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Latent Communication in Artificial Neural Networks

by Luca MOSCHELLA

As NNs (Neural Networks) permeate various scientific and industrial domains, un-
derstanding the universality and reusability of their representations becomes crucial.
At their core, these networks create intermediate neural representations, indicated as
latent spaces, of the input data and subsequently leverage them to perform specific
downstream tasks. This dissertation focuses on the universality and reusability of neural
representations. Do the latent representations crafted by a NN remain exclusive to a
particular trained instance, or can they generalize across models, adapting to factors
such as randomness during training, model architecture, or even data domain? This
adaptive quality introduces the notion of Latent Communication – a phenomenon that
describes when representations can be unified or reused across neural spaces.

A salient observation from our research is the emergence of similarities in latent
representations, even when these originate from distinct or seemingly unrelated NNs.
By exploiting a partial correspondence between the two data distributions that es-
tablishes a semantic link, we found that these representations can either be projected
into a universal representation (Moschella*, Maiorca*, et al., 2023), coined as Relative
Representation, or be directly translated from one space to another (Maiorca* et al.,
2023). Intriguingly, this holds even when the transformation relating the spaces is un-
known (Cannistraci, Moschella, Fumero, et al., 2024) and when the semantic bridge
between them is minimal (Cannistraci, Moschella, Maiorca, et al., 2023). Latent
Communication allows for a bridge between independently trained NN, irrespective
of their training regimen, architecture, or the data modality they were trained on –
as long as the data semantic content stays the same (e.g., images and their captions).
This holds true for both generation, classification and retrieval downstream tasks;
in supervised, weakly supervised, and unsupervised settings; and spans various
data modalities including images, text, audio, and graphs – showcasing the univer-
sality of the Latent Communication phenomenon. From a practical standpoint, our
research offers the potential to repurpose and reuse models, circumventing the need
for resource-intensive retraining; enables the transfer of knowledge across them; and
allows for downstream performance evaluation directly in the latent space.

Indeed, several works leveraged the insights from our Latent Communication
research (Kiefer and Buckley, 2024; Z. Wu, Y. Wu, and Mou, 2024; Jian et al., 2023;
Norelli, Fumero, et al., 2023; G. Wang et al., 2023). For example, relative representa-
tions have been instrumental in attaining state-of-the-art results in Weakly Supervised
Vision-and-Language Pretraining (C. Chen et al., 2023). Reflecting its significance,
(Moschella*, Maiorca*, et al., 2023) has been presented orally at ICLR 2023 and Latent
Communication has been a central theme in the UniReps: Unifying Representations
in Neural Models Workshop at NeurIPS 2023, co-organized by our team.
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and Dr. Vojtěch Micka for the fantastic experiences and valuable time spent during
my internships at NVIDIA and NNAISENSE. I extend my sincere gratitude to the
external reviewers, Prof. Nina Miolane and Prof. Marco Baroni, whose insightful
remarks and suggestions have greatly improved this work.

My sincere thanks to all the other people with whom I had the honor to collaborate.
The work we have accomplished together and the moments we have shared have
been incredibly rewarding: Andrea Santilli, Cosimo Fiorini, Emanuele Frascaroli,
Filippo Maggioli, Giambattista Parascandolo, Giorgio Mariani, Giovanni Trappolini,
Leonidas Guibas, Luca Cosmo, Maks Ovsjanikov, Marco Ciccone, Matteo Boschini,
Michele Bevilaqua, Nishkrit Desai, Or Litany, Or Perel, Pietro Barbiero, Pietro Liò,
Riccardo Benaglia, Riccardo Marin, Roberto Dessì, Simone Antonelli, Simone Calder-
ara, Simone Melzi, and Steve Azzolin. Moreover, I am thankful for the wonderful
time and the enriching experiences shared with all the people at Sapienza, ISTA,
NNAISENSE, and NVIDIA.

I am grateful to all the other colleagues from the GLADIA group at Sapienza
and the Causal Learning and Artificial Intelligence group at ISTA for the stimulating
discussions and the time spent together: Adrian R. Minut, Arianna Rampini, Berker
Demirel, Daniele Baieri, Dingling Yao, Emilian Postolache, Irene Tallini, Lorenzo
Basile, Marco Pegoraro, Michele Mancusi, Riccardo Cadei, and Silvio Severino.

My appreciation also extends to all the other people with whom I had stimulating
discussions that have enriched and helped me along my journey: Alessandro Ra-
ganato, Alex Bronstein, Andrea Dittadi, Ari Morcos, Bogdan Gaza, Christos Tsirigotis,
Clémentine Dominé, Emanuele Marconato, Emanuele Rossi, Even Oldridge, Fabrizio
Frasca, Federico Scozzafava, Filip Szatkowski, Francesco Visin, Giovanni Zappella,
Jonathan Masci, Luigi Gresele, Mateusz Pyla, Matthew Leavitt, Michael Bronstein,
Patrik Reizinger, Pau Rodríguez López, Simone Azeglio, Simone Scardapane, Stefan
Bejgu, Valentina Zantedeschi, Xavier Suau, and Zorah Lähner.

Finally, I want to thank everyone who shared their insights and encouragement
with me, whether we worked together directly or simply had inspiring conversations.
Your contributions have been truly valuable.





vii

Contents

Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

Glossary xv

List of Symbols xix

Authored Publications 1
Latent Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Other Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I Introduction 3

1 Introduction to Latent Communication 5
1.1 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 9
2.1 Representation similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Representation similarity measures . . . . . . . . . . . . . . . . . . . . . 10
2.3 Manifold alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Model stitching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Relative information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Invariance and Equivariance in Representations . . . . . . . . . . . . . 11
2.7 Theoretical Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . 12

II Latent Communication 13

3 Problem Formalization 15
3.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Corollary problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Zero-Shot Stitching . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Latent Model Evaluation . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



viii

4 Universal Representations 21
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Relative Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Latent Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Latent distance as a performance proxy . . . . . . . . . . . . . . 26
4.3.3 Training with Absolute vs. Relative representations . . . . . . . 27

4.4 Zero-Shot Model Stitching . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.1 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.2 Text Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.3 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Direct Translation 31
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Latent Space Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Latent Communication via Translation . . . . . . . . . . . . . . . . . . . 33
5.3.1 Cross-Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.2 Cross-Modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.3 Autoencoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

III Overcoming Limitations in Latent Communication 41

6 Current limitations 43

7 Unknown Latent Transformation 45
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 Infusing invariances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2.2 Aggregation functions. . . . . . . . . . . . . . . . . . . . . . . . . 48

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3.1 Latent space analysis . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3.2 Zero-Shot Stitching . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3.3 Subspace selection . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Limited Semantic Correspondence 53
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

IV Applying Latent Communication 57

9 Case Studies 59
9.1 ASIF: Coupled Data Turns Unimodal Models to Multimodal Without

Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.2 From Charts to Atlas: Merging Latent Spaces into One . . . . . . . . . 61
9.3 Zero-Shot Stitching in Reinforcement Learning . . . . . . . . . . . . . . 63



ix

V Conclusions 65

10 Conclusions 67

11 Contributions to the field 69
11.1 UniReps Workshop: Unifying Representations in Neural Models . . . 69
11.2 Works by other researchers . . . . . . . . . . . . . . . . . . . . . . . . . . 69

