
Safety Science 138 (2021) 105238

Available online 8 March 2021
0925-7535/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ProMetaUS: A proactive meta-learning uncertainty-based framework to 
select models for Dynamic Risk Management 

Elena Stefana a, Nicola Paltrinieri b,* 

a Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy 
b Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology NTNU, S.P. Andersens vei 5, 7491 
Trondheim, Norway   

A R T I C L E  I N F O   

Keywords: 
Algorithm ranking 
Model recommendation 
Risk assessment 
Uncertainty quantification 
Probability 
Machine learning 

A B S T R A C T   

Safety managers, practitioners, and researchers can employ different models for estimating and assessing haz
ards, consequences, likelihoods, risks, and/or mitigation measures in the safety field. The selection of a specific 
model may depend on the uncertainty associated with its estimation and its impact on the safety-related decision- 
making process. The recognition of this issue as an example of Algorithm Selection Problem (ASP) allows 
investigating the applicability of meta-learning principles that are scarcely adopted in the risk and safety liter
ature. Consequently, we propose a novel meta-learning inspired framework to proactively rank a set of candidate 
models for Dynamic Risk Management (DRM) based on desired uncertainty conditions. We denominate this 
framework ProMetaUS (Proactive Meta-learning and Uncertainty-based Selection for dynamic risk management). 
To achieve this purpose, our meta-learning system acquires knowledge that relates the characteristics extracted 
both directly and indirectly from datasets (e.g. data-based, domain-based, simple and fast uncertainty-based, 
simple and fast sensitivity-based meta-features) to some performance measures of the models. Performance 
measures include confidence information, shape measurable quantities, safety decision criteria and threshold 
limits, and sensitivity analysis outputs. We tested the proposed framework in a case study about Oxygen Defi
ciency Hazard (ODH) assessment by means of @RISK. For each of the five datasets, single-performance measure 
rankings and a final ranking of the three models are generated. Such rankings are aggregated to obtain the global 
recommended ranking.   

1. Introduction 

In the safety field, several models able to estimate and assess hazards, 
consequences, likelihoods, risks, and/or mitigation measures have been 
developed. A model is a simplified representation of the real system 
(Cullen and Frey, 1999; Nilsen and Aven, 2003), which reflects the 
causal relations that produce the events focused on by the decision- 
makers (Nilsen and Aven, 2003). The complexity of a model is gov
erned by several factors, e.g. the complexity of the system, existing 
knowledge about the system, amount of information the decision- 
makers consider a sufficient basis for making the decision in question, 
and available resources (Nilsen and Aven, 2003). In going from simple to 
more complex models, the uncertainty due to the model structure may 
be reduced, but the uncertainty due to the larger number of inputs tends 
to increase (Cullen and Frey, 1999). According to Chen and Ma (2007), 
for a model to be helpful, the associated uncertainty should be limited. 

Uncertainty is the lack of knowledge about the true value of a quantity, 
regarding which of several alternative model representations best de
scribes a mechanism of interest, or about which of several alternative 
probability density functions should represent a quantity of interest 
(Cullen and Frey, 1999; IPCS, 2008). In addition, uncertainty analysis is 
an essential component and integral part of hazard and risk manage
ment, and risk assessment to quantify the degree of confidence in the 
estimate of risk (IAEA, 1989; Thompson and Warmink, 2017). The 
relevance of uncertainty during risk assessment is also recognised by 
Arunraj et al. (2013), according to which modelling uncertainty is a vital 
component for effective decision-making. 

In such uncertain context, safety managers, practitioners, and re
searchers may wonder which model(s) should be selected for making 
decisions objectively about the hazard, consequence, likelihood, risk, 
and/or mitigation measure under analysis. Since there is no a single 
algorithm that performs better than the others for all the possible 
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problems, scenarios, and/or datasets, as stated by No Free Lunch (NFL) 
Theorem (Wolpert, 1996; Wolpert and Macready, 1995, 1997), suitable 
models have to be selected for each problem (Kück et al., 2016). This 
type of issue is known in the literature as Algorithm Selection Problem 
(ASP), which is originally described by Rice (1976). ASP endeavours to 
select and apply the best algorithm(s) for a given task (Abdulrahman 
et al., 2015, 2018), and is composed by: (1) problem space, (2) feature 
space, (3) algorithm space, and (4) performance space (Rice, 1976). 

One effective approach to solve ASP and thus recommend the most 
adequate algorithm for a certain task and for a new dataset, and auto
matically provide guidance on the best alternatives is provided by meta- 
learning (also known as “meta-level learning”, “learning to learn”, or 
“learning about learning”) (Abdulrahman and Brazdil, 2014; Bhatt et al., 
2012; Brazdil et al., 2009, 2017; Cohen-Shapira et al., 2019; Cunha 
et al., 2018; de Souto et al., 2008; Filchenkov and Pendryak, 2015; Khan 
et al., 2020; Kozielski and Łaskarzewski, 2019; Kück et al., 2016; 
Makmal et al., 2016; Muñoz et al., 2013; Pimentel and de Carvalho, 
2019a, 2019b; Pinto et al., 2014, 2016; Pise and Kulkarni, 2016; 
Prudêncio and Ludermir, 2004, 2012; Prudêncio et al., 2011a, 2011c, 
2011d; Reif et al., 2012; Ren et al., 2020; Romero et al., 2013; Rossi 
et al., 2014, 2017; Santos et al., 2012; Shahoud et al., 2020; Smith-Miles, 
2008a; Soares et al., 2009; Sousa et al., 2016; Vanschoren, 2018, 2019; 
Vilalta et al., 2004, 2009; Zorrilla and García-Saiz, 2014). An overview 
of main meta-learning definitions can be found in Stefana and Paltrinieri 
(2020). 

Meta-learning can be viewed as an important feature of self-adaptive 
systems (Brazdil et al., 2017), an understanding and adaptation of 
learning itself (Lemke et al., 2015; Ren et al., 2020). It is concerned with 
understanding the learning mechanism, and the process of exploiting 
and learning from experience; this previous knowledge is gained during 
the application of various learning algorithms on different kinds of data 
to offer an automatic selection, recommendation, or support for a future 
task (Brazdil et al., 2009; Dyrmishi et al., 2019; Kanda et al., 2016; Pise 
and Kulkarni, 2016; Reif et al., 2012; Rossi et al., 2012, 2017; Smith- 
Miles, 2008a). Meta-learning systems assist (non-expert) users in the 
process of algorithm selection by mapping a particular task to a suitable 
model (or combination of models) and by acquiring knowledge from the 
application of a set of algorithms on different problems (Brazdil et al., 
2009; de Souto et al., 2008; Giraud-Carrier et al., 2004; Lemke et al., 
2015; Pise and Kulkarni, 2016; Prudêncio and Ludermir, 2004; Rossi 
et al., 2014; Santos et al., 2012; Soares et al., 2009; Vilalta and Drissi, 
2002; Vilalta et al., 2004, 2009; Zorrilla and García-Saiz, 2014, 2015). 
Specifically, meta-learning aims to predict an algorithm or a set of al
gorithms suitable for a specific problem under study by learning the 
relationship between the meta-features extracted from the datasets and 
the algorithms performance applied on them (Bhatt et al., 2012; Brazdil 
et al., 2009; Cohen-Shapira et al., 2019; de Souto et al., 2008; Lemke 
et al., 2015; Prudêncio and Ludermir, 2012; Prudêncio et al., 2011c; Ren 
et al., 2020; Smith-Miles, 2008b; Zhu et al., 2018; Zorrilla and García- 
Saiz, 2015). In the literature, several proposals on algorithm selection 
via meta-learning in different domains can be found: some examples are 
reported in Table 1. 

However, to the best of our knowledge, there is limited evidence 
about the use of meta-learning potential in the risk and safety literature: 
Kozielski (2016) gives a description of a meta-learning approach for 
predicting methane concentration in a coal mine, Paltrinieri et al. (2020) 
attempt to generalise and model the risk analysis learning process by 
considering the case study of a drive-off scenario involving an oil and gas 
drilling rig, for which a risk assessment approach based on machine 
learning is developed, Stefana and Paltrinieri (2020) recently describe 
the introductory aspects of a preliminary meta-learning framework for 
ranking models estimating a safety risk in uncertain conditions, and 
Brocal et al. (2021) qualitatively address the applicability of meta- 
learning lessons for the selection of strategies for emerging risk man
agement assuming uncertainty as the main decision variable in indus
trial context. The objective of this paper is to define a novel proactive 

framework based on meta-learning concepts and ASP, ultimately 
enabling effective Dynamic Risk Management (DRM). It will support 
safety managers, practitioners, and researchers, despite not being ex
perts in all the existing models and data mining techniques, in the se
lection of models for the assessment of DRM core elements (hazard, 
consequence, likelihood, risk, or mitigation measures) based on desired 
uncertainty conditions. Indeed, since each model is characterised by 
different types and levels of uncertainty, also depending on the problem 
under study, analysts should establish which factors are particularly 
relevant for a specific assessment: e.g. for the problem under study, is it 
better to use a model with a narrower or more conservative confidence 
interval / is a model minimising the tail to the right or the tail to the left 
preferable? 

To our knowledge, this is the first framework based on meta-learning 
concepts to select models for estimating and assessing DRM core ele
ments that considers uncertainty in the safety field. It is a flexible and 
dynamic tool that permits continuously incorporating new models, and 
additional evidence and information when available, which represents 
itself a key aspect for reducing uncertainty. The paper is partly an 
extension of Stefana and Paltrinieri (2020). Readers interested in DRM 
process can refer to Bucelli et al. (2020), Paltrinieri et al. (2019), and 
Paltrinieri and Khan (2016). 

