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A B S T R A C T   

Earthquakes can rupture multiple fault segments as well as faults with complex geometry, or heterogeneous pre- 
stress and frictional properties. These observations have been documented mainly for moderate-to-large earth
quakes by inverting geodetic and seismic data and by studying the influence of fault orientation and rheology 
within the regional stress field. 

In this work we have studied the Gorzano fault, GF, a large normal fault within the active fault system of 
Central Italy that during the last two largest Italian seismic sequences, L’Aquila (2009) and Amatrice-Visso- 
Norcia (2016–2017), was reactivated via a series of 5.0 < Mw < 6.0 events. We calculated moment tensor so
lutions for 134 M > 3 events and evaluated their normalized slip-tendency. Merging these results with high 
resolution earthquake catalogs, available M > 5 earthquake slip distributions, and frictional properties charac
terizing the activated fault, we develop a mechanical model and discuss potential earthquake rupture scenarios. 

The GF is an optimally oriented fault within the regional stress field and from, the reactivation via aftershock 
or mainshock slip of complementary fault portions from 2009 to 2017 indicates that the fault behaves as a single 
fault structure. The geometrical and mechanical heterogeneities suggest that the most likely slip behavior of GF is 
the reactivation of different fault portions with M > 5.0. However, due to favorable initial stress conditions, we 
suggest that a seismic rupture can produce the complete reactivation of the fault, resulting in a M 6.5–6.6 
earthquake as documented in paleoseismological data.   

1. Introduction 

Several factors influence the possibility that one seismic event rup
tures through small portions or the entire fault length and/or jumps 
from one fault segment to another. The primary control on final rupture 
length and therefore on the arrest of the rupture is mainly exerted by the 
stress state, fault frictional properties, and by the geometry of the fault 
system. 

Fault segments or fault portions more prone for earthquake nucle
ation are those critically stressed within the regional stress field (Walsh 
and Zoback, 2016). Once initiated, an earthquake rupture can activate 
small portions or the entire fault plane or even can jump on adjacent 
fault segments more easily if the stress level approaches that of failure 
(Scholz, 2010; Tinti et al., 2021) and/or when the degree of stress 
interaction between faults is high (Scholz and Gupta, 2000). 

Geometrical complexities such as fault steps (Biasi and Wesnousky, 
2016) or dilational jogs (Sibson, 1985) seem to play an important role 

for earthquake rupture stopping. Field observations on a large number of 
surface ruptures indicate that fault step-over larger than 4–5 km are very 
efficient to stop fault rupture propagation, with dip-slip ruptures 
capable of crossing larger steps than strike-slip earthquakes (Biasi and 
Wesnousky, 2016). In areas characterized by tectonic inversion, 
inherited fault structures can work as either structural barriers for 
rupture propagation (Collettini et al., 2005; Pizzi and Galadini, 2009) or 
as sites for stress concentrations where the seismic rupture can nucleate 
or easily pass through (Pizzi et al., 2017; Scognamiglio et al., 2018). 

Spatial variation of fault frictional properties is another determining 
factor for earthquake rupture size (Kaneko et al., 2010; Barbot, 2021). 
Numerical models coupled with geodetic and seismic observations 
indicate that earthquake rupture patterns are strongly connected with 
spatial variation of friction. Earthquake propagation through a rupture- 
impeding, rate strengthening patch, is generally difficult (Kaneko et al., 
2010; Thomas et al., 2014, Barbot, 2019, among many others). How
ever, for some events, like the 2011 Tohoku-Oki Mw = 9.0 earthquake, 
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coseismic weakening promoted by rapid shear heating of pore fluids 
allowed earthquake slip to occur within a fault portion characterized by 
rate strengthening friction (Faulkner et al., 2011; Noda and Lapusta, 
2013). 

Some recent case studies of large earthquakes provided important 
observations indicating that seismic ruptures in the same area may differ 
significantly in extent and magnitude and that rupture jumps can be 
very efficient and sometimes difficult to be predicted. Examples have 
been documented in Sumatra megathrust (Konca et al., 2008), in the 
2023 south-central Turkey earthquake (Dal Zilio and Ampuero, 2023) 
and in the 2016 Kaikoura earthquake in New Zealand (Hamling et al., 
2017). These examples of multiple and complex ruptures during large 
earthquakes pose some doubts on how efficient fault segmentation, 
variable fault geometry and fault step-over are in stopping earthquakes. 
In this work we contribute to this topic by presenting an example of a 
fault that in eight years was almost entirely reactivated by a series of 5 <
M < 6 earthquakes without experiencing any full rupture. In the dis
cussion we analyze the fault geometrical and frictional heterogeneities 
to discuss possible earthquake rupture behavior. 

