
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/343326253

ASAINT: a spy App identification system based on network traffic

Conference Paper · August 2020

DOI: 10.1145/3407023.3407076

CITATIONS

11
READS

442

3 authors:

Mauro Conti

University of Padova

748 PUBLICATIONS 21,398 CITATIONS

SEE PROFILE

Giulio Rigoni

Sapienza University of Rome

12 PUBLICATIONS 86 CITATIONS

SEE PROFILE

Flavio Toffalini

Singapore University of Technology and Design

23 PUBLICATIONS 353 CITATIONS

SEE PROFILE

All content following this page was uploaded by Giulio Rigoni on 08 December 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/343326253_ASAINT_a_spy_App_identification_system_based_on_network_traffic?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/343326253_ASAINT_a_spy_App_identification_system_based_on_network_traffic?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mauro-Conti?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mauro-Conti?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Padova?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mauro-Conti?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giulio-Rigoni-2?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giulio-Rigoni-2?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sapienza-University-of-Rome?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giulio-Rigoni-2?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-Toffalini?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-Toffalini?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Singapore-University-of-Technology-and-Design?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-Toffalini?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giulio-Rigoni-2?enrichId=rgreq-632fb106973315fe6b50b856ff7fe0e1-XXX&enrichSource=Y292ZXJQYWdlOzM0MzMyNjI1MztBUzoxMTQzMTI4MTEwNTg3MzIyNUAxNjcwNTA5OTg3NTA2&el=1_x_10&_esc=publicationCoverPdf

ASAINT: A Spy App Identification System
based on Network Traffic

Mauro Conti

University of Padua, Italy

conti@math.unipd.it

Giulio Rigoni
∗†‡

University of Firenze, Italy

giulio.rigoni@unifi.it

Flavio Toffalini

Singapore University of Technology

and Design, Singapore

flavio_toffalini@mymail.sutd.edu.sg

ABSTRACT
Spy app is a class of malware for mobile devices that allows an

adversary to steal sensitive information. Detecting spy apps is chal-
lenging because they do not rely on classic malware techniques,

for instance, they use standard services to store stolen data, and

do not perform privileges escalation on the victim phone. Thus,

their behavior is generally closer to the benign apps and poses new

challenges for their detection.

In this paper, we propose ASAINT: A Spy App Identification

System based on Network Traffic. To the best of our knowledge,

ASAINT is the first system capable of detecting spy apps in a net-

work without any physical or software control of the victim mobile

device. Core of our approach is a wide range of non-intrusive net-

work detection methods designed by studying several popular spy
apps.

We test ASAINT on a self-collected dataset containing network

traffic from both spy and benign applications, either on Android and

iOS. Our result is an F1-score of 0.85 on average, that confirms the

effectiveness of ASAINT. Moreover, our analysis provides a method-

ological classification of the exfiltration strategies used by spy apps
in different operating systems. In sum, our work gives new and

practical insights about the detection of modern spy apps, paving
the way for future research in detecting this class of malware.

CCS CONCEPTS
• Security and privacy→Mobile and wireless security; •Net-
works → Network experimentation; • Computing method-
ologies → Machine learning; Cross-validation.

KEYWORDS
machine learning, detection system, networking analysis, mobile

ACM Reference Format:
Mauro Conti, Giulio Rigoni, and Flavio Toffalini. 2022. ASAINT: A Spy App

Identification System based on Network Traffic. In Proceedings of ACM Con-
ference (Conference’17).ACM,NewYork, NY, USA, 8 pages. 10.1145/nnnnnnn.nnnnnnn

∗
University of Perugia, Italy

†
University of Padua, Italy

‡
Corresponding author

Conference’17, July 2017, Washington, DC, USA
© 2022

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Spy app is a threat that affects mobile devices and that allows

an adversary to exfiltrate sensitive information.
1
Compared to

other classes of mobile malware, such as such as virus, trojan, spy-

ware [27], spy apps received relative less attentions [3].

Peculiarity of spy apps is the ability of pursuing their goal without
relying on classic exploitation techniques. Thus, they behaviorally

appear close to legit and harmless apps. In fact, modern solutions are

unable to detected them [28]. Spy apps elusive behavior, combined

with an easy deployment from standardmobilemarkets (e.g.,Google
Play [7]) or through installation file (e.g., APK), alerted big anti-

virus player about the seriousness of such threats [10, 11].

To understand the success of spy apps, we analyzing the mit-

igation strategies of modern mobile devices in terms of privacy,

that we classify in three macro-area: (i) operating system privacy

restrictions, (ii) run-time monitor agents, (iii) network analysis.

