 
blood plasma in rat models of drug addiction and found that TCA cycle intermediates significantly changed 
in the urine of morphine addicted rats, while 3-hydroxybutyric acid, l-tryptophan, cystine levels significantly 
decreased in plasma31. Similarly, Zheng et al. examined the metabolic phenotype of rats exposed to heroin and 
observed that the drug induced an acceleration of the TCA cycle and the metabolism of free fatty acids with 
decreased tryptophan and 5-hydroxytryptamine levels in peripheral serum but increased urinary tryptophan 
and 5-hydroxyindoleacetate32. In a more recent study, involving heroin and morphine, it was observed that both 

Figure 4.   (A) OPLS-DA scores plot displaying the separation for drug-treated (green) and vehicle treated (blue) 
mice. (B) Permutation test showing the goodness of the model built.

Table 1.   Altered metabolites in drug-treated versus vehicle-treated mice. Putative metabolites were identified 
by matching the accurate mass, isotope pattern or MS/MS data with mass spectral and compound libraries.

Mass error (ppm) Retention factor (K) Formula
Putative annotation 
MS Acquisition mode mz Cloud match Major fragment ions Treated vs vehicle

117.0789 0.0 6.92 C5H11NO2
5-Amino-pentanoic 
acid HC+  83.40%

69.03407
87.04449
100.0760
118.0863

↓

131.0696 0.9 0.24 (RP + /-) 8.36 
(HC +) C4H9N3O2 Creatine RP+ /− , HC+  99.60%

87.0557
90.0553
132.0766

↑

89.0473  − 4.2 0.26 C3H7NO2 dl-Alanine RP−  98%
60.9915

71.0122
89.9865

↑

132.0789 2.0 6.51 C6H12O3
5-Hydroxyhexanoic 
acid RP+  73.80%

69.0704
73.0652
97.0650
115.0759

↓

174.0158  − 3.4 1.85 C6H6O6 Aconitic acid RP− 95.50%
85.0279

115.0759
129.0179

↓

152.0473 -0.2 5.76 C8H8O3
p-Hydroxypheny-
lacetic acid RP− 83.90%

93.0330
107.0487
121.0280
151.0745

↓

137.04772  − 0.3 8.34 C7H7NO2 Trigonelline HC+  99.80%
94.0551

110.0603
138.0549

↓

183.0896 0.5 4.46 C9H13NO3 Epinephrine HC+  80.4%
166.0974
140.0705
125.0471

↓

195.0896 0.5 0.31 C10H13NO3 n-acetyldopamine HC+  71.3% 152.0796
135.0441 ↓

195.0534 1.5 6.51 C9H9NO4 Dopaquinone RP+  – – ↓

230.1055 0.0 5.91 C13H14N2O2 Cyclic melatonin RP+  –
214.0862
158.0964
84.0813

↓



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9432  | https://doi.org/10.1038/s41598-024-60045-2

www.nature.com/scientificreports/

drugs interfered with lipid metabolism, tricarboxylic acid (TCA) cycle and amino acid metabolism; in this case 
the effects of morphine on metabolites in urine were somewhat dissimilar to those of heroin except for aconitic 
acid, cysteine, glycine, and oxalic acid, which significantly decreased with both drugs. It should be highlighted 
that in all these studies, metabolomics was exploited to investigate metabolite alterations in addicted subjects 
or after repeated administration so that the results of our study, which involved a single administration, may be 
somewhat different. The metabolic pathways, which were shown to be altered in our study, are similar to those 
observed by other authors, indicating that the metabolic signature upon opioid administration is generally inde-
pendent from the dosage or the addiction status. Increased energy metabolism is common to drug abuse and was 
observed also following the intake of non-opioid drugs26, since neuronal activity is extremely energy demanding; 
numerous papers have revealed a disturbance in energy metabolism by drug abuse indicating an upregulation 
of the TCA cycle for increased energy metabolism and supply33. Aconitic acid is a key intermediate in the TCA 
cycle and has been implicated in the regulation of mitochondrial function and energy metabolism. The observed 
decrease in urinary aconitic acid by the two opioids is in agreement with the study of Lu et al.34 and suggest that 
both morphine and fentanyl accelerated energy metabolism. It is worth noting that aconitic acid reduction is 
higher in fentanyl respect to morphine. The observed distinction indicates that fentanyl possesses a higher level 
of energy metabolism compared to morphine. This correlation may be attributed to the increased lipophilicity 
and receptor affinity of fentanyl in comparison to morphine35. Other TCA cycle intermediates such as citric and 
ketoglutaric acid were putatively identified among the detected features, decrease of these metabolites following 
treatment was observed but the observed differences were not statistically relevant.

