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Abstract
We study truthful mechanisms for welfare maximization in online bipartite matching. In our (multi-
parameter) setting, every buyer is associated with a (possibly private) desired set of items, and
has a private value for being assigned an item in her desired set. Unlike most online matching
settings, where agents arrive online, in our setting the items arrive online in an adversarial order
while the buyers are present for the entire duration of the process. This poses a significant challenge
to the design of truthful mechanisms, due to the ability of buyers to strategize over future rounds.
We provide an almost full picture of the competitive ratios in different scenarios, including myopic
vs. non-myopic agents, tardy vs. prompt payments, and private vs. public desired sets. Among
other results, we identify the frontier up to which the celebrated e/(e − 1) competitive ratio for
the vertex-weighted online matching of Karp, Vazirani and Vazirani extends to truthful agents and
online items.
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1 Introduction

Matching in bipartite graphs is a fundamental model that has gained massive importance
in numerous applications with the growth of the Internet. Some examples include items
and buyers in e-commerce, drivers and passengers in ride-sharing platforms, ad slots and
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58:2 Truthful Matching with Online Items and Offline Agents

advertisers in online ad auctions, and jobs and workers in online labor markets. In these
applications, it is common that vertices on one side are known from the outset, while vertices
from the other side arrive one-by-one in an online fashion. Upon the arrival of an online
vertex, its information is revealed (containing, e.g., its set of adjacent edges, and their
weights), and the algorithm has to immediately and irrevocably decide either to match it
with an available offline partner or leave it unmatched forever. The goal is to maximize the
sum of the weights along the matched edges.

A celebrated result in online matching by Karp, Vazirani, and Vazirani [18] shows that, in
the unweighted setting, a simple randomized strategy called Ranking achieves a competitive
ratio of e/(e−1), and this is optimal. This result extends to the setting where the vertices on
the offline side are weighted and the objective is to maximize the sum of the weights of the
matched vertices. Although the original algorithm for this problem, Perturbed-Greedy [1],
was designed for non-strategic settings, online matching problems have also been studied in
the presence of strategic agents e.g., [21, 25, 11, 7]. This is not a mere theoretical exercise:
in many applications of online matching the parties involved are interested in misreporting
their true valuations to obtain a better outcome, e.g., combinatorial and ad-auctions, kidney
exchange, school-student matching, and house allocation. In the presence of strategic agents,
an agent’s value is her private information, and is not directly available to the mechanism
designer. The main challenge here is to design incentive-compatible or truthful mechanisms
which, besides finding a good matching, also ensure that it is in the agents’ best interest to
report their true values. In addition to making decisions regarding the matching itself, such
mechanisms can also charge some payment from the agents in order to incentivize them to
truthfully report their values. Here, each agent strives to maximize her quasi-linear utility,
i.e. the value she obtains from her assigned item, minus the payment she has to make.

In almost all previous studies, the agents are represented by the vertices on the online
side, while the items they are competing over are available offline. In many natural internet
applications, e.g. selling advertising opportunities via repeated auctions, the agents are fixed
and observe a stream of items arriving online. This motivates the study of a reversed online
matching problem, where each vertex on the offline side is strategic on her value, and her
set of desired items that arrive online. This variant has been considered thus far only in
very restricted settings [8, 9]. This is not a coincidence: when agents are present throughout
the entire matching process, many new manipulation opportunities arise, and incentivizing
truthful behavior is significantly more challenging. Indeed, the online nature of the problem
forces any mechanism to repeatedly make irrevocable decisions upon the arrival of goods,
lacking knowledge about future opportunities that might arise to the participating agents.
The agents – possibly aware of those future opportunities – may strategize to gain benefits
in the future, defying standard tools applicable when agents arrive online.

Our work provides a systematic analysis of this scenario, and gives (almost) tight competit-
ive ratios under a rich variation of natural assumptions. We study the problem along different
dimensions, as follows. First, we consider two types of agents – myopic and non-myopic –
that are characterized by the different information they have on the instance. Myopic agents
make strategic considerations that are limited to the current time step, without looking
forward into the future (see, e.g., Deng, Panigrahi and Zhang [9]), whereas non-myopic agents
optimize across multiple time steps, using the up-front knowledge of the underlying (online)
graph. The assumption of myopic agents clearly eradicates some of the difficulties of designing
(almost tight) online mechanisms with offline strategic agents, thus allowing us to derive
efficient mechanisms from known online matching algorithms, e.g., from Aggarwal et al. [1].
Second, we consider two types of private information. In the first scenario we consider, an
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Table 1 Summary of our results, with ν = min(m, n), where n is the number of agents and m

the number of items.

deterministic randomized

prompt 2 e/(e − 1)
(Theorem 12) (Theorem 13)

(a) Myopic agents.

deterministic randomized

tardy 2 e/(e − 1)
(Theorem 14) (Theorem 14)

prompt ≥ ν Ω(log ν/ log log ν)
(Theorem 3) (Theorem 4)

(b) Non-myopic agents
with public graph edges.

deterministic randomized

tardy equiv. to prompt equiv. to prompt

prompt ≤ ν O(log ν)
(Theorem 9) (Theorem 10)

(c) Non-myopic agents
with private graph edges.

agent’s private information consists only of her private value for her desired items, but the
set of desired items is publicly known. In the second scenario, both the value and the set of
desired items are private information. Notably, in both cases the graph structure is revealed
to the mechanism step-by-step, upon the arrival of every item. Finally, we distinguish
between prompt and tardy mechanisms. Both types of mechanisms make allocation decisions
immediately. However, they differ in the time at which they make payment decisions. Prompt
mechanisms make payment decisions immediately upon allocation, while tardy mechanisms
may delay payment decisions to the end of the entire process.

1.1 Our Results and Techniques
We conduct a systematic study of online bipartite matching with online items and offline
agents, in a variety of scenarios and we provide (almost) tight bounds for the settings of
interest, as summarized in Table 1.

Myopic agents. The simpler setting we investigate is that of myopic agents. These agents
care only about their instantaneous utility, and do not strategize over the future. As such, we
only consider prompt mechanisms for this type of agents. By exploiting the myopic nature
of the agents, it is not difficult to turn the best (non-truthful) algorithms into (truthful)
mechanisms. In particular, we construct a deterministic prompt mechanism based on the
greedy matching algorithm that is guaranteed to achieve at least a half of the optimal welfare.
We also give a randomized prompt mechanism based on the algorithm for weighted online
matching [1], which is e/(e−1)-competitive. This shows that the transition from non-strategic
agents to strategic myopic agents does not lead to a deterioration in efficiency guarantees.
Notably, for the special case we study, our bounds for myopic online matching improve vastly
over those obtained by Deng, Panigrahi and Zhang [9] for general XOS valuations. The
results for myopic agents are reported in Appendix A.