2. Seismotectonic setting and the Gorzano fault 

The study area is located in the Central Apennines, an area affected 
by a Late Miocene-Early Pliocene compressional phase producing N-S 
trending east-verging anticlines and west-dipping thrust faults. This 
compressional phase was followed by Late Pliocene–Quaternary exten
sion accommodated along NW-SE trending normal faults (Lavecchia 
et al., 1994; Pizzi and Galadini, 2009; Barchi et al., 2021). Active 
extension is occurring at rates of about 3 mm yr− 1 (Serpelloni et al., 
2005; Anderlini et al., 2016), promoting several major seismic se
quences in the last 25 years: Colfiorito 1997, CO, Mw = 6.0 (Chiaraluce 
et al., 2003), L’Aquila, AQ, 2009 Mw = 6.1 (Chiarabba et al., 2009), 
Amatrice-Visso-Norcia, AVN, 2016–2017 Mw = 6.5 (Chiaraluce et al., 
2017). These sequences occurred along NW-trending and SW-dipping 

normal faults that bound the intermountain basins of the area. 
In this work we studied the Gorzano normal fault (Boncio et al., 

2004a, 2004b; Valoroso et al., 2013; Chiaraluce et al., 2017; Falcucci 
et al., 2018; Cheloni et al., 2019; Michele et al., 2020; Barchi et al., 2021; 
Buttinelli et al., 2021) located in the overlap zone between the SSE 
termination of the AVN sequence and the NNW portion of the AQ 
sequence (Fig. 1). 

Among the many faults in the Central Apennines, the Gorzano fault 
(GF) is one of the most discussed and debated in the literature. Building 
on the interpretation of seismic reflection profiles (Bigi et al., 2011; 
Buttinelli et al., 2021) the fault mapped at the surface is considered 
detached from its deeper portion by an early Pliocene thrust and 
passively transported on its hanging-wall. In this interpretation the 
seismicity recorded during AQ 2009 and AVN 2016 sequences is 
occurring along an inherited normal fault located in the footwall of the 
thrust that is not connected with the mapped GF at the surface (Buttinelli 
et al., 2021). In marked contrast, a continuity of the GF from the surface 
into the seismogenic layer (as a single structure) is proposed by the 
integration of structural and morphotectonic features with three small 
magnitude seismic sequences M < 4, occurred in the area between 1992 
and 1996 (Boncio et al., 2004a, 2004b). This interpretation is consistent 
with geomorphological analyses coupled with seismological and 
geodetic data related to the AQ 2009 and AVN 2016 sequences (Falcucci 
et al., 2018), with a different seismic reflection profiles interpretation 
(Barchi et al., 2021) and supported by paleoseismological studies doc
umenting a maximum magnitude of ~6.6 for the GF (Galadini and Galli, 
2003). Within the literature supporting the continuity of GF from 
shallow crustal levels down to seismogenic depths, some differences are 
present. For example, a single fault about 28 km long has been proposed 
in Boncio et al., 2004a or Lavecchia et al., 2012, whereas a two aligned 
but kinematically independent faults, the minor Amatrice fault and the 
major Campotosto fault has been identified in Galadini and Galli, 2003 
and Falcucci et al., 2018. 

In this paper we will present further data supporting the existence of 

Fig. 1. (a). Map of the Amatrice-Visso-Norcia (AVN) and L’Aquila (AQ) seismic sequences colour-coded by seismic catalog: Waldhauser et al., 2021 (dark blue) and 
Valoroso et al., 2013 (dark green). Light blue stars are events with Mw >5.0 of AVN sequence (2016–2017); light green stars are events with Mw >5.0 of AQ sequence 
(2009); brown stars are the mainshocks of AVN sequence: Amatrice Mw 6.0, Visso Mw 5.9 and Norcia Mw 6.5; red star is the L’Aquila Mw 6.0 mainshock. The black 
box frames the study aea zoomed in panel (b). (b). Black lines are the traces of the main normal faults (Villani et al., 2018): GF = Gorzano fault (red solid line); CF =
Capitignano fault; GSF = Gran Sasso fault; MF = Montereale fault; SFF = Mt. San Franco fault; AF = Assergi fault; CNF = Configno fault. 
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a continuous fault or fault system from the surface to the seismogenic 
depth leading us to consider this as the most likely interpretation for the 
GF. In addition, we will discuss how geometrical and frictional hetero
geneities may influence earthquake rupture behavior and their effect on 
the conditions required to have partial or full ruptures. 

3. Data & methods 

3.1. Seismicity 

Thanks to a dense network of seismic stations deployed during the 
AQ and AVN seismic sequence, many aftershocks were collected and 
resulted in high-resolution catalogs that can be used to describe the 
time-space evolution of the activity of the Gorzano fault. In this paper 
we use the seismicity distribution, from Valoroso et al., 2013 and 
Waldhauser et al., 2021 catalogs, to reconstruct the geometry of acti
vated structure and to investigate the geometrical and temporal conti
nuity of the two main sequences that affected the Gorzano fault. 