12 Limitations and Future Directions 71

VI Appendices 75

A Universal Representations 77
A.1 Anchors analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2 Dataset Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.3.1 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.3.2 Relative representation space correlations . . . . . . . . . . . . . 79
A.3.3 Latent distance as a performance proxy . . . . . . . . . . . . . . 80
A.3.4 Training with Absolute vs. Relative Representations . . . . . . . 80
A.3.5 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 80
A.3.6 Text Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.3.7 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.4 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B Direct Translation 89
B.1 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.1.1 Scale invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
B.1.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 97





xi

List of Figures

1.1 Latent spaces learned by distinct trainings of the same AE . . . . . . . 5

3.1 The Latent Communication Problem. . . . . . . . . . . . . . . . . . . . . 16

4.1 Latent spaces learned by distinct trainings of an high-dimensional AE 21
4.2 Relative Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Graph node classification task on Cora . . . . . . . . . . . . . . . . . . . 26
4.4 Zero-Shot Stitching Reconstruction examples . . . . . . . . . . . . . . . 28

5.1 Zero-shot stitching between absolute spaces . . . . . . . . . . . . . . . . 31
5.2 Direct translation illustration on a synthetic example. . . . . . . . . . . 32
5.3 Performance comparison of affine, linear, l-ortho, and ortho . . . . 34
5.4 Scale distribution in encodings of different pre-trained encoders . . . . 36
5.5 Performance comparison between different encoders and data modalities 37
5.6 Translation reconstruction examples grouped by dataset . . . . . . . . 38

7.1 CKA similarity of pretrained models on Fashion MNIST . . . . . . . . . 46
7.2 Latent Spaces Cross-Architecture Similarity . . . . . . . . . . . . . . . . 49
7.3 Comparison of attention weights before and after fine-tuning . . . . . 51

9.1 ASIF aligns latent spaces of frozen pre-trained encoders . . . . . . . . . 60
9.2 Relative Latent Space Aggregation description . . . . . . . . . . . . . . 61
9.3 Environment variations in Car Racing . . . . . . . . . . . . . . . . . . . 63

A.1 Accuracy vs Number of anchors . . . . . . . . . . . . . . . . . . . . . . 78
A.2 Self similiarities correlations between each space . . . . . . . . . . . . . 80
A.3 Correlations between performance and latent similarity . . . . . . . . . 82
A.4 Alternative visualization of Table 4.1 with t-SNE . . . . . . . . . . . . . 82
A.5 CIFAR-10 embeddings similarity across different models . . . . . . . . 88

B.1 Cross-domain stitching on CIFAR-10 and grayscale CIFAR-10 . . . . . . 89
B.2 Performance comparison of affine, linear, l-ortho and ortho . . . . 90
B.3 Performance comparison between different encoders and data modalities 90
B.4 Translation reconstruction examples grouped by dataset. . . . . . . . . 91
B.5 Additional reconstruction examples grouped by dataset . . . . . . . . . 91
B.6 Scale invariance of RoBERTa . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.7 Performance comparison of three MLPs . . . . . . . . . . . . . . . . . . 94





xiii

List of Tables

4.1 Similarity across word embeddings in absolute and relative spaces . . 26
4.2 Performance comparison between relative and absolute representations 27
4.3 Zero-Shot Stitching performance . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Cross-lingual Zero-Shot Stitching performance comparison . . . . . . . 29
4.5 Cross-architecture Zero-Shot Stitching performance comparison . . . . 29
4.6 Zero-Shot Stitching performance with different encoding techniques . 30

5.1 Cross-architecture stitching with various T̂ and standard scaling . . . 35
5.2 Cross-architecture stitching with various T̂ and l2 normalization . . . 35
5.3 Zero-shot stitching for generation with various T̂ . . . . . . . . . . . . 39

7.1 Invariances summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Graph and Text Stitching Performance . . . . . . . . . . . . . . . . . . . 49
7.3 Image Stitching Performance Cross-Architecture and Cross-Seed . . . 50
7.4 Stitching Index Across Architectures and Seeds on Cora . . . . . . . . . 50
7.5 Classification accuracy with pretrained stitched models . . . . . . . . . 52

8.1 Qualitative and quantitative comparisons optimizing the Word2Vec space 54
8.2 Evaluation of the AO method in the vision domain . . . . . . . . . . . . 55
8.3 Cross-lingual Zero-Shot Stitching performance evaluation . . . . . . . 55

9.1 Zero shot classification accuracy of different multimodal designs . . . 60
9.2 Relative Latent Space Aggregation classification accuracy comparison 62
9.3 Episode maximum return comparing in stitching . . . . . . . . . . . . . 63

A.1 Additional results with different anchor selection strategies . . . . . . . 83
A.2 Generalization of Section 4.3.1 to a different data modality . . . . . . . 84
A.3 All the datasets utilized in Chapter 4 with their number of classes. . . . 84
A.4 Hyperparameter grid search performed in Section 4.3.2 . . . . . . . . . 85
A.5 The pretrained transformers used for the Cross-lingual setting . . . . . 85
A.6 The pretrained transformers used for the Cross-architecture setting . . . 85
A.7 WikiMatrix analysis further details . . . . . . . . . . . . . . . . . . . . . 85
A.8 Timm transformers used in Section 4.4.3. . . . . . . . . . . . . . . . . . . 86
A.9 Further results on Zero-Shot Stitching on Amazon Reviews coarse-grained 86
A.10 Further results on Zero-Shot Stitching on Amazon Reviews fine-grained 86
A.11 Zero-shot stitching performance comparison with XLM-R multilingual 87
A.12 Further results on Zero-Shot Stitching on CIFAR-100 fine-grained . . . 87

B.1 Zero-shot stitching for generation. . . . . . . . . . . . . . . . . . . . . . 91
B.2 Cross-architecture stitching with various T̂ and standard sacling . . . 92
B.3 Cross-architecture stitching with various T̂ and L2 normalization . . . 92
B.4 HuggingFace models used as encoders (feature extractors) . . . . . . . 95
B.5 Cross-architecture stitching for reconstruction tasks. . . . . . . . . . . . 96





xv

Glossary

AE AutoEncoder 5, 6, 21, 28, 38, 39, 80

AG News The AG News dataset (X. Zhang, Zhao, and LeCun, 2015), a collection
of news articles for use in Natural Language Processing tasks such as text
classification and sentiment analysis. 35, 92

ALBERT (albert-base-v2) The ALBERT model (Lan et al., 2020) with a base version
2 configuration, a lighter and more efficient version of BERT, designed to re-
duce model size while maintaining performance. Available pre-trained on
HuggingFace 35, 37, 49, 90, 95

Amazon Reviews The Amazon Reviews dataset (Keung et al., 2020), a large col-
lection of customer reviews, useful for sentiment analysis and other forms of
Natural Language Processing. xiii, 29, 30, 55, 81, 84, 86, 87

AO Anchor Optimization xiii, 53–55

AT Affine Transformation 47

BERT-C (bert-base-cased) The BERT model (Devlin et al., 2019) with a base configu-
ration and cased vocabulary, a breakthrough in the field of Natural Language
Processing. Available pre-trained on HuggingFace. 29, 35, 37, 85, 90, 95

BERT-U (bert-base-uncased) The BERT model (Devlin et al., 2019) with a base con-
figuration and uncased vocabulary, providing a foundational architecture for
developing advanced Natural Language Processing systems. Available pre-
trained on HuggingFace 29, 35, 37, 85, 90, 95

CCA Canonical Correlation Analysis 10

CIFAR-100 The CIFAR-100 dataset (Krizhevsky, 2009), similar to CIFAR-10 but with
100 classes, providing a more challenging task for image classification models.
xiii, 22, 27, 28, 30, 34, 35, 38, 39, 48, 50–52, 77, 78, 81, 84, 87, 90–93, 96

CIFAR-10 The CIFAR-10 dataset (Krizhevsky, 2009), composed of 60,000 32x32 color
images in 10 classes, with 6,000 images per class. xi, 26–28, 35, 36, 38, 39, 48, 50,
55, 84, 88, 89, 91, 92, 96