Non-myopic agents with public graph edges. In a more general setting, we consider non-
myopic agents who can strategize about their values, but not about their desired items: upon
the arrival of an item, the set of agents interested in it is revealed (no strategizing involved),
but the agent values are reported by the agents themselves. This variant is single-parameter,
for which Myerson’s lemma applies [24]. We prove that, if the mechanism is allowed to
wait until the end of the online phase to set prices (i.e., tardy mechanism), it is possible to
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58:4 Truthful Matching with Online Items and Offline Agents

achieve the same bounds as in the myopic case – by showing that our algorithms Greedy
and Perturbed-Greedy maintain a certain form of global monotonicity. In contrast, when
prices have to be fixed upon item arrival, an agent might hope to receive an item, i.e. one
over which there is not as much competition, for a better price later if she waits instead of
truthfully reporting her interest in the current item. To avoid this, prompt prices need to be
non-decreasing throughout the mechanism, which allows us to show a sharp deterioration
from tardy to prompt mechanisms: for deterministic mechanisms, we prove a ν = min(m, n)
competitive lower bound, where n and m denote the number of agents and items, respectively.
For randomized prompt mechanisms obtaining such a lower bound is much more challenging,
but as a central result we manage to establish an Ω(log ν/ log log ν) lower bound, using Yao’s
minimax principle. Starting from a carefully designed distribution of problem instances with
exponentially increasing agent valuations, we employ a primal-dual approach together with
our previous observations on the behavior of deterministic truthful mechanisms to bound the
achievable competitive ratio. Almost matching deterministic and randomized upper bounds
for prompt mechanisms are inherited from non-myopic prompt mechanisms with private
graph edges. See Section 3 for our results for public graph edges.

Non-myopic agents with private graph edges. We finally consider non-myopic agents when
both valuations and the set of desired items are private information. For deterministic prompt
mechanisms, the ν lower bound from the case of public graph edges applies. Moreover, we
show that in the case of private edges, every deterministic truthful mechanism is essentially
prompt. Thus, tardy mechanisms for this case retain the ν lower bound, exhibiting a large
gap between tardy mechanisms for public vs. private edges. We then provide a prompt
truthful deterministic mechanism that is ν-competitive, matching the lower bound. For
randomized prompt truthful mechanisms, the Ω(log ν/ log log ν) lower bound from the case
of public edges applies to tardy randomized mechanisms as well, since these are probability
distributions over deterministic mechanisms and, as stated above, all deterministic truthful
mechanisms for private edges are prompt. On the positive side, we provide a randomized
prompt truthful mechanism that gives an almost matching competitive ratio of O(log ν).
This algorithm is based on a tailored explore-exploit approach. Our results for private graph
edges are reported in Section 4.

Ex-post vs. ex-ante truthfulness. Finally, we explore the notion of ex-ante truthfulness, as
opposed to ex-post truthfulness, where agents’ true declarations maximize their expected
utility instead of their utility in any realization of the random choices of the mechanism.
Clearly, ex-post truthfulness implies ex-ante truthfulness. In the setting with myopic buyers,
we only need to consider ex-post truthfulness as we obtain tight approximation in this
stronger model that closes the problem also for the ex-ante analogue. In the setting of
non-myopic buyers, we show that the additional hardness introduced by truthfulness cannot
be fully attributed to the fact that we require ex-post truthfulness. Specifically, we establish
a lower bound of 2 for the competitive ratio of ex-ante truthful mechanisms for this setting
(even with respect to randomized tardy ones), exhibiting a gap to the corresponding e/(e− 1)
upper bound for myopic buyers. Our proof utilizes an instance for which we establish lower
bounds on the expected utility of various types of agents. We then employ these to show
a contradiction to the mechanism’s correctness. Our results for ex-ante truthfulness are
reported in Section 6.
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Remark. Throughout the paper, we assume that weights are assigned to vertices (agents)
rather than edges; note, it is well known that for the more general case of edge weights even
the algorithmic problem is hopeless (see, e.g., Appendix G of [1]). One may also wonder why
we do not study non-myopic agents with public valuations but private edges. The reason
is that in the case of public valuations, it is easy to see that agents cannot benefit from
misreporting their edges, implying that Greedy and Perturbed-Greedy are truthful.

1.2 Further Related Work
Karp, Vazirani and Vazirani [18] introduce the online matching problem, and study it under
one-sided bipartite arrivals. They observe that the trivial 1/2-competitive greedy algorithm
(which matches any arriving vertex to an arbitrary unmatched neighbor, if one exists) is
optimal among deterministic algorithms for this problem. They also provide a groundbreaking
and elegant randomized algorithm for this problem, called Ranking, which achieves an
optimal e/(e − 1) competitive ratio. The work of Karp, Vazirani and Vazirani [18] was
extended to vertex weighted settings by Aggarwal et al. [1], who give an optimal e/(e− 1)-
competitive, randomized algorithm using random perturbations of weights by appropriate
multiplicative factors. The same bound has been re-proven over the years [6, 10, 14, 12].
Various extensions of one sided online matching and its economic applications (e.g., display
ads) have been widely studied, see e.g. the excellent survey of Mehta [22] for further reference.
Online matching has also been studied under edge and general vertex arrivals, as well as in
different stochastic settings (see e.g., [19, 20, 13, 17, 15, 16]).

An important generalization of assignment problems in the form of matchings are com-
binatorial auctions, where buyers can obtain a subset of the available items, instead of just
one. Combinatorial auctions with offline strategic buyers and online items have been recently
studied by [9] for submodular and XOS valuations in the case of myopic buyers – considered
also in this work – and in the less constrained setting of items that must not be irrevocably
assigned at time of arrival. Deng, Panigrahi and Zhang [9] show (for myopic buyers) a sharp
separation between submodular valuations, which admit a logarithmic competitive ratio, and
XOS valuations, for which a polynomial lower bound is proven. In our work, we prove tight
constant bounds for myopic buyers in the important special case of a unit-demand matching.

Cole, Dobzinski and Fleischer [8] formally introduced the notions of prompt and tardy for
mechanisms, after observing the severe negative aspects of many existing (tardy) methods.
They study prompt truthful mechanisms for an online problem that is related to ours, but with
some restrictions: while agents are still on the offline side of the graph, their items of interest
are restricted to form an interval over the online steps (which corresponds to the interval
buyers are present). Further, agents report their departure time (which can be public/private)
once they arrive, and their arrival time is public knowledge. Babaioff, Blumrosen and Roth [4]
later investigated truthful prompt mechanisms for allocating an unknown number of identical
items arriving online, which can be phrased in our model as having all desired sets equal
to the same prefix of the sequence of items. Both of these works [8, 4] are close to ours in
spirit. They present logarithmic-competitive prompt mechanisms in restricted settings, and
prove lower bounds using Yao’s pinciple (≥ 2 in [8], and Ω(log log n) in [4]). The notions of
tardy and prompt mechanisms have since been adopted in the literature, see e.g. [3, 28]. The
model of offline agents and online items has been the subject of extensive investigation in
economic theory in dynamic mechanism design. Despite this obvious relation to our setting,
there are fundamental differences (see for example [23, 2, 5]). In dynamic mechanism design,
a strategic buyer learns her valuations at time of arrival of each item. Opposed to our setting,
priors on agents’ valuations for each online item are usually known beforehand. Finally,
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58:6 Truthful Matching with Online Items and Offline Agents

in our matching setting the agents’ valuations can assume only two values, vi and 0, and
we consider unit demand buyers instead of additive valuation agents as it is customary in
dynamic mechanism design.