The framework is named ProMetaUS (Proactive Meta-learning and 
Uncertainty-based Selection for dynamic risk management) after the 
Greek mythological figure Prometheus (signifying “forethought”). His 
myth represents the pursuit of knowledge, as he fixed Epimetheus’s 
mistake (signifying “afterthought”). While assigning positive traits to 
every animal, Epimetheus ran out of options when it came to humans, 
but Prometheus’s effort ultimately allowed man to acquire skills and 
technology. 

The remainder of this paper is organised as follows. Section 2 spec
ifies details about the methods employed for the research, while Section 
3 summarises the cornerstones of meta-learning architecture for ASP. 
The ProMetaUS framework is presented in Section 4. Its application to a 
case study related to Oxygen Deficiency Hazard (ODH) assessments and 
the main results are described in Section 5 and Section 6, respectively. 
Discussion about the case study results, the main properties and limi
tations of the proposed framework is stated in Section 7, while 
concluding remarks are provided in the final section. 

2. Methods 

To achieve our objective, we implemented and followed the strategy 
reported in Fig. 1. 

The first step of our strategy regarded an examination of the litera
ture about meta-learning and ASP concepts and applications. We 
searched for scientific publications by means of various combinations of 

Table 1 
Examples of proposals on algorithm selection via meta-learning in different 
domains.  

Author(s) (Year) Brief description of proposal 

Prudêncio et al. (2011a) Ranking meta-learning approaches in time series 
forecasting and clustering of gene expression data 

Rossi et al. (2012) Meta-learning approach for periodic algorithm selection 
in time-changing environments where data flow 
continuously 

Cui et al. (2016b) Building Energy Model Recommendation system for 
short term load forecasting 

Kück et al. (2016) Meta-learning approach to select time series forecasting 
models 

Kozielski and 
Łaskarzewski (2019) 

Automated approach to Liquefied Petroleum Gas 
consumption prediction in a short term horizon 

Shahoud et al. (2020) Methodology for characterising the behaviour of time 
series datasets with meta features to achieve a more 
accurate model selection for time series energy load 
forecasting  
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the following keywords: (1) meta-learning, and (2) algorithm or model 
combined with recommend*, rank*, choice/choose, compar*, select*, 
evaluat*. Note that such groups of keywords are merged in different 
search strings by means of Boolean operators and focusing on title, ab
stract, and keywords fields in several electronic (bibliographic) data
bases of scientific publications (e.g. Scopus, Science Direct, and Web of 
Science). To consider all potentially relevant papers, a starting date was 
not established. We took into account different document types written 
in English, such as articles, conference papers, reviews, and book 
chapters. We included studies based on the relevance of titles, abstracts, 
and full-texts. The list of references in each study was checked through a 
manual examination for identifying any additional relevant articles. 
Studies explained general notions and structures of meta-learning were 
also considered in results. We examined in depth papers proposing meta- 
learning architectures and approaches for ASP and presenting real case 
studies about their applications. Papers detailing a specific constituent 
part of a meta-learning system for ASP (e.g. meta-features) were also 
included. Documents solely on particular meta-learning approaches as 
stacked generalisation or boosting were excluded. The relevant docu
ments obtained by means of this literature review permitted us to outline 
the principal components and steps of a typical meta-learning process 
for ASP, which are summarised in the following section. 

In order to define a framework as generable as possible for models 
estimating and assessing DRM core elements, we consulted a wide va
riety of literature sources on models. This step had the purpose to 
identify their typical structures, common inputs and outputs, and as
sumptions. Because one of key aspect of the ProMetaUS framework 
regards the description and treatment of uncertainty, we also investi
gated the different types of uncertainty sources involved in the assess
ments, such as parameter and model uncertainty. Such investigation was 
followed by a deep review for analysing the available literature about 
techniques for mathematical model evaluation and comparison, uncer
tainty and sensitivity definitions and methods, and uncertainty man
agement and treatment. We defined several queries through the 
following keyword categories: (1) uncertainty and/or sensitivity and/or 
probabil* in combination with estimate*, measur*, indicator*, metric*, 

performance, rank*, quantif*, statistic*, analys*, (2) safety, hazard*, or 
risk* combined with assess*, manage*, or analys*. To ensure to capture 
as many significant documents as possible, we paid particular attention 
on the identification of all the possible synonyms that can be utilised to 
express the two categories. The search queries were used to interrogate 
the electronic databases of scientific publications, and were applied to 
all the fields available for each database (i.e. title, abstract, keywords, 
and full-text). In addition to scientific publications, we also analysed 
English-language technical reports, books, and specialised guidelines. 
We rated their relevance by reading the full-text. The list of references in 
each study was checked through a manual examination to identify any 
additional relevant documents. For the uncertainty and sensitivity 
topics, we focused on the safety field, but we also dedicated our atten
tion on other domains, such as industrial practice (e.g. de Rocquigny 
et al., 2008), environmental modelling, assessments, and decision- 
making (e.g. Loucks et al., 2005), risk analysis and assessment for 
decision-making (e.g. Zio and Aven, 2013), atmospheric and dispersion 
modelling (e.g. Chang and Hanna, 2004). We were particularly inter
ested in publications dealing with the probabilistic approach and 
epistemic uncertainty, expressed in the form of probability distribution. 
Documents were excluded if exclusively focused on Bayesian ap
proaches, evidence theory and fuzzy approach, stochastic response 
surface or bootstrap methods. Also details of advanced mathematical 
methods and techniques related to sensitivity analysis were neglected. 

The information and knowledge gathered by means of these litera
ture reviews helped us to compare the principal ASP elements with in
puts and outputs of uncertainty and sensitivity analyses of models. By 
means of several brainstorming sessions between the authors, we ob
tained a preliminary and shared definition of meta-features and per
formance measures, we supposed a reasonable functioning of the meta- 
learner, and we decided a well-established method for recommending 
models. For testing our assumptions, we performed different pre
liminary applications of this version of the framework that highlighted a 
set of aspects to be improved. We iterated the testing and improvement 
steps until we achieved the current version of the ProMetaUS 
framework. 

Fig. 1. Strategy for designing the ProMetaUS framework (Abbreviations used: ASP = Algorithm Selection Problem; DRM = Dynamic Risk Management).  
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3. Meta-learning for algorithm selection problem 

The ASP is addressed by meta-learning as a supervised learning task, 
whose aim is to learn a model that captures the relationship between the 
properties of the datasets (or the characteristics of learning problems) 
and the algorithms, in particular their performance (Abdulrahman et al., 
2015, 2018; Brazdil et al., 2009; Cunha et al., 2018; Filchenkov and 
Pendryak, 2015; Khan et al., 2020; Prudêncio et al., 2011b, 2011d; Rossi 
et al., 2012; Shahoud et al., 2020; Smith-Miles, 2008a; Sousa et al., 
2016). This model can then be used to predict the most suitable algo
rithm for a given new dataset (Abdulrahman et al., 2015, 2018). The 
readers can think the datasets as observations and measurements 
collected with a specific frequency by some equipment installed in a 
working environment, their properties as the minimum, maximum, 
median of each datasets, while the performance measures as criteria to 
measure the performance of a particular algorithm for a particular 
problem (Rice, 1976), such as accuracy and runtime. 

The main steps of a typical meta-learning process for ASP is depicted 
in Fig. 2. Several authors describe the meta-learning system functioning 
in terms of training (or off-line) and use (or testing, on-line, prediction) 
phases: e.g. Bhatt et al., 2020; de Souto et al., 2008; Prudêncio et al., 
2011a; Prudêncio and Ludermir, 2004; Romero et al., 2013; Shahoud 
et al., 2020; Zorrilla and García-Saiz, 2015. Other authors (Bhatt et al., 
2012; Vilalta et al., 2004, 2009) refer to the following two modes of 
operation of a meta-learning system: (knowledge) acquisition mode and 
advisory mode. 

During the acquisition mode, the main result is meta-knowledge (or 
meta-data). Meta-knowledge is the knowledge extracted from the 
learning process (Brazdil et al., 2009), and obtaining it is a crucial step 
for the success of a meta-learning system (Castiello et al., 2005; Ferrari 
and de Castro, 2015). It consists of meta-features and meta-target or 
performance of the algorithms (Abdulrahman et al., 2015; Bhatt et al., 
2012; Brazdil et al., 2017; Cohen-Shapira et al., 2019; Ferrari and de 
Castro, 2015; Khan et al., 2020; Pimentel and de Carvalho, 2019b; Pinto 
et al., 2014, 2016; Prudêncio et al., 2011b, 2011c, 2011d; Zhu et al., 
2018). Note that meta-target (also called target meta-feature) corre
sponds to the type of output that the system produces in the form of 
estimated relative performance of candidate algorithms for any given 
problem (Ferrari and de Castro, 2015; Khan et al., 2020). In other words, 
meta-knowledge “is stored as an object composed of meta-attributes, 
which characterize the problems, and the ranking, which indicates the 
performance of the algorithms” (Ferrari and de Castro, 2015), which can 
be simply represented in a tabular form. 