CiteSeer The CiteSeer dataset (Giles, Bollacker, and Lawrence, 1998), an academic lit-
erature digital library and search engine that focuses primarily on the literature
in computer and information science. 27, 84

CKA Centered Kernel Alignment 10, 48, 49

CLIP (openai/clip-vit-base-patch32) The CLIP model (Radford et al., 2021) with a
ViT-base and patch32 configuration, a state-of-the-art model for connecting
visual and textual data, facilitating robust image-text understanding. Available
pre-trained on HuggingFace 35, 50, 95



xvi

CNN Convolutional Neural Network 7, 9, 11, 22, 38, 63, 80

Cora The Cora dataset (Sen et al., 2008), a collection of scientific publications cat-
egorized into different classes, used for document classification and citation
prediction. xi, xiii, 26, 27, 49, 50, 77, 78, 84

Cos. Cosine 47

DarkNet (cspdarknet53) The CSPDarkNet53 architecture, represents a significant
advancement in the field of computer vision, offering a robust backbone for
object detection models. Available pre-trained on HuggingFace 37, 90, 95

CV Computer Vision 35, 67

DBpedia The DBpedia dataset (Auer et al., 2007), derived from Wikipedia, provides
a structured form of Wikipedia’s content for various knowledge extraction and
semantic search tasks. 29, 35, 48, 49, 84, 92

ELECTRA (google/electra-base-discriminator) The ELECTRA model (K. Clark et
al., 2020) with a base discriminator configuration, introducing a novel pre-
training methodology for language representations that is both efficient and
effective. Available pre-trained on HuggingFace 29, 35, 37, 85, 90, 95

Eucl. Euclidean 47

FastText The FastText word embeddings, a powerful model designed for text rep-
resentation and classification (Bojanowski et al., 2017). 10, 25, 26, 54, 80, 82,
83

F-MNIST (Fashion MNIST) The Fashion MNIST dataset (Xiao, Rasul, and Vollgraf,
2017), designed as a more complex alternative to the original MNIST, contains
grayscale images of various fashion products. xi, 27, 28, 35, 38, 39, 46, 48, 50, 84,
91, 92, 96

GNN Graph Neural Network 22, 49, 50

ICA Independent Component Analysis 12

IMA Independent Mechanism Analysis 12

ImageNet1k The ImageNet1k dataset (J. Deng et al., 2009), a large-scale dataset
designed for use in visual object recognition software research. 22, 30, 84

IMDB The IMDB dataset (Maas et al., 2011), a set of movie reviews for binary
sentiment classification, widely used in Natural Language Processing research.
35, 92

IS Isotropic Scaling 47

LCP (Latent Communication Problem) The Latent Communication Problem or La-
tent Space Communication Problem is a novel formalization of a problem
arising in machine learning, specifically within the context of neural networks.
The problem focuses on unifying semantically related manifolds embedded in
different data spaces. xi, 7–9, 15, 16, 18, 19, 21, 22, 24, 31, 32, 43, 45, 46, 48, 51, 53,
59, 67, 71–73

LLM Large Language Model 7



xvii

LT Linear Transformation 47

MAE Mean Absolute Error 29, 55, 86, 87

MLP Multi-Layer Perceptron xi, 35, 37, 48, 51, 52, 89, 90, 92–94

MNIST The MNIST dataset (L. Deng, 2012), a classic collection of handwritten digits
widely used for training image processing systems. 5, 6, 21, 27, 28, 35, 38, 39, 48,
50, 84, 91, 92, 96

N24News The N24News dataset (Z. Wang et al., 2022), a collection of news articles
with associated images. 35–37, 48, 90

NLP Natural Language Processing 6, 10, 35, 37, 54, 67

NN Neural Network iii, 5–7, 9–12, 15, 16, 18, 22, 24, 32, 39, 45, 49, 59, 71–73, 90, 91, 93

OT Orthogonal Transformation 47

PCA Principal Component Analysis 22

PT Permutation 47

PubMed The PubMed dataset (Sen et al., 2008), comprising abstracts from biomedi-
cal literature, serves as a resource for tasks like biomedical entity recognition
and relation extraction. 27, 84

PWCCA Projection Weighted Canonical Correlation Analysis 10

QKV Query, Key, Value 51, 52

RR Relative Representation iii, xi, 7, 8, 22–32, 36, 43, 45–47, 50, 59, 61, 63, 72

RexNet (rexnet_100) The RexNet model (D. Han et al., 2020) with 100 layers, exem-
plifies the advances in neural network architecture for efficient and effective
image processing. Available pre-trained on HuggingFace 30, 35, 37, 51, 52, 86,
87, 90, 95

RL Reinforcement Learning 59, 63, 67

RLSA Relative Latent Space Aggregation xi, xiii, 61, 62

RoBERTa (roberta-base) The RoBERTa model (Liu et al., 2019) with a base configu-
ration, an optimized version of BERT that improves language understanding
by carefully tuning hyperparameters and training with more data. Available
pre-trained on HuggingFace xi, 29, 35, 37, 85, 90, 93, 95

RSA Representational Similarity Analysis 10

SVCCA Singular Value Canonical Correlation Analysis 10

SVD Singular Value Decomposition 10

SVM (Support Vector Machine) A Support Vector Machine (SVM) is a supervised
learning model used for classification and regression tasks. It effectively creates
a hyperplane or set of hyperplanes in a high-dimensional space, which can be
used for classification, regression, or other tasks like outliers detection. 35, 37,
89, 94



xviii

TR Translation 47

TREC The TREC dataset (X. Li and Roth, 2002; Hovy et al., 2001), designed for
research in text retrieval and information extraction, includes a wide range of
question types. 29, 35, 48, 84, 92

VAE Variational AutoEncoder 9, 28, 80

ViT-B/16 (vit_base_patch16_224) The ViT model (Dosovitskiy et al., 2021) with a
base configuration, patch size 16, and image size 224, introduces a novel ap-
proach to image classification, leveraging transformer architecture for visual
tasks. Available pre-trained on HuggingFace 30, 35, 37, 50–52, 55, 79, 84, 86–88,
90, 95

ViT-B/16L (vit_base_patch16_384) The ViT model (Dosovitskiy et al., 2021) with
a base configuration, patch size 16, and image size 384, introduces a novel
approach to image classification, leveraging transformer architecture for visual
tasks. Available pre-trained on HuggingFace 35, 37, 90, 95

RViT-B/16 (vit_base_resnet50_384) The ViT model (Dosovitskiy et al., 2021) with
a base configuration, the ResNet50 backbone, and image size 384, combines
the strengths of convolutional neural networks and transformer models for
superior image analysis capabilities. Available pre-trained on HuggingFace 30,
35, 37, 50, 86, 87, 90, 95

ViT-S/16 (vit_small_patch16_224) The ViT model (Dosovitskiy et al., 2021) with a
small configuration, patch size 16, and image size 224, introduces a novel
approach to image classification, leveraging transformer architecture for visual
tasks. Available pre-trained on HuggingFace 30, 35, 37, 55, 79, 84, 86–88, 90, 95

Word2Vec The Word2Vec word embeddings, renowned for transforming words
into high-dimensional vector spaces, facilitating semantic analysis (Mikolov,
K. Chen, et al., 2013). xiii, 25, 26, 54, 80, 82, 83

WVLP Weakly Supervised Vision-and-Language Pretraining iii, 8, 69, 70

XLM-R (xlm-roberta-base) The XLM-RoBERTa model (Conneau et al., 2020) with a
base configuration, extends the RoBERTa architecture to support multilingual
language processing, enabling improved cross-lingual performance. Available
pre-trained on HuggingFace 35, 37, 90, 95



xix

List of Symbols

A Represents a subset of the training data X or Y, denoted as anchor samples. xix,
xx, 17, 23, 24, 31–34, 43, 47, 53–55, 61, 77

a Denotes a particular anchor point within A. 23, 53
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Chapter 1