2 Preliminaries

We are given a bipartite graph G = (B, I; E), where B is a set of n vertices, corresponding
to buyers, I is a set of m vertices, corresponding to items, and E ⊆ B × I is the set of edges.
We denote by ν the smallest between the number of buyers n and the items m. The set of
buyers is known beforehand, while the items arrive one by one in some unknown, possibly
adversarial, order. Without loss of generality we assume that item j arrives at time j. Each
buyer i has two pieces of private information: the set of items she is interested in, and her
value vi if she gets at least one of them (the value for other items is 0). Upon the arrival
of a new item, every buyer declares if she is interested in the current item and, if yes, her
value. Let bi,j denote the bid of buyer i for item j (with the convention that bi,j = 0 if buyer
i is not interested in item j). Without loss of generality, we may assume that buyers cannot
change their declared valuation after they have declared it once1, i.e. every nonzero bid of
the same buyer is the same value bi, and that every buyer is assigned at most one item.

A mechanism M is composed of an allocation scheme and a payment scheme. Upon the
arrival of every item, and based on buyer bids, the mechanism decides immediately and
irrevocably to either assign the new item to some buyer who has not been assigned an item
yet, or leave it unassigned forever. Thus, the resulting allocation is a matching in G: every
buyer receives at most one item, and every item is allocated to at most one buyer. We denote
by µ the induced matching, so that µj denotes the buyer to whom item j is assigned (we
assume that an item j can only be assigned to a buyer who declares interest in j). If j is
unassigned, we write µj = ∅. We also write µ−1

i to denote the item assigned to buyer i, with
the convention that µ−1

i = ∅ if i is left unassigned. The allocation is computed online; i.e.,
µj is determined using only the bids on items up to j. In addition to the allocation, the
mechanism decides how much each buyer should pay. A payment scheme is denoted by p,
where pi denotes the non-negative payment of buyer i. We distinguish between two types of
payment schemes, according to the time at which the mechanism determines the payment. A
tardy mechanism is one where the payment vector p is computed in the end of the process.
A prompt mechanism is one where the payment pi of every buyer i is determined upon the
assignment of buyer i (i.e., upon the arrival of item µ−1

i ). The mechanism’s objective is to
maximize the social welfare of the allocation µ, which is the sum of the buyer values for their
assigned items. The social welfare is given by SW(µ) =

∑
i∈B vi · 1{(i,µ−1

i
)∈E}. Note that a

mechanism can also be randomized, so that its allocation is a distribution over matchings.
In case of a randomized mechanism, we measure its efficiency by the expected social welfare.
We say that a mechanism gives an α approximation, or is α-competitive (where α ≥ 1), if
its (expected) social welfare is at least an 1/α fraction of the welfare of a maximum weight
matching. That is, µ is α-competitive if OPT = SW(µ⋆) ≤ α · E [SW(µ)] , where µ⋆ is the
maximum weight matching in G.

A bidding strategy Bi for buyer i is a sequence of bids bi,j that specifies, every time a new
item j arrives, whether to declare interest in it and which value to report. The bid Bi might
depend on the bids of the other agents, the actions of the mechanism, and the knowledge the
buyers have on the sequence of items. Recall that once an agent declares a positive valuation

1 Mechanisms can “punish” such behavior by discarding the buyer from further consideration
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bi,j = bi > 0 for some item j, she cannot change her value thereafter; namely, all bids for
future items j′ can take the value of either bi or 0. Let B denote the profile of buyer bidding
strategies, and B−i denote the profile of all buyer strategies excluding buyer i. We assume
that every buyer has a quasi-linear utility function: ui(M,Bi,B−i) = vi · 1{(i,µ−1

i
)∈E} − pi.

A buyer is called myopic if upon the arrival of every item j, she cares only about
maximizing her utility in that round, without considering its effect on future rounds. I.e.,
upon the arrival of item j, she maximizes the utility function ui,j = vi · 1{µj=i, (i,j)∈E} − pi.

We consider myopic agents only in the context of prompt mechanisms, where the price pi

is determined immediately. We study the following ex-post notion of truthfulness: (i) A
mechanism for myopic agents is truthful if it is always in the best interest of a myopic buyer
to declare her value truthfully. (ii) A mechanism for non-myopic agents is truthful if an agent
maximizes her utility for every realization of the mechanism by declaring her value truthfully.
Finally, we only consider mechanisms that are ex-post individually rational, meaning that all
agents (myopic or not) have non-negative utility, for every realization of the mechanism.

3 Prompt mechanisms with public graph edges

We start with the setting where agents are assumed to know, and strategize about, the whole
sequence of items arriving. Note that this is a strong information asymmetry between agents
and mechanism, as the latter only discovers the items as they are revealed online and has
no information on the future. As a first step in this challenging model, in this section we
study the case where agents may only lie on their valuations. Our main focus here is on
establishing lower bounds, which will naturally extend to the case where the edges of the
graph are private information.

3.1 Deterministic truthful mechanisms
When mechanisms are required to be prompt, the problem becomes much harder despite the
fact that each agent’s private information is just a single value. This is due to the online
nature of the problem versus the possibly universal knowledge of the buyers, as outlined
before. We first concentrate on deterministic prompt truthful mechanisms, and prove that
the scope of these is quite limited. The critical item property is also used in [4] to prove a
lower bound analogous to Theorem 3.

▶ Definition 1 (critical item property). We say that a deterministic mechanism satisfies the
critical item property if and only if for every buyer i, there exists some j ∈ I such that for
any reported value bi of i, the mechanism assigns i with item j, or none at all. Note that j

may depend on the edges of the graph, and on the values of other buyers.

▶ Lemma 2. Prompt deterministic truthful mechanisms for the problem with public graph
edges satisfy the critical item property.

Proof. For the sake of contradiction, assume that there is a buyer i who gets item j1 at price
p1 if she reports a value β1 and gets item j2 at price p2 if she reports a value β2. Without
loss of generality, let j1 < j2. By truthfulness, the mechanism must give item j1 to buyer
i if she reports a value ≥ p1 (as far as the mechanism knows, i might not like items after
j1, and she would have incentive to lie and report β1 if she is not given j1). Thus, we have
p2 ≤ β2 < p1, where the first inequality comes from individual rationality. But now, buyer i

has incentive to report β2, in order to get j2 and pay p2 which is less than p1. ◀
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▶ Theorem 3. Any prompt deterministic truthful mechanism for the problem with public
graph edges has competitive ratio of at most ν = min(m, n).

Proof. Consider an instance with n buyers with value 1 that are all interested in the first
item. If there is a buyer i who will never get item 1 no matter what she reports, then we
change the instance so that i has an arbitrary large value and is only interested in item 1, in
which case i will get nothing and the mechanism does not even approximate the optimal
social welfare. Conversely, if there is no such buyer, then the critical item property states
that no other item can be allocated, which gives an approximation ratio of min(m, n). ◀

3.2 Randomized truthful mechanisms
Somewhat surprisingly, the previous result has revealed a large gap between tardy and
prompt deterministic mechanisms, when the topology of the graph is public knowledge: while
tardy mechanisms can be implemented for free, i.e., maintaining the efficiency guarantees
of (non-strategic) combinatorial algorithms, for prompt mechanisms the story is different.
After showing that deterministic mechanisms cannot achieve anything better than ν, we turn
our focus towards impossibility results for randomized mechanisms. We utilize a well-known
property of randomized truthful mechanisms, which (by definition) make truthful reports
utility-maximizing for any outcome of a mechanism’s random decisions, even in hindsight:
this implies that they are lotteries over deterministic truthful mechanisms, which satisfy the
properties shown in the previous section. By Yao’s minimax principle [29], it is then enough
to construct a distribution over instances, such that the optimal solutions have welfare
Ω(log n), and a best-possible deterministic mechanism M, since it satisfies the critical item
property, outputs solutions with expected value O(log log n).