Privacy restriction is a common feature of smartphone operating

systems (e.g., Android and iOS) that limits apps’ actions. However,

previous works showed practical multi-stage attacks able to bypass

these policies [31]. In addition, malicious apps may mislead users

to grant dangerous permissions (e.g., a casual game that asks for

a geographical position). To strengthen privacy policies, we can

validate run-time mobile apps behavior [16, 23, 29, 32] through

built-in monitoring agents [22]. Or else, we can rely on network

detection to seek malware traces [30]. Unfortunately, current net-

work analysis works focus only on spy apps toy examples. On the

contrary, to the best of our knowledge, we are the first who studies

real spy apps network behavior.

In this work, we propose ASAINT: A Spy App Identification Sys-

tem based on Network Traffic. The main contribution of ASAINT

is the ability of detecting information leakage by solely analyzing

the network traffic. Core to our approach, an exhaustive study of

machine learning (ML) algorithms that allows us to identify the

best classification strategy for spy apps. Furthermore, we stressed

our classifiers against legit apps traffic to study the robustness

of ASAINT. Our solution overcomes previous works because it

recognizes real spy apps without installing invasive monitors or

re-thinking privacy policies. We do not intend our work as merely

academic. On the contrary, we designed ASAINT as a strong so-

lution able to increase the privacy guarantees in those contexts

where is not possible to physically monitor devices, e.g., a corpo-
rate internal network that contains either employees’ and guests’

mobile devices.

To validate ASAINT, we redact a list of popular spy apps from the

market. As a result, we obtained an average F1-score of 0.85, with

1
We refer interchangeably at smartphone, tablet, and mobile devices

Conference’17, July 2017, Washington, DC, USA M. Conti et al.

only one class at 0.58, another one at 0.76, and all the others over

0.82. Thismeans that, overall, we are able to detect the data exfiltrate

by spy apps with good confidence. In addition to the classification

performances, we observed a detection time that ranges from 0.1s to

0.002s. This enables ASAINT to be deployed in a real environment.

Contribution. The contribution of this paper are:

• We propose ASAINT: a Spy App Identification System based

on Network Traffic for detecting information leak solely

through network inspection.

• We provide an investigation and classification of real spy
apps for Android and iOS.

• We discuss insight about different exfiltration techniques

used to implement spy apps.
• Wemeasure ASAINT performances in terms of classification

quality and detection speed.

2 RELATEDWORKS
Malware detection, especially for spyware, is an important re-

search topic on mobile device panorama. In the literature, either

researchers and companies spent a lot of effort on designing coun-

termeasures. We summarize their results in two main categories:

(i) embedded applications (Section 2.1), (ii) external mechanisms

(Section 2.2). ASAINT shares similarities with either classes that

we discuss in the rest of the section.

2.1 Embedded applications
Embedded applications refer to any system that needs to be installed

on the target device for the full functionality.

In the work [30], the authors studied how spyware works by

creating one their self, called Chameleon; with the knowledge ac-

quired from this step, they designed an application able to find

Chameleon, called DriodSmartFuzzer. The system basically scans

the privileges granted to all installed applications and the internet

traffic to identify potential spy apps. Differently, Carlsson et al. [19]

describe KAUDroid, which consists of an application that collects

permission usage on phones. Information about permissions are

stored, elaborated, and presented to the public through a web user

interface.

Ali-Gombe et al. [17] propose Aspectdroid which is an application-

level system designed to investigate Android applications for possi-

ble unwanted activities.

All the previous works rely on a dedicated monitoring agent

on the target phone. Our approach, instead, does not consider the

installation of a dedicated application. ASAINT can detect a spy app
by observing network communications. Our approach can, there-

fore, monitor multiple mobile devices by using a WiFi connection

and without any intervention on the target device.

2.2 External mechanisms
External mechanisms are systems that work outside the target de-

vice but interacting with it through some means of communication.

Malik et al. [25] introduce CREDROID, a system that can iden-

tify malicious applications based on: (i) their Domain Name Server

(DNS) queries, (ii) the data it transmits to a remote server, by per-

forming the in-depth analysis of network traffic logs in offline mode.

Even though they leverage on network traffic, we achieve better

performances by adopting machine learning algorithms. Moreover,

they deal with a class of spy apps which differs from us.

Anshul et al. proposed a network traffic analyzer for malicious

activity [18]. Their detector mainly focuses on Android malware

that relies on background connections. On the contrary, our work

ASAINT Conference’17, July 2017, Washington, DC, USA

faces a broader scenario that encompasses either Android an iOS.

Moreover, as we will describe in Section 5.2, syp apps employs

different exfiltration strategies that were not considered in Anshul’s

work.

Taylor et al. [20, 33] focus on the identification of user activities

on a target device, while our work moves the attention toward

network activities un-related with user applications. Moreover,

they collect and analyze multiple flows of data to identify with

more precision the user activity, instead we focus on a single flow

to minimize the spy app exfiltration. Thus, they face a different

scenario.

3 BACKGROUND AND PRELIMINARIES
In this section, we introduce the spy app definition that we adopted

(Section 3.1) and the properties of our threat model (Section 3.2).