The generation and extraction of informative and useful meta- 
features (e.g. simple, information-theoretic, model-based, land
marking) are important and challenging parts of the algorithm selection 

process, and constitute critical aspects for its success (Brazdil et al., 
2003, 2009; Castiello et al., 2005; Dyrmishi et al., 2019; Filchenkov and 
Pendryak, 2015; Kanda et al., 2016; Khan et al., 2020; Ler et al., 2018; 
Pimentel and de Carvalho, 2019a; Pinto et al., 2014, 2016; Ren et al., 
2020; Rossi et al., 2017; Vilalta et al., 2004, 2009). Meta-features (also 
known as meta-attributes, data(set) characteristics/features, character
istics from a dataset, characteristics of datasets, data characterisation, or 
domain characteristics) can be defined as follows:  

• common characteristics of several problems and tasks (Brazdil et al., 
2009; Ferrari and de Castro, 2015; Filchenkov and Pendryak, 2015);  

• features describing and extracted from the problem (Brazdil et al., 
2009; de Souto et al., 2008; Ferrari and de Castro, 2015; Prudêncio 
et al., 2011a; Prudêncio and Ludermir, 2012);  

• an abstraction of knowledge extracted from the dataset (Cui et al., 
2016a; das Dôres et al., 2016). 

The set of meta-features suitable for different meta-learning prob
lems may vary substantially, and depends on the task, the datasets, and 
the algorithms (Brazdil et al., 2009; Ler et al., 2018). 

The algorithm that models the relationship between meta-features 
and performance of candidate algorithms is a meta-learner (also 
known as meta-algorithm, learning algorithm, machine learning algo
rithm, or meta-level algorithm) (Khan et al., 2020; Prudêncio and 
Ludermir, 2012; Smith-Miles, 2008b; Sousa et al., 2016). Therefore, 
meta-learner is the algorithm used for the meta-learning (Brazdil et al., 
2009), and its effectiveness increases as it accumulates meta-knowledge 
(Vilalta et al., 2004, 2009). The output of the meta-learner is the meta- 
model or meta-learning model (Brazdil et al., 2009), which is built to 
predict the target value for a new dataset (Reif, 2012). 

The meta-model is used to recommend algorithm(s) for a specific 
dataset (Cohen-Shapira et al., 2019; Pinto et al., 2016). The form of 
recommendation generated by the meta-learning system determines the 
type of meta-target to learn (Brazdil et al., 2009). Brazdil et al. (2009) 
report the following four different types of meta-targets or types of al
gorithm recommendation methods:  

1. the best algorithm in a set: for each dataset, the recommendation 
consists of a single base-algorithm;  

2. a subset of algorithms: suggestion of a subset of algorithms that are 
expected to perform well, in relative terms, on the given problem;  

3. ranking of algorithms: provision of an ordered set of algorithms;  
4. estimated performance of algorithms: recommendations in the form 

of a value indicating the performance that each algorithm is expected 
to achieve; a set of estimates concerning the performance of the base- 

Fig. 2. Typical meta-learning process.  
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algorithms can be transformed into the other forms of 
recommendation. 

4. The ProMetaUS framework 

The plethora of available models for DRM to estimate and assess a 
hazard, consequence, likelihood, risk, or mitigation measure (indicated 
in the rest of the paper as “quantity of interest”), and the relevance of 
uncertainty analysis in such models motivate the interest in developing a 
meta-learning based approach to proactively rank them based on 
desired uncertainty conditions. The uncertainty conditions are evalu
ated by uncertainty and sensitivity analyses in order to completely 
characterise the state-of-knowledge affecting the assessment and 
decision. 

An uncertainty analysis is a methodology that considers domain 
knowledge and its limitations in qualifying and/or quantifying the un
certainty in the structure of a scenario, structure of a model, model in
puts, and model outputs (IPCS, 2008). Uncertainty analysis can ensure 
that decision processes are informed and transparent, and can help 
decision-makers define their confidence in model results and evaluate 
the utility of investing in reducing uncertainty, where feasible 
(Thompson and Warmink, 2017). This can be supplemented with 
sensitivity analysis to identify key sources of uncertainty for prioritising 
activities that could reduce uncertainty (IPCS, 2008). Sensitivity anal
ysis is the study of how uncertainty in the model output can be appor
tioned to different sources of uncertainty in the model inputs (Saltelli 
et al., 2004). It aids to identify the scenarios and model inputs that are 
most responsible for the uncertainty in the variables of interest (de 
Rocquigny et al., 2008). 

The ProMetaUS framework is of assistance to safety managers, 
practitioners, and researchers (indicated in the rest of the paper as 
“analysts”) for identifying and predicting which model(s) is (are) the 
most suitable for the task under investigation, despite not being experts 
in all the existing models and data mining techniques. Such framework 
is a flexible and dynamic tool because allows continuously incorporating 
new models, and additional evidence and information when available. 
The gathering of further and updated data and information for the 
development of refined datasets and/or models also represents an 
approach to reduce uncertainty (Cullen and Frey, 1999). 

The proposed framework is outlined in Fig. 3, and is based on the 
following general assumptions:  

• the focus is on epistemic uncertainty, which refers to the lack of 
knowledge about the properties and conditions of the phenomena 
underlying the behaviour of the systems (Zio and Pedroni, 2012);  

• the contribution of variability (defined as the heterogeneity of values 
over time, space, or different members of a population, and described 
as the inherent randomness of the natural system by Cullen and Frey, 
(1999), IPCS (2008), and Thompson and Warmink (2017)) is 
neglected;  

• the available data are constituted by the model inputs for estimating 
the quantity of interest, no measurement outputs of the quantity of 
interest are required, and thus the validation of the models is sup
posed to be already performed; for these reasons, the comparisons 
between the measured and predicted quantity of interest are ignored 
in terms of meta-features and performance measures; consequently, 
our sets of meta-features and algorithm performance metrics do not 
include statistical performance measures, such as fractional bias, 
normalised mean square error, geometric mean bias, or geometric 
mean variance reported for instance in Chang and Hanna (2004), and 
Ivings et al. (2016);  

• the probabilistic approach is applied for analysing uncertainty and 
thus the uncertainty is described by means of probability distribu
tions (in accordance with the suggestion by Morgan and Henrion 
(1990), and the statement by Verma et al. (2010): “the most common 
approach used to represent uncertainty regarding a quantity is to use 
probability distributions”). 

4.1. Dataset characterisation and meta-features 

The first element of the framework is constituted by datasets. We 
take inspiration from Santos et al. (2012): a dataset is a collection of data 
organised in a certain format, containing more than one instance in a 
specific domain. An instance is a row in a specific dataset describing an 
observation of a known event in the past in that particular domain 
(Santos et al. 2012). 

We suppose that real-world and comparable datasets are derived 
from the organisations and regard the outcomes of measurements, 
expert judgments, and/or previous estimates of the quantity of interest 
by feeder models. Particularly, each dataset contains the parameters (or 
variables) and their related values that are relevant for the quantity of 
interest under investigation. Data can be derived from sensors and 

Fig. 3. The ProMetaUS framework to select models for DRM.  
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measuring devices, literature sources, and/or equipment designers and 
suppliers. In addition to these values, other pieces of information can be 
used, such as types of sensors and sensor placement, the department or 
process unit where each instance is collected, and the indication of the 
type of industry. The outcome or dependent variable is represented by 
the parameters specific for the quantity of interest: the knowledge of the 
outcome variable is required for implementing a strategy of supervised 
learning (i.e. the training data contain inputs and explicit outputs, and 
the model can be trained until it produces the correct output for a given 
input, as underlined by Smith-Miles (2008b)). The available datasets are 
split into training and testing data, as stated by Pise and Kulkarni (2016). 
Training data contain a known output (related to the meta-learning 
process, not simply obtained by the use of the considered base- 
models) from which the model learns and generalises, while test data 
have the goal to test the model prediction. Reasonable number of 
datasets is required that can appropriately map the feature space into the 
performance space and in order to make the model of the learning 
process more predictive (Khan et al., 2020; Prudêncio et al., 2011c; Reif 
et al., 2012). 

To characterise datasets, a combination of meta-features that are 
representative of their problem domain and good predictors of the 
relative performance of algorithms should be identified and extracted 
(Bhatt et al., 2012; Brazdil et al., 2003, 2009; Lemke et al., 2015; Pinto 
et al., 2014, 2016). Our set of meta-features consists of a combination of 
properties computed directly and indirectly from datasets. Because the 
task under analysis regards the prediction of a ranking of models for 
estimating and assessing a quantity of interest under uncertain condi
tions, the following two categories are proposed:  

1. meta-features to describe the input datasets and understand how the 
input uncertainty affects the model performance: (a) data-based 
meta-features for characterising datasets, and (b) domain-based 
meta-features for defining the problem under investigation and 
indicating the specific source of each dataset; 

2. meta-features concerning the outcomes of simple and fast uncer
tainty and sensitivity analyses performed for each model on the 
datasets considered for that specific quantity of interest: (a) simple 
and fast uncertainty-based meta-features, and (b) simple and fast 
sensitivity-based meta-features. 

Examples of meta-features belonging to the first category are the 
probability distributions, minimum, most likely, maximum, mean/me
dian, and standard deviation values for each model input. This category 

can also include any dependencies and correlations among inputs. The 
second category of meta-features was inspired from landmarking 
concept (e.g. Bensusan and Giraud-Carrier, 2000; Pfahringer et al., 
2000): estimations obtained by running models with common sampling 
techniques and a small number of iterations and simulations are ex
pected to provide valuable information about properties affecting model 
performance. This type of information should also be useful for under
standing which input parameters are not significantly subject to un
certainty and thus may be set to a fixed and constant value. 