▶ Theorem 4. Any prompt randomized truthful mechanism for the problem with public graph
edges has competitive ratio of at least Ω(log ν/ log log ν).

Proof. Fix any prompt randomized ex-post truthful mechanism for public graph edges.
We argue by Yao’s principle [29] that its competitive ratio is at least Ω(log ν/ log log ν).
This holds due to the upcoming Lemma 5, which shows that there exists a distribution
over instances, such that the optimal solutions have welfare at least n log(n)/2 with high
probability, and such that any deterministic mechanism (since it satisfies the critical item
property) outputs solutions with expected value O(n log log n). More precisely, given a
random instance r and a mechanismMs with random coin flips s, recall that Yao’s principle
states that:

min
r

[
Es[Ms(r)]
OPT(r)

]
≤ Er

[
Es[Ms(r)]
OPT(r)

]
= Es

[
Er

[
Ms(r)

OPT(r)

]]
≤ max

s

[
Er

[
Ms(r)

OPT(r)

]]
In particular, fixing the coin flips s, the mechanism Ms is deterministic and truthful. Hence,
Lemma 5 bounds its expected approximation ratio over the random instance r, with

Er

[
Ms(r)

OPT(r)

]
≤ Er

[
Ms(r)

log(n)/2 + 1{OPT(r)≤log(n)/2}

]
≤ O(log log n)

log(n)/2 +O(1/ log2 n),

where the first inequality holds by the disjunction of whether or not OPT(r) ≤ log(n)/2 for
a given r. Combining the two inequalities concludes the proof. ◀

▶ Lemma 5. There is a distribution over instances with n buyers and n items, for which
any deterministic mechanism satisfying the critical item property outputs solutions with
expected value O(n log log n), and such that the optimal solution has value ≥ n log(n)/2 with
probability at least 1−O(1/ log2 n).
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︷︸︸︷ ︷
︸︸

︷ ︷
︸︸

︷

Buyers/items of type 3:
expected number
= n · β3 = 9 · 1/7

Buyers/items of type 2:
expected number
= n · β2 = 9 · 2/7

Buyers/items of type 1:
expected number
= n · β3 = 9 · 4/7

1

2

3

4

5

6

7

8

9

22 1 3 1/β3 = 7/1

99 2 3 1/β3 = 7/1

11 3 2 1/β2 = 7/2

33 4 2 1/β2 = 7/2

55 5 2 1/β2 = 7/2

44 6 1 1/β1 = 7/4

66 7 1 1/β1 = 7/4

77 8 1 1/β1 = 7/4

88 9 1 1/β1 = 7/4

i σ(i) t(i) value vi

Figure 1 The instance from Lemma 5 with k = 3 and n = 9. Items are ordered (from top to bottom)
according to their arrival times, and buyers are ordered (from top to bottom) according to σ (sort by
decreasing types, breaking ties with indices). Preferences of buyers are given by the edges of the graph.

Proof. Let k ≥ 1 be a parameter, which corresponds to the number of types of buyers, and
let β1 > · · · > βk > 0 be the probabilities of each type (β1 + · · · + βk = 1). We choose
βt = 2−t/(1 − 2−k) for all t, and we set n = 1 + 2k. Consider the following distribution
over instances, with n buyers and n items. Each buyer i draws independently a type
t(i) ∈ {1, . . . , k} with probability βt(i), and we set her value to vi = 1/βt(i). Then, we sort
buyers by decreasing t(i), breaking ties using indices, and call σ(i) ∈ {1, . . . , n} the rank of
buyer i in this ordering. We decide that buyer i is interested in all items up to the σ(i)-th
one. To visualize this procedure, we refer to Figure 1. It is easy to find the optimal allocation:
it consists in assigning each buyer of rank σ(i) the σ(i)-th item, in a perfect matching. Thus
the expected optimal social welfare is equal to

E [OPT] =
n∑

i=1

k∑
t=1

βt · 1/βt = n · k.

Moreover, because each type is drawn independently the variance of OPTis

Var(OPT) =
n∑

i=1
Var(vi) ≤

n∑
i=1

E[v2
i ] = n ·

k∑
t=1

1
βt
≤ 2n2.

In particular, if we apply Chebyshev’s inequality, we obtain

P

[
OPT ≤ nk

2

]
≤ P

[
|OPT− nk| ≥ nk

2

]
≤ Var(OPT)

(nk/2)2 ≤ 8
k2 .

We now define the type s(j) = t(σ−1(j)) of an item j as the type of the j-th buyer in
the ordering σ, which corresponds to the type of its buyer in the abovementioned optimal
matching. Observe that of each type, there are as many items as buyers, and that buyer i

cannot be allocated an item j of type s(j) < t(i). For each buyer i and for all types t ≤ s,
let xi

s,t be the probability (over the randomness of the types of all buyers except i) that i

gets an item of type s, conditioning on the fact that i has type t. Let xs,t =
∑

i xi
s,t/n, that

is, the average probability that a type t buyer will be assigned a type s item. The expected
social welfare of our deterministic mechanism is equal to
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E [SW(µ)] =
n∑

i=1

k∑
t=1

βt · 1/βt ·
k∑

s=t

xi
s,t = n

k∑
t=1

k∑
s=t

xs,t.

In expectation, the mechanism sells
∑

i

∑s
t=1 βt · xi

s,t items of type s. Because there are
equally many items and buyers of each type, the expected number of items of type s is βs · n.
Thus, we have the linear constraint

∀1 ≤ s ≤ k,

s∑
t=1

βt · xs,t ≤ βs.

We are now going to use the critical item property. Fix a buyer i, and condition on the
types of all buyers except her. We show that there exists an item j(i) ∈ {1, . . . , n}, such that
for every type t(i), either i gets item j(i), or she gets nothing. Denote as It the instance
given by the fixed types of all buyers except i, together with buyer i who has type t. Using
the critical item property with instance I1, where i instead is of type 1 (meaning that i is
interested in maximally many items), there is an item j(i) such that buyer i either gets
j(i) or nothing. From the perspective of the mechanism, any other instance It (defined
analogously) is identical to instance I1 up to the point when i stops being interested in items.
At this point, if buyer i has already been allocated an item, then it must be j(i). Otherwise,
she will not get anything.

Now that j(i) is well-defined (and only depends on types of other buyers), let yi
s be the

probability (over the randomness of the types of all buyers except i) that there exists some
type t such that if t is the type of i, then item j(i) has type s. Let ys =

∑
i yi

s/n. Because
buyer i can only get item j(i), and because j(i) is independent from t(i), we have xi

s,t ≤ yi
s.