Introduction to Latent
Communication

The intrinsic meaning of data often resides in complex, lower-dimensional struc-
tures, we define as “abstract manifolds”. These manifolds, grounded in the Mani-
fold Hypothesis (Fefferman, Mitter, and Narayanan, 2016), represent the compact,
underlying essence of high-dimensional data. Indeed, both human and machine
capabilities are limited to observing representations of meaning that manifest within
high-dimensional spaces. These representations serve as proxies for deeper, underly-
ing conceptual entities, which are not directly observable. To illustrate this concept,
consider the entity “cat”. It does not reside within our immediate perceptual field
but within an abstract manifold of meaning. The “cat” discerned and interpreted is
not the conceptual entity per se, but its representation within a higher-dimensional
space, such as images or textual descriptions of cats. Furthermore, it is crucial to
recognize that different spaces may exhibit varying degrees of expressive power,
potentially leading to differences in the underlying abstract manifold. Nonetheless,
abstract manifolds that denote the same conceptual entities bear semantic connections
and are intrinsically similar. When we examine these related manifolds embedded
into high-dimensional spaces, we directly observe a correspondence between these
representations – for instance, between the textual descriptions of cats and their visual
images. This alignment, in essence, establishes a connection between the manifold
meanings, bridging the abstract conception of “cat” as described in textual captions
with its visual representation in images.

Train 1 Train 2 Train 3 Train 4

FIGURE 1.1: Latent spaces learned by distinct trainings of the same AE
on MNIST. The bottleneck has size 2; thus, there is no dimensionality
reduction in the latent space visualizations. The stochasticity in the

training phase induces intrinsically similar representations.

NNs play a central role in this context, learning to transform high-dimensional
data (e.g., images) into meaningful representations that are helpful for solving down-
stream tasks. Typically, these representations are seen as elements of a vector space,
denoted as latent space, which corresponds to the constrained output (explicitly or
implicitly) of a key component of the NN, e.g., the bottleneck in an AE (AutoEncoder),
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or the word embedding space in NLP (Natural Language Processing) tasks. The
foundational assumption is that learned latent spaces should encode the essential
data characteristics and its abstract meaning required for task resolution. Thus, they
should be an optimal encoding given the data distribution, the downstream task, and
the network constraints.

In practice, however, learned latent spaces may vary, even when the initial assump-
tions are held constant. This phenomenon is illustrated in Figure 1.1, demonstrating
the variation in latent spaces generated by training multiple times, from scratch, an
AE with a two-dimensional bottleneck on the MNIST dataset. Perhaps unsurprisingly,
these spaces differ from one another, breaking the fundamental assumptions made
above. Indeed, the distribution of the latent embeddings is affected by various fac-
tors, such as the random initialization of the network weights, the data shuffling,
hyperparameters, and other stochastic processes in the training phase. Although
the resulting models may perform equally well on the task, this situation introduces
several practical challenges. For example, it is notoriously challenging to compare
latent spaces across different trainings or across different NNs; perhaps more impor-
tantly, re-using neural components trained on different embeddings of the same data
becomes impossible, since they are incompatible.

Interestingly, although different, the learned representations in Figure 1.1 exhibit
intrinsic similarities: the distances between the embedded representations are approxi-
mately the same across all spaces, even if their absolute coordinates differ. Indeed,
in this case, the learned latent spaces are the same up to a nearly isometric transfor-
mation.1 This symmetry arises from two main causes: (i) the existence of a semantic
correspondence between their associated abstract manifolds, which are exactly the
same in this instance since the same data and task is being considered; and (ii) the
implicit biases underlying the optimization process, as noted by (Soudry et al., 2018),
which compel the model to generalize. Consequently, this generalization ensures that
similar samples – with respect to the task – are represented similarly. Discovering
such symmetries and conserved quantities is a core step for extracting meaningful
representations from raw data in biological and artificial systems (Higgins, Racanière,
and Rezende, 2022; Benton et al., 2020; Lyle et al., 2020). Moreover, note that these
emerging transformations, which relate intrinsically similar spaces, are limited to
the embedded manifolds; thus, we cannot expect the same relationship between the
entire ambient spaces, e.g., when considering out of distribution samples. This is a
crucial point, as it implies that only a subset of the latent spaces is similar and easily
alignable.

Leveraging this key observation, this dissertation investigates the universality
and reusability of these representations. Do the latent representations crafted by a
NN remain exclusive to a particular trained instance, or can they generalize across
models, adapting to factors such as randomness during training, model architecture,
or even data domain? This adaptive quality forms the basis of our exploration into
Latent Communication – a novel paradigm that enables the unification or reuse of
representations across disparate neural spaces, formally defined in Chapter 3. We
investigate two principal strategies to harness this phenomenon, exploiting the partial
semantic correspondence between the two spaces:

Universal Representation projects the latent spaces into a universal representation
where the embedded manifolds are extrinsically equal. In practice, this univer-
sal space must be independent of the specific training regimen, architecture,

1To the best of our knowledge, the first to acknowledge this behavior was (Olah, 2015) in a blog
post.
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data modality, and other stochastic factors; encoding only the intrinsic informa-
tion underlying the data. We show an example of universal representation in
Chapter 4, denoted as RR (Relative Representation) adopting a local coordinate
system defined by the data itself.

Direct Translation translates directly between two specific latent spaces, explicitly
approximating an ambient space transformation that induces an alignment
between the manifolds embedded within them. We show an example of direct
translation in Chapter 5, assuming the transformation relating the spaces is at
most affine.

Through these strategies, we facilitate effective communication between latent spaces
of different NNs, bridging the divide between various domains, models, architectures,
and modalities.

From a practical standpoint, our research paves the way for model repurposing
and reuse, eliminating the need for resource-intensive retraining and fostering a
more sustainable AI development cycle; enables the transfer of knowledge across
them, and allows for performance evaluation directly in the latent space. This holds
true for generation, classification, and retrieval downstream tasks; in supervised,
weakly supervised, and unsupervised settings; and spans various data modalities
including images, text, audio, and graphs – showcasing the universality of the Latent
Communication phenomenon. For example, it becomes feasible to classify images
with a text classifier, or vice versa (Section 5.3.2).

This research makes multiple contributions to the field, summarized as follows:

• We empirically demonstrate that while representations learned by NNs can
change due to various influencing factors, often the transformation that re-
lates them is simple (e.g., the angles between latent embeddings often remain
consistent).

• We introduce the novel concept of Latent Communication and formalize the
LCP (Latent Communication Problem) (Chapter 3), providing a paradigm for
understanding and leveraging the inherent connections between independently
trained NNs; irrespective of their training regimen, architecture, or the data
modality they were trained on – as long as the data semantic content stays the
same (e.g., images and their captions).

• For the first time, we successfully showcase Zero-Shot Stitching (Section 3.3.1) of
neural components produced by distinct training regimens, e.g., due to different
seeds, neural architectures or data domains;

• Provide a quantitative latent measure of performance while training neural
models, which is differentiable, does not need any labeled data, and is correlated
with standard downstream performance measures such as accuracy.

• With an extensive set of experiments, we validate the performance of the pro-
posed methods in multiple settings, tasks (classification, generation, retrieval),
architectures (e.g., Transformers, CNNs (Convolutional Neural Networks)), and
modalities (e.g., images, text, graphs, audio); showing that is possible to achieve
Latent Communication across different architectural and modality changes.