3.1 Definition of a Spy App
The term “spy app” can be used in different contests and with differ-

ent meanings. In this paper, we consider the definition introduced

by Kaspersky in [3]. Those applications are defined as not-a-virus
and they are installed in a mobile device without abusing any flow,

as malware/spyware does. This definition traces a well-defined line

between classic malware/spyware and spy apps detection. Differ-
ently from classic malicious software, spy apps may be considered

benign [28] at a first inspection, and they are considered legal if

installed by the device owner.

Usually, spy apps can be installed by any personwho had physical
access to the mobile device for enough time, e.g., a developer, an
employer, a wife, a parent. The reasons for installing a spy app may

be various, e.g., for monitoring a child, excessive control or spying

the work of an employee. A possible scenario is an employer who

presents free phone as gifts to his employees for monitoring their

activity. Even though these apps cannot be considered traditional

malware, they can steal private data by usingHSO (Hidden Sensitive

Operations), for example upon sending or receiving text messages.

3.2 Threat Model
We list the threat model assumptions that we consider for ASAINT.

Assumptions with respect to the mobile device:
• The victim devices does not contain any specific monitor

installed (e.g., antivirus).
• The spy app relies on a WiFi connection to exfiltrate data.

This assumption comes from the fact that:

(i) The mobile device’s owner does not know of being spied,

so he does not disconnect the WiFi intentionally. Even if

the WiFi were disconnected, the spy app could detect the

event and alters its behavior.

(ii) WiFi connection gives more power to the spy app in terms

of upload capability since it does not consume mobile

traffic (as most mobile connections do) thus being more

stealthy,

(iii) Mobile apps usually rely on WiFi connection if both, WiFi

and mobile, are available.

Assumptions with respect to the user:
• The user is not aware of being spied.

• The user is a casual entity of a network (e.g., a guest who
visits a company).

4 OUR PROPOSAL: ASAINT
In this Section, we describe an overview of the transformation

process from raw traffic to the final samples and the infrastructure

adopted (Section 4.1, Section 4.2 and Section 4.3). Then, we illustrate

the network model we employed (Section 4.4) and the features

extracted (Section 4.5). In the end, we describe the adopted machine

learning strategies (Section 4.6).

4.1 Overview
The aim of ASAINT is to detect spy apps in a corporate network.

Those apps follow the threatmodel described in Section 3.2. Roughly

speaking, we aim at identifying compromised devices that use the

network for exfiltrating private data without user interaction. More-

over, we assume we don’t have control over such devices (i.e., we
cannot install/remove applications). We opted for this solution for

two reasons: (i) any guest who visits occasionally a company might

introduce a new device, (ii) a malware may bypass an in-device

monitoring agent.

Keeping this in mind, we modeled ASAINT to infer spy app
activities by only observing TCP/IP network behaviors without any

further monitor installed in the device.

4.2 Transformation Process
To infer spy apps activities, we apply a network transformation

process that builds machine learning samples starting from raw

network traffic data. Figure 1 shows the procedure adopted for

ASAINT. At first, we collect raw network traffic from a controlled

infrastructure (Section 4.3). In our implementation, we organize the

traffic into pcap files, but ASAINT can be also deployed to perform

an on-line analysis, as we discuss later (Section 5.5). After recording

the traffic, we process the raw data to create objects called flows
(Section 4.4). Then, we process the flows to produce a dataset of

samples (Section 4.5). Finally, we build a machine learning model

on top of our dataset to classify the samples (Section 4.6).

4.3 Network Analysis Infrastructure
The infrastructure simulates a simple corporate network which is

composed by a gateway, an access point, and a set of devices con-

nected to the access point. Those devices might be compromised or

healthy, but all of them use the internal network for communicating.

In our network, the devices are handled by the access point that

Flows Samples ML

.pcapNetwork traffic

Sections 4.2 - 4.3 Section 4.4 Section 4.5 Section 4.6

Figure 1: Transformation process from raw traffic to classi-
fied element.

Conference’17, July 2017, Washington, DC, USA M. Conti et al.

routes the traffic to the gateway. The latter manages the communi-

cation between the local network and the Internet, moreover, the

gateway employs a sniffing software to record the network traffic.

As a sniffing software, we opted for Wireshark [1], which is a well

know network analyzer. This infrastructure allows us to inspect

communications toward and from the Internet, however, the traffic

recorded is generally encrypted (e.g., HTTS, FPTS). Therefore, we

cannot just inspect the traffic to identify its nature. Furthermore,

since we do not know a priori which server is going to be contacted,

we cannot rely on destination IP addresses as well.

Notice that, the local network can contemporaneously contain

healthy and compromised devices, and both communicate with

remote servers for different purposes. Since both communications

are encrypted, it is crucial to discern between these two behaviors.