The catalog adopted for the 2009 AQ sequence (Valoroso et al., 
2013) is composed of 64,051 events (dark green dots in Fig. 1a) located 
by using an automatic P and S wave picking procedure together with 
cross-correlation and the double-difference (DD) HypoDD method 
(Waldhauser et al., 2021). The median error values derived from the 
bootstrap distribution are: 0.024 km along the major horizontal, 0.015 
and 0.027 km along the minor horizontal and vertical directions, 
respectively. The events of this catalog located on the Gorzano fault area 
(Fig. 1b) and used in the following analyses are 32,000. For the AVN 
sequence (2016–2017) we use the seismic catalog of Waldhauser et al., 
2021 with nearly 400,000 aftershocks (dark blue dots in Fig. 1a) ob
tained from automatically revised P and S picking (Spallarossa et al., 
2021) and located with HypoDD. In Waldhauser et al. (2021), the me
dian horizontal and vertical errors are 0.048 and 0.077 km, respectively. 
The events of this catalog located within the Gorzano fault area (Fig. 1b) 
and used in this paper are 116,000. 

3.2. Moment tensor solutions 

A detailed analysis on the kinematics of the Gorzano fault has been 
performed by building a new moment tensor catalog of the Campotosto 
area by applying the Time Domain Moment Tensor technique (hereafter 
TDMT) originally proposed by Dreger and Helmberger (1993) and 
Pasyanos et al. (1996) and successively implemented at INGV by Scog
namiglio et al. (2009). To do that, we reviewed and improved 80 already 
published moment tensor solutions by increasing the number of inverted 
stations and computed 52 new solutions that lower the minimum 
magnitude threshold to M––3.0 having in total 134 available solutions 
for the Campotosto area from January 2009 until January 2021. 

These solutions providing the strike, dip, and rake of the two possible 
conjugate fault planes, allow us to constrain the geometry and kine
matics of small structures, and compare their consistency with the 
regional stress field. The TDMT solutions are computed by changing the 
centroid location within a 5 km wide interval around the hypocenter 
depth with a 1 km step, and ultimately selecting the best solution. 
Through TDMT we can estimate the moment magnitude (Mw) and 
evaluate the percentage of double couple (DC) and compensated linear 
vector dipole (CLVD), while the isotropic component (ISO) is con
strained to be zero. The double-couple (DC) represents the force 
equivalent of a shear faulting mechanism on a planar fault; however, 
many moment tensor solutions reveal that seismic sources often display 
significant non-double-couple components: ISO (isotropic) and CLVD 
(compensated linear vector dipole). The ISO component accounts for a 
change in the volume, as in implosion or explosion events (e.g. nuclear 
explosions or induced seismicity) and it could be significant in volcanic 
earthquakes. The CLVD component represents a type of volumetric 
deformation, where rocks undergo both compaction and dilatation 
during an earthquake. It is often associated with earthquakes occurring 

in more complex geological regions, such as volcanic systems or regions 
with significant tectonic stress variations or it could represent a complex 
earthquake source mechanism, like a variability in fault geometry. A low 
CLVD value is usually related to uncertainties in the adopted Green 
functions or potential errors in the recorded data. The moment tensor 
solution is determined by fitting the synthetic seismograms to the 
observed data in a frequency range of 0.02–0.05 Hz or 0.02–0.1 Hz for 
events with Ml≥4 or Ml < 4, respectively. Its quality is measured 
through the variance reduction (VR) parameter, i.e., a misfit function 
between recorded and synthetic waveforms (Eq. 1): 

VR =
∑

i
wi

(

1 −
∫
[xi (t) − di (t) ]2 dt
∫

d2
i (t) dt

)

100% (1)  

where i is the station index, xi(t) is the synthetic waveform, di(t) is the 
recorded waveform, and wi is a weight proportional to the epicentral 
distance. In the context of Central Italy, the best solutions are those with 
a high DC percentage (>80%), VR > 50%, and the number of stations 
inverted >4. These parameters refer to the MT Quality Index used at 
INGV to assign a quality value to solutions and publish them on the 
website based on this index (see Fig. 3 of Scognamiglio et al., 2009). 

Together with seismicity distribution and moment tensor solutions, 
to further analyze the geometry and slip of the activated fault system, we 
also reported along the Gorzano Fault the coseismic slip and post- 
seismic slip modeled for Mw > 5.0 during the 2009 AQ sequence 
(Cheloni et al., 2014), the two main events of January 2017 Mw 5.5 and 
5.4 (Cheloni et al., 2019), and the coseismic slip of the Mw 6.0 Amatrice 
event (Tinti et al., 2016). It is worth emphasizing that the Amatrice Mw 
6.0 mainshock produced fault reactivation in both the GF fault and Mt. 
Vettore fault (Tinti et al., 2016; Pizzi et al., 2017; Gallovič et al., 2019). 
The earthquake nucleated on the northernmost portion of GF releasing a 
first main slip patch up-dip from the hypocenter and then propagated 
northwards onto the southern Vettore fault releasing a second extended 
slip patch (Fig. S2). The equivalent Mw released by the slip patch 
belonging to the Gorzano fault is ~ 5.8 while most of the dislocation 
occurred in the southern part of the adjacent Mt. Vettore fault released 
an equivalent Mw ~ 5.95 (the total moment magnitude retrieved for the 
extended source model by inverting strong motion data is 6.1 similar to 
the TDMT solution Mw = 6.0). 

