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We analyze the stability and dynamics of dissipative Kerr
solitons (DKSs) in the presence of a parabolic potential. This
potential stabilizes oscillatory and chaotic regimes, favoring
the generation of static DKSs. Furthermore, the potential
induces the emergence of new dissipative structures, such as
asymmetric breathers and chimera-like states. Based on a
mode decomposition of these states, we unveil the underlying
modal interactions. © 2022 Optica Publishing Group

https://doi.org/10.1364/OL.472900

Dissipative temporal Kerr soliton (DKS) [1] generation and
manipulation have been an emerging topic in photonics over
the past decade, since they provide a breakthrough framework
for coherent frequency comb generation in chip-scale microres-
onator platforms [2,3]. In contrast to conservative systems,
where solitons are formed due to a counter-balance between
dispersion and nonlinearity, dissipative solitons additionally
require an equilibrium between internal dissipation and external
energy flow or driving. The dynamics and stability of DKSs
have been analyzed in detail in the mean-field approximation,
where passive Kerr resonators are described by a driven and
damped nonlinear Schrödinger model [4,5]. In this context, a
large variety of DKSs emerge in anomalous and normal dis-
persion regimes [6–8]. As the pump intensity grows larger,
DKSs undergo different types of instabilities, leading to com-
plex spatiotemporal dynamics, which can be either periodic (i.e.,
breathers) or chaotic [9–13].

Spatiotemporal dynamics can be stabilized through high-
order effects, such as third-order dispersion, which considerably
reduces the extension of unstable parameter regions in favor
of static DKSs [14,15]. Moreover, third- and fourth-order dis-
persion effects may lead to the appearance of new types of
localized states, and to the coexistence of bright and dark DKSs
[16–18], as it also does the Raman effect [19]. Spatiotem-
poral instabilities may also be suppressed by the modulation
of the intracavity background field. These modulated defects
can be induced through the external phase of the driving

field [20–25], or by synchronous intracavity phase modula-
tion [26,27]. The latter can be introduced via an electrooptic
modulator, and it leads to a synthetic dimension [27,28]. Both
methods create an effective periodic potential, which provides
an additional degree of freedom for controlling spatiotemporal
dynamics and emerging states. Together with the stabilization
of chaotic states [29], the potential may lead to the emer-
gence of chimera-like states [28,30]. Furthermore, a modulated
background provides different advantages, such as enhancing
the pump-to-soliton conversion efficiency [25], and providing
additional deterministic routes for DKSs generation, without
undergoing a spatiotemporal chaotic phase [31].

In this Letter, we theoretically show that a parabolic potential
in time plays a key role on the stability of DKSs and other spa-
tiotemporal dissipative structures emerging in a dispersive Kerr
resonator with anomalous dispersion. The parabolic potential
approximates a periodic (e.g., sinusoidal) potential around the
center of the DKS. Specifically, we find that, for low pump
values, the potential stabilizes oscillatory and chaotic dynamics
in favor of static DKS. As the pump power grows larger, the
potential induces the appearance of asymmetric breathers and
chaoticons (i.e., chimera-like states) [32], where the background
field state coexists with a spatiotemporal localized chaotic state.
Moreover, chaoticons coexist with single-peak DKSs, and form
a hysteresis loop. To support our findings, we carry out a sys-
tematic bifurcation analysis, which establishes the connection
with the multimodal structure of the potential.

In the mean-field approximation, the coherently driven and
phase modulated passive cavity is described by the equation

∂tA = i∂2
τA − iCτ2A + i|A|2A − (1 + iδ)A + P, (1)

where A(τ, t) is the slowly varying envelope of electric field,
and τ, t are the fast and slow time, respectively [4]. The term ∂2

τ

is second-order anomalous chromatic dispersion, δ is the phase
detuning, P is the driving pump field amplitude, and the linear
loss coefficient, without loss of generality, is normalized to 1. We
introduce the parabolic temporal potential Cτ2, where C controls
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Fig. 1. (a),(c) Comparison of solutions without the potential C =
0 and (b),(d) with the potential C = 1, when the parameters are
(a),(b) P = 2.5, δ = 3 and (c),(d) P = 4.5, δ = 8.

its curvature. Note that such type of potential describes a trap
in Bose–Einstein condensates, and a transverse index profile in
graded-index multimode fibers [33]. With the usual change of
the meaning of the coordinates (e.g., modify time τwith space x),
Eq. (1) also describes the spatial dynamics of one-dimensional
(e.g., consider slab waveguides) driven nonlinear passive cavi-
ties with a graded refractive index [34]. To study the dynamics of
Eq. (1), we perform both direct numerical simulations (DNSs)
with a pseudospectral method, and numerical path-continuation
of the stationary solutions As (i.e., ∂tAs = 0) by using AUTO-07p
[35]. The latter allows us to compute both stable and unstable
steady-state solutions, which are not accessible otherwise.