Thus, summing over all buyers, we have the linear constraint xs,t ≤ ys, for all 1 ≤ t ≤ s ≤ k.
Finally, conditioning on the types of all buyers except i, we show that there is only a small
number of types that j(i) can take. Recall that s(j(i)) = t(σ−1(j(i))), that is, the type
of item j(i) is by definition the type of the j(i)-th buyer in the ordering σ, where σ was
obtained by sorting buyers in decreasing order of type. Consider the ordering induced by σ

after excluding buyer i, and denote i1 and i2 the buyers of rank j(i) − 1 and j(i). In the
original ordering σ, either i comes before i1 (in which case s(j(i)) = t(i1)), or i comes after i2
(in which case s(j(i)) = t(i2)), or i comes between i1 and i2 (in which case s(j(i)) = t(i)). In
any case, t(i1) ≥ s(j(i)) ≥ t(i2). This shows that there are at most 2+z possible values for
s(j(i)), where z denotes the number of types not seen among other buyers. By a standard
computation, the expected value of z is smaller than

∑k
t=1(1−βt)n−1. Recall that ys denotes

the average probability over i that there exists a type for i which can make j(i) have type s,
where the randomness is over the instance without i. Since for every fixed such instance, j(i)
can only possibly take two of the types seen in buyers except i, for any fixed i, it holds that∑k

s=1 yi
s ≤ α, where α = 2 +

∑k
t=1(1−βt)n−1, and therefore, the same holds also on average,

i.e. for the ys. Thus, averaging over possible types for the other buyers, and summing over i,
we have the linear constraint

∑k
s=1 ys ≤ α. If we choose n = 1 + 2k and βt = 2−t/(1− 2−k),

we have
k∑

t=1
(1− βt)n−1 ≤

k∑
t=1

e−2k−t/(1−2−k) ≤
+∞∑
t=0

e−2t

≤ 1,

and thus α ≤ 3. To conclude the proof, we use the linear constraints obtained to define
a linear program (P) whose objective function is the expected value of the social welfare
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max
k∑

t=1

k∑
s=t

xs,t (P)

s.t. xs,t ≤ ys∑s
t=1βt · xs,t ≤ βs∑k
s=1ys ≤ α

xs,t, ys ≥ 0

min α · w +
k∑

s=1
βs · vs (D)

s.t. us,t + βt · vs ≥ 1
w ≥

∑s
t=1us,t

us,t, vs, w ≥ 0

obtained by a deterministic truthful mechanism. We want to show that the objective function
of our linear program is at most O(n log k). To this end, Lemma 6 builds a solution for the
dual linear program (D), whose value is an upper bound on the value of the primal linear
program (for convenience, the objective function is divided by n). ◀

▶ Lemma 6. Consider the linear program (P), parameterized by α > 0 and β1 > · · · > βk > 0.
If βt = 2−t/(1 − 2−k) for all 1 ≤ t ≤ k, then the dual (D) has a feasible solution of value
O(α log k).

Proof. Set δ = ⌈log2 k⌉, then following solution of the dual is feasible and yields the desired
objective value: w = δ, vs = 0 if s < δ and 2s−δ otherwise, while the us,t are defined as:

∀1 ≤ t ≤ s ≤ k, us,t =


1 if s < δ

1− 2s−δ−t if 0 ≤ s− δ ≤ t

0 otherwise
◀

4 Mechanisms with private graph edges

We move to the (harder) case where the graph edges are private information of the agents.
The additional hardness, interestingly, severely affects the competitive guarantees for tardy
truthful mechanisms. We begin by characterizing deterministic mechanisms, and then move
on to results for randomized mechanisms.

4.1 Deterministic truthful mechanisms
In the previous section we assumed that the agents could not misreport their interest in
items, thus reducing the problem to a single-parameter one. We now lift this assumption,
and investigate the effect on the competitive ratio of deterministic truthful mechanisms.
We show that deterministic truthful mechanisms can always be implemented in a prompt
manner. Then, we give matching upper and lower bounds on the best approximation ratio
for the social welfare.

▶ Lemma 7. Tardy deterministic truthful mechanisms for the problem with private graph
edges satisfy the critical item property (see Definition 1).

Proof. For the sake of contradiction, assume that there is a buyer i who gets item j1 at
price p1 if she reports a value β1, and gets item j2 at price p2 if she reports a value β2.
Without loss of generality, we assume that j1 < j2. First, we argue that p1 = p2. Indeed, if
p1 > p2 then i with value β1 has incentive to lie and report β2; whereas if p1 < p2 then i

with value β2 has incentive to lie and report β1. Second, we slightly change the instance,
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such that buyer i has value β2 and is not interested in items after j1. When allocating j1,
the mechanism has not seen any difference to the original instance, hence i has incentive to
lie and report β1 to get j1, then lie and pretend she was interested in subsequent items to
make sure she is charged p1. ◀

▶ Lemma 8. Tardy deterministic truthful mechanisms for the problem with private graph
edges are prompt.

Proof. Assume that our mechanism assigns an item j to buyer i, who reports value bi. By
Lemma 7, the mechanism satisfies the critical item property, and j is the only item which
can be assigned to i. Let π be the minimum value that i could have reported and still be
assigned j. By truthfulness, i must be charged exactly π. Indeed, if she is charged p > π

then i with value bi has incentive to lie and report π; whereas if she is charged p < π then i

with value p would have incentives to lie and report bi. Now, when the mechanism assigns j

to i, it can retrospectively compute π, which proves that the mechanism is prompt. ◀

▶ Theorem 9. There exists a deterministic truthful mechanism that achieves an ν =
min(m, n) approximation of the offline optimum. This result is tight in the class of determ-
inistic truthful mechanisms, when graph edges are private.

Proof. Consider the simple mechanism which only assigns an item to a buyer if she has the
highest value seen so far (breaking ties arbitrarily), charging her the second highest value
seen so far. This is a ν-competitive deterministic truthful mechanism. For the tightness,
Lemma 8 shows that deterministic tardy mechanisms are in fact prompt, thus the lower
bound from Theorem 4 (public graph edges) applies to this setting. ◀

5 Randomized truthful mechanisms

Recall that randomized (ex-post) truthful mechanisms are lotteries over deterministic truthful
mechanisms, which in turn satisfy the characterizing properties we obtain for the deterministic
case. The proof of our lower bound in Theorem 4 was based on this fact. This same argument
also applies to mechanisms for private edges, even when they are tardy. On the positive side,
we construct a prompt randomized truthful mechanism, the Explore-Exploit Mechanism,
that yields a logarithmic approximation. The Explore-Exploit Mechanism divides the
buyers into two types: “explore” buyers will not receive any item but are used to set the
price for the “exploit” buyers. To guarantee truthfulness, we enforce monotonicity of the
prices proposed by the seller during the routine: with prices always increasing, there is no
way a buyer can benefit from withholding information in previous stages of the process to
get something at a cheaper price later.

▶ Theorem 10. The Explore-Exploit Mechanism is truthful, and computes a O(log n)
approximation to the optimal social welfare. This result is nearly tight (up to log log n) in
the class of randomized truthful mechanisms when the edges are private information, even
for tardy mechanisms.

Proof. Buyers of type Explore will not get any item, and thus have no incentive to lie.
Buyers of type Exploit only need to say if they are interested to buy an item at a given
price. Because prices are non-decreasing, they have no incentive to misreport their value or
their interest in an item. For each item j, we define xj as the maximum value seen among
buyers interested in items up to j.