4.2. Models and performance measures 

The problem space is composed by all the candidate models able to 
estimate and assess the quantity of interest under analysis. Such models 
should be selected in such a way to provide a wide range of character
istics and give some generality to the results (Prudêncio et al., 2011a), be 
comparable (e.g. time-dependent vs time-independent models), and be 
verified and validated to guarantee sufficiently realistic descriptions of 
the investigated phenomenon. 

To obtain the performance measures, the considered models should 
be executed over each dataset. Due to the fact that performance measure 
definition is based on the type of the task (Filchenkov and Pendryak, 
2015) and, in our case, also on the purpose of the performed assessment, 
no single performance measure is comprehensive enough to capture all 
the aspects that should be taken into account by the analysts. Addi
tionally, some metrics may be more appropriate than others depending 
on the task and assessment. Consequently, we propose different single 
performance measures, grouped into various sets, outlined in Table 2. 
We defined these performance measures taking inspiration from 
different references available in the literature (e.g. Abdo et al., 2017; de 
Rocquigny, 2009; Loucks, 2002; Loucks et al., 2005; Yegnan et al., 
2002). 

The meta-learning strategy for confidence-based, shape-based, and 
sensitivity-based performance measures can be common and valid for all 
the types of quantity of interest and models. On the contrary, the safety- 
based performance measures and thus meta-learning strategies are quite 
different depending on the objectives of the assessment, models, quan
tity of interest, and task under investigation. 

Confidence-based performance measures involve the confidence in
terval and coefficient of variation. A model with a narrower confidence 
interval and/or lower value of coefficient of variation is able to estimate 
a more precise quantity of interest (if the probability distributions used 
to describe uncertainty are based on justifiable statistical data). On the 

Table 2 
Performance measures of models for DRM.  

Set of performance measures Single performance measures 

Confidence-based performance measures Confidence interval 
Coefficient of variation 

Shape-based performance measure Skewness 
Kurtosis 

Safety-based performance measures in the presence of a threshold value 
(assuming that there are no uncertainties about this threshold value) 

Probability not exceeding the threshold value 
Skewness 
Comparison between the maximum and threshold value 

Safety-based performance measures in the presence of more than one threshold 
value (i.e. several categories of limits) 

Probability that the quantity of interest is between the two threshold values 
Skewness 

Safety-based performance measures in the presence of a minimum desired level Probability exceeding the value of the minimum desired level 
Skewness 

Safety-based performance measures in the absence of a threshold value, but in the 
presence of indications and suggestions about adverse negative effects 

Probability that the quantity of interest is between two values suggested in the literature 
Skewness 

Safety-based performance measures in the absence of values for comparing the 
predictions 

Minimum 
Maximum 
Mean/Median 

Sensitivity-based performance measures Coefficients and indices of inputs obtained thanks to typical sensitivity methods (e.g. partial 
correlation coefficients, multiple linear regression analysis and coefficient of determination, rank 
correlation coefficients) 
Coefficients greater than a defined threshold/target 
Coefficients and indices of a specific input of interest  
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contrary, a model with a higher confidence interval is more conservative 
than others, and higher values of the coefficient of variation indicate a 
greater level of dispersion around the mean. Note that to compare the 
several models, a confidence interval equal for each one should be 
chosen. 

Shape-based performance measures reflect the measurable quantities 
used for analysing the shape of a distribution (Cullen and Frey, 1999). 
These are skewness (i.e. representing the asymmetry of a distribution) 
and kurtosis (i.e. indicating the flatness or peakedness of a distribution) 
(Cullen and Frey, 1999; Lee et al., 2019). 

Skewness also captures useful characteristics of the tail of a distri
bution that should be evaluated differently according to the type of 
assessment and quantity of interest. Indeed, if the quantity of interest 
should be compared with a threshold value, analysts should prefer a 
model minimising the tail to the right. On the contrary, if the compar
ison should be performed between the quantity of interest and a mini
mum desired level, a model that minimises the tail to the left should be 
preferred. Finally, when there are more than one threshold value or 
suggested category of limits for the quantity of interest, models char
acterised by a skewness near to 0 are more suitable because of the 
reduction of the values in the tails. 

Besides skewness, safety-based performance measures include 
typical decision criteria in the safety-related decision-making (e.g. the 
compliance with a limit or threshold value). By inheriting a concept 
from Rao (2005), we believe that the definition of our safety-based 
performance measures could also be useful for understanding if some 
controls are advised or required. For instance:  

• if the lower confidence limit is above a threshold value, then 
appropriate controls are probably needed;  

• if the upper confidence limit is below the threshold value, a control is 
probably not required;  

• if the upper confidence limit is above the threshold value but the 
50th percentile is below it, further study on the parameters domi
nating the overall uncertainty should be recommended;  

• if the 50th percentile is also above the threshold value, further study 
may be recommended, but cost-effective controls for risk reduction 
could be implemented (Paltrinieri et al., 2012). 

Sensitivity-based performance measures identify the most influential 
model inputs and this information can assist in uncertainty reduction 
efforts. Indeed, if all the models agree that a specific input is one of the 
most contributing factor to uncertainty, the efforts should be addressed 
for reducing its uncertainty in order to reduce the overall uncertainty. 
On the contrary, if all the models agree that a specific input is not an 
influencing factor, the uncertainty of this factor is not relevant for the 
overall uncertainty and should be neglected. Sensitivity analyses also 
permit distinguishing the input(s) with coefficients greater than a 
specified target and so characterised by an excessive and no acceptable 
uncertainty level. 

The above performance measures can be estimated in different time 
instants in time-dependent models. This allows assessing the temporal 
propagation and time evolution of uncertainties for the quantity of in
terest, and thus recommending the most suitable model(s) at various 
points in time. 

4.3. Meta-knowledge and meta-learner 

As displayed in Fig. 3, the combination of meta-features and per
formance of the models or meta-target represents meta-knowledge, 
whose objective is to capture certain relationships between the dataset 
characteristics and the performance of the models (Brazdil et al., 2003, 
2009; Brazdil and Soares, 2000; Soares and Brazdil, 2002). 

Similarly to what is described in the literature (Bhatt et al., 2012; 
Brazdil et al., 2017; Cohen-Shapira et al., 2019; Cunha et al., 2018; de 
Souto et al., 2008; Pimentel and de Carvalho, 2019a, 2019b; Pinto et al., 

2016; Prudêncio and Ludermir, 2012; Prudêncio et al., 2011a, 2011b, 
2011c, 2011d; Rossi et al., 2017; Soares et al., 2009; Sousa et al., 2016; 
Zorrilla and García-Saiz, 2015), in the ProMetaUS framework the meta- 
learner is applied to the meta-knowledge to suggest a model that asso
ciates meta-features to the uncertainty and sensitivity metrics, and ac
quires knowledge to predict the performance of the models for new 
problems. 

4.4. Ranking 

In the ProMetaUS framework, the method for recommending models 
is ranking, which produces an ordered list of models, sorted according to 
their expected performance measure(s) for the dataset of interest 
(Brazdil et al., 2009; das Dôres et al., 2016; Reif, 2012; Tripathy and 
Panda, 2017; Zhu et al., 2018). Such a method is an advantageous option 
because of the following reasons: 

• to be a more flexible and informative option compared to the se
lection of the best algorithm because it suggests more options 
(Brazdil et al., 2003; de Souto et al., 2008; Ferrari and de Castro, 
2015; Soares and Brazdil, 2000; Vilalta et al., 2004, 2009);  

• to allow the user to select either a single algorithm or more than one 
in accordance with the available resources (dos Santos et al., 2004; 
Prudêncio et al., 2011a; Soares and Brazdil, 2000);  

• to furnish alternative solutions to users who may wish to incorporate 
their own expertise or any other criterion into their decision-making 
process (Vilalta et al., 2004, 2009);  

• to offer a next best alternative if the first algorithm seems to be 
suboptimal (Brazdil et al., 2017), e.g. due to computational times, its 
overall complexity, or training requirements for its proper use;  

• to develop the meta-learning system without any information about 
how many base-algorithms the user will try out (Brazdil et al., 2009). 

Since the performance measures are different from each other, we 
propose to produce single rankings for each performance measure for 
each model applied for each dataset (referred as “single-performance 
measure rankings”), and then estimate a single final score for each 
model (defined “final score”). By taking into account every dataset, the 
final model score is based on the model ranks in the single-performance 
measure rankings and calculated thanks to the proposal by Tripathy and 
Panda (2017). The values of such final metrics guide the determination 
of the final ranking of models for a specific dataset. These estimations 
are repeated for all datasets in order to produce a global ranking of all 
candidate models by means of one of the possible methods mentioned in 
the literature (e.g. Bhatt et al., 2012, 2020; Brazdil and Soares, 2000; 
Ferrari and de Castro, 2015; Soares and Brazdil, 2000; Tripathy and 
Panda, 2017): average ranking, score ranking, winner ranking, ideal 
ranking, relative ranking, percentage ranking, zoomed ranking. 

When a new dataset becomes available, the ProMetaUS framework 
allows extracting the meta-features describing these data, and using the 
meta-model previously produced to predict the performance and 
ranking of the models for that dataset. In addition, such ranking is 
continuously updated when new meta-features are obtained. Indeed, as 
noted by Brazdil and Giraud-Carrier (2018), as tests proceed on a new 
dataset, the tests already carried out can be interpreted as also consti
tuting meta-knowledge. In this sense, meta-knowledge is acquired in 
previous learning episodes on datasets and/or from different domains or 
problems (Lemke et al., 2015). 