Figures 1(a) and 1(b) show the dynamics of solutions of
Eq. (1) in the absence of the potential (C = 0). The temporal
evolution [|A(τ)|2 versus t] of a chaotic Turing pattern, and its
final state are shown in Fig. 1(a) for (P, δ) = (2.5, 3). Whereas,
Fig. 1(c) shows a breather DKS for (P, δ) = (4.5, 8). For this set
of parameters, static DKSs are always unstable [36]. When the
potential is introduced (C = 1) [see Figs. 1(b) and 1(d)], these
dynamics are stabilized, leading to stationary DKSs.

In order to understand the mechanism for this stabilization,
we perform a bifurcation analysis of the DKSs, with and without
a temporal potential. These results are illustrated in Fig. 2, using
Icenter ≡ |A(0)|2 versus δ. We set P = 2.5 in Figs. 2(a) and 2(b),
P = 4.5 in Figs. 2(c) and 2(d), C = 0 in Figs. 2(a) and 2(c),
and C = 1 in Figs. 2(b) and 2(d). Stable and unstable steady-
state branches are computed by path-continuation algorithms;
dynamical states are calculated by DNSs.

Figure 2(a) shows the bifurcation diagram in the absence
of potential, with P = 2.5. The blue curve corresponds to the
continuous-wave (CW) state of Eq. (1). The CW state is stable
until the saddle-node (SN) bifurcation SNl

h, where it becomes
unstable (see dashed blue lines). The DKS bifurcates from SNl

h
with a small amplitude, and it remains unstable (see orange
dashed lines) [7]. By increasing δ, the DKS eventually stabilizes
at SNr, and it retains stability until reaching SNl (see solid red
line). These solitons have a non-zero background (corresponding
to the CW state), and their localized profile can be approximated
by a sech-shape [1]. When decreasing δ below SNl

h, the DKS
background becomes unstable, leading to chaotic Turing pattern
states, such as in the example shown in Fig. 1 for (δ, P) = (3, 2.5).
The peak intensity values of these states are plotted by gray dots
in Fig. 2(a).

This scenario drastically changes in the presence of the
parabolic potential [see Fig. 2(b)]. Now, the CW state diagram
merges with the solution branches corresponding to the DKS,
leading to the single curve of Fig. 2(b). Each branch on this curve

Fig. 2. Bifurcation diagrams showing Icenter versus δ for (a)
(P, C) = (2.5, 0), (b) (P, C) = (2.5, 1), (c) (P, C) = (4.5, 0), and (d)
(P, C) = (4.5, 1). The dashed gray line in (b) is the linear steady-
state solution, to be compared with the nonlinear solution. Panels
(i)–(iii) show the intensity |A|2 (solid line) and phase ϕ (dashed line)
of the three localized solutions S1, S2, and S3, corresponding to the
curves in panels (b),(d); panel (iv) corresponds to the DKS solution
in panel (d). Panel (v1) shows the evolution of a τ-asymmetric state
for δ = 2.5; panel (vi1) shows a chaoticon for δ = 0.8, correspond-
ing to panel (d). (See Visualization 1 and Visualization 2.) We plot
the corresponding field powers at different slow times in panels (v2)
and (vi2), respectively.

corresponds to a localized state, as depicted in Figs. 2(i)–2(iii),
and branches are interconnected through the SN bifurcations
SNl,r

p .
The S3 state plotted in Fig. 2(i) is a small-amplitude localized

pulse, which corresponds to the deformation of the CW state,
owing to the presence of the potential. This state extends until
SNl

p, where it connects to the unstable state S2 [see Fig. 2(ii)]. At
SNr

p, the latter leads to the DKS state S1 [see Fig. 2(iii)]. Then
S1 rests on the basal state S3, and is asymptotically connected to
a zero intensity background. For C = 1, S1 extends to negative
δ and it is stable. Between SNl

p and SNr
p, the localized states S1

and S3 coexist for the same range of parameters, and are both
stable. They can be easily excited by a Gaussian function of
the form A(τ) = h exp(−(τ/r)2/2), with h and r taking different
values. In the absence of nonlinearity, bistability disappears: the
linear resonance of Eq. (1) is shown by the dashed gray line in
Fig. 2(b). The linear solution, obtained by removing the Kerr
term, is also plotted in Fig. 2(i). Therefore, the solution branch
S3 represents a nonlinear deformation of the linear steady-state
solution.