4.4 Flow Representation
Taking inspiration from Taylor et al. [34], we model the network

traffic as flows. Intuitively, a flow is any stream of packets between

two given IPs. Note that we include in the same flow all the packets

exchanged between two given IPs, regardless of the port used or

their direction. That is, a flow may contain packets with different

source and destination port, but those packets must be exchanged

between the same IP pair. Same for the direction, a flow may con-

tain both ongoing and incoming packets as long as those packets

are exchanged between the same IP pair. This choice comes from

this observation: an application may communicate with a server by

using different services (i.e., different destination ports) to perform

an action. Therefore, to fully catch an application action (e.g., up-
loading a file), we must accumulate in a single object (i.e., the flow)
all the traffic generated for performing that action.

For extracting flows, we rely on the concept of burst [24]. Intu-
itively, a burst is a network traffic partition which is identified by a

high quantity of data transferred over a delta time with no relevant

pause in the transmission. To identify a burst, we borrowed a simple

heuristic from [34]: if the inter-arrival time between two consecu-

tive packets is larger than a fixed delta time, then we consider the

packets belonging to two bursts.

To sum up, the algorithm we used to identify a flow is as follow:

(1) we extract bursts from the network traffic by grouping pack-

ets with a time gap lower than one second (as done in [34]).

(2) we split each burst in flows by grouping all packets ex-

changed between two given IP address
2
.

Since a flow represents an application action, our goal is now to

discern between those flows which are generated by spy apps and
legitimate apps. To achieve it, we will employ a machine learning

approach. Starting from a well-defined set of flows, we first make a

dataset by extracting several features from each flow (Section 4.5).

Then, we apply different machine learning algorithms to identify

the better strategy (Section 4.6).

4.5 Samples and Features Extraction
Our dataset is composed of samples which are made from the anal-

ysis of flows (i.e., a sample for each flow). Since the samples are

2
Since we group both ongoing and incoming packets. We group in a single flow all

packets that have the same IP pair as source and destination address, i.e., (IP1 ,IP2) and
(IP2 ,IP1)

Table 1: Labels and samples constructing the dataset.

Label Description # of samples

cImg Cerberus spy app for Img shot 65

cSms Cerberus spy app for SMS log 97

mSpy mSpy spy app back-up 180

tSpy The TruthSpy spy app back-up 279

Total spy app samples 621

DB Dropbox photo upload 99

GF Google Foto photo upload 184

Total legitimate app samples 283

GEN Generic traffic/noise 2461

Total 3365

generated by different apps and actions, we define multiple labels,

shown in Table 1, each label represents an action we aim to iden-

tify. We also define a generic label for the remaining traffic. Each

sample can belong only to one of those labels. As we shall discuss

in Section 5, we collect all the traffic in a controlled environment;

therefore, we manually labeled each sample.

As features list, we took inspiration from [33]. For each sample,

we define 39 different features. In a nutshell, these features are sta-

tistical measurements such as number of packets, amount of data,

average delta time between packets, skews and kurtosis on packet

dimension, 90th percentile on packets dimension. We calculate a

set of features for each flow by considering three cases: (i) consid-

ering only ongoing packets, (ii) considering only incoming packets,

(iii) and considering both; The idea is that an application will gen-

erate similar flows that should share similar properties. Therefore,

we aim to catch those similarities through statistical measurements

of incoming and ongoing packets.

4.6 Machine Learning
In this work, we employ supervised machine learning algorithms

to identify those flows that belong to spy apps.
Our intention is to distinguishwhich (and implicitly if) a device is

being watched by a spy app. Moreover, we aim at identifying which

type of data the spy app is sending (e.g., photo or text messages). In

this section, we explain the machine learning challenges introduced

by ASAINT.

Data Preprocessing. Due to the unbalanced number of samples

between spy apps and general traffic, we opt for an oversampling

algorithm to adjust the class distribution. In this work, we opt for the

SMOTE (Synthetic Minority Over-sampling Technique) algorithm

from the imbalanced-learn API of sci-kit library [26].

After these operations, we obtain an enriched dataset.

Machine Learning Algorithm. We test three fast and low-

complexity ML algorithms, for a future run-time detection, on the

enriched dataset: Random Forest (RM), Logistic Regression (LR) and

k-NN, and we evaluate which of them provides better performances.

Having few samples might bring over-fitting problems caused

by an imbalanced dataset. We cope with this issue by using a nested

ASAINT Conference’17, July 2017, Washington, DC, USA

cross-validation (CV) as explained in [13]. Figure 2 shows the nested

CV principle, the outer cross-validation divides the dataset in train-

ing and test set, applying oversampling only to the training set.

Instead, the inner cross-validation does a fine-tuning for the hyper-

parameters of the ML algorithm solely on the over-sampled training

set. Using this technique, with every outer CV iteration, the best

ML model from the inner CV is applied to the outer test set. The

outcomes are the best results obtained from the outer CV, each

computed with the best hyper-parameters configuration from the

inner CV.