In parallel, creatine is thought to accelerate the recycling of adenosine triphosphate (ATP), the energy cur-
rency of the cell, to exert direct antioxidant effects through normalizing mitochondrial mutagenesis. Therefore, 
the increase of creatine levels may reflect a protective mechanism against energy exhaustion and oxidative stress27. 
On the other hand, alanine is involved in the glucose-l-alanine cycle, which plays a role in glycolysis and gluco-
neogenesis, another energy supplying pathway that can convert pyruvate into lactate and alanine. Up-regulation 

Figure 5.   Boxplots of normalized area intensities of five among the most altered metabolites. 
p-value < 0.05*; < 0.01**; < 0.001***; < 0.0001****.
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of glycolysis would lead to enhanced transamination of pyruvate to alanine, justifying the high levels of this 
amino acid in treated animals. A recent study by Alasmari et al.36, in mouse model of fentanyl overdose (50 µg/
kg i.p) suggested the involvement of glucose-alanine cycle and gluconeogenesis in liver metabolism alterations 
associated to increased liver inflammation, after a treatment with a fatal dose of fentanyl. These findings suggest 
that the increasing amino acids in urine samples of mice treated with fentanyl and morphine could be related to 
a protective response against increased inflammations triggered by these opioids in different organs37.

Finally, similarly to previous studies, our results showed that opioids not only disrupt energy metabolism, but 
also the biosynthesis of catecholamines, which is connected to their metabolic effect on the brain. We observed 
a significant decrease of urinary levels of n-acetyldopamine, epinephrine and some of their metabolites.

Our observations are also in agreement with data obtained through proteomics, which indicated that the 
most frequently repeated proteins affected by morphine administration are enzymes crucial for mitochondrial 
function and involved in the metabolic energy pathways such as glycolysis/glucogenesis, TCA cycle, and oxida-
tive phosphorylation (OXPHOS)38.

Sexual diergism in the metabolic signature upon administration of opioids
This study involved mice of both sex, because it is well known that the susceptibility to illicit drugs may vary 
considerably among males and females. Studies involving female mice are rather limited since researchers usu-
ally avoid using females because of their reproductive cycles and hormone fluctuations that may confound the 
study results. However, given that sex and gender deeply affect the subjective effects and pharmaco-toxicological 
responses to drugs39, it is of utmost importance to investigate sexual diergism in the metabolic changes associ-
ated with opioid use.

To this aim, to account for the expected and observed sex differences in the basal urine metabolome, each 
mouse was used as its own control: for each animal, the normalized peak area of each compound in the vehicle 
sample was subtracted from the normalized peak area after drug administration for both time points (i.e., 0–12 h 
and 12–24 h). The new dataset, obtained as previously described, was named delta matrix. In order to identify 
interesting features, the delta matrix was analysed by OPLS-DA.

The resulting OPLS-DA scores plot of male vs female animals is shown in Fig. 6.
For this model, R2Y (cumulative), Q2 (cumulative) and CV-Anova (p-value) were 0.975, 0.889 and 1.97 × 10−9, 

respectively, confirming the validity of the model. Interesting features with a VIP > 1 were tentatively anno-
tated with the same criteria previously described. Interestingly, it was observed that several significant features 
belonged to the compound classes of acyl-carnitines, amino acids and acetylated metabolites (Table 2).