As we have anticipated with Fig. 1, the stabilization of the
dynamics of solutions to Eq. (1) occurs for different values of

https://doi.org/10.6084/m9.figshare.20496771
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P. To support this, we computed the bifurcation diagram asso-
ciated with a single-peak soliton for P = 4.5, with and without
the potential. This situation is depicted in Figs. 2(c) and 2(d).
Figure 2(c) shows the bifurcation diagram for C = 0. By increas-
ing P, the role of nonlinearity grows larger, which further tilts
the resonance (see the blue lines). The DKS solution branches
preserve the morphology depicted in Fig. 2(a), although now
their range of existence has increased. In this regime, the top
DKSs branch undergoes a Hopf bifurcation (H), where the soli-
ton becomes unstable in favor of breathing states. The minimal
and maximal value of Icenter of these breathers are plotted using
of brown dots. These breather states are similar to that depicted
in Fig. 1(c), and their oscillation amplitude grows larger with
decreasing values of δ. Eventually, when SNl

h is crossed, the
stable CW state disappears, and spatiotemporal chaos (STC)
develops. Note that STC extends the breather over SNl

h, and
coexists with DKSs or breathers [see Figs. 2(a) and 2(c)].

For C = 1 [see Fig. 2(d)], STC is suppressed by the poten-
tial, in favor of either static DKS or regular oscillatory states.
The DKS S1 enlarges its stability region, which now extends
to Ha, where δHa ≪ δH. Once Ha is crossed, a τ-symmetric
breather arises supercritically, and it increases its oscillation
amplitude with decreasing values of δ. Eventually, this sta-
ble breather disappears, possibly in a fold of cycles at Xa. By
decreasing δ below this point, the system develops τ-asymmetric
breathers, such as the one which is depicted in Fig. 2(v) for
(δ, P) = (2.5, 4.5). A special feature of these states is the differ-
ent evolution of their leading and trailing tails (see Visualization
1). The extrema of these states, at τ = 0, are depicted by using
brown dots in Fig. 2(d). Decreasing δ further, the asymmet-
ric breather branch meets with a symmetric one (see dark red
branch) and disappears. On the right-hand side, the latter per-
sists until reaching Xb. On the left-hand side, the τ-symmetric
breather decreases its amplitude, until it dies out at the Hopf
bifurcation Hb. Note the presence of a bistability region between
the symmetric and asymmetric breathers [see the light blue shad-
owed area in Fig. 2(d)]. For δ<δHb , DKSs exist [such as the one
shown in Fig. 2(iv)], although they lose stability once more
around δ ≈ 0.5. After this, the solution of Eq. (1) evolves into
a very complex spatiotemporal state, such as the one shown
in Fig. 2(vi). It consists of a portion of STC which is local-
ized around the center of the temporal domain, owing to the
presence of the potential which acts as a trap, thus confining
the STCs. Such a type of chaotic pulse was named chaoticon by
Vershueren et al. [32], although it is also known as chimera state
in other works [28,30]. Chaoticons and DKSs [see, respectively,
Fig. 2(vi) and Fig. 2(iv) and Visualization 2] coexist within a
given δ-range [see the pink shadowed area in Fig. 2(d)].

The previously described states can be analyzed in terms of a
mode decomposition method. The parabolic potential introduces
boundary conditions for the fields, which translate in a finite
number of eigenmodes. Therefore, solutions of Eq. (1) in Fig. 2
can be decomposed and analyzed in terms of linear eigenmodes.
This provides essential information regarding the underlying
nonlinear mode interactions and the global dynamics of Eq. (1).
The linear eigenmodes obey the equation

∂tA = i∂2
τA − iCτ2A, (2)

which also describes a quantum mechanical harmonic oscilla-
tor. Note that a similar equation was also used for describing
the dynamics of mode-locked nanolasers [37,38]. As is well
known, the eigenmodes of Eq. (2) are the Hermite–Gaussian

Fig. 3. (a) First six HG linear modes ψ0, . . . ,ψ5 of Eq. (1) and
the parabolic potential (see dashed line), for comparison. (b) Mode
energy distribution associated with the S1 DKS shown in Fig. 2(iii)
for (δ, P) = (4, 2.5), where |Cn |

2 represents the energy of the mode n.