5 EVALUATION
In our evaluation, we explore the commercial word of spy app
and we tune our experiments in order to answer the three specific

research questions:

• RQ1 What are the different mechanisms adopted by spy
apps?

• RQ2 Is there any different spy app strategy between Android
and iPhone?

• RQ3 Is it possible to detect spy apps activities by using net-

work analysis?

The rest of the section is organized as follows. First, we describe

a qualitative analysis of spy apps behaviors (Section 5.1) and the use

cases chosen (Section 5.2). Then, we describe the data collection

methodology adopted (Section 5.3) and the database generated

(Section 5.4). Finally, the performance of ASAINT (Section 5.5) and

a comparison between Android and iOS (Section 5.6).

5.1 Exfiltration Techniques
Designing ASAINT, we study and select spy apps for two mobile

operating systems: Android [2] and iOS [9]. We pick three spy apps
for Android and one for iOS according to their popularity and their

exfiltration strategies.

As first, we perform a qualitative analysis of these applications

to understand their behaviors. After this analysis, we noticed that

the spy apps of Android significantly differ from the ones of iOS.

We found out that iOS spy apps do not actually exfiltrate data from

the network, but instead relies on iCloud services [8]. Therefore,

ASAINT cannot be used to detect such apps (details in Section 5.6).

On the other hand, Android spy apps interact with the network.

Therefore, we apply ASAINT to those cases.

In Android, the three spy apps we study rely on two typical

programming patterns: polling and push notification. These two

strategies upload sensitive data over the network in different ways.

Polling. In this strategy, the spy app periodically uploads private
data (e.g., image or messages) from the phone into a remote server.

The spy apps analyzed provide a Web portal where the attacker can

re-arranged the scheduling.

Push Notification. In this strategy, through push notification,

the spy app uploads data on-demand. The attacker can use a dash-

board to query the device that will perform an action. For instance,

the attacker can remotely shot a photo and send it through email,

or else the phone can upload the call logs.

This analysis allows us to answer to RQ1: in Android, the com-

mercial spy apps rely on classic programming patterns such as

polling and push notification.

5.2 Use Cases
As use cases for ASAINT, we choose one spy app based on push

notification (i.e., Cerberus [4]) and two spy apps based on polling (i.e.,
mSpy [12] and TheTruthSpy [14]). Then, we design the following

tests for collecting data and create the dataset.

Cerberus. Since Cerberus employs a push notification mecha-

nism, we manage to record network traffic specific to two different

actions: (i) SMS log file, (ii) instant photo. With the first action, we

ask to retrieve all the SMS sent and received by the phone, while

the second action allows us to silently take a photo from the phone.

In particular, we collected (i) 30 instances of SMS log and (ii) 10

instances of instant photo.

mSpy. mSpy employs a polling mechanism. Moreover, it does

not let the user of the spy app choose a single action. It, basically,

creates and uploads a back-up of the entire phone. Therefore, we

re-arranged the tests as follow: (i) 5 recordings of 30 minutes of

network traffic, with a polling rate of 5 min; this means that the

application will retrieve the back-up from the phone every 5 min.

(ii) 5 recordings of 30 minutes of network traffic, with a polling rate

of 10 min; this means that the application will retrieve the back-up

from the phone every 10 min.

TheTruthSpy. Similar to mSpy, TheTruthSpy spy app uses a

polling mechanism and so we did: (i) 10 recordings of 30 minutes

of network traffic, with a polling rate of 5 min; this means that the

application will retrieve the back-up from the phone every 5 min.

We applied this approach to three different device configurations:

(i) Samsung Galaxy Nexus with Android 4.3, (ii) Samsung Galaxy

S5 with Android 4.4.2, and (iii) Samsung Galaxy S5 with Android

6.0.1.

Common mobile apps (e.g., Facebook, Instagram, a Web browser)

mainly download data instead of uploading, while spy apps mainly

upload data. This fact let us wonder whether spy apps’ network
behavior might be confused with other apps that mainly upload

data. Therefore, we design some special use case to investigate

possible false positives. In particular, we record network traffic of

common file-sharing apps: Google Foto [6] 3 and Dropbox [5].

Google Foto and Dropbox. We select these two common appli-

cations and test for each one: 50 instances of uploading a photo.

We label these two use cases separately because we are interested

in understanding whether they can fake our detection.

Generic Traffic. During the aforementioned tests, we record

also casual and random network traffic generated from the phone

(e.g., traffic from background applications and system synchroniza-

tion) andWeb-browser traffic. Since we consider this network traffic

as physiological, we label the relative samples as GEN (Generic

traffic).

3
We refer to the italian version of Google Photos

Conference’17, July 2017, Washington, DC, USA M. Conti et al.

Outer cv
Train with optimal parameters

Training set
Inner Test set
Outer Test set

Inner cv
Fine tuning for parameters

Figure 2: Nested cross-validation process. The whole dataset is split in chunks for training, letting one out every iteration as
test set. In each iteration, the training set is further split in training and test set as represented, repeating the same process
for fine-tuning the algorithm.