For what concerns the former class, it was observed that short and medium chain acylcarnitines significantly 
increased for male mice after opioid intake (Fig. 7), especially when fentanyl was administered (data not shown). 
On the contrary, female mice exhibited stable levels of these metabolites or generally a slight decrease. Acylcar-
nitines play an essential role in regulating the balance of intracellular sugar and lipid metabolism. They serve 
as carriers to transport activated long-chain fatty acids into mitochondria for β-oxidation as a major source of 
energy for cell activities and they are also involved in maintaining the homeostasis of the mitochondrial acyl-
CoA/CoA ratio. Moreover, acylcarnitines are involved in other physiological processes such as peroxidation of 
fatty acids, and production of ketone bodies. Therefore, their metabolism is not only related to the transport of 
fatty acids, but also plays a key role in regulating the balance of intracellular sugar and lipid metabolism40. Sexual 
diergism in acylcarnitine levels indicates a higher energy demand, associated with a higher oxidation of fatty 
acids, in male mice in response to opioid intake. An increase in medium and long chain acylcarnitines was also 
observed after consumption of stimulant drugs such as amphetamine and MDMA14. Interestingly, differences in 
energy metabolism related to sex were also reported by Leskanicova et al., who observed augmented acylcarnitine 
levels in male mice. Overall, the obtained data support evidence that opioids disruption in energy metabolism 
is exacerbated in male compared to female mice41.

Another interesting metabolite that was differentially altered between male and female mice is the neuro-
transmitter acetylcholine (ACh): it was significantly altered by opioid intake, especially for females, who exhib-
ited a notable decrease of ACh urinary concentration after the treatment. Abnormalities in neurotransmitter 
metabolism following psychoactive drugs assumption is expected and has been reported also following cocaine 

Figure 6.   (A) OPLS-DA scores plot obtained with the delta matrix displaying the separation between female 
(green) and male (blue) mice. (B) Permutation test showing the goodness of the model built.
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assumption26, on the other hand anti-cholinergic properties of opioids are well known42. Interestingly, it was also 
observed that the cholinergic system appears to be more responsive to stress and other stimuli in female than 
in male mammals43 supporting the observed differences. It is noteworthy that ACh is the primary contractile 
neurotransmitter in mammal bladder detrusor44, so that the urinary retention phenomenon that was observed 
in treated female mice can be related to the low urinary ACh concentration detected in these animals.

Another remarkable altered metabolite is 7,8-dihydro-8-oxoguanine (8-oxoG) a recognized biomarker of cel-
lular oxidative stress. 8-oxoG level increased only in male animals and may arise from the augmented rate of fatty 
acids β-oxidation, which is a well-known source of reactive oxygen species (ROS). Several studies have pointed to 
the relationship between opioid administration and increased production of ROS and it was also observed that 
oxidative stress status shows sexual diergism, with female rats generally exhibiting lower oxidative damage than 
males45. Several authors suggested that sex hormones and especially 17β-estradiol (E2) could be a major driver 
for these differences since they have been reported to directly regulate several mediators of the mitochondrial 
biogenesis program in several tissues46. Notably, a feature that resulted to be significantly altered in our dataset, 

Table 2.   Altered metabolites in treated male versus treated female mice. Putative metabolites were identified 
by matching the accurate mass, isotope pattern or MS/MS data with mass spectral and compound libraries.

Mass error (ppm)
Retention factor 
(K) Formula

Putative 
annotation MS

Acquisition 
mode mz Cloud match

Major fragment 
ions Male vs vehicle Female vs vehicle

188.0798 0.5 2.59 C7H12N2O4
n-Acetylglu-
tamine HC+  91.30%

84.0443
130.0492
172.0602

↓  = 

203.1159 0.7 7.9 C9H17NO4 Acetylcarnitine HC+  99.7% 85.0289
145.0539 ↑  = 

217.1315 0.4 7.06 C10H19NO4
Propanoylcar-
nitine RP+  63.2%

182.1538
125.0961
76.0398

↑  = 

231.1471 0.2 7.22 C11H21NO4 Butyryl carnitine HC+  60.5%
173.081
85.0289
60.0815

↑  = 

245.1627  − 0.1 9.74 C12H23NO4
Methylbutyryl 
carnitine RP+  69.9% 85.0289 ↑  = 

259.1784 0.2 8.70 (RP +)
6.79 (HC +) C13H25NO4

Hexanoylcar-
nitine RP+ /HC+  97.7%

201.1120
85.0288
60.0814

↑  = 

287.2097 0.1 6.46 C15H29NO4 Octanoylcarnitine HC+  –
229.1436
85.0289
60.0815

↑  = 

315.2410 0.3 9.27 C17H33NO4
Decanoylcar-
nitine RP+  98.9%

267.1744
85.0289
60.0814

↑  = 

272.1766  − 3.4 9.25 C18H24O2 17β-Estradiol RP+  89.6% 255.1748
135.1162 ↓  = 

145.1104 0.8 0.67 (RP +)
7.64 (HILIC +) C7H15NO2 Acetylcholine RP+ /HILIC+  94.9% 87.0444