3.3. Slip tendency 

The potential of fault reactivation within a regional stress field can 
be assessed using a slip-tendency analysis. In this analysis the Amontons’ 
law (τ = μ σn) is used to evaluate the condition to slip on a fault, as: 

Ts = τ/σn ≥ μs (2)  

where τ and σn are the shear and effective normal stress on the fault, 
respectively, μs represents the coefficient of sliding friction and Ts is the 
slip tendency (Collettini and Trippetta, 2007; Morris et al., 1996). 
Assuming a friction coefficient at the bottom of the Byerlee, 1978 range, 
μs = 0.6, within a seismogenic region, faults with Ts > 0.6 represent 
structures critically stressed and therefore prone to be easily reactivated 
(Walsh and Zoback, 2016). The slip tendency depends on the orientation 
of the fault plane relative to the principal stresses (σ1, σ2 and σ3), the 
differential stress (σ1 - σ3), the pore fluid pressure and the stress shape 
ratio φ = (σ2 - σ3/ σ1 - σ3). Because it is difficult to constrain the ab
solute values of the principal stresses within the seismogenic layer, it is 
generally used the normalized slip tendency NTs (NTs = Ts/Tsmax) 
because it depends only on the orientation of the stress tensor and on the 
stress shape ratio (Morris et al., 1996; Collettini and Trippetta, 2007). 
NTs = 1 represents the optimal reactivation condition and decreasing 
values of NTs are indicative of more and more misoriented structures for 
frictional reactivation: planes with 0.5 < NTs < 1 can be considered well 
oriented and planes with 0 < NTs < 0.5 are misoriented (Collettini and 
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Trippetta, 2007). 
To evaluate geometric and kinematic compatibility of the reactivated 

structures within the regional stress field, we calculated the regional 
stress field using STRESSINVERSE (Vavryčuk, 2014) that is a Matlab 
software package for an iterative joint inversion for stress and fault 
orientations from focal mechanisms (Vavryčuk, 2014), based on Mi
chael’s method (1984, 1987). 

4. Kinematic analysis 

4.1. TDMT solutions 

The time-space evolution of the AQ and AVN seismic sequences 
within the GF system in the time interval ranging from April 2009 to 
February 2017, has been documented in several studies (e.g. Chiaraluce, 
2012; Valoroso et al., 2013; Chiaraluce et al., 2017; Michele et al., 2020) 
and summarized in supplementary material Fig. S3. Here we focus on 
the geometry and kinematic of the GF and the secondary activated 
structures. 

Fig. 2 shows the focal mechanisms in map colour-coded by sequence: 
dark green for the 2009 AQ sequence, dark blue for the 2016–2017 AVN 
sequence and gray for moment tensor solution that do not belong to any 
sequence. These solutions indicate a prevailing extensional kinematics 
in agreement with the Appennine active stress field, and the activation 
of fault areas that do not overlap during both sequences. 

In terms of quality, the solutions reviewed in this work have Variance 
Reduction (VR) values around 60%–80% and have been retrieved by 
using >4 stations. On average, for events with magnitude Mw < 3.5 the 

solutions have been computed with 6 stations while for larger events 
(Mw > 3.5) the solutions have been retrieved by using 10 to 40 stations. 

In the study area, due to the adopted ad-hoc 1D wave velocity model 
for Central Italy and the quite homogeneous azimuthal coverage of the 
available seismic stations, TDMT solutions are expected to have low 
CLVD values (Scognamiglio et al., 2009), our solutions confirm this 
statement having a DC value ranging between 80%–100%. 

In the following, to better clarify the geometry and the kinematics of 
the fault structures, we analyze the seismicity and the retrieved new 
TDMT solutions in eight cross-sections across the GF in Fig. 3. Fig. 4 
highlights the details of main and secondary structures of cross-sections 
4, 5 and 8. For a better association of TDMT solutions to the depicted 
fault structures, we have plotted the TDMT solutions reported in the 
cross-sections at the corresponding hypocentral depth taken from the 
Valoroso et al., 2013 (AQ) and Waldhauser et al., 2021 (AVN) catalogs. 
We did not substitute the depth for those moment tensors showing depth 
differences larger than 3 km with the catalog-based hypocentral loca
tions, a worsening of the VR value or a change in the kinematics with 
respect to the obtained TDMT solution. 