Table 2: Description of every tests for each applications.

App Type Label # of tests Test description

Spy cImg 10 Instances of instant photo

Spy cSms 30 Instances of SMS log

Spy mSpy 5 5 min. polling rate, 30 min. rec.

Spy mSpy 5 10 min. polling rate, 30 min. rec.

Spy tSpy 10 10 min. polling rate, 30 min rec.

Legitimate DB 50 Instances of photo upload

Legitimate GF 50 Instances of photo upload

5.3 Data Collection Methodology
To collect data from the use cases previously listed, we use the net-

work infrastructure described in Section 4. We connect the phones

to a controlled access point and we sniff the network traffic at a

controlled gateway. It is important to notice that only one smart-

phone was connected to the WiFi access point at a time, granting

clean readings. We describe the whole dataset in Table 2. After

the tests, we manually inspected the traffic for labeling the flows.
This methodology is useful to reverse spy app behavior and spot

significant peculiarity otherwise hidden. For instance, we identify

spy app exfiltration strategies for iOS devices (see Section 5.6).

To distinguish between each flow, we first list the IP addresses,

then, we use a so-called whois service [15] (based on WhoIs proto-

col [21]) to understand which app generated the traffic. For some

apps, these operations are quite straightforward (e.g., Cerberus). In
other cases, such as mSpy, we analyze whether the burst generated
toward the same remote IP address match the polling schedule set

in the portal. This approach was fundamental since those spy apps
use VPS stored in clusters (e.g., AWS). Therefore, solely server IP

address is not enough to recognize the nature of the service.

5.4 Dataset Specification
From our experiments (Section 5.2), we gather 245, 7 MB of data

for ∼ 73, 33 hours of recorded internet traffic. We, then, convert the

raw traffic in a dataset that is summarized in Table 1. Each sample

of our dataset represents a flow.
The table recalls the labels described in Section 5.2. Since we aim

to distinguish the actions for each spy app, we defined a label for

each app. For Cerberus, we manage to label single actions. We also

define labels for some legitimate apps and the generic traffic.

The number of samples generated is 621 for all spy apps, 283 for
legitimate apps (i.e., Google Foto and Dropbox) and 2461 for the

general traffic.

5.5 ASAINT Performances
Following the procedures and methodologies described in Section

4.6, we obtain the results in Figure 3. To evaluate ASAINT perfor-

mances, we choose F1-measure because of the unbalanced nature of

our dataset. Figure 3a illustrates the F1-score distributions obtained

by using three machine learning algorithms. The best F1-score

values derive from the training with the RF algorithm. It is also

possible to observe similar results in Figure 3b that shows the mean

F1-score for the three algorithms. Even in this case, we obtain the

best result with RF, an F1-score of 0.857.

The distributions in Figure 3a underline a more compact distribu-

tion for RF. Furthermore, some of its results out-stands the average

reaching 0.92. This indicates that RF is more stable with respect to

k-NN and LR. Overall, RF algorithm seems to perform better than

the others since its worst value is better than the best results from

k-NN and LR.

For the tests, we use a 10-fold nested cross-validation in which

the inner 10-fold cross-validation search through some hyper-parameters

such as the depth of the tree (for RF), the dimension of the neigh-

borhood (for k-NN) and the C parameter (for LR). Also, the best

k-features are selected during the process of fine-tuning. Figure 3b

depicts the mean F1-score values from 10 different outcomes of the

10-fold cross-validation process.

Figure 3c shows an example of a confusion matrix obtained pre-

dicting the outcomes with our approach based on RF. This represen-

tation gives a glance at the overall performances. A dark-blue color

means high numbers, while a light color means numbers close to

zero. Furthermore, confusion matrix is used to represent true/false

ASAINT Conference’17, July 2017, Washington, DC, USA

positive and true/false negative just by looking at each entry on the

matrix. In the image, we notice how the cImg labels are the worst

classified. More precisely, cImg are heavily miss-classified as GEN.

However, we also observe that the number of miss-classification

inter-labels, excluding GEN, are really low. This behavior can be

explained by the fact that generic applications upload/download

images (e.g., a post on Facebook) in a similar manner than Cerberus.

Therefore, the relative traffic is similar to cImg samples. However,

according to the results obtained, we can assert that it is possible

to detect spy apps’ activities in a network. This answers to RQ3.

Detection Time. Figure 3d shows the average training and clas-

sification times. We perform the experiments on a general-purpose

machine equipped with 8GB of memory and an Intel i5. The picture

shows that RF is the slower algorithm (0.1s), while the fastest is LR

(0.002s). Even though RF expresses the slowest classification time,

the performance is fast enough to alarm and block ongoing attacks.

The algorithms show a different pattern for the training time. In

this case, LR requires more than 400s to compose the model, while

the k-NN needs around 15s. In a scenario where a defender needs

to update ASAINT as soon as possible, we can still adopt RF that

requires a relative fast training phase (34s).