Indeed, several works leveraged the insights from our Latent Communication
research, and in particular the concept of Relative Representations. For example,
they have proven fundamental in enabling continuous prompt transfers in LLMs
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(Large Language Models) (Z. Wu, Y. Wu, and Mou, 2024); zero-shot image captioning
without requiring any multimodal model training (Norelli, Fumero, et al., 2023);
understanding shared speech-text representations (G. Wang et al., 2023); analyzing
cognitive graphs (Kiefer and Buckley, 2024) and in the stitching of reinforcement
learning agents in novel environments (Jian et al., 2023; Ricciardi et al., 2023); thus
achieving zero-shot policy reuse. Our approach has also been instrumental in attain-
ing state-of-the-art results in Weakly Supervised Vision-and-Language Pretraining
(C. Chen et al., 2023). Reflecting its significance, (Moschella*, Maiorca*, et al., 2023)
has been presented orally at ICLR 2023 and Latent Communication has been a central
theme in the UniReps: Unifying Representations in Neural Models Workshop at
NeurIPS 2023, co-organized by our team.

1.1 Structure of the Thesis

In this dissertation, we present a novel unified perspective on the LCP (Latent Com-
munication Problem) research, reinterpreting several of our recent works (Cannistraci,
Moschella, Fumero, et al., 2024; Cannistraci, Moschella, Maiorca, et al., 2023; Crisos-
tomi, Cannistraci, et al., 2023; Maiorca* et al., 2023; Moschella*, Maiorca*, et al., 2023;
Norelli, Fumero, et al., 2023; Ricciardi et al., 2023). For the first time, we provide a
formalization of the LCP (Latent Communication Problem) in Chapter 3.

Subsequently, in Chapters 4 and 5, we present two distinct methodologies to solve
the LCP. The first method, discussed in Chapter 4, revolves around the concept of
RR, which seeks to unify latent spaces into a universal space. The second approach,
outlined in Chapter 5, focuses on establishing direct mappings between source and
target spaces.

In Chapter 6 we discuss the limitations of the current approaches to solve the
LCP, and in Chapters 7 and 8 we present two methods to overcome these limitations.
In Chapter 7, we introduce a novel approach to tackle the LCP without any specific
assumption on the transformation class relating the latent spaces. Meanwhile, in
Chapter 8 we delineate a methodology to expand a small semantic correspondence
between two latent spaces into a larger one, enabling the solution of the LCP even
when it was not possible before.

To further illustrate the practical implications of LCP, we present three case studies
in Sections 9.1 to 9.3. In Section 9.1 we show how to perform zero-shot captioning
employing only unimodal models; in Section 9.2 we show how to merge distinct
latent spaces; and in Section 9.3 we show how solving LCP enables zero-shot policy
reuse in reinforcement learning.

The dissertation concludes in Chapter 10 with a summary of the key findings. In
Chapter 11, we outline our main contributions to the field and discuss how other
researchers have utilized our work. Finally, Chapter 12 presents potential avenues
for future research.
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Chapter 2

Related Work

2.1 Representation similarity

Recent years have witnessed a growing consensus among researchers in the deep
learning community that “good” NNs tend to learn similar representations for se-
mantically similar data, regardless of the architecture, training procedure, or domain
in which they are applied.

This idea is supported by a plethora of empirical studies. For example, Morcos,
Raghu, and S. Bengio, 2018 demonstrates that networks that generalize converge
to more similar representations than networks that memorize; Y. Li et al., 2016
shows that some features are learned reliably in multiple networks; Kornblith et al.,
2019 verifies that wider networks learn more similar representations; Bonheme and
Grzes, 2022 shows that the VAE (Variational AutoEncoder) encoders representations
in all but the mean and variance layers are similar across hyperparameters and
learning objectives; Tsitsulin et al., 2020 develops an intrinsic method to characterize
unaligned data manifolds of different dimensionality; Lenc and Vedaldi, 2015 shows
the shallow representations in the first layers of CNNs are interchangeable across
different networks; Lample et al., 2018 shows it is possible to build a bilingual
dictionary by aligning monolingual word embeddings spaces in an unsupervised way;
Rakotonirina et al., 2023 shows that automatically generated prompts can be learned
on a language model and used to retrieve information from another; and many others
(Barannikov et al., 2022; Chang, Tu, and Bergen, 2022; Antonello et al., 2021; Vulić,
Ruder, and Søgaard, 2020; Movshovitz-Attias et al., 2017; Y. Bengio, Courville, and
Vincent, 2014; Mikolov, Le, and Sutskever, 2013), recognizing that the phenomenon is
particularly pronounced for large and wide models (Mehta et al., 2022; Somepalli et al.,
2022). Furthermore, similar observations have been made in the context of biological
models (Acosta et al., 2023; Raizada and Connolly, 2012; Kriegeskorte, Mur, and
P. Bandettini, 2008; Laakso and Cottrell, 2000) and between artificial and biological
representations (Sucholutsky and Griffiths, 2023; Sucholutsky, Muttenthaler, et al.,
2023), suggesting foundational principles on information representation.

Although this is still not unanimously recognized (L. Wang et al., 2018) and
missing strong theoretical justifications (Section 2.7), our framework is supported
by the empirical evidence widely reported in these works. The LCP assumes that
well-performing NNs trained on similar tasks and data produce intrinsically similar
latent spaces, as formalized in Chapter 3, which allows us to unify them.
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2.2 Representation similarity measures

Several metrics have been proposed to compare latent spaces generated by indepen-
dent NNs (Klabunde et al., 2023), capturing their inherent similarity up to transfor-
mations that correlate the spaces. A classical statistical method is CCA (Canonical
Correlation Analysis) (Hotelling, 1992), which is invariant to linear transformations.
While variations of CCA seek to improve robustness through techniques like SVD
(Singular Value Decomposition) and SVCCA (Singular Value Canonical Correlation
Analysis) (Raghu et al., 2017) or to reduce sensitivity to perturbations using meth-
ods such as PWCCA (Projection Weighted Canonical Correlation Analysis) (Morcos,
Raghu, and S. Bengio, 2018). Closely related to these metrics, the CKA (Centered
Kernel Alignment) metric (Kornblith et al., 2019) measures the similarity between
latent spaces while disregarding orthogonal transformations. However, recent re-
search (Davari et al., 2022) demonstrates its sensitivity to transformations that shift a
subset of data points in the representation space. Furthermore, highly relevant in the
biological domain, RSA (Representational Similarity Analysis) is a method (Nili et al.,
2014; Kriegeskorte, Mur, and P. A. Bandettini, 2008) used to compare and analyze
the similarity of neural representations across different conditions, stimuli, or brain
regions by correlating their respective similarity matrices.

2.3 Manifold alignment

Procrustes analysis has been instrumental in the alignment of latent spaces in deep
NNs (C. Wang and Mahadevan, 2009; C. Wang and Mahadevan, 2008), particularly in
NLP, where it is well-known that latent spaces of different languages are isomorphic
(Vulić, Ruder, and Søgaard, 2020) and can be effectively aligned (Xing et al., 2015;
Mikolov, Le, and Sutskever, 2013). Rooted in shape analysis, this method efficiently
uncovers correspondences between latent spaces of different models through the
estimation of an optimal orthogonal transformation (Gower, 1975). Previous works
largely exploit Procrustes analysis to align latent spaces produced by the same ar-
chitecture in different contexts (Csiszárik et al., 2021), such as multilingual FastText
embeddings (Bojanowski et al., 2017; Smith et al., 2017). Procrustes analysis is termed
“manifold alignment” because it aligns sets of keypoints that represent samples from
lower-dimensional manifolds in a higher-dimensional space, thus aligning the intrin-
sic geometric structures of these manifolds.