In cross-section 1 the seismicity is absent along the portion of the GF 
that hosted the main slip patch of the Amatrice event (see also Fig. S4) 
and the TDMT solutions belong only to the distributed seismicity located 
between 7 and 10 km. Here, the extensional kinematics of the solutions 
do not show a clear low-angle geometry. Moving SE (cross-section 2), 
the shallower extensional high-angles TDMT well agree with the W- 
dipping fault plane highlighted by the aftershocks between 1 and 4 km 
of depth, that well match with the co-seismic slip distribution of Ama
trice mainshock from Tinti et al., 2016 (see also Fig. S4). In this cross- 

Fig. 2. Map of the study area with calculated TDMT solutions. Dark green solutions belong to the AQ sequence; dark blue solutions belong to the AVN sequence; gray 
solutions are out-of-sequence. The 8 black solid lines perpendicular to strike of Mw = 5.5 (January 2017) moment tensor solution indicate the location of the cross- 
sections depicted in Fig. 3. Light blue stars are events with Mw >5.0 of AVN sequence, while light green stars are events with Mw >5.0 of AQ sequence of the 
Campotosto fault area; brown star is the Amatrice Mw 6.0 mainshock. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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section too, the focal mechanisms related to the seismicity volume at 
depth between 8 and 12 km show an extensional kinematics on normal 
faults dipping in the range of 25–65◦. Cross-Sections 3 and 4 show a 
seismicity alignment, dipping at 40–50◦, that merges at the surface with 
the mapped GF (Fig. 4). TDMT solutions shallower than 6 km show fault 
plane parameters in accordance with this seismicity distribution both for 
the main plane and minor antithetic structures. Cross-Sections 3 and 4 
are the southernmost cross-sections where we can observe the sub- 
horizontal distribution of the seismicity between 8 and 10 km of 
depth, TDMT related to this seismicity show extensional kinematics 

(rakes between − 80◦ and − 105◦) with strikes in the range 120◦ - 170◦

(W or SW dipping planes) and dips 25◦ - 35◦. From cross-section 5, going 
toward the southern cross-sections, the main fault plane becomes clear. 
In cross-section 5, the seismicity depicts a GF characterized by a kinked 
geometry (Chiaraluce, 2012), steeper (65◦ - 70◦) between 2 and 6 km of 
depth and with smaller inclination (35◦- 45◦) at depth 6–10 km. This 
geometry is also confirmed by TDMT solutions (see zoom in Fig. 4). In 
this cross-section we also observe two strike-slip TDMT solutions dip
ping 85◦ and 87◦ respectively and located at shallow depths. These 
earthquakes, compatible with the high angle aftershocks distribution, 

Fig. 3. Set of eight cross-sections. Cross-section traces and fault acronyms are the ones shown in Fig. 2. Moment tensors solutions and seismicity projected in these 
panels have a distance <2 km from the vertical cross-sections. 
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are probably associated with minor structures that accommodate the 
overall tectonic deformation. From cross-section 6 to 8, there is a lack of 
shallow (< 4 km) seismicity. From 4 to 12 km of depth the seismicity 
distribution highlights a listric geometry that is confirmed by TDMT 
solutions (Figs. 3 and 4) showing a decrease of the dip-angle with 
increasing depth (e.g. Chiaraluce, 2012). Seismicity and TDMT distri
bution shown in Fig. 3, highlight faults that during the AVN sequence 
were activated in continuity of structures activated during the AQ 
sequence, with very limited overlapping. 

A comprehensive analysis of the ~90 TDMT fault parameters 
belonging to the GF fault is presented in Fig. 5. Here, within the two 
nodal planes of the focal mechanisms we have selected the west-dipping 
ones, as the earthquake fault, because they are coherent with the Gor
zano fault plane geometry. Rake values (Fig. 5a) show the predominance 
of extensional kinematics in agreement with the tectonic regime of the 
whole area (Chiaraluce et al., 2017). The strike values (Fig. 5b) show a 

prevalent NW-SE orientation parallel to the axis of the Apennines chain. 
The dip values (Fig. 5c) highlight a significant variability indicating a 
clear variation of fault geometry. In Fig. 5d we plot dip angles versus 
depth only for extensional focal mechanisms to highlight the dip vari
ability potentially related to the main fault geometry of GF. Normal fault 
solutions have dip angles ranging between (20◦-70◦). Low-angle dips are 
distributed between 7 and 11 km of depth, while high angles are be
tween 2 and 7 km (Fig. 5d). This pattern is consistent with the listric and 
kinked geometry of the Gorzano fault, highlighted also from seismicity 
and nodal planes distribution (Figs. 3, 4 and S4). 

4.2. Slip-tendency results 

To obtain the regional stress field, we have inverted the 16 events 
with M > 4.9 located in the whole area affected by the AQ and AVN 
sequences in the period 2009–2017 (Table S5). 

Fig. 4. Zooms of main structures from cross-sections 3, 5 and 8 of Fig. 3.  
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The selection of M > 4.9 implies seismic ruptures larger than some 
kilometers and therefore not significantly affected by possible local 
variations in the stress field. The inversion defines values of the stress 
shape ratio φ and orientation of the principal stress axes σ1, σ2, and σ3 
(see Fig. 6a and Table 1). 