5. Case study 

In order to preliminarily test the ProMetaUS framework for selecting 
and ranking models for DRM, we considered a case study about ODH 
assessments. ODH occurs when the indoor oxygen (O2) content drops to 
a level that may expose workers to the asphyxiation risk (Stefana et al., 
2015). In the literature there is no consensus about a safe Threshold 
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Limit Value (TLV) for the O2 content in terms of concentration by vol
ume and/or atmospheric partial pressure (Stefana et al., 2015). How
ever, typical human body reactions due to exposures to O2 deficient 
atmospheres, and correlations between O2 concentrations and symp
toms (Stefana et al., 2016, 2019b) can give some guidelines about the 
hazardousness of investigated scenarios. 

Several causes can be responsible for an O2 reduction in a working 
environment, such as combustion of flammable substances, consump
tion due to chemical reactions, overcrowding in the workplace, release 
of inert gases, evaporation of cryogenic liquids (Stefana et al., 2015, 
2019b). ODH is a common hazard in different kinds of working envi
ronments: O2 deficiency is a well-recognised cause of death in confined 
spaces (McManus and Haddad, 2015), and can produce severe adverse 
health effects also in laboratories, manufacturing firms, and process 
industries. In such working environments, inert gases (e.g. nitrogen and 
argon) are often present (Stefana et al., 2015) and their releases may 
lead to the displacement and the consequent reduction of O2 in the air 
(Stefana et al., 2019b). Additionally, such substances are particularly 
insidious since they are odourless, colourless, tasteless, and so unde
tectable by the exposed people (EIGA, 2018). 

Therefore, proper ODH assessments should be performed in order to 
evaluate the criticality of an O2-deficient atmosphere and identify 
adequate risk reduction controls for minimising the individuals’ expo
sure. Recent scientific contributions (e.g. Stefana et al., 2015, 2016, 
2019b, 2021) emphasise the potential and usefulness of the application 
of predictive models for such purpose. The available predictive models 
for ODH assessments due to inert gas releases permit estimating the 
indoor O2 level, mainly in terms of O2 concentration by volume, as a 
constant value instantaneously achieved or as a function of time (Stefana 
et al., 2015, 2016). Such models consider various parameters: initial 
indoor conditions (working environment volume, air composition, 
temperature and pressure), outdoor variables (air composition, tem
perature, atmospheric pressure), ventilation aspects of the working 
environment (forced and/or natural ventilation systems, supply and/or 
return air sub-systems, number of ventilation systems, airflow rates), 
and inert gas releases (flow rates, types of releases). These parameters 
are differently defined and combined in the mathematical formulations 
of the models. Moreover, their assumptions are quite diverse: some of 
them are based on rather simplified hypotheses, whereas others intro
duce some refinements in order to furnish more precise estimations of 
the indoor O2 levels (e.g. Stefana et al., 2017). 

In such a context, analysts should consider a wide range of the 
properties of the models (e.g. characteristics, assumptions, initial and 
boundary conditions) to select the one(s) most suitable for conducting 
proper ODH assessments in the analysed scenarios based on desired 
uncertainty conditions. The ProMetaUS framework helps these pro
fessionals with this task and offers a ranking of the predictive models. 
These existing models supporting ODH assessments are deterministic 
and provide a single-point estimate of O2 levels (Stefana et al., 2019a). 
Consequently, to evaluate their uncertainty, we used Microsoft Excel® 
spreadsheets and Palisade add-in @RISK (version 7.5.1). @RISK permits 
including the uncertainty in the models and generating a range of 
possible outcomes (Stefana et al., 2019a). 

The case study is focused on scenarios where ventilation systems 
draw air from the working environment with a rate greater than release 
flow rate. The following nomenclature is adopted:  

• CO2(t) is the O2 concentration by volume in the working environment 
at the time t (%);  

• 21% is the fixed initial O2 concentration in the working environment;  
• Qout is the output forced ventilation airflow rate (m3 s− 1);  
• R is the flow rate of the gas released in the working environment (m3 

s− 1);  
• V is the working environment volume (m3);  
• t is the time from the start of the release (at the beginning of the 

release t = 0) (s);  

• CO2,air is the O2 concentration in the air (due to ventilation airflow 
rate) (%); 

• CO2(0) is the O2 concentration by volume in the working environ
ment at the time t = 0 s (%). 

6. Results 

6.1. Dataset characterisation and meta-features 

Five training datasets (in the following indicating as Dataset 1, 
Dataset 2, Dataset 3, Dataset 4, and Dataset 5) are supposed, which 
consist of several instances representing observations of measurements 
and information relevant for ODH. Typical collected data are: volume of 
the working environment, initial indoor O2 concentration, inert gas and 
ventilation air flow rates, and O2 concentration of the ventilation air 
flow rates. Such datasets are characterised by means of different meta- 
features, as summarised in Table 3. A set of 24 meta-features are 
extracted for each dataset, which regard the probability distributions, 
and minimum, most likely, maximum, mean, and standard deviation 
values for the parameters R, Qout, CO2(0), and CO2,air. 

In particular, the release flow rate is described by means of trian
gular, uniform, or normal distribution, while the output forced venti
lation airflow rate approaches a normal or uniform distribution. 
Triangular distribution is used to represent uncertainty when only upper 
and lower bounds and a most likely value are known, uniform one 
characterises phenomena for which only an upper and lower bound can 
be estimated, and normal one designates the distribution of means of 
independent observations from any distribution or any combination of 
distributions as the number of observations becomes large, or the dis
tribution of the sum of samples from a large number of distributions, 
which may be of any shape, as the number of input distributions in
creases (Cullen and Frey, 1999). In addition to uniform and normal 
distributions underlying data, the O2 concentration in the air due to 
ventilation airflow rate or the O2 concentration by volume in the 
working environment at the time t = 0 s can be characterised through a 
lognormal distribution, which assumes only non-negative values and 
describes random variables resulting from multiplicative processes 
(Cullen and Frey, 1999). 

Since no correlations are imposed on the input variables, meta- 
features relating to dependencies are not hypothesised. Moreover, in 
this case study, we do not consider simple and fast uncertainty-based 
and sensitivity-based meta-features because of the already limited 
number of iterations chosen by the @RISK (setting Auto-Stop mode) 
during the execution of each model over each dataset. 

6.2. Models and performance measures 

Among the candidate models available in the literature (reviewed in 
Stefana et al. (2015)) to estimate the time trend of indoor O2 levels in 
scenarios where ventilation systems draw air from the working envi
ronment with a rate greater than release flow rate, we focus the atten
tion on a suite of three models. Such models (indicated as Model 1, 
Model 2, and Model 3) are summarised by means of Eq. (1), Eq. (2), and 
Eq. (3). 

CO2(t) =
21%

Qout + R

[

Qout + Rexp
(

-
Qout + R

V
t
)]

(1)  

CO2(t) = 21%
{

1-
R

Qout

[

1-exp
(

-
Qout

V
t
)]}

(2)  

CO2(t) = CO2,air

(

1-
R

Qout

)

+

[

CO2(0)- CO2,air

(

1-
R

Qout

)]

exp
(

-
Qout

V
t
)

(3) 

We assumed that the working environment volume is not affected by 
uncertainty issues, and thus it is a fixed value and equals to 50 m3. The 
task in this case study is related to predict the indoor O2 concentration 
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by volume at t = 500 s. 
The three predictive models are executed and evaluated on each 

dataset. Such execution of the models through Latin Hypercube Sam
pling (LHS) and an automatic number of iterations allows estimating 
their performance measures, reported in Table 4, Table 5, Table 6, 
Table 7, and Table 8. Note that LHS is able to produce more accurate 
results (Albright et al., 2006), and in many cases is preferred as a nu
merical simulation method (Cullen and Frey, 1999). 

We use the following performance metrics to compare the models:  

• 90% confidence interval and coefficient of variation for confidence- 
based performance measures;  

• kurtosis as an indication of shape-based performance metrics;  
• probabilities that the O2 concentration by volume is between 10% 

and 12%, 12% and 15%, and 15% and 18%, and skewness for safety- 
based performance measures (since ODH is not characterised by a 
threshold value, but frequently described in terms of adverse nega
tive effects based on O2 concentrations by volume);  

• Spearman rank correlation coefficients for R and Qout (in all models), 
and of CO2(0) and CO2,air (taking into consideration Model 3) to 
evaluate sensitivity-based performance metrics. 

We focus on the O2 concentration by volume between 10% and 12%, 
12% and 15%, and 15% and 18% because of the criticality of the 
physiological effects, as underlined in Stefana et al. (2016, 2019b). 
Indeed, when the O2 level drops to a concentration lower than 18%, 
symptoms such as decreased ability to perform tasks, accelerated 
heartbeat, dizziness, and/or loss of muscle control may manifest. If the 
O2 concentration decreases further and achieves values around 10–12%, 
the symptoms become more severe and workers may experience loss of 
consciousness, permanent brain damage, possible damage to the heart, 
and/or very poor muscular coordination. 

Finally, we take into account Spearman rank correlation coefficient 
as a sensitivity-based performance measure because of its property of 
detecting nonlinear monotonic dependencies (Borgonovo and Plischke, 
2016). 

6.3. Meta-knowledge and meta-learner 

The characterisation of datasets by meta-features and estimation of 
performance measures of the models permit to obtain meta-knowledge 
thanks to the analysis of the relationships between them, and later 
apply a meta-learner for inducing a model associating the meta-features 
to the different uncertainty and sensitivity metrics. 