(HG) family. The lowest-order six modes are plotted in Fig. 3(a).
The neglected terms in Eq. (2), compared with Eq. (1),
can be considered as small perturbations. The field envelope
A(τ, t) can be written as a linear superposition of HG modes
ψn(τ) with equally spaced frequencies 2

√
C(n + 1/2): A(τ, t) =∑︁N

n=0 Cn(t)ψn(τ), with N being the total number of modes con-
sidered in the analysis. The mode coefficients are computed
by projecting any solution on the linear modes, and read
as Cn(t) =

∫ ∞

−∞
A(τ, t)ψn(τ)dτ = |Cn(t)| exp iϕn(t), where |Cn(t)|2

represents the energy of mode n at time t, and ϕn(t) is its phase.
In Fig. 3(b), we plot the mode energy |Cn |

2 distribution associ-
ated with the DKS state S1 in Fig. 2(iii). Note that the energies of
asymmetric modes (n = 1, 3, 5, . . .) are zero, because the state
has a symmetric temporal distribution. Also, S2 and S3 have a
similar mode distribution (not shown here).

The bifurcation structure shown in Fig. 2(d) (P = 4.5) can be
revisited by projecting the different DKS branches on HG modes.
This projection is depicted in Fig. 4(a), where we plot the mode
energy |C0 |

2 and |C2 |
2 versus δ. Following this diagram, we can

Fig. 4. Mode decomposition of the solutions in Fig. 2(d). (a)
Mode energies |C0 |

2, |C2 |
2 and (b) their phase difference as a func-

tion of δ, where solid (dashed) lines represent stable (unstable)
solutions. The three subpanels in (c) plot the normalized ener-
gies of even modes E(2n) = |C(2n) |

2/
∑︁

|C(n) |
2, odd modes E(2n+1),

and their phase difference (ϕ(2n+2) − ϕ(2n))/π versus δ, for S3 solu-
tions in Fig. 2(d). The same quantities of the solutions S1 of Fig. 2(d)
are shown in three subpanels in (d). Chaoticon/DKSs coexistence
(asymmetric breathers) is represented by a pink (blue) shadowed
area.
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see how the ψ0,2-mode composition varies along the solution
branches S1, S2, and S3.

Interestingly, we found that S1 and S3 represent mode-locked
states. This is shown in Fig. 4(b), where we show the phase dif-
ference between modesψ0 andψ2 along the bifurcation diagrams
of Fig. 4(a). The phase difference between adjacent symmetric
modes is −π in S1 (other higher-order modes are not shown
here): these modes are locked in anti-phase, in contrast with
the in-phase mode locking that occurs for S3 states. Whereas
unstable states S2 undergo large phase changes between the
two modes. Useful insight in the localized states S1 and S3 is
gained by analyzing the variation of their mode components
with cavity detuning δ. For the S3 branch, the energy fraction
of higher-order modes E(2n) = |C(2n) |

2/
∑︁

|C(n) |
2 grows larger as

δ increases [see Fig. 4(c1)]. This leads to temporal broaden-
ing of the S3 states, because of the longer temporal duration
of higher-order modes. On the other hand, for S1 the funda-
mental mode energy |C0 |

2 grows significantly larger with δ [see
Fig. 4(a)]. This results in a cavity soliton with progressively
higher intensity and narrower temporal duration. For both states,
the phase difference between adjacent even modes approaches
zero when δ increases [see Fig. 4(c3) and Fig. 4(d3)]. This shows
that stronger locking occurs for these modes with increasing δ.
Furthermore, the mode decomposition analysis allows for mak-
ing a clear distinction among the symmetric and asymmetric
breathers, and chaoticons. In the symmetric breather regime
(1.8<δ<7.5), only even mode energies [see Fig. 4(d1)] and
phase differences [see Fig. 4(d3)] fluctuate. This is in contrast
with the case of asymmetric breathers, which exhibits significant
odd mode components [see Fig. 4(d2)]. These odd modes con-
tribute to the asymmetric breather evolution. When compared
with asymmetric breathers, chaoticons exhibit much wider phase
fluctuations [see Fig. 4(d3)].

In summary, by applying a bifurcation analysis, we revealed
the emergence and stability of dissipative states for a coherently
driven, passive nonlinear and dispersive cavity with a parabolic
potential. The potential may stabilize complex spatiotemporal
dynamics in favor of static DKSs, and leads to the coexistence
of high- and low-amplitude localized states. A particular feature
of this system is that asymmetric breathers and chimera-like
states (i.e., a chaoticons) may arise. The latter consist of local-
ized spatiotemporal chaos, and appear due to potential trapping.
By a modal decomposition analysis, we have shown that these
states emerge from nonlinear interactions of asymmetric modes.
The simple parabolic potential captures the essential dynamics
introduced by synchronous phase modulation and permits us to
gain useful physical insight.
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