Our research shares the common objective of aligning latent spaces, leveraging
this alignment to enable or improve performance on various downstream tasks. For
example, in Chapter 5 we broaden the scope of Procrustes analysis, applying it to
Zero-Shot Stitching across disparate latent space dimensionalities, architectures, and
data modalities.

2.4 Model stitching

Building on the observation of emergent intrinsic similarities between latent spaces,
model stitching – combining different NNs to create a new model – has become
an active research topic in the field of representation learning. For example, Lenc
and Vedaldi, 2015 introduces trainable stitching layers that allow swapping parts of
different networks; Csiszárik et al., 2021 demonstrates that the inner representations
emerging in deep convolutional NNs with the same architecture, but different ini-
tializations can be matched with a surprisingly high degree of accuracy even with
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a single, affine trainable stitching layer; while (Bansal, Nakkiran, and Barak, 2021;
Csiszárik et al., 2021) employ stitching to quantitatively verify statements such as
“good networks learn similar representations” and “more data, width, or time is
better”. Other works, such as (Yaman et al., 2022; Biondi et al., 2021; Gygli, Uijlings,
and Ferrari, 2021; Bianchi et al., 2020), try to directly produce compatible and reusable
network components without stitching layers. In general, stitching has been mostly
adopted in the literature to analyze NNs and verify statements regarding latent
space similarity. An exception is (Lähner and Moeller, 2023) that, concurrently to the
work presented in Chapter 5, targets the direct alignment of representational spaces,
focusing on the compatibility of models trained end-to-end.

In our framework, we (i) sidestep the need for trainable stitching layers and
propose for the first time Zero-Shot Model Stitching (Section 3.3.1); and (ii) propose to
employ stitching to effectively reuse neural components, enabling many practical ap-
plications, some of which presented in Chapters 4, 5 and 7 to 9 and sections 9.1 to 9.3.

2.5 Relative information

Recognizing the importance of the relationships between data points, several methods
have been proposed to exploit the relative information in the data. For example, the
attention mechanism (Vaswani et al., 2017) and its variants (Kossen et al., 2021) exploit
the relationship between features to extract meaningful representations; (Snell, Swer-
sky, and Zemel, 2017) learn a metric space where the classification can be performed
by measuring the distances with respect to prototype representations; You, Ying,
and Leskovec, 2019 introduces Position-aware Graph Neural Networks (P-GNNs) to
exploit position-aware node embeddings, Shalam and Korman, 2022 suggested the
Self Optimal Transport feature transform to enrich the sample representations with
higher order relations between the instance features, while Alvarez-Melis, Jegelka,
and Jaakkola, 2019 suggested a general formulation of the optimal transport that
accounts for global invariances in the underlying feature spaces.

Mathematically, the method presented in Chapter 4 bears resemblance to a kernel
method (Hofmann, Schölkopf, and Smola, 2008); employing similarities of embedded
features as a core ingredient. However, differently from kernel methods, we do
not introduce learnable parameters and, crucially, we compute the representations
explicitly without resorting to a kernel trick.

2.6 Invariance and Equivariance in Representations

Invariances in NN models can be enforced through various techniques operating at
different levels, including adjustments to model architecture, training constraints, or
input manipulation (Lyle et al., 2020). For example, (Benton et al., 2020) proposes
a method to learn invariances and equivariances introducing augmentations in the
training process; (Immer et al., 2022) introduces a gradient-based approach that
effectively captures inherent invariances in the data. Meanwhile, (Ouderaa and
Wilk, 2022) enables training of NNs with invariance to specific transformations by
learning weight-space equivalents instead of modifying the input data. Other works
directly incorporate invariances into the model through specific constraints, e.g., (Rath
and Condurache, 2023) enforces a multi-stream architecture to exhibit invariance to
various symmetry transformations without relying on data-driven learning; (Kandi
et al., 2019) suggests an improved CNN architecture for better rotation invariance;
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and (Gandikota et al., 2021) introduces a method for designing network architectures
that are invariant or equivariant to structured transformations.

In contrast, the methodology presented in Chapter 4 proposes an alternative
representation of the latent space that guarantees invariance to angle preserving
transformation of the latent space itself, without requiring additional training but only
a subset of the data. Building on this, Chapter 7 presents a method that directly
incorporates a set of invariances into the learned latent space, creating a product space
of invariant components which, combined, can capture complex transformations
between the latent spaces.

2.7 Theoretical Understanding

While the empirical findings discussed throughout this manuscript provide substan-
tial evidence for the similarity of representations in NNs, an exhaustive theoretical
foundation is essential for fully understanding and leveraging these phenomena.
Recent theoretical advancements have begun to shed light on the mechanisms behind
the emerging representation similarity, offering a more solid ground for the empirical
observations and methodologies employed in representation learning.

One direction of theoretical progress is the study of harmonics in NNs weights
(Marchetti and Hillar, 2023), providing a mathematical framework for understanding
the universality of neural representations. Furthermore, the intrinsic similarity of
latent spaces, a core assumption of our framework, finds theoretical support in the
field of linear identifiability within deep neural models, particularly in the context
of nonlinear ICA (Independent Component Analysis) (Roeder, Metz, and Kingma,
2021; Khemakhem et al., 2020; Hyvarinen, Sasaki, and Turner, 2019; Hyvarinen and
Morioka, 2016) and IMA (Independent Mechanism Analysis) (Ghosh et al., 2023;
Sliwa et al., 2022; Gresele et al., 2021). This body of work suggests that, despite the
complexity and non-linearity of deep learning models, their learned representations
may converge towards similar structures when they capture the same underlying
generative factors of data.
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Part II

Latent Communication
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Chapter 3

Problem Formalization

As discussed in Chapter 1, in machine learning and specifically within the context
of NNs, our observational capabilities are confined to the high-dimensional rep-
resentations of underlying conceptual entities. Consider the notion of a “cat”, a
conceptual entity that resides within an abstract manifold of meaning. What we
perceive and process are not these abstract entities themselves, but their embedding
within a higher-dimensional space – namely, images of cats. When we have semantic
correspondences between two distinct data spaces, we are effectively observing an
alignment between these high-dimensional spaces, e.g., between captions and images,
and indirectly, the correspondence between the caption’s meaning and the image’s
meaning. The crux of our exploration is anchored in the fact that two semantically
related manifolds are similar (but not necessarily isomorphic, since different spaces
may have different expressive power) and easily alignable, even by transformations
that operate on the entire ambient spaces in which they are embedded.

In the following sections, we formalize the LCP (Latent Communication Problem),
an illustration of which is shown in Figure 3.1.

3.1 Framework

Data notation. We denote input data spaces as X and Y, containing data points
x and y respectively. We indicate with MX and MY their underlying abstract data
manifolds, that contains data points denoted as x and y. Similarly, the symbols used
to denote the latent spaces and the associated latent abstract manifolds are x̃ ∈ X̃,
ỹ ∈ Ỹ and x̃ ∈ M̃X, ỹ ∈ M̃Y, respectively. We use S to indicate a generic space, e.g.,
the input space or the latent space of NNs.