Confidence-based performance measures highlight that Model 1 
outperforms both Model 2 and Model 3: since the first model produces 
slightly narrower confidence intervals and lower values of the co
efficients of variation in comparison to the others, its estimations are 
more precise (assuming that probability distributions used to represent 
uncertainty in the input parameters are based on justifiable statistical 
data). Model 1 also presents a probability that the O2 concentration by 
volume is between 10% and 12% equal to 0%, and higher probabilities 
for concentrations above 12%. From these results, analysts can assess 
with a reasonable degree of confidence that the O2 concentration does 
not drop to a level that may cause serious adverse effects such as loss of 
consciousness, very poor muscular coordination, or damage to the heart 
to workers. This model also produces the probabilities of O2 concen
tration lower than 10% equal to 0%, thus severe symptoms related to 
unconsciousness, coma, and death are not likely to occur. Such results 
could also be influenced by higher means and lower standard deviations 
of the probability distribution of the O2 concentration. On the contrary, 
Model 2 and Model 3 executed on Dataset 1 and Dataset 5 present a 
probability that the O2 concentration by volume is between 10% and 
12% higher than 5%: analysts should pay attention to the hazardousness 
of the indoor air pointed out by these models when the release flow rate 
is described by a triangular distribution. Ta

bl
e 

3 
M

et
a-

fe
at

ur
es

 e
xt

ra
ct

ed
 fr

om
 th

e 
fiv

e 
da

ta
se

ts
.  

D
at

as
et

 
Pr

.d
is

tr
. f

or
 R

 
M

in
 

M
. l

ik
e 

M
ax

 
μ 

σ 
Pr

.d
is

tr
. f

or
 Q

ou
t 

M
in

 
M

. l
ik

e 
M

ax
 

μ 
σ 

Pr
.d

is
tr

. f
or

 C
O

2(
0)

 
M

in
 

M
. l

ik
e 

M
ax

 
μ 

σ 
Pr

.d
is

tr
. f

or
 C

O
2,

ai
r 

M
in

 
M

. l
ik

e 
M

ax
 

μ 
σ 

D
at

as
et

 1
 

Tr
ia

ng
ul

ar
 

0 
 

0.
2 

 
0.

4 
 

– 
 

– 
U

ni
fo

rm
  

0.
5 

– 
1 

 
– 

 
– 

Lo
gn

or
m

al
  

– 
– 

 
23

.0
%

  
21

.0
%

  
1.

0%
 

Lo
gn

or
m

al
  

– 
– 

 
23

.0
%

  
21

.0
%

  
1.

0%
 

D
at

as
et

 2
 

U
ni

fo
rm

 
0 

 
– 

 
0.

2 
 

– 
 

– 
U

ni
fo

rm
  

0.
5 

– 
1 

 
– 

 
– 

U
ni

fo
rm

  
18

.0
%

 
– 

 
21

.0
%

  
– 

 
– 

U
ni

fo
rm

  
18

.0
%

 
– 

 
21

.0
%

  
– 

 
– 

D
at

as
et

 3
 

N
or

m
al

 
0 

 
– 

 
0.

4 
 

0.
2 

 
0.

05
 

N
or

m
al

  
0.

5 
– 

1 
 

0.
75

  
0.

05
 

Lo
gn

or
m

al
  

– 
– 

 
23

.0
%

  
21

.0
%

  
1.

0%
 

Lo
gn

or
m

al
  

– 
– 

 
23

.0
%

  
21

.0
%

  
1.

0%
 

D
at

as
et

 4
 

N
or

m
al

 
0 

 
– 

 
0.

4 
 

0.
2 

 
0.

05
 

N
or

m
al

  
0.

5 
– 

1 
 

0.
75

  
0.

05
 

N
or

m
al

  
19

.5
%

 
– 

 
23

.0
%

  
21

.0
%

  
1.

0%
 

N
or

m
al

  
19

.5
%

 
– 

 
23

.0
%

  
21

.0
%

  
1.

0%
 

D
at

as
et

 5
 

Tr
ia

ng
ul

ar
 

0 
 

0.
2 

 
0.

4 
 

– 
 

– 
N

or
m

al
  

0.
5 

– 
1 

 
0.

75
  

0.
05

 
Lo

gn
or

m
al

  
– 

– 
 

23
.0

%
  

21
.0

%
  

1.
0%

 
Lo

gn
or

m
al

  
– 

– 
 

23
.0

%
  

21
.0

%
  

1.
0%

 

N
ot

e:
 P

r.d
is

tr
. =

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n;

 R
 =

Fl
ow

 ra
te

 o
f t

he
 g

as
 re

le
as

ed
 in

 th
e 

w
or

ki
ng

 e
nv

ir
on

m
en

t (
m

3 
s−

1 ); 
M

in
 =

M
in

im
um

; M
.li

ke
 =

M
os

t l
ik

el
y;

 M
ax

 =
M

ax
im

um
; μ

 =
M

ea
n;

 σ
 =

St
an

da
rd

 d
ev

ia
tio

n;
 Q

ou
t =

O
ut

pu
t 

fo
rc

ed
 v

en
til

at
io

n 
ai

rfl
ow

 r
at

e 
(m

3 
s−

1 ); 
C O

2(
0)

 =
O

xy
ge

n 
co

nc
en

tr
at

io
n 

by
 v

ol
um

e 
in

 th
e 

w
or

ki
ng

 e
nv

ir
on

m
en

t a
t i

ni
tia

l t
im

e 
0 

(%
); 

C O
2,

ai
r 
=

O
xy

ge
n 

co
nc

en
tr

at
io

n 
in

 th
e 

ai
r 

(d
ue

 to
 v

en
til

at
io

n 
ai

rfl
ow

 r
at

e)
 (

%
). 

E. Stefana and N. Paltrinieri                                                                                                                                                                                                                 



Safety Science 138 (2021) 105238

10

Model 2 and Model 3 applied on Dataset 3 and Dataset 4 provide 
skewness values near to 0: such datasets are characterised by normal 
and/or lognormal distributions assigned to input parameters. Addi
tionally, when R and Qout are represented by means of a normal distri
bution, confidence intervals and coefficients of variation assume lower 
values. Better shape-based performance measures (specifically, lower 
values of kurtosis) seem to be correlated to uniform distributions 
assigned to input parameters (Dataset 2). Based on an initial sensitivity 
analysis considering all the parameters of the models (since the com
plete outcomes of this sensitivity analysis are not reported in the paper 
because they do not represent a key result of the application of our 
framework, please contact the authors for the complete set of results), R 
is the most influential model input for all datasets for all candidate 
models. Consequently, in order to reduce the overall uncertainty and 
thus increase the confidence in the O2 concentration, analysts should try 
to decrease the uncertainty involved in this parameter (e.g. constant 
monitoring of the release flow rate, adoption of gas detection equipment 
and control devices). 

6.4. Ranking 

To generate the model rankings, we focus our attention on the 90% 
confidence interval in terms of confidence-based performance measures, 
kurtosis for shape-based performance metrics, probability that the O2 
concentration by volume is between 10% and 12% and skewness as 
safety-based performance measures, and rank correlation coefficients 
for R for sensitivity-based performance metrics. Table 9, Table 10, 
Table 11, Table 12, and Table 13 summarise the single-performance 
measure and final rankings for each dataset. Note that final score is 
calculated for each model and for each dataset according to Eq. (4). 

Final score =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

j

(
(m + 1) - Rankingj

)2
√

(4)  

where j is the number of single-performance measure rankings (in our 
case study: j = 5), m is the number of the models (in our case study: m =
3), and Ranking is the single ranking produced for each performance 

Table 4 
Performance measures for Dataset 1.  

Model 90% CI CV Kurtosis Pr(10–12%) Pr(12–15%) Pr(15–18%) Skewness Corr.coeff. for R 

Model 1 ±0.267%  0.097  2.8595  0.00%  16.54%  64.71%  0.1685 − 0.88 
Model 2 ±0.317%  0.180  3.2876  5.93%  36.19%  39.74%  − 0.5533 − 0.89 
Model 3 ±0.311%  0.176  3.0871  9.11%  30.31%  41.96%  − 0.4153 − 0.85 

Note: CI = Confidence interval; CV = Coefficient of variation; Pr = Probability; Corr.coeff. = Correlation coefficients; R = Flow rate of the gas released in the working 
environment (m3 s− 1). 

Table 5 
Performance measures for Dataset 2.  

Model 90% CI CV Kurtosis Pr(10–12%) Pr(12–15%) Pr(15–18%) Skewness Corr.coeff. for R 

Model 1 ±0.232%  0.076  2.0898  0.00%  0.00%  39.12% − 0.14 − 0.95 
Model 2 ±0.289%  0.097  2.3293  0.00%  5.34%  43.13% − 0.278 − 0.95 
Model 3 ±0.33%  0.120  2.3558  1.31%  21.39%  51.65% − 0.2714 − 0.88 

Note: CI = Confidence interval; CV = Coefficient of variation; Pr = Probability; Corr.coeff. = Correlation coefficients; R = Flow rate of the gas released in the working 
environment (m3 s− 1). 

Table 6 
Performance measures for Dataset 3.  