60.0814 ↑ ↓

268.1172 0.2 1.05 C11H16N4O4
n-Acetyl-l-car-
nosine RP+  96.5% 156.0768

110.0716 ↑  = 

175.0634 0.6 9.86 C10H9NO2
Indole-3-acetic 
acid RP+  99.3% 130.0650  =  ↓

131.0948 1.3 2.02 C6H13NO2 Isoleucine RP+  99.5% 86.0969
69.0705 ↑  = 

205.0774 0.7 4.03 (RP)
6.10 (HILIC) C8H15NO3S

n-Propionylme-
thionine RP+ /HILIC+  –

122.0271
117.0370
85.0653

↑  = 

167.0444 0.5 4.96 (HILIC +)
0.7 (RP +) C5H5N5O2

7,8-Dihydro-
8-oxoguanine RP+ /HILIC+  – 151.0752

126.0219 ↑  = 

173.1054 1.7 8.55 (HILIC +)
5.74 (RP +) C8H15NO3 Hexanoylglycine RP+ /HILIC+  82.5%

99.0808
76.0388
71.0861

↑  = 

174.1005 0.3 9.01 C7H14N2O3 Acetyl-ornithine HILIC+  72.7% 112.0759
70.0657 ↑  = 

214.1319 0.9 7.35 (RP +)
1.77 (HILIC +) C10H18N2O3 Dethiobiotin RP+ /HILIC+  67.4%

155.1068
137.0962
95.0860
57.0343

↑  = 

216.1223 0.5 10.54 C8H16N4O3
n-α-Acetyl-l-
arginine HILIC+  86.3%

154.1225
130.0862
84.0813

↓  = 

325.1014 1.5 4.87 (RP −)
1.02 (HILIC −) C11H19NO10

n-Glycolylneu-
raminic acid RP−/HILIC− 78.6% 263.0771

75.0072 ↑  = 
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can be putatively identified as E2, a significant decrease of this metabolite was observed in male drug-treated 
mice compared to vehicle-treated (see Table 2), supporting higher oxidative damage in these animals.

Opioids are known to severely affect the endocrine system and to depress the secretion of hormones at dif-
ferent levels of the hypothalamic–pituitary–gonadal axis47, sex differences are then expected for steroid levels 
following drug administration. Other significant features were putatively identified as belonging to the steroid 
class (based on exact masses, retention time and MS/MS fragments), however they could not be identified with 
suitable confidence due to the several isomeric forms of compounds in this class.

Methods
Chemical and reagents
Standards of morphine and fentanyl were purchased from Sigma–Aldrich (Burlington, MA). Morphine-d3, 
fentanyl-d5, EME-d3, XLR-11-d5, alprazolam-d5, used as internal standards (IS) were purchased from LGC 
(Milan, Italy).

All solvents and reagents used were LC-MS grade. Acetonitrile, methanol and formic acid 98–100% were from 
Merck (Darmstadt, DE). Ultrapure water for UPLC was produced by a Millipore Synergy UV water purification 
system (Millipore A/S, Copenhagen, DK).