∀j ∈ I, xj = max{vi with i ∈ B such that ∃j′ ≤ j, (i, j′) ∈ E}
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Algorithm 1 Explore-Exploit Mechanism.
1: Initialization:
2: Set p← 0 and draw k ← Unif({0, 1, . . . , ⌈log2 n⌉})
3: For each buyer i, draw type ti ← Unif({Explore, Exploit}).
4: When an item arrives:
5: Buyers report if they are interested in the item.
6: For each buyer i of type ti = Explore who is interested in the item, do
7: Set p← max(p, vi/2k)
8: Sell the item at price p to a buyer i of type ti = Exploit, who is interested
9: in the item and does not yet have an item, chosen arbitrarily (e.g. lowest index).

For the sake of analysis, we look at a maximum weight matching µ ⊆ E, having a total
value of OPT. Each edge (i, j) ∈ µ from the optimal solution is assigned to a bucket
ℓ(i,j) = ⌈log2(xj/vi)⌉ ∈ N. Then for each ℓ ∈ N we define OPTℓ as the total weight of the
restriction of the optimal solution to bucket ℓ.

OPT =
∑
ℓ≥0

OPTℓ where ∀ℓ ≥ 0, OPTℓ =
∑

(i,j)∈µ

vi · 1{ℓ(i,j)=ℓ}

Let V be maximum value among buyers who are interested in at least one item. By optimality
of µ, the corresponding buyer must be given an item, and thus OPT0 ≥ V . Now observe that
for each (i, j) ∈ µ such that ℓ(i,j) > ⌈log2 n⌉, we have vi < xj/n ≤ V/n ≤ OPT0/n. Thus,
the sum of OPTℓ for ℓ > ⌈log2 n⌉ is smaller than OPT0. Therefore, buckets 0, 1, . . . , ⌈log2 n⌉
contain at least half of OPT, that is

OPT
2 ≤

⌈log2 n⌉∑
ℓ=0

OPTℓ

For all ℓ ∈ {0, 1 . . . , ⌈log2 n⌉}, we will now show that if k = ℓ then the Explore-Exploit
Mechanism gives a solution of expected cost at least Ω(OPTℓ). Then we will conclude the
proof using the law of total probability: summing over k shows that the Explore-Exploit
Mechanism computes a solution of expected cost at least Ω(OPT/ log n). First, assume
that k = 0. For each edge (i, j) ∈ µ in bucket ℓ(i,j) = 0, then i is the best buyer seen by the
time j arrives. With probability 1/4, buyer i has type Exploit and the second best buyer
has type Explore. In that case, the Explore-Exploit Mechanism gives buyer i an item
(either j or one of the previous items). Using linearity of expectation, the Explore-Exploit
Mechanism outputs a solution of expected value at least OPT0/4. Second, assume that
k = ℓ with ℓ ∈ {1, . . . , ⌈log2 n⌉}. This case requires an amortized analysis: for each buyer i,
denote Xi the random variable equal to vi if i gets an item and 0 otherwise; and for each
item j, denote Yj the random variable equal to the value of the buyer to whom j is assigned,
and 0 if j is unassigned. Notice that the Explore-Exploit Mechanism outputs a solution
of value =

∑
i∈B Xi =

∑
j∈I Yj . Let (i, j) ∈ µ be an edge from bucket ℓ(i,j) = ℓ. We are

going to show that

E [Xi + 4Yj | k = ℓ and ti = Exploit] ≥ vi.

We condition on the fact that k = ℓ and ti = Exploit. If buyer i already has an item
when item j arrives, then Xi = vi. Otherwise, the best buyer seen so far has type Explore

with probability 1/2, in which case the Explore-Exploit Mechanism gives item j to a
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buyer of value ≥ xj/2ℓ ≥ vi/2. Buyer i has type ti = Exploit with probability 1/2, thus
vi ≤ E[2Xi + 8Yj | k = ℓ]. Summing this last inequality over edges from bucket ℓ shows that
the Explore-Exploit Mechanism outputs a solution of expected value at least OPTℓ/10.

Let’s move our attention to the lower bound . Fix all random decisions of an ex-post
truthful randomized mechanism. This yields a deterministic algorithm, that together with
the original mechanism’s payment scheme yields a (tardy) mechanism. This mechanism is
deterministic, and truthful due to the definition of truthfulness. Also, such a mechanism
fulfills the critical item property (Lemma 7), and can even be made prompt (Lemma 8).
With this, we can follow the original proof of the lower bound. ◀

6 Ex-ante truthfulness

One might wonder if the hardness of truthful mechanisms for our problem is mainly due to
the very restrictive notion of ex-post truthfulness. We state here that also for the much looser
ex-ante truthfulness, the setting of non-myopic buyers separates clearly from the myopic
case. The proof is via a nontrivial construction allowing bounds on agents’ expected utilities.

▶ Theorem 11. There exists no randomized ex-ante truthful mechanism that yields an
α-approximation to the optimal social welfare, for the problem with private edges and any
α < 2. This is true even for tardy mechanisms.

Proof. Fix α < 2 and assume mechanism M guarantees an expected approximation ratio of
α. Consider the following problem instance: there are n′ buyers and m = n′ + 1 items. Every
item j has exactly one interested buyer, ij , and all ij have some small value vij

= ϵ > 0.
There exist some additional buyers B1 ⊆ B with different values who are interested only
in item 1, and one buyer, i, whom we fix for our considerations. Note that |B| = n′ + n1,
with n1 = |B1|. For n′ large enough, clearly, n′ϵ > maxi′∈B1 vi′ and the contribution of item
1 to the optimum becomes negligible with growing n′. Therefore, for M to guarantee an
α-approximation, there must exist j ∈ {2, . . . , n′ + 1} such that ij is assigned the according
item with probability at least 1

α , or in case item 1 is worth more than ϵ, at least probability
1
α −∆1, where ∆1 arbitrarily small for large n′.

Now, if we choose i = ij , then M will assign item j to ij w.pr. ≥ 1
α −∆1, and charge an

expected price of at most ϵ. The latter is because the price cannot depend on i’s bid due to
incentive compatibility, and it needs to be below i’s value. Assume we replace i’s valuation
by some v > ϵ, and call this new buyer i(1). Since M is ex-ante truthful, still, the exp. utility
ui(1) achieved with a truthful report must be at least as large as when reporting ϵ instead of
v, i.e. at least (v − ϵ)( 1

α −∆1) > 1
2 v, which is at least half of v because α is < 2 and ϵ, ∆1

can be chosen arbitrarily small. We replace i(1) again by a different buyer i = i(2). She still
has valuation v, however, she is now interested in items 1 and j. We consider the first step
of M , i.e. the assignment decision made for item 1. Assuming that v is the largest value bid
on item 1, and given the fact that M has no idea if any additional value will present itself in
the later steps, the probability that M assigns item 1 to i(2) is at least 1

α −∆2, where ∆2
approaches 0 since the other bids on item 1 might be, in comparison, too small to matter.
Note again that the assignment decision cannot depend on v itself, but only on the fact that
it is the largest value bid on item 1.