Model 90% CI CV Kurtosis Pr(10–12%) Pr(12–15%) Pr(15–18%) Skewness Corr.coeff. for R 

Model 1 ±0.147%  0.053  3.2706  0.00%  3.54%  90.73%  0.322 − 0.96 
Model 2 ±0.257%  0.101  3.1248  2.61%  35.96%  58.10%  − 0.1284 − 0.97 
Model 3 ±0.25%  0.098  3.9715  2.03%  36.00%  57.16%  0.0709 − 0.81 

Note: CI = Confidence interval; CV = Coefficient of variation; Pr = Probability; Corr.coeff. = Correlation coefficients; R = Flow rate of the gas released in the working 
environment (m3 s− 1). 

Table 7 
Performance measures for Dataset 4.  

Model 90% CI CV Kurtosis Pr(10–12%) Pr(12–15%) Pr(15–18%) Skewness Corr.coeff. for R 

Model 1 ±0.154%  0.056  3.883  0.00%  2.44%  92.03%  0.5206 − 0.96 
Model 2 ±0.25%  0.098  2.6042  1.57%  44.34%  52.09%  − 0.0802 − 0.96 
Model 3 ±0.241%  0.094  3.3424  1.40%  37.84%  55.28%  0.1313 − 0.87 

Note: CI = Confidence interval; CV = Coefficient of variation; Pr = Probability; Corr.coeff. = Correlation coefficients; R = Flow rate of the gas released in the working 
environment (m3 s− 1). 

Table 8 
Performance measures for Dataset 5.  

Model 90% CI CV Kurtosis Pr(10–12%) Pr(12–15%) Pr(15–18%) Skewness Corr.coeff. for R 

Model 1 ±0.258%  0.093  2.3777  0.00%  14.31%  63.29%  0.3794 − 0.99 
Model 2 ±0.368%  0.146  2.5515  8.29%  33.71%  46.13%  − 0.166 − 0.98 
Model 3 ±0.272%  0.151  2.6271  7.61%  36.03%  41.82%  0.1783 − 0.95 

Note: CI = Confidence interval; CV = Coefficient of variation; Pr = Probability; Corr.coeff. = Correlation coefficients; R = Flow rate of the gas released in the working 
environment (m3 s− 1). 
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measure considered (in our case study: confidence interval, kurtosis, 
probability that the O2 concentration by volume is between 10% and 
12%, skewness, and correlation coefficients for R). 

The single-performance measure rankings, which are obtained by 
aggregating the information of the several performance measures, un
derline that Model 1 outperforms the others on the three datasets 
characterised by a triangular or uniform distribution assigned to the 
flow rate of the gas released in the working environment. This model is 
also assigned rank 1 in the global average ranking (reported in Table 14) 
for the three candidate models based on all the five datasets considered 
in this case study. For details about the average ranking method, refer to 
Abdulrahman et al. (2015), and Brazdil and Soares (2000). 

The consideration of a higher range of O2 concentration by volume as 
a performance measure leads to a different ranking of the models. If 
analysts assume that the probability of the O2 concentration by volume 
is between 15% and 18% (instead of a probability between 10% and 
12%), Model 1 outperforms the others on only two datasets (Dataset 1 
and Dataset 2). On the contrary, Model 3 achieves better performance 
measures for Dataset 3 and Dataset 5. These two datasets are charac
terised by different probability distributions for the flow rate of the gas 
released in the working environment, but the same probability distri
butions for the other three parameters: normal distribution for the 
output forced ventilation airflow rate, and lognormal distributions for 

both the O2 concentration in the air and in the working environment at 
the time t = 0 s. Model 3 is also assigned rank 1 in the global average 
ranking for the three candidate models based on all the five datasets. 
Rank 3 assigns to Model 2 also in this case. An overview of the results 
obtained in this case is presented in Table 15 and Table 16, where the 
single-performance measure and final rankings for each model and each 
dataset, and the average ranking for the models on all dataset are re
ported, respectively. 

7. Discussion 

The task investigated through the case study has regarded the pre
diction of the ranking of the models able to estimate the indoor O2 levels 
and thus assess ODH in working environments. Because of its simplicity, 
not all the aspects of the ProMetaUS framework were covered and 

Table 10 
Single-performance measure rankings and final ranking for Dataset 2.  

Model Ranking for CI Ranking for kurtosis Ranking for Pr(10–12%) Ranking for skewness Ranking for corr.coeff. for R Final score Final ranking 

Model 1 1 1 1 1 2  6.32 1 
Model 2 2 2 1 3 3  4.36 2 
Model 3 3 3 3 2 1  4.00 3 

Note: CI = Confidence interval; Pr = Probability; Corr.coeff. = Correlation coefficients; R = Flow rate of the gas released in the working environment (m3 s− 1). 

Table 9 
Single-performance measure rankings and final ranking for Dataset 1.  

Model Ranking for CI Ranking for kurtosis Ranking for Pr(10–12%) Ranking for skewness Ranking for corr.coeff. for R Final score Final ranking 

Model 1 1 1 1 1 2  6.32 1 
Model 2 3 3 2 3 3  2.83 3 
Model 3 2 2 3 2 1  4.69 2 

Note: CI = Confidence interval; Pr = Probability; Corr.coeff. = Correlation coefficients; R = Flow rate of the gas released in the working environment (m3 s− 1). 

Table 11 
Single-performance measure rankings and final ranking for Dataset 3.  

Model Ranking for CI Ranking for kurtosis Ranking for Pr(10–12%) Ranking for skewness Ranking for corr.coeff. for R Final score Final ranking 

Model 1 1 2 1 3 2  5.20 1 
Model 2 3 1 3 2 3  4.00 3 
Model 3 2 3 2 1 1  5.20 1 

Note: CI = Confidence interval; Pr = Probability; Corr.coeff. = Correlation coefficients; R = Flow rate of the gas released in the working environment (m3 s− 1). 

Table 12 
Single-performance measure rankings and final ranking for Dataset 4.  

Model Ranking for CI Ranking for kurtosis Ranking for Pr(10–12%) Ranking for skewness Ranking for corr.coeff. for R Final score Final ranking 

Model 1 1 3 1 3 3  4.58 3 
Model 2 3 1 3 1 2  4.90 2 
Model 3 2 2 2 2 1  5.00 1 

Note: CI = Confidence interval; Pr = Probability; Corr.coeff. = Correlation coefficients; R = Flow rate of the gas released in the working environment (m3 s− 1). 

Table 13 
Single-performance measure rankings and final ranking for Dataset 5.  

Model Ranking for CI Ranking for kurtosis Ranking for Pr(10–12%) Ranking for skewness Ranking for corr.coeff. for R Final score Final ranking 

Model 1 1 1 1 3 3  5.39 1 
Model 2 3 2 3 1 2  4.36 3 
Model 3 2 3 2 2 1  4.69 2 

Note: CI = Confidence interval; Pr = Probability; Corr.coeff. = Correlation coefficients; R = Flow rate of the gas released in the working environment (m3 s− 1). 

Table 14 
Average ranking for the models on all datasets.  

Model Average rank Ranking 

Model 1  1.4 1 
Model 2  2.6 3 
Model 3  1.8 2  
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applied. However, such case study gives an introductory description of 
the pivotal components to be defined and steps to be followed by ana
lysts in the proactive ranking of models for the assessment of one hazard 
based on desired uncertainty conditions by means of meta-learning 
notions. The same components and steps are valid for consequences, 
likelihoods, risks, and mitigation measures that are studied in the safety 
field and can be assessed by models. The developed framework follows 
the classical ASP architecture, which is largely implemented in com
puter science field, but never before presented in the safety domain for 
selecting models for estimating and assessing DRM core elements that 
considers uncertainty. It represents an analysis and decision support tool 
in real applications, whose proper functioning does not require user 
experience and competencies. The attainment of the models ranking by 
means of the ProMetaUS framework is possible by means of widely 
spread tools, e.g. Microsoft Excel® and software systems for risk anal
ysis, simulation, uncertainty quantification, and sensitivity analysis. 

The ProMetaUS framework is based on an automatic and continuous 
process that feeds itself from the application of a set of models on 
different datasets and problems. This is guaranteed by the process of 
acquiring and exploiting meta-knowledge, which is tightly linked to 
meta-learning (Vilalta et al., 2004). Such meta-knowledge is built by 
means of the combination of the meta-features with the performance 
measures across several datasets solved by different models. In the case 
study, the meta-knowledge is created through the mapping of the 
probability distributions and statistical parameters of the main inputs of 
the models to confidence levels, summary statistics, and sensitivity 
analysis outcomes obtained by executing each model on each dataset. 
The obtained results underline that models achieve better confidence- 
based performance measures when inert gas release flow rates and 
forced ventilation airflow rates are described by normal distributions; 
whereas, when uniform distributions are assigned to input parameters, 
lower values of kurtosis are estimated. For instance, the information 
about the value of kurtosis helps choose among the models because it 
permits identifying the candidate ones that calculate low probabilities of 
achieving extremely low or extremely high O2 concentration. All these 
correlations between meta-features and performance measures are 
collected to generate meta-knowledge and to feed a meta-learner. Then, 
the meta-learner is applied for suggesting a meta-model able to produce 
the ranking and predict the performance of the models for new 

problems. 
Additionally, an initial sensitivity analysis considering all the pa

rameters of the models (not reported in this paper for the sake of brevity) 
highlights that all the candidate models agree that the release gas flow 
rate is the most influential input: for reducing the overall uncertainty in 
the O2 concentration estimations, efforts should be mainly devoted to 
decrease the uncertainty involved in this parameter. A constant release 
monitoring, and the adoption of gas detection equipment and control 
devices are highly suggested for reducing this uncertainty, mainly in 
working environments where ODH can occur with a high probability (e. 
g. confined spaces). Note that the O2 concentrations and the related 
ranges employed in the case study can be modified and customised 
based on the assessment purpose. Indeed, analysts can rely on some 
recommended minimum O2 levels available in the literature (also 
including a margin of safety) for understanding the typical human body 
reactions due to O2 deficient atmospheres and the consequent need of 
adoption of adequate measures for mitigating the asphyxiation risk 
(Stefana et al., 2021). 