5.6 Differences between Operating Systems
Initially, our intention was to test the most used Operating System

for mobile devices: iOS and Android. Unfortunately, the systems

are too different and the spy app we choose works in completely

distinct ways. For example for using mSpy on Android, is necessary

to install an application on the target device, and through this

application, the mSpy system can retrieve information. Instead, on

a not-jailbreak iOS device, there is no application to be installed.

Moreover, we collect more evidence on the matter using two simple

strategies:

Sideways contentmodification. Accessing iCloud from a desk-

top environment, we made some changes and added new content

to the cloud store. The logical outcome is that the spy app should

not be able to retrieve these changes and new contents, because

they are not on the spied device. Instead, we observe new elements

updated from the spy app dashboard.

Recordings. We record the target device, in idle mode, for a

whole day with and without setting up the spy app for the device.

The two network traces were identical, hence no sign of any spy
app presence.

During the configuration procedure, mSpy asks for iCloud infor-

mation i.e., userID and password; once a day, the target mobile

phone creates a back-up and stores it on iCloud; at that moment

we assume that mSpy will download the back-up from the iCloud

server using the credentials provided at the configuration time. This

system makes our testing solution completely inappropriate and

incompatible with the Android testing scenario. Furthermore, to

our knowledge, all the spy apps designed for iOS, rely on this same

mechanism.

This analysis enables us to answer to RQ2: Android’s spy apps
generate network traffic for exfiltrating data, while iOS’s spy apps
interact with iCloud. Moreover, according to our results, iOS spy

apps cannot be detected through network analysis nor built-in

monitors.

6 DISCUSSION AND CONCLUSIONS
There is a growing number of threats formobile devices, one of them

are spy apps. In particular, this kind of malware can steal personal

data using HSO remaining undetected. We propose a wide-range

non-intrusive method for the identification of spy apps at work in

a controlled environment using a WiFi internet connection as a

means of communication. Through the use of Machine Learning

algorithms, we achieve an average F1-score of over 0.85; we were

able to not only identify the spy app but also the specific action

carried out. Moreover, we test our approach on real spy apps that
are available on the market, and against benign applications with

similar behavior like Google Play and Dropbox. Finally, we show

that ASAINT provides fast detection and thus it is suitable for run-

time detection systems. In the future, we will focus on high-level

tuning for even better results, and we will pose stricter constraints

on the environment (e.g., different connection type).

REFERENCES
[1] Wireshark, 1998. Last access Oct 2018.

[2] Android, 2018. Last access Dic 18 2018.

[3] Android commercial spyware, 2018. Last access Dic 18 2018.

[4] Cerberus, 2018. Last access Dic 18 2018.

[5] Dropbox, 2018. Last access Dic 18 2018.

[6] Google foto, 2018. Last access Dic 18 2018.

[7] Google play, 2018. Last access Dic 18 2018.

[8] icloud, 2018. Last access Dic 18 2018.

[9] ios, 2018. Last access Dic 18 2018.

[10] Mcafee labs threats report, 2018. Last access Dic 18 2018.

[11] Mobile malware evolution 2017, 2018. Last access Dic 18 2018.

[12] mspy, 2018. Last access Dic 18 2018.

[13] Nested versus non-nested cross-validatio, 2018. Last access Oct 2018.

[14] Thetruthspy, 2018. Last access Dic 18 2018.

[15] Whois, 2018. Last access Dic 18 2018.

[16] Afridi, M. W., Ali, T., Alghamdi, T., Ali, T., and Yasar, M. Android Application

Behavioral Analysis through Intent Monitoring. In Digital Forensic and Security
(ISDFS), 2018 6th International Symposium on, IEEE, pp. 1–8.

[17] Ali-Gombe, A., Ahmed, I., Richard III, G. G., and Roussev, V. Aspectdroid:

Android App Analysis System. In Proceedings of the Sixth ACM Conference on
Data and Application Security and Privacy (2016), ACM, pp. 145–147.

[18] Arora, A., Garg, S., and Peddoju, S. K. Malware Detection Using Network

Traffic Analysis in Android Based Mobile Devices. In 2014 Eighth International
Conference on Next Generation Mobile Apps, Services and Technologies (2014), IEEE,
pp. 66–71.

[19] Carlsson, A., Pedersen, C., Persson, F., and Söderlund, G. KAUDroid: A
Tool that Will Spy on Applications and How They Spy on Their Users. Karlstads
universitet, 2018.

[20] Conti, M., Mancini, L. V., Spolaor, R., and Verde, N. V. Can’t You Hear Me

Knocking: Identification of User Actions on Android Apps Via Traffic Analysis.

In Proceedings of the 5th ACM Conference on Data and Application Security and
Privacy (2015), ACM, pp. 297–304.

[21] Daigle, L. WHOIS Protocol Specification. Tech. rep., 2004.