We know that i(2) can get utility larger than v
2 by simply reporting type i(1) instead. We

also know that since she is assigned item 1 w.pr. > 1
2 , she is assigned item j w.pr. < 1

2 . This,
intuitively, means that not all of the guaranteed utility is generated by item j, not even if the
price of j is always 0 – but some must be generated because her expected price paid when
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item 1 is assigned is bounded away from v, i.e. pi(2)(1) = v −∆3. In fact, the exp. price M

charges from i(2) when assigning item 1 cannot be smaller if i(2) later reports interest in item
j, since this would give a buyer of type i(1) incentive to also report interest in j. Also, the
price charged from i(2) when assigning item j cannot be less than 0, and when there is no
item assigned, i(2) is not charged anything (see preliminaries). This implies that, for Pk(i)
denoting the assignment probability of item k to buyer i,

ui(2) = (v − pi(2)(1)) · P1(i(2)) + (v − pi(2)(j)) · Pj(i(2))

= ∆3 · P1(i(2)) + (v − pi(2)(j)) · Pj(i(2)) >
v

2

Otherwise, we would have a contradiction on the utility being larger than v
2 , i.e. it would be

beneficial for i(2) to only report interest in item j. In consequence, it also holds

ui(2) = ∆3 · P1(i(2)) + (v − pi(2)(j)) · Pj(i(2)) ≥ ∆3 · P1(i(2)) + (v − v) · Pj(i(2)) > 0.

This is true because the exp. price when receiving item j can be no more than v, and
Pj(i(2)) < 1

2 . Therefore, there exists some v− < v for which it holds that

ui−(1) = ui(2)(1)− P1(i(2))(v − v−) = (∆3 − (v − v−))P1(i(2))

Here, ui−(1) denotes the utility obtained from being assigned item 1 of some buyer with
valuation v− for item 1, and 0 otherwise, when she reports i(2) as her type. Note that if
buyer i− reports value v for item 1 and 0 for all others, she will also obtain ui−(1) from
being assigned the first item: the assignment decision is made before the algorithm can know
the difference, and the expected price paid cannot depend on the buyer’s later reports due
to truthfulness.

We use this to show a contradiction to the approximation ratio of M . Assume there
exists, in absence of i(2), such a buyer i− with smaller value v− and utility of u−(1) > 0 when
reporting to have value v, who is interested in purchasing item 1, i.e. i− ∈ B1. Since M is
ex-ante truthful, a truthful report for her will also result in positive expected utility of at least
u−(1). As a direct consequence, it holds also that the probability P1(i−) for assigning item 1
to i− (when she reports truthfully) is lower bounded, in order to achieve above expected
utility, as follows: P1(i−) ≥ ui− (1)

v− . Finally, we copy buyer i− at least v−

ui− (1) + 1 times. If
necessary for tie-breaking, we distort their values a bit. Our conclusions about i(2)’s utility
hold once i(2) reports the largest value for item 1, regardless of other values. This means, if
either of our copied v− should decide to deviate and report to be valued like i(2) instead,
they can recover utility ui−(1). As a result, each one of the copies, when reporting truthfully,
has at least the same utility, and therefore an assignment probability of at least P1(i−). This,
in sum, results in a probability of more than 1 for assigning item 1, i.e., a contradiction. ◀

7 Conclusions

We have studied vertex-weighted bipartite online matching with offline agents in various
settings, obtaining an almost-complete picture of the competitive ratios achievable by
mechanisms under different truthfulness notions. Our results encompass that for myopic
truthfulness, the best algorithmic results [18, 1] transfer to the online agents setting. This
showcases that the very general myopic bounds of [9] are far from tight for restricted settings
like ours. On the other hand, we also show that equally near-optimal approximations
are impossible under the assumption of classic truthfulness, even ex-ante; and for ex-post
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truthfulness our seemingly simple problem already exhibits lower bounds almost matching
the myopic, logarithmic competitive ratio for submodular combinatorial auctions in [9]. We
leave open to what extent this additional hardness (moving from a tight e/(e− 1) myopic to
Ω(log n/ log log n) truthful) already happens when imposing ex-ante truthfulness. This is an
interesting subject of investigation, also for different scenarios than the one of our ≥ 2 lower
bound (private edges).
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A Mechanisms for Myopic Buyers

In this section we study myopic buyers. We show that for this class of agents, one can obtain
strategy proof versions of the best (non-truthful) algorithms [18]. Formally, we construct
a deterministic prompt mechanism that achieves at least half of the welfare of the best
offline matching, and a randomized prompt mechanism that is (in expectation) e/(e− 1)-
competitive with the best offline matching. We start describing our deterministic mechanism
HonestGreedy, which mimics the classical Greedy algorithm for online weighted matching
in a way that is robust to strategic bidding. Every time a new item arrives, HonestGreedy
runs a second price auction [27] to allocate it between the remaining (interested) buyers.
Since the buyers are myopic, every time a new item arrives, they behave like if it was the last:
clearly there is no point in lying about being interested in an item. Moreover, the truthfulness
in each step (as well as the individual rationality) is guaranteed by the well-known properties
of the second price auction. Note that the mechanism sets the price for item i immediately, so
it is prompt. The analysis of the approximation guarantee is also quite simple: the allocation
output by HonestGreedy is the same one that the standard Greedy algorithm would have
computed on the same input. It is well known that Greedy is 2-competitive with respect to
the best offline matching (see, e.g., Appendix B of [1]), and that this approximation is tight
in the class of deterministic algorithms [18]. We summarize these observations.

▶ Theorem 12. The deterministic prompt mechanism HonestGreedy is truthful for myopic
agents and guarantees a 2 approximation to the best offline matching. The approximation is
tight even for (non-truthful) deterministic algorithms.

We complement this deterministic 2-competitive, simple mechanism with an optimal,
randomized e/(e − 1)−competitive alternative, HonestPerturbedGreedy, based on
Perturbed-Greedy of Aggarwal et al. [1]. There, each offline vertex is associated with a
random multiplier; then, every time one of the online vertices arrives, it is matched to the
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Algorithm 2 HonestPerturbedGreedy.
1: For each buyer i, do
2: Draw xi uniformly at random from [0, 1]
3: Let yi = 1− exi−1

4: Reveal publicly all xi and yi

5: For item j arriving online, do
6: Receive bids for j and let N(j) be the set of agents interested in j

7: Allocate j to i⋆ ∈ arg max{bi · yi | i ∈ N(j)} ▷ Allocation Rule
8: Charge i⋆ with pi⋆ = max

{
yi

yi⋆
bi | i ∈ N(j) \ {i⋆}

}
▷ Payment Rule

9: Discard for further consideration i⋆

free neighbor with largest multiplier-value product. To protect from the strategic behavior
of agents, HonestPerturbedGreedy declares – before the beginning of the online phase –
publicly all random multipliers, and then implements Myerson’s payment rule [24] for every
round. For a formal description we refer to the pseudocode of HonestPerturbedGreedy,
where we maintain the convention that the max of an empty set is 0 and thus if N(j) is empty
in line 7, then j is discarded and the mechanism passes to the next item. The properties of
HonestPerturbedGreedy are summarized in the following Theorem, whose formal proof
is deferred to Appendix C.

▶ Theorem 13. The randomized prompt mechanism HonestPerturbedGreedy is truthful
for myopic agents and achieves (in expectation) a e/(e− 1) approximation to the best offline
matching. The approximation is tight even for (non-truthful) randomized algorithms.