Manifold embedding. We consider data semantics to reside on unknown and unob-
servable low-dimensional abstract manifolds, denoted as M, which are embedded1

through the operation φS into observable high-dimensional spaces, denoted as S:

φS : M ↪→ S, (3.1)

where φ maps data points from the manifold M to the ambient space S. The notation
φS(M) indicates the entirety of the manifold embedding within S. Although multiple
mappings φ can embed M into a generic high-dimensional space, for a specific con-
figuration of S where the embedding is already established (e.g., a dataset of images
or a latent space), the mapping φS that realizes M within S is unique. The manifold
embedding φS(M) is precisely what the Manifold Hypothesis (Fefferman, Mitter,
and Narayanan, 2016) refers to, suggesting that high-dimensional data observed in S

1In the mathematical sense.
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FIGURE 3.1: The LCP (Latent Communication Problem). The unob-
servable manifolds MX and MY are embedded into the input spaces
X and Y through φX and φY. We can observe the semantic relationship
between these manifolds, denoted as C, through a partial correspon-
dence π defined between the input spaces. The encoding functions
EX and EY map the input spaces to the respective latent spaces X̃ and
Ỹ, modifying the embedded manifolds and inducing a correlation
between them through some transformation T ∈ T. The objective is to
discover two specific transformations, TX and TY, that allow the latent
spaces X̃ and Ỹ to be mapped into universal spaces UX and UY. In the
universal space U, the latent manifolds embeddings must coincide:

TX(φX̃(M̃X)) = TY(φỸ(M̃Y)) ⊆ U.

actually lies on or near this embedded lower-dimensional manifold, capturing the
intrinsic geometry and essential characteristics of the data.

Semantic correspondence. Given two data manifolds MX and MY, they are se-
mantically related if there exists a partial correspondence

C ⊆ MX ×MY (3.2)

between the two manifolds, such that ∀(x, y) ∈ C, x and y are related by the
same semantic relationship. The correspondence C is an abstract relation between
the manifolds, and it is not directly observable. However, we can observe a partial
correspondence π derived from C and represented in the associated ambient spaces
X and Y:

π ⊆ {(φX(xi), φY(yi)) | (xi, yi) ∈ C}. (3.3)

One example of such correspondence π involves images paired with one or more
captions that describe them. Meanwhile, in C, the corresponding elements associate
their abstract meanings.

Latent Spaces. We consider NNs as parametric functions Nθ compositions of en-
coding and decoding functions, Nθ = Dθ2 ◦ Eθ1 , where the encoder Eθ1 is responsible
for computing a latent representation x̃ = Eθ1(x), x ∈ X for some domain X. This
encoding function transforms the manifold embedded in the input space φX(MX)

into a latent manifold embedding φX̃(M̃X), implicitly associated to some manifold
M̃X. This latent representation is then exploited to solve downstream tasks, such as
classification, reconstruction or generation, optimizing over some objective function.
In the following, we will drop the dependence of parameters θ for notational conve-
nience when not required, and indicate with X̃ the latent space associated to X. We
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will use the terms latent representation and absolute representation interchangeably, to
refer to the output of the encoder. Moreover, for each module E (equivalently for D),
we indicate with EX if the module E was trained on the domain X.

Downstream task. We consider the decoder D to be responsible for solving a generic
downstream task T at hand (e.g., classification, generation, etc.). We indicate with LT

D
how well the decoder D is performing on the task T, i.e., the loss. Furthermore, we
assume that the loss is computed on a test split, and the D is trained on a training
split of the data.

Most importantly, we indicate with LT(S) the lowest possible loss achievable by
any decoder D trained from scratch on S to solve T:

LT(S) = min
D∈D

LT
D(S), (3.4)

where D is the set of all possible decoders.

3.2 Problem Statement

3.2.1 Assumptions.

Semantic Correspondence. We assume that the data manifolds MX and MY are
related by a semantic correspondence C, partially observable through π. Moreover,
we assume such correspondence is partially provided as parallel anchors AXY ⊆ π.

Good Encoders. Throughout our work, we assume that the encoders EX and EY
are good. Formally, we can express this assumption as follows:

LT(X) = LT(X̃) and LT(Y) = LT(Ỹ), (3.5)

that is, the task T can be solved with the same performance on the input spaces X
and Y, as well as on the respective latent spaces X̃ and Ỹ.

In practice, this means that good encoders map data into the latent space without
losing information useful for the task T (e.g., pre-trained universal feature extractors).

Emerging Similarities. As previously discussed, we argue that the learned latent
spaces are not only a function of the data, the specific loss and the task; but in practice
they are also affected by the optimization process used to train the network due
to weight initialization, data shuffling, hyperparameters, data domain and other
stochastic or non-semantic factors. We denote these factors collectively by ϕ.

In particular, as shown in Figures 1.1 and 4.1 and widely observed in the literature
(Section 2.1), changing these factors induces some transformation T over the latent
manifold embedding:

ϕ → ϕ′ implies Eθ(φ(x)) → T Eθ(φ(x)), ∀x ∈ M, (3.6)

where φ is the embedding operation described in Section 3.1. We assume that these
transformations fall into some unknown class of transformation T ∈ T (e.g., orthogo-
nal transformations), when the variation factors are restricted to elements of ϕ.
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3.2.2 Problem.

We are given the input spaces X and Y, their associated abstract manifolds MX
and MY in semantic correspondence C ⊆ MX ×MY observable through π, and
embedded in X and Y through the embedding functions φX and φY; and, two NNs
NX = DX ◦ EX, NY = DY ◦ EY trained on X and Y, respectively, to solve the task T.

Our objective is to unify the latent manifolds embeddings φX̃(M̃X) and φỸ(M̃Y)

into a universal space U, by finding TX : X̃ → UX and TY : Ỹ → UY:

∀(x, y) ∈ C, TX(EX(φX(x))) = TY(EY(φY(y))) ⊆ U
such that (3.7)

LT(X̃) = LT(UX) and LT(Ỹ) = LT(UY).

Note that, the transformations are constrained to align only the latent manifold
embeddings φX̃(M̃X) and φỸ(M̃Y), not necessarily requiring alignment of the entire
spaces X̃ and Ỹ. In practice, this implies we are trying to find transformations of the
latent ambient spaces that align as best as possible the manifolds embedded in them,
without losing information useful for the task T.

3.3 Corollary problems

Solving the general LCPs allows us to directly address several corollary tasks, which
are of extreme practical interest. In the following sections, we describe how the
LCP enables the reuse of neural components (Section 3.3.1), a downstream perfor-
mance evaluation directly in the latent space (Section 3.3.2), and the development of
advanced retrieval systems (Section 3.3.3).

3.3.1 Zero-Shot Stitching

Solving the LCP defined in Section 3.2 enables zero-shot interoperability of pre-
trained neural components. In previous works, such as Bansal, Nakkiran, and Barak,
2021; Lenc and Vedaldi, 2015, stitching layers are trainable linear projections that allow
comparing the representations of different networks. Instead, our framework unlocks
the possibility of Zero-Shot Stitching different neural components, treating them as
frozen black-box modules.

We define a generic stitched model as the composition of an encoder, that embeds
data, plus an independent decoder specialized in a downstream task (e.g., classifica-
tion, reconstruction):

NXY = DY ◦ EX. (3.8)

The stitching operation is always performed without training or fine-tuning, in a
zero-shot fashion.

In Sections 4.4, 5.3, 7.3.2, 8.3 and 9.3, we show that the latent communication
framework allows us to stitch together independent neural components, demonstrat-
ing empirically that re-using neural components is possible without the necessity for
extensive retraining or fine-tuning.

3.3.2 Latent Model Evaluation

Unifying the latent spaces into universal spaces allows us to compare the latent
spaces across variations of the factors ϕ. Interestingly, in Section 4.3.2 we show
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that solving the LCP implies having a quantitative latent measure of downstream
performance, provided that a reliable reference model is available. This measure does
not require any labeled data and correlates with standard downstream performance
measures. Consequently, we can assess the quality of a model directly, potentially
during training, without the need to solve the downstream task explicitly.