In vivo study
Animals’ behaviour and urine collection
Sixty-four CD-1 mice (CD-1®), 32 male and 32 female, were grouped in metabolic cages. Mice (48 for behavioural 
studies, 16 for urine collection) weighing 30–35 g (Centralized Preclinical Research Laboratory, University of 
Ferrara, Italy) were group housed (4/cage; floor area: 80 cm2/mouse; minimum enclosure height: 12 cm), exposed 
to a 12:12 h light–dark cycle (light on at 6:30AM) at a temperature of 20–22 °C and humidity of 45–55% and pro-
vided ad libitum access to food (diet 4RF25 GLP; Mucedola, Settimo Milanese, Milan, Italy) and water. Compari-
son of the effects induced by morphine and fentanyl was studied in groups of male and female mice from the same 
litter (i.e., siblings). All experimental protocols were in accordance with the U.K. Animals (scientific procedures) 
Act of 1986 and associated guidelines and the new European Communities Council Directive of September 2010 
(2010/63/EU) and approved by the Italian Ministry of Health (license n. 223/2021-PR, CBCC2.46.EXT.21) and 
the Animal Welfare Body of the University of Ferrara. According to the ARRIVE guidelines, all possible efforts 
were made to minimise the animals’ pain and discomfort and to reduce the number of experimental subjects.

Figure 7.   Boxplots of delta areas (obtained by substracting for every animal the normalized peak area of each 
compound in the vehicle sample from the normalized peak area after drug administration) for acylcarnitines. 
p-value < 0.05*; < 0.01**; < 0.001***; < 0.0001****.
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Behavioural studies.  Mechanical and thermal analgesic effects of morphine (30 mg/kg) and fentanyl (6 mg/kg) 
were investigated using a battery of behavioural tests widely used in pharmacology safety studies for the preclini-
cal characterization of new psychoactive substances in rodents19,48–53. All experiments were performed between 
8:30AM and 2:00PM. Experiments were conducted blindly by trained observers working in pairs54.

Evaluation of pain induced by a mechanical and a thermal stimulus.  Acute mechanical nociception was evalu-
ated using the tail pinch test48. A special rigid probe connected to a digital dynamometer (ZP-50N, IMADA, 
Japan) was gently placed on the tail of the mouse (in the distal portion), and progressive pressure was applied. 
When the mouse flicked its tail, the pressure was stopped and the digital instrument recorded the maximum 
peak of weight supported (g/force). A cut off (500 g/force) was set to avoid tissue damage. The test was repeated 
three times and the final value was calculated by averaging the three obtained scores. Acute thermal nociception 
was evaluated using the tail withdrawal test48. The mouse was restrained in a dark plastic cylinder and half of its 
tail was dipped in 48 °C water; then, the length of time (in s) the tail was left in the water was recorded. A cut off 
(15 s) was set to avoid tissue damage. Acute mechanical and thermal nociception was measured at 0, 35, 55, 90, 
145, 205, 265 and 325 min post injection.

Respiratory analysis.  The experimental protocol to detect the respiratory activity used in this study is designed 
to monitor awake and freely moving animals with no invasive instruments and with minimal handling55. A 
collar was placed around the neck of the animal; this collar has a sensor that continuously detects the respira-
tory rate with a frequency of 15 Hz. While running the experiment, the mouse moves freely in the cage (with 
no access to food and water) monitored by the sensor collar using the software MouseOx Plus (STARR Life 
Sciences® Corp. Oakmont, PA). In the first hour, a collar was placed around the animal’s neck to simulate the real 
one used in the test, thus minimising the possible effects of stress during the experiment. The real collar (with 
sensor) was then substituted, and baseline parameters were monitored for 60 min. Subsequently, the mice were 
given vehicle, morphine or fentanyl, by i.p. injection, and data was recorded for 5 h.

Data and statistical analysis.  Antinociception (tail withdrawal and tail pinch tests) are calculated as the percent 
of maximal possible effect {EMax% = [(test − control latency)/ (cut off time − control)] × 100}. Data are expressed 
in Emax% (tail withdrawal and tail pinch), respiratory rate (expressed as respiratory rate per minute (rrpm). The 
statistical analysis of the effects of the individual substances in different doses over time and that of antagonism 
studies were performed using a two-way ANOVA followed by a Bonferroni test for multiple comparisons. The 
statistical analysis was performed using Prism software (GraphPad Prism, USA).