The φ = 0.58 obtained in our analysis is consistent with previous 
works conducted in this area like Boncio et al., 2004b) for the 

1992–1994-1996 Campotosto sequences; Chiaraluce et al., 2003) for the 
1997 Colfiorito sequence (subvertical σ1, σ2 subhorizontal and oriented 
along the strike of the fault system (NW-SE) and a subhorizontal σ3 
trending NE-SW, resulting in φ = 0.6.) and (Ferrarini et al., 2015) for the 
2009 L’Aquila sequence (Table 1). From φ we can generate the 
normalized slip-tendency NTs stereo-plot (Fig. 6b and details in Morris 
et al., 1996 and Collettini and Trippetta, 2007). To test if our TDMT 

Fig. 5. Results from TDMT solutions belonging to the GF: (a) histogram with rake values; (b) rose diagram with strike values; (c) histogram with dip values; (d) depth 
versus dip only for normal fault solutions (~120 solutions over 134); the size of dots is related to the magnitude. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 6. (a) Principal stress axes plotted into the focal sphere from inversion of events with M > 5.0 between 2009 and 2017. (b) Normalized Slip tendency stereoplot 
and poles of TDMT solutions (red dots). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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solutions are controlled by fault reactivation theory within the regional 
stress field, obtained from the largest active structures of the area with 
several km of length, we plot the poles of these solutions on the same 
stereoplot (red dots in Fig. 6b). From Fig. 6b, it is clear that most of the 
TDMT solutions are well oriented within the regional stress field (poles 
representing planes prone to fault reactivation are located in the white 
areas): 80% of the nodal planes show a 0.7 < NTs < 1, 16% a 0.4 < NTs <

0.7 and only 4% have NTs < 0.4. 

5. Discussion 

The Gorzano fault, GF, is a large and active normal fault within the 
seismically active area of the Apennines that was only partially 

reactivated during the last two seismic sequences AQ 2009 and AVN 
2016–2017. In the following we firstly reconstruct a mechanical model 
to discuss the GF slip behavior, and then we expand the discussion on the 
possible style of reactivation of the GF. 

The mechanical model (Fig. 7) is reconstructed integrating surface 
and subsurface geology (Porreca et al., 2018; Barchi et al., 2021) and 
laboratory friction experiments (Scuderi et al., 2013; Carpenter et al., 
2014; Scuderi et al., 2020; Pozzi et al., 2022). Surface geology and 
seismic reflection profiles show that the first ~2 km of the fault are 
contained within the Laga (Late Miocene) formation. The predominance 
of clay minerals within this formation promotes a velocity strengthening 
(VS) frictional behavior (Ikari et al., 2009; Scuderi and Collettini, 2018). 
This means that earthquake nucleation on this shallow fault portion is 
extremely unlikely (Marone, 1998; Scholz, 2019) and rupture propa
gation at first approximation tends to be inhibited (Kaneko et al., 2010). 
In the depth-range of 2–9 km, Mesozoic-Paleogene carbonates and 
Triassic Evaporites are present (Barchi et al., 2021). Laboratory friction 
experiments on these fault rocks indicate that strain localization along 
the fault favors a velocity weakening (VW) frictional behavior (Scuderi 
et al., 2013; Carpenter et al., 2014; Scuderi et al., 2020; Pozzi et al., 
2022). A velocity weakening behavior means that earthquake nucle
ation on these lithologies is possible. At depth > 9 km seismic reflection 

Table 1 
Principal stress axes and shape ratio for 16 events with M > 4.9 and comparison 
with similar analyses.   

σ1 σ2 σ3 φ 

M > 5.0 2009–2017 (This study) 245/85 147/0.5 57/04 0.58 
Ferrarini et al., 2015 292/85 139/04 48/02 0.56 
Boncio et al., 2004b 184/85 344/05 74/02 0.57  

Fig. 7. Seismic and slip distribution within ±1.5 km on Gorzano fault plane, with 50◦ of dip and 152◦ of strike, through four-time windows (details are in the 
legend). For the AVN catalog only events with magnitude Mw > 0.5 are considered. Stratigraphic column from Volpe et al., 2022. 
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profiles (Barchi et al., 2021) indicate the presence of the acoustic 
basement. For the SE portion of the fault, seismic profiles are not 
available and therefore the characterization of fault rocks at these 
depths is not well constrained. The acoustic basement is rich in phyl
losilicates and laboratory studies on fault rocks analogues of the Apen
ninic basement, define a velocity strengthening behavior pointing to 
stable sliding and fault creep (Volpe et al., 2022, 2023). To summarize 
and present all the collected information and dataset in a comprehensive 
picture of the GF we integrate (Fig. 7): 

1) the events of the AQ (green dots) and AVN (shades of blue) se
quences located within +/− 1.5 km from the Gorzano fault plane 
(orthogonal distance), with 50◦ of dip and 152◦ of strike, as constrained 
from the focal mechanism of the M 5.5 mainshock of January 2017. 

2) the coseismic slip for the major earthquakes occurring along the 
fault, that are: the cumulative coseismic and postseismic slip of M > 5.0 
events nucleating during the 2009 AQ sequence (Cheloni et al., 2014); 
the southern slip patch of the Amatrice Mw 6.0, 24 August 2016 
mainshock (Tinti et al., 2016); and the cumulative coseismic slip of two 
M > 5.4 events occurred on 18 January 2017 (Cheloni et al., 2019). 

3) the inferred frictional properties and slip behavior for the GF at 
different depths (indicated in Fig. 7 with VS and VW). Details in the 
average frictional properties for the rocks composing the seismogenic 
layer are reported in Fig. 7 next the stratigraphic column. 