[22] Jimenez, L. M., Ochoa, M., and Rueda, S. J. Jif-Based Verification of Information

Flow Policies for Android Apps. IJSSE 8, 1 (2017), 28–42.
[23] Kirda, E., Kruegel, C., Banks, G., Vigna, G., and Kemmerer, R. Behavior-based

Spyware Detection. In Usenix Security Symposium (2006), p. 694.

[24] Kurose, J. F., and Ross, K. W. Computer Networking: A Top-Down Approach (6th
Edition). Pearson, 2012.

[25] Malik, J., and Kaushal, R. CREDROID: Android Malware Detection by Network

Traffic Analysis. In Proceedings of the 1st ACMWorkshop on Privacy-Aware Mobile
Computing (2016), ACM, pp. 28–36.

[26] Pedregosa, F., Varoqaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,

Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.

Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research
12 (2011), 2825–2830.

[27] Qamar, A., Karim, A., and Chang, V.Mobile malware attacks: Review, taxonomy

& future directions. Future Generation Computer Systems 97 (2019), 887 – 909.

Conference’17, July 2017, Washington, DC, USA M. Conti et al.

Random Forest k-NN Logistic Regression
ML Algorithms

0.4

0.5

0.6

0.7

0.8

0.9

F1
-s

co
re

(a) F1-score distribution.

Random Forest k-NN Logistic Regression
ML Algorithms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1
-s

co
re

0.852

0.658

0.476

(b) Mean F1-score.

GF DB cSms cImg mSpy tSpy GEN

GF
DB

cS
m

s
cIm

g
m

Sp
y

tS
py

GE
N

171 0 1 1 0 0 11

0 91 0 0 0 0 8

0 0 81 6 0 0 10

0 0 7 52 0 0 6

0 0 0 1 172 0 7

1 0 0 0 0 251 27

15 19 26 53 5 82 2261

0

60

120

180

240

300

(c) Heatmap representation.

Random Forest K-nn Logistic Regression
ML Algorithms

0.00

0.02

0.04

0.06

0.08

0.10
Cl

as
sif

ica
tio

n
Ti

m
e

(s
)

0

100

200

300

400

Tr
ai

ni
ng

 T
im

e
(s

)

Classification
Training

(d) Time performances.

Figure 3: Results of our experiments.

[28] R. Chatterjee and P. Doerfler and H. Orgad and S. Havron and J. Palmer

and D. Freed and K. Levy and N. Dell and D. McCoy and T. Ristenpart. The

spyware used in intimate partner violence. In 2018 IEEE Symposium on Security
and Privacy (SP) (2018), pp. 441–458.

[29] Rathi, D., and Jindal, R. DroidMark: A Tool for Android Malware Detection

using Taint Analysis and Bayesian Network. arXiv preprint arXiv:1805.06620
(2018).

[30] Saad, M. H., Serageldin, A., and Salama, G. I. Android Spyware Disease and

Medication. In Proceedings of the Second International Conference on Information
Security and Cyber Forensics (InfoSec) (2015), IEEE, pp. 118–125.

[31] Salvia, R., Ferrara, P., Spoto, F., and Cortesi, A. SDLI: Static Detection

of Leaks Across Intents. In 2018 17th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/ 12th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE) (2018),
pp. 1002–1007.

[32] Saracino, A., Sgandurra, D., Dini, G., and Martinelli, F. Madam: Effective

and Efficient Behavior-based Android Malware Detection and Prevention. IEEE
Transactions on Dependable and Secure Computing 15, 1 (2018), 83–97.

[33] Taylor, V. F., Spolaor, R., Conti, M., and Martinovic, I. Appscanner: Auto-

matic Fingerprinting of Smartphone Apps from Encrypted Network Traffic. In In
2016 IEEE European Symposium on Security and Privacy (Euro S&P) (2016), IEEE,
pp. 439–454.

[34] Taylor, V. F., Spolaor, R., Conti, M., and Martinovic, I. Robust Smartphone

App Identification via Encrypted Network Traffic Analysis. IEEE Transactions on
Information Forensics and Security 13, 1 (2018), 63–78.

View publication stats

https://www.researchgate.net/publication/343326253

	Abstract
	1 Introduction
	2 Related Works
	2.1 Embedded applications
	2.2 External mechanisms

	3 Background and Preliminaries
	3.1 Definition of a Spy App
	3.2 Threat Model

	4 Our proposal: ASAINT
	4.1 Overview
	4.2 Transformation Process
	4.3 Network Analysis Infrastructure
	4.4 Flow Representation
	4.5 Samples and Features Extraction
	4.6 Machine Learning

	5 Evaluation
	5.1 Exfiltration Techniques
	5.2 Use Cases
	5.3 Data Collection Methodology
	5.4 Dataset Specification
	5.5 ASAINT Performances
	5.6 Differences between Operating Systems

	6 Discussion and Conclusions
	References