Urine collection.  After identifying the “equivalent” doses of morphine (30 mg/kg i.p.) and fentanyl (6 mg/
kg i.p.), a different group of 16 animals (eight male and eight female mice) were used in the urine collection 
study. Initially, all mice were given a dose of saline solution (0.9% NaCl), constituting the vehicle, by intraperi-
toneal injection; urine was cumulatively collected in the intervals 0–12 h 12–24 h after the administration. 24 h 
after vehicle administration the two groups were treated with 30 mg/kg of morphine and 6 mg/kg of fentanyl, 
respectively, through one-shot intraperitoneal injection; urine collection was carried out according to the pro-
tocol described above. Urine specimens were collected from mice individually placed inside metabolic cages 
(Ugo Basile SRL, Gemonio [VA], Italy) with free access to water and food56–60 in a colony room under constant 
temperature (23 °C–24 °C) and humidity (45–55%). Urine samples were collected in 2 mL tubes before drug 
injections (control), and every hour for 6 consecutive hours from the administration of the treatments [9,33]. 
After 6 h, urine was collected cumulatively in the 6–12, 12–24 and 24–36 h time interval and stored at − 20 ℃ 
until analysis.

Analytical workflow
The proposed workflow for sample analysis and data quality assurance was based on an efficient metabolomics 
platform61, with some modifications. The detailed workflow description is reported below.

ISs solutions
Internal standard working solutions (IS-WS), containing morphine-d3, fentanyl-d5, EME-d3, XLR-11-d5, alpra-
zolam-d5, were prepared by adding suitable volumes of the stock solutions to 20 mL of ultrapure water (ISWS-A) 
and acetonitrile (ISWS-B) respectively, in order to reach a final concentration of 20 ng mL−1 for all the standards. 
The solutions were maintained at − 20 °C.

Urine sample preparation
In order to minimise sample handling, the pre-treatment consisted of a sample dilution 1:10 (v:v) with a suit-
able solvent, chosen based on the chromatographic separation method, i.e. water for reverse phase (RP) and 
water:acetonitrile (50:50, v:v) for hydrophilic interaction liquid chromatography (HILIC). All samples were 
further diluted 2-folds with ISWS-A for RP analysis and ISWS-B for HILIC. Samples were vortexed and centri-
fuged (13,000 g, 10 min); then the supernatant was transferred to a vial and randomised for LC-HRMS analyses.

Quality control samples and blanks
Two different types of QC samples were prepared and analysed along the batch: (i) pooled QCs prepared by mix-
ing equal volumes (20 μL) from each sample (ii) dilution QCs prepared by diluting 2, 4 and 8 folds the pooled 
QC with water.
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Pooled QCs were used for area correction in the subsequent data processing step, while dilution QCs were 
used to verify the linear response of the MS signal. QCs samples were diluted similarly to all samples, firstly 1:10 
with water or acetonitrile:water (50:50, v:v) for RP and HILIC samples respectively and further with ISWS (1:1, 
v:v). Pooled QC samples (made by combining 5 µL of each urine sample) were injected first (n = 10) to condition 
the LC–MS system and obtain stable retention times and MS response. Subsequently, pooled QCs were injected 
every six true samples to perform intra-batch signal drift corrections. Dilution QCs were analyzed three times 
and were incorporated regularly along the sample list.

Blanks consisted of LC–MS grade water for RP analysis and AcN: water, 80:20 (v/v) for HILIC analysis; blank 
injection (n = 3) was performed at the beginning of the batch to collect a background signal to be excluded from 
the dataset.

UHPLC‑HRMS conditions
HILIC and RP chromatography.  Chromatography was performed using a UHPLC DionexTM UltiMateTM 
3000 Rapid Separation Liquid Chromatography (RSLC) system (Thermo Fisher Scientific, San Jose, CA, USA).

A HSS-T3 column, 100 × 2.1 mm, 1.8 μm (Waters, Milford, MA) held at a temperature of 35 °C was used for 
RP separation. The flow rate was set to 0.3 mL/min for the first 7.5 min and then increased at 0.4 mL/min for the 
rest of the chromatographic gradient. Mobile phases were 0.1% (v/v) formic acid in water (phase A) and 0.1% 
(v/v) formic acid in acetonitrile (phase B). The elution gradient had a duration of 20 min and was structured as 
follows: phase B was held at 0% in the first 3.5 min, then increased to 10% in 4 min and to 35% in 5 min, subse-
quently from 12.5 to 16 min phase B was held constant at 98%. Finally, the column was returned to the original 
conditions in 0.5 min and kept stable for 3.5 min to enable its equilibration.