B Tardy mechanisms with public graph edges

When the graph edges are public knowledge, we can turn once again to using the algorithmic
approaches outlined in the previous Section, i.e. Greedy and Perturbed-Greedy. Now
that agents cannot strategically withhold or misreport the existence of edges, a tardy truthful
mechanism can use the whole graph structure (but of course still not the reported value bi)
when computing the price charged from any buyer i. The prompt, round-wise payment rules
we designed for myopic buyers, however, do not guarantee non-myopic truthfulness. What
remains to prove therefore is that these algorithms can be augmented by a different (tardy)
payment rule to be made truthful. This is formally done in two steps: first, it is established
that the allocations produced are monotone, and then Myerson’s Lemma is employed to
enforce truthfulness. All in all, we have the following.

▶ Theorem 14. There exists a deterministic, respectively randomized, tardy mechanism that
is truthful for non-myopic agents with public graph edges and guarantees a 2, resp. e/(e− 1),
approximation to the best offline matching. The approximation is tight even for (non-truthful)
deterministic, resp. randomized, algorithms.

Note that the allocation computed by the mechanisms we just described are analogous to
the ones computed by HonestGreedy and HonestPerturbedGreedy, but the payments
are different! We are still using Myerson’s Lemma, but the critical prices2 are clearly different,
as they are computed considering the whole run of the algorithm. To see this, consider the
following example. There are two buyers, b1 and b2, and two items i1 and i2. b1 is interested

2 The critical price is the smallest bid that would have still resulted in the item being allocated to the
agent. See the Appendix C for a formal definition
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in both the items and has a value of 1, while b2 only cares about i1, with a value of 0.9.
Assume also for the sake of simplicy that the perturbations y1 and y2 of Perturbed-Greedy
are both 1. Both versions of Perturbed-Greedy would only allocate i1 to b1, but at two
different prices: the mechanism for myopic agents would charge 0.9, while the tardy one for
non-myopic agents would wait until the end of the second round and charge 0.

C Proofs of Theorems 13 and 14

In this section we prove the properties of HonestPerturbedGreedy and of the tardy
versions of Greedy and Perturbed-Greedy presented in Appendices A and B. Starting
from the guarantees of their non-strategic counterparts it is immediate to see that the
approximation factor claimed are indeed correct. The only property to show is incentive
compatibility. A crucial ingredient to prove incentive compatibility is Myerson’s Lemma,
that we recall here for the sake of completeness. The Lemma has been proved in Myerson’s
seminal paper [24]; here we follow the more modern approach by Roughgarden [26]. Since in
this paper we study unit-demand agents, we restrict to consider only this type of agents.

We start introducing the notion of single-parameter environments. In such environments,
there are n agents and a set X of feasible allocations of items to agents. Each agents
is characterized by a private valuation to get an item and strives to maximize her quasi-
linear utility. To familiarize with this notion consider the model of non-myopic buyers
with public graph edges studied in the paper: those agents are indeed single-parameters, as
their valuations is their only private information. At the same time, note that the “edge
compatibility” is implicitly modeled by the following set of feasible allocations of items to
agents: an allocation x ∈ {0, 1}n is feasible if and only if it is corresponds with a matching
in the underlying buyers-items bipartite graph. As already mentioned in the main body, a
mechanism M is characterized by two features: an allocation x ∈ X and a payment rule p.
While the allocation specifies who gets what, the payment rule defines how much each agent
pays. Allocation and payments are functions of the bids; in particular, we use the notation
xi(bi, b−i) ∈ {0, 1} to specify whether the ith agent is allocated an item, given her bid bi and
the n− 1 bids b−i of the other agents. We are ready for the following crucial definitions.

▶ Definition 15 (Monotone allocation). An allocation rule x for a single-parameter envir-
onment is monotone if for every bidder i and bids b−i by the other bidders, the allocation
xi(z, b−i) to i is nondecreasing in its bid z.

▶ Definition 16 (critical prices). Fix and agent i and bids b−i of the other agents. Then
the critical price for i is defined as the smallest bid zi such that i is allocated an item,
if any. Formally, if we use the convention that the inf of an empty set is 0, we have
zi = inf{z |xi(z, b−i) = 1}

Clearly, the critical prices enforce ex-post individual rationality. Myerson showed that
they also induce (ex-post) truthfulness; we report here a version of Lemma 2 of Myerson [24]
that is tailored to our problem and then show the two Theorems.

▶ Theorem 17 (Myerson’s Lemma). Fix a single-parameter mechanism. Given any monotone
allocation x, it is possible to compute a payment scheme p such that the resulting mechanism
is truthful and individually rational. In particular, in p, each agents that receives an item
pays its critical price and 0 otherwise.

▶ Theorem 13. The randomized prompt mechanism HonestPerturbedGreedy is truthful
for myopic agents and achieves (in expectation) a e/(e− 1) approximation to the best offline
matching. The approximation is tight even for (non-truthful) randomized algorithms.
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Proof. We start the proof by arguing that HonestPerturbedGreedy is truthful and
individually rational for myopic agents. First, note that when any item j arrives, there
is no point for the buyers still unallocated to lie about their interest for it: if they are
not interested and they bid, they would risk to get j and lose future opportunity to get
allocated to something they are interested in, while if they are interested they do not want
to lose the opportunity (since they have no information on the future, and the prices charged
never exceed their valuations). If we restrict to consider the buyers N(j) interested in item
j, we see that the problem reduces to a single-parameter auction: the agents are myopic
and just want to maximize their utility by getting j at a small price. All yi are public
knowledge and non-negative, so our allocation rule (line 7 of HonestPerturbedGreedy),
fixing these values, is clearly monotone (the more an agent i bids, the more likely she is
to exhibit the largest yi · bi). The allocation is therefore implementable using the Myerson
payment rule (line 8 of HonestPerturbedGreedy). We can conclude, by Myerson’s
Lemma, that our mechanism is truthful for myopic buyers. Moreover, it is easy to verify
that the payment rule enforces individual rationality. Once we have settled the truthfulness,
we can assume that all buyers declare their true bids and thus the allocation output by
HonestPerturbedGreedy is the same as Perturbed-Greedy for any realization of
the perturbations xi and inherits the same approximation: HonestPerturbedGreedy is
e/(e− 1)-competitive in expectation. ◀

▶ Theorem 14. There exists a deterministic, respectively randomized, tardy mechanism that
is truthful for non-myopic agents with public graph edges and guarantees a 2, resp. e/(e− 1),
approximation to the best offline matching. The approximation is tight even for (non-truthful)
deterministic, resp. randomized, algorithms.

Proof. It is easy to see how the two mechanisms are monotone, thus it is possible to
employ directly Myerson’s Lemma, as the problem is single-parameter (i.e., the only private
information of buyer i is the single value vi). Therefore, Greedy or Perturbed-Greedy
(with fixed perturbation factors) together with the critical payments defined in Myerson’s
Lemma result in a truthful mechanism. Note that the greedy algorithm clearly respects our
ex-post notion of truthfulness, since no randomization is involved. For the Perturbed-
Greedy algorithm, this is also true since we fix all random decisions (perturbation) up front,
and choose the payment rule accordingly. ◀
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