The different panels in Fig. 7 show the seismicity and slip distribu
tion on the fault plane through four-time windows indicated in the 
legend. The SE portion of the GF started to be reactivated during the AQ 
2009 sequence (Fig. 7a). The homogeneously distributed seismicity in 
the depth range 7.5–12.5 km represents the reactivation of this portion 
of the GF well-imaged in cross-sections 6–8 of Fig. 3. The deeper clus
tering of the seismicity at 12–15 km along dip (that corresponds to 9–12 
km of depth) in the SE termination of the fault highlights the gently 
dipping lower portion of the GF (cf. also cross-section 8 of Figs. 3 and 4). 
The cumulative slip of the three M > 5.0 events of the 2009 AQ sequence 
is located up-dip from the mainshocks and shows a limited aftershock 
activity in the dislocated area and adjacent areas at shallow depths. On 
the contrary some clusters of seismicity occur around the slipped area at 
larger depths. During the 2016 AVN the NW termination of the GF, 
started to be reactivated with the Amatrice mainshock. The earthquake 
released a first main slip patch (equivalent Mw 5.8), with up to 1 m of co- 
seismic slip, up-dip from the hypocenter (Fig. 7a) and then propagated 
northwards onto the southern portion of the Vettore fault releasing a 
second extended slip patch (not shown here) equivalent to Mw 5.95 
(Tinti et al., 2016). In the slip patch hosted within the GF, we observe 
again the absence of aftershock activity around the slipped area. Most of 
the early aftershocks of Amatrice occurs at 8–12 km along dip (equiv
alent to a depth range of ~6–10 km, see also Fig. 3 cross-sections 1–2) 
where the GF likely merge at depth into a distributed horizontal seis
micity interpreted as an extensional detachment (Waldhauser et al., 
2021) or distributed deformation within the Triassic Evaporites (Col
lettini et al., 2022). At shallower crustal levels (Fig. 7a at coordinates 
− 4-7 km along dip and centered at − 5 km along strike), where the 
Amatrice slipped area ends, an intense and aligned aftershock activity 
highlights a portion of the GF and a small antithetic fault (cf. cross- 
section 4 in Fig. 3). In the month following the Norcia Mw 6.5 main
shock (Fig. 7b), we observe that the seismicity persists in the fault 
portions activated by the Amatrice aftershocks and a limited aftershock 
activity occurs within the Amatrice slip patch. During December 2016, 
aftershock activity still occurs in the fault portions reactivated by 
Amatrice and Norcia, but we also observe that seismicity is now 
concentrating along a portion of the GF (Fig. 7c center at coordinates − 9 
km along dip and − 4–0 km along strike) not previously illuminated by 
seismic activity. This seismicity connects the GF fault areas activated 
during the AQ and the first 4 months of the AVN sequence. At the SE 
termination of this activated fault portion, on 18 January 2017 two of 
the four M > 5.0 events that affected this area during the AVN sequence, 
nucleate (Fig. 7d). Here again we observe that the cumulative coseismic 

slip of the two mainshocks is concentrated up-dip of the hypocenters and 
that aftershocks occurrence is mostly concentrated around the perimeter 
of the slipped area. Co-seismic slip shows an extremely consistent pic
ture of the dislocation occurred along the main GF structure, with slip 
distributed from the mainshocks, up-dip until the fault mapped at the 
surface (see also cross-section 5 in Fig. 3). These data strongly support 
the seismic activity of the mapped GF (e.g., Galadini and Galli, 2003; 
Boncio et al., 2004a; Lavecchia et al., 2012; Falcucci et al., 2018; 
Waldhauser et al., 2021) and contradicts the interpretation that the 
shallow portion of the GF is cut and passively transported by a regional 
thrust belonging to the previously developed Pliocene compressional 
phase (Buttinelli et al., 2021). 

At first approximation the integration of seismological data with 
inferred frictional properties of the GF depicts a coherent picture of a 
fault that is partially reactivated during the AQ 2009 and AVN 2016 
seismic sequences (Fig. 7d). Starting from the AQ sequence, this partial 
reactivation occurs in a way that allows reactivation only along fault 
portions that did not experience previous coseismic fault slip or after
shock occurrence. Most of the seismicity occurs at depth of 2–9 km and 
nucleates within the Carbonates and Triassic Evaporites where the 
frictional velocity weakening behavior of the fault rocks well explains 
earthquake nucleation. The velocity strengthening behavior of the: a) 
clay rich lithologies of the Laga formation at shallow, 1–2 km, crustal 
levels and 2) the phyllosilicates of the basement at depth > 9–10 km in 
the NW portion of the fault, further support aftershock confinement in 
the depth-range of 2–9 km. Most of the co-seismic slip is contained 
within the 2–9 km depth range, with some propagation of the co-seismic 
slip at shallow crustal levels where velocity strengthening fault rocks are 
likely present. An explanation for this can be related to possible dynamic 
weakening processes occurring within fault rocks characterized by a 
velocity strengthening behavior (e.g., Faulkner et al., 2011; Noda and 
Lapusta, 2013), or to the presence of more competent quartz-rich do
mains within the Laga formation (Centamore and Terra, 1992) or simply 
to a gradual rupture arrest on the velocity strengthening region (Tinti 
et al., 2005). 