The injection volume was 2 µL. During LC–MS analysis samples were kept in the autosampler at 8 °C.
HILIC separation was achieved with a Acquity UPLC BEH HILIC 2.1 × 100 mm, 1.7 μm, held at a temperature 

of 35 °C and a constant flow rate of 0.3 mL/min. The mobile phases used were: 20 mM ammonium formate + 0.1% 
FA at pH 3.7 (phase A) and 0.1% (v/v) formic acid in acetonitrile (phase B). Gradient elution was as follows: 
linear increase of phase A from 5 to 25% in 8.5 min, followed by a further increase to 60% in 1 min. Phase A was 
then held constant for 1.5 min and finally returned to 5% in 0.5 min to enable column equilibration for 3.5 min. 
The total run time was 15 min.

Mass spectrometry.  Detection was performed on a Q-Exactive Orbitrap MS from Thermo Fisher Scientific 
(Bremen, Germany) equipped with a heated electrospray ionization (H-ESI). The ionisation was performed in 
both positive (HESI+) and negative (HESI−) mode, in separate runs. Source conditions were settled as follow: 
3.20 kV (pos) / − 3.20 kV (neg) electrospray voltage, capillary temperature 350 °C, S-lens RF level set at 50 (pos) 
/ − 50 (neg), sheath gas (N2) flow 40 au, aux gas (N2) flow 15 au, where the gas temperature was 350 °C.

All samples, blanks and QCs were acquired in full scan, additionally, pooled QCs were also acquired in trip-
licate in data dependent MS/MS scan in both positive and negative ion modes. Full scan was carried out with 
a resolution of 70,000 (FWHM) in a scan range of 50–650 m/z. MS/MS scans were carried out with a stepped 
normalized collision energy (NCE) of 20 and 50 (eV), and a resolution of 17,500 (FWHM). Three different runs 
were acquired with different acquisition windows: 50–200 m/z, 200–400 m/z and 400–650 m/z respectively.

All data were acquired in profile mode using Xcalibur™ 4.1.
The Q Exactive™ mass spectrometer was calibrated for positive and negative mode before sample analysis using 

the calibration solution provided by the manufacturer (Pierce LTQ ESI positive calibration solution and Pierce 
LTQ ESI negative calibration solution). For mass-calibration of the instrument a custom list which included lower 
masses (homovanillic acid, for negative calibration, m/z 181.0500, and sodium fluoroacetate, in positive mode, 
101.0015 m/z) as well as the default calibration masses were used to ensure that accurate masses were detected 
also for low molecular weights compounds62.

Data Analysis
Raw data processing.  The raw files obtained in positive and negative ion mode were processed separately using 
Compound Discoverer™ 3.1 (Thermo Scientific™, USA) using a non-targeted metabolomics workflow, for reten-
tion time alignment, component detection, elemental composition prediction, gap filling. In detail, for peak 
picking, an adaptive curve algorithm, a resolution of 5 ppm and a maximum retention time shift of 0.5 min 
were used. Unknown compounds were detected with a mass tolerance of 5 ppm, the S/N threshold was set at 10, 
relative intensity tolerance for isotope detection was 30%; the minimum peak intensity was set at 10,000. Com-
pounds grouping was achieved with a mass tolerance of 5 ppm and a retention time tolerance of 0.2 min. Blank 
samples were injected for background subtraction and noise removal during the pre-processing phase; features 
were filtered out if they appeared in the blank or if they were detected in less than 30% of the QCs and/or with a 
relative standard deviation (%RSD) greater than 30%.

An output table including m/z versus retention time versus raw peak intensity for all the analysed samples 
was generated. In addition, normalized area was provided for each detected metabolic feature, by normalization 
to the pooled QC. The data matrix generated by Compound Discoverer was downloaded as .xls file and two 
filtration strategies were serially applied to reduce the final number of hits undergoing statistical evaluation. A 
dilution/filtration strategy23 was firstly used by correlating the signal intensity obtained for the diluted QCs to 
the dilution factor. For each detected metabolic feature, CV% calculated for the diluted samples was required to 
be < 30%, while the cut-off established for the correlation coefficient R2 was 0.8. A further filtration of the data 
allowed the clusterization of the ions generated from the same parent (adducts, dimers, fragments, isotopes) 
based on Pearson’s correlation of their intensity. To achieve clusterization, features were sorted by intensity and 
increasing retention time (Rt); Pearson’s coefficient was calculated for each pair of features eluting at the same Rt 
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(tolerance 0.1 min) and pair of features with Pearson’s coefficient > 0.8 were grouped together (the feature with 
the largest area was maintained while the other was filtered out).