Variations of the O2 concentration range permit analysing the 
behaviour of the candidate models and its impact on the ranks assigned 
to the models. Such possibility to define different groups of single per
formance measures depending on the types of tasks and purposes of the 
safety assessments emphasises the versatility of our framework. The 
generation of several single rankings based on each performance mea
sure can allow the professional conducting the assessment to choose 
which criteria including and affecting the selection of the models. The 
selection is obtained by means of three different types of ranking, such as 
single-performance measure rankings for each dataset, a final ranking 
for each dataset, and a global ranking for all the candidate models on all 
datasets. The rankings are regularly updated whenever new-meta- 
features are gained, and meta-knowledge is continuously acquired as 
tests proceed on new datasets. This is in accordance with the definition 
proposed by Lemke et al. (2015): “A metalearning system must include a 
learning subsystem, which adapts with experience. Experience is gained 
by exploiting metaknowledge extracted (a) in a previous learning 
episode on a single dataset, and/or (b) from different domains or 
problems”. 

The ProMetaUS framework permits obtaining not only a recom
mendation of the most adequate model(s) among the considered 
candidate models for a certain task, but also highlighting the confidence 
level in model results for guiding further uncertainty reduction efforts. 
In order to do that, the complete set of meta-features involves charac
teristics that describe datasets, define the problem under investigation, 
indicate the specific source of each dataset, and summarise outcomes of 
simple and fast uncertainty and sensitivity analyses performed for each 
model on the datasets. These meta-features appear in compliance with 
the principal guidelines available in the literature (Brazdil et al., 2003, 

Table 15 
Single-performance measure rankings and final ranking for all the models and datasets (considering the probability of the O2 concentration between 15% and 18%).  

Model Dataset Ranking for CI Ranking for kurtosis Ranking for Pr(15–18%) Ranking for skewness Ranking for corr.coeff. for R Final score Final ranking 

1 1 1 1 3 1 2  5.66 1 
2 1 3 3 1 3 3  3.61 3 
3 1 2 2 2 2 1  5.00 2 
1 2 1 1 1 1 2  6.32 1 
2 2 2 2 2 3 3  3.74 3 
3 2 3 3 3 2 1  4.00 2 
1 3 1 2 3 3 2  4.36 2 
2 3 3 1 2 2 3  4.36 2 
3 3 2 3 1 1 1  5.66 1 
1 4 1 3 3 3 3  3.61 3 
2 4 3 1 1 1 2  5.66 1 
3 4 2 2 2 2 1  5.00 2 
1 5 1 1 3 3 3  4.58 3 
2 5 3 2 2 1 2  4.69 2 
3 5 2 3 1 2 1  5.20 1 

Note: CI = Confidence interval; Pr = Probability; Corr.coeff. = Correlation coefficients; R = Flow rate of the gas released in the working environment (m3 s− 1). 

Table 16 
Average ranking for the models on all datasets (considering the probability of 
the O2 concentration between 15% and 18%).  

Model Average rank Ranking 

Model 1  2.0 2 
Model 2  2.2 3 
Model 3  1.6 1  
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2009; Castiello et al., 2005; Kalousis and Hilario, 2001; Khan et al., 
2020; Smith-Miles, 2008a): they should not be too computationally 
complex, be efficiently and uniformly computable for wide range of 
problems in a particular domain, and not be too large compared to the 
amount of available meta-data. However, such a set of meta-features 
could increase the required resources and computational time for 
obtaining the models ranking, especially if the models are more complex 
than ones analysed in the case study. To limit a possible time increment, 
further experiments by using different combinations of meta-features (e. 
g. employment of all defined meta-features, application of the meta- 
features that belong to only few groups, or usage of the most relevant 
ones chosen by a features selection algorithm) could be carried out. 
These experiments could thus help identify a reasonable number of 
meta-features (for the considered problem) that avoids a time- 
consuming selection process, and balances the trade-off between 
desired accuracy and computational efficiency. Future research could 
also investigate the inclusion of some meta-features related to the 
comparisons between the measured and predicted quantity of interest (if 
measurement outputs of the quantity of interest are available) in order 
to look for other relevant relationships between them and performance 
measures. 

For bringing about a more predictive model of the learning process, 
particular attention should be given to the collection of an adequate 
number of datasets, also in different domains and problems. In the safety 
field, this can represent a challenging aspect due to the requested 
monitoring of many and various conditions and aspects, e.g. working 
environment settings, hazards, risks, equipment characteristics and 
failure analysis, present and produced substances. 

The development of the ProMetaUS framework is based on a set of 
general assumptions that could reduce its field of application. For 
instance, our focus is on epistemic uncertainty because it can be reduced 
by improved system understanding (Thompson and Warmink, 2017). 
However, the understanding of the behaviour of complex systems is not 
trivial and is limited: in such situations a continuous updating of the 
model parameters and input data, and the analysis of the performance of 
the system over time are needed. This represents an interesting topic 
that requires future works. Moreover, we deal with the uncertainty by 
means of the probabilistic approach and probability distributions. This is 
possible for those uncertainty sources that are quantifiable through 
quantitative approaches; however, there are other sources of uncer
tainty that cannot be described in quantitative terms (e.g. social in
fluences on system performance) and that could be included in an 
advanced future framework thanks to ad hoc adjustments. Regarding the 
defined performance measures, we assume that threshold values, if 
available, are not characterised by uncertainty degrees: although this 
hypothesis seems reasonable in several scenarios in the safety field (e.g. 
TLVs published by American Conference of Governmental Industrial 
Hygienists), a proper caution should be dedicated to this aspect by an
alysts. A certain level of prudence should also be used when some model 
inputs are neglected in the analysis because all the models agree that 
such inputs are not relevant contributing factors to the overall uncer
tainty. This consideration remains valid as long as the set of models does 
not change: when a new model is incorporated in the problem space, 
additional sensitivity analyses should be conducted in order to under
stand if these model inputs can continue to be overlooked or should be 
introduced in the assessment. 

Finally, this paper offers only one of the possible modes of connec
tion between meta-learning concepts and the safety domain. The 
application of meta-learning notions seems to be particularly promising 
for making relevant progress in the risk reduction and prevention 
improvement. Various future directions could be imagined and should 
deserve further research efforts. For instance, the study of possible re
lations between system conditions and the consequent gathered exper
tise can help to efficiently and effectively assess new risks and define 
adequate safety measures. Furthermore, interesting stimuli could be 
derived from the topic of learning from accidents largely addressed in 

the safety field (Patriarca et al., 2019) for understanding how the 
complexity of the system contributes to the development of accident 
scenarios (Seligmann et al., 2019). In such a context, the meta-learning 
peculiarities applied to plant and procedures could serve as a valuable 
complement to the intrinsic human process of “learning about learning” 
in order to try to capture the complexity of socio-technical systems, 
explore the interactions among different cyber-socio-technical compo
nents (Patriarca et al., 2021), and thus enhance the effectiveness of 
hazard identification. 

8. Conclusions 

This paper proposes a novel proactive framework, named ProMetaUS 
after the Greek mythological figure Prometheus, based on a meta- 
learning system to select and rank models for the assessment of DRM 
core elements (hazard, consequence, likelihood, risk, or mitigation 
measures) depending on desired uncertainty conditions. Such frame
work gives safety managers, practitioners, and researchers a dynamic 
tool for incorporating further models, evidence, and information when 
available, without requiring expertise and competencies in all the 
existing models and data mining techniques. 

A case study about ODH assessments in a working environment was 
presented to offer a preliminary application of the framework in the 
safety field. Three models predicting the time trend of the indoor O2 
concentration by volume were evaluated on five training datasets. We 
extracted 24 meta-features (e.g. probability distribution, mean, and 
standard deviation values for the flow rate of the gas release in the 
working environment and O2 concentration in the air) and estimated 8 
performance measures (e.g. confidence interval, kurtosis, Spearman 
rank correlation coefficients for model inputs) for each model and for 
each dataset. Single-performance measure and final rankings for each 
dataset and a global average ranking for the candidate models based on 
all the five datasets were recommended. Additional training datasets 
and models should be required for generalising the obtained results and 
improving the correlations between meta-features and performance 
measures in the occupational context of ODH assessments. 

Further case studies about the application of the ProMetaUS frame
work considering other DRM core elements should be investigated. 
Interesting future applications could be focused on models for esti
mating the risk of fire due to O2 enrichment or occupational exposures to 
chemicals. A deep analysis about the relevance of the designed meta- 
features and proposal of other meaningful characteristics to be extrac
ted from datasets is an additional aspect that deserves future 
investigation. 
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Prudêncio, R.B.C., Ludermir, T.B., 2004. Meta-learning approaches to selecting time 
series models. Neurocomputing 61, 121–137. 

Prudêncio, R.B.C., Ludermir, T.B., 2012. Combining Uncertainty Sampling methods for 
supporting the generation of meta-examples. Inf. Sci. 196, 1–14. 
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Woźniak M. (Eds.), Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture Notes 
in Computer Science, vol. 6678. Springer, Berlin, Heidelberg, pp. 164–171. 
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