Is the partial reactivation of separated and different fault portions the 
only style of rupture behavior for the GF? In this second part of the 
discussion, we are going to merge observations from different case 
studies with our dataset to address the above question. Examples of 
seismic ruptures that jumped from one segment to another, in geometric 
and kinematic boundary conditions more unfavorable in comparison to 
the GF, are becoming more and more documented in the literature. Two 
earthquakes with Mw = 8.4 and Mw = 7.9, occurred in the Sumatra 
megathrust in 2007 within a 12-h interval, ruptured only a fraction of 
the 1833 event area (Mw = 9.0) indicating that the same fault can 
rupture in different ways, depending on whether asperities dislocate as 
isolated or cooperate to produce a larger rupture (Konca et al., 2008). 
On February 6, 2023, a Mw = 7.8 earthquake struck south-central 
Turkey, and was followed by a Mw 6.7 aftershock (~ 11 min later) 
and a Mw 7.5 (~ 9 h later) which struck 95 km to the north on a distinct 
fault, probably triggered by stress transfer (Dal Zilio and Ampuero, 
2023). For the Mw = 7.8, 2016 Kaikoura earthquake in New Zealand, 
geodetic and field observations suggest earthquake rupture along at 
least 12 major faults belonging to two distinct tectonic domains (strike 
and reverse slip respectively), with step-over of 15–20 km (Hamling 
et al., 2017). In central Italy the 1997–1998 Colfiorito seismic sequence 
is characterized by 3 major ruptures (5.6 < M < 6.0) that are limited by 
inherited compressional structures (Collettini et al., 2005) whereas for 
the 2016–2017 seismic sequence the same inherited compressional 
structures acted as sites for stress concentrations, where the major 
ruptures easily passed through (Pizzi et al., 2017; Scognamiglio et al., 
2018). For the GF, our geometrical and mechanical reconstruction de
fines a large single structure with some geometrical (change in fault dip 
with depth) and frictional (see the model of Fig. 7) heterogeneities. The 
kinematics analysis depicts the GF as an optimally oriented fault within 
the regional stress field and Slip Tendency indicates that small GF 
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portions, or associated structures, are well oriented for frictional reac
tivation. All together these data support a possible complete reactivation 
of the fault, capable of a M 6.5–6.6 earthquake, as documented in 
paleoseismological data (Galadini and Galli, 2003). This is also consis
tent with the above reported observations indicating that seismic rup
tures in the same area may differ significantly and rupture jumps can be 
very efficient and sometimes difficult to predict. We suggest that the 
partial reactivation of the fault observed in the time 2009–2017 can be 
related to the documented geometrical and frictional heterogeneities 
together with a stress level approaching that of failure in different time 
periods (Tinti et al., 2021). However, due to the geometric and kine
matic similarities of the different fault portions, under more favorable 
stress conditions the entire fault reactivation of the fault cannot be 
excluded. 

6. Conclusion 

Thanks to the integration of a new TDMT catalog with seismicity 
catalogs and slip distribution models from previous works (Waldhauser 
et al., 2021; Valoroso et al., 2013; Tinti et al., 2016; Cheloni et al., 2019; 
Cheloni et al., 2014), it was possible to characterize the geometry and 
kinematic of the Gorzano fault, that hosted several M > 5.0 earthquakes 
during the last two major sequences of Central Italy. The studied 134 
TDMT solutions suggest that these events occurred on a SW-dipping 
normal fault, characterized by a fault structure with a planar geome
try and dipping at about 50◦ in the north portion. Moving southward, 
the fault has a listric geometry, decreasing its dip with depth and 
reaching a dip of about 20◦ at ~8 km. Synthetic and antithetic structures 
are widespread and in some portions the base of the GF merges into a 
zone of distributed seismicity at 8–10 km. 

To discuss the possible slip behavior of the GF, we have developed a 
mechanical model integrating seismological data with inferred frictional 
properties of the seismogenic layer. The GF is an optimally oriented fault 
within the regional stress field and Slip Tendency analysis shows that 
small GF portions are well oriented for frictional reactivation. From 
2009 to 2017, the reactivation, via aftershock or mainshock slip, of 
complementary fault portions of the entire GF indicates that the fault 
behaves as a single fault structure. Between 2 and 9 km of depth the rate 
weakening behavior of the carbonates of the Apennines well explain 
mainshock nucleation and abundant aftershock occurrence along adja
cent fault segments. Geometrical, different fault dips, and frictional 
heterogeneities can be at the base of the GF slip behavior observed in the 
last 30 years, that is reactivation of different fault portions with 5.0 < M 
< 6.0. However, the entire structure is well oriented within the regional 
stress field and for extremely favorable initial stress conditions, a seismic 
rupture reactivating the fault for its entire length cannot be excluded. 
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