All four data sets (RP HESI+ , RP HESI− , HILIC HESI+ , HILIC HESI−) were normalised after the acquisition 
by probabilistic quotient normalization (PQN)63 in order to correct differences in urine dilution.

Multivariate and univariate statistical analysis.  The output table containing filtered metabolic features was 
exported to Simca® 17 (Umetrics, Umea, Sweden); data were mean centered and Pareto scaled for multivariate 
analysis by principal component analysis (PCA) to identify outliers (samples which are extremely different from 
the rest of the data set). Afterwards, to identify differences between specific sample groups (i.e. vehicle vs treated 
mice) orthogonal partial least squares discriminant analysis (OPLS-DA) as a supervised multivariate approach 
was used to study the contribution of the variables to groups separation. Validity of the obtained OPLS-DA 
model and its ability to predict class membership was evaluated based on R2Y (> 0.5), Q2 (> 0.5), CVAnova 
(p < 0.05) permutations testing (n = 100) and VIP values (> 1.0). The S-plots were used to highlight the metabolic 
features with the greatest influence on the separation between groups; the ions of interest to be at different levels 
between the sample groups were analysed using a paired T-test (GraphPAD Prism). In a following step, with the 
aim of reducing inter-individual variability and highlight sex differences in metabolome alterations, each mouse 
was used as its own control by subtracting for each compound the normalized peak area in the vehicle sample 
from the normalized peak areas in the same animal after drug administration. PCA was used to elucidate how 
differences like sex, or collection time, could alter the metabolomic fingerprint.

Feature identification
Relevant features were searched on mzCloud, ChemSpider as well as in the online database Human metabolome 
database64. A putative identification was achieved upon physicochemical properties (monoisotopic exact mass, 
isotopic pattern) and by correspondence with mass spectra (MS/MS fragments) of available libraries.

Conclusions
In this study untargeted metabolomics was exploited to investigate changes in the urinary endogenous metabolite 
levels in murine models, following both natural and synthetic opioids administration. A strength of the study 
is the inclusion of animals of both sex in order to investigate sexual diergism in the metabolic changes associ-
ated with opioid use. According to our results, the intake of these drugs resulted in an elevated energy demand, 
especially following fentanyl administration, and it was more pronounced on male animals, as evidenced by the 
increase in medium and long chain acylcarnitines levels. It was also shown that opioid administration disrupts 
the pathways related to catecholamines biosynthesis characterising the effect of these drugs on CNS function. 
The observed alterations were common to both morphine and fentanyl, suggesting that they are not related to 
the chemical structure of the drug, but rather on the drug class, highlighting the potential of metabolomics in 
forensic toxicology for investigations related to NSOs or more generally NPS. Moreover, this study shows that 
opioids modulate metabolic pathways in male and female subjects differently although they cause the same acute 
analgesic effects (positive effects in therapy) and respiratory depression (negative effects). This underlines the 
importance of investigating carefully and with new technologies the effects of NPS on gender difference. Based on 
previous metabolomics studies, related to other drugs of abuse, the observed metabolic signature is not exclusive 
to opioid usage, nevertheless, the findings discussed herein lay the groundwork for subsequent investigations, 
involving different classes of psychoactive drugs, that can help to identify distinctive biomarkers of drug class use.

As usual with metabolomic studies through HRMS, limitations to our results are related to the uncomplete 
annotation of the significantly altered features as well as the lack of authentic standards to confirm the identity 
of the metabolites, however it must be pointed out that only the features with almost perfect MS/MS spectra 
matching were discussed and reported in the tables.

Furthermore, it would be interesting to study the variation of the urinary metabolic profile also by inducing 
abstinence to verify the return of biomarkers to normal pre-treatment levels.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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