3.3.3 Retrieval

The solution to the LCP facilitates the development of advanced retrieval systems that
leverage independently computed representations. This allows for the retrieval of
data points from one space using queries from another space, without the necessity for
a shared training set, we showcase it in Sections 4.3.1 and 8.3. Finally, we demonstrate
that solving the LCP also enables zero-shot captioning, by retrieving images using
text queries, and vice versa, without any multimodal model training, as we show in
Section 9.1.
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Chapter 4

Universal Representations
Relative representations enable zero-shot latent space communication1

In this Chapter, we tackle the LCP defined in Chapter 3 with the additional
assumption that the latent manifolds embeddings φX̃(M̃X) ⊆ X̃ and
φỸ(M̃Y) ⊆ Ỹ are always approximately related by a transformation
T ∈ T, where T is the class of transformations that preserve angle norms.
Referring to Figure 3.1, we define analytically and independently TX and
TY as parameter-free relative projections, that implicitly unify the latent
manifold embeddings in U.

4.1 Introduction

In Chapter 1, we discussed how the learned latent spaces are subject to changes even
when the factors ϕ remain fixed. We illustrated this phenomenon in Figure 1.1 with a
toy example on a bi-dimensional AE, and formalized the problem of unifying them
in Chapter 3.

FIGURE 4.1: Latent spaces learned by distinct trainings of the same
high-dimensional AE on the MNIST dataset. Each column is the latent
space obtained by the AE with a different seed. On the first row, the
dimensionality reduction is performed through PCAs fitted indepen-
dently on each latent space, meanwhile, on the second row PCA is

fitted on the leftmost latent space and then applied to all of them.

1Luca Moschella*, Valentino Maiorca*, Marco Fumero, Antonio Norelli, Francesco Locatello, and
Emanuele Rodolà (2023). “Relative representations enable zero-shot latent space communication”. In:
The Eleventh International Conference on Learning Representations (ICLR 2023, oral, notable top 5%). URL:
https://openreview.net/forum?id=SrC-nwieGJ

https://openreview.net/forum?id=SrC-nwieGJ
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In Figure 4.1, we further illustrate the phenomenon, exploiting the properties
of PCA (Principal Component Analysis) to demonstrate it also happens on high-
dimensional latent spaces. Indeed, the second row of the figure proves that latent
spaces learned by distinct trainings of the same high-dimensional AE are extrinsically
different; since PCA fitted on one latent space and applied to the others does not
align them (up to rotations and reflections). This extrinsic difference is a significant
challenge in addressing any of the tasks outlined in Section 3.3; for instance, it hinders
any form of reuse or comparison between neural components trained on different
embeddings of the same data, since they are incompatible. Nevertheless, the first row
in Figure 4.1 shows that the high-dimensional latent spaces, although extrinsically
different, are intrinsically similar, as the PCA fitted independently on each latent space
produces similar results.

Motivated by these empirical observations, in this Chapter, we address the LCP
defined in Chapter 3 with an additional assumption that the latent manifolds em-
beddings φX̃(M̃X) ⊆ X̃ and φỸ(M̃Y) ⊆ Ỹ are always approximately related by a
transformation T ∈ T, where T is the class of transformations that preserve angle
norms. To tackle this simplified problem, we suggest adopting a local coordinate
system defined by the data itself. Data points in the latent space becomes a set of
coefficients that encode the point as a function of other data samples, instead of an
independent point in Rd. The proposed RR (Relative Representation) directly encodes
the intrinsic information underlying the data, and with an appropriately chosen
similarity function (e.g., cosine similarity), depends solely on the angles norms be-
tween embeddings by construction; de facto infusing an invariance to angle norm
preserving transformations in the latent space that unifies them.

We show how neural architectures can leverage these RRs to guarantee, in practice,
invariance to latent isometries and local rescalings, enabling a variety of applications
from zero-shot model Section 3.3.1 stitching to latent space comparison Section 3.3.2
between diverse settings. Remarkably, this enables a form of compositionality be-
tween learning models; it allows, for instance, to stitch together an encoder trained on
ImageNet1k with a decoder trained on CIFAR-100, as we showcase in our experiments.
We extensively validate the generalization capability of our approach on different
datasets, spanning various modalities (images, text, graphs), tasks (e.g., classification,
reconstruction) and architectures (e.g., CNNs, GNNs, transformers).

The main contributions can be summarized as follows:

• We show that the representations learned by NNs are subject to change due
to several training factors; nonetheless, the norm of the angles between latent
embeddings are often preserved.

• We introduce a novel relative representation for latent embeddings, that is
invariant by construction to the transformations induced by the factors ϕ.

• For the first time, we successfully demonstrate Zero-Shot Stitching (Section 3.3.1)
of neural components produced by distinct training regimens, e.g., due to
different seeds or different neural architectures; we validate our findings on
different data modalities (e.g., images, text).

• Our framework also provides a quantitative latent measure of performance (Sec-
tion 3.3.2) while training neural models, which is differentiable, does not need
any labeled data, and is correlated with standard downstream performance
measures such as accuracy.
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4.2 Relative Representations

Assumption. In this Chapter, we make the core assumption that T is the class of
transformations that preserve the norm of the angles between elements of the latent
space, namely |∠(x̃i, x̃j)| = |∠(T x̃i, T x̃j)| for every (xi, xj) ∈ X. By “angle norm”,
we mean the absolute value of the angle between two elements, which ensures that
global reflections do not change the sign of the considered similarity. While this
assumption might seem too restrictive, in practice it arises in several real scenarios, as
we show in the following sections. Indeed, in classification tasks, this assumption is
further supported by Figures B.6 and B.7 which show that the embeddings scale does
not affect classification performance. Therefore, only the angle between embeddings
is relevant. Additionally, in Chapter 7, we completely remove this assumption.

Method. To build our representation, we start by selecting a subset A of the training
data X, which we denote as anchors. Every sample in the training distribution will
be represented with respect to the embedded anchors ãj = E(aj) with aj ∈ A. As
a measure capturing the relation between the anchors and the other samples, we
consider a generic similarity function d : Rd × Rd → R, yielding a scalar score
between two absolute representations d(x̃i, x̃j). Given the anchors A in an arbitrary
ordering a1, . . . , a|A|, we define the RR of xi ∈ X as:

rxi = (d(x̃i, ã1), d(x̃i, ã2), . . . , d(x̃i, ã|A|)) , (4.1)

for convenience, we equivalently define the relative projection function Rp:

Rp(x̃; Ã, d) =
⊕
ãi∈Ã

d(x̃, ãi) (4.2)

where
⊕

denotes row-wise concatenation and all embeddings are produced by
the same encoding function E. For notational convenience, we denote the relative
projection of a set of samples X̃ with Rp(X̃; Ã, d), which is defined as the collection
of relative projections of individual samples x̃ ∈ X̃. Figure 4.2 illustrates the key
differences between absolute and RRs.

Choice of the anchors. Anchors directly affect the expressivity of the RR space, and
are related to the task at hand. For example, in a classification task, we should sample
anchors from each class in the training set, in order to well represent each data sample
in X. We refer to Appendix A.1 for an analysis of different anchor selection strategies.

Parallel anchors. One case of interest arises when the data comes from different
domains or modalities X ̸= Y, and we are given a partial correspondence π, as
defined in Section 3.1. In this case, we can obtain parallel anchors2 by sampling
simultaneously from both domains X and Y:

AXY ⊆ π (4.3)

We show an example of parallel anchors in Section 4.4.2, where X and Y are Amazon
reviews in two different languages; illustrate a strategy to automatically expand
this correspondence in Chapter 8; and further explore a multimodal application
in Section 9.1.

2We use the term “parallel” to indicate they represent the same underlying meaning.
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FIGURE 4.2: RR (Relative Representation). (left): a sample x and three
anchor samples a1, a2, a3 are embedded in a latent space and lie on
the underlying embedded data manifold. (right): each dimension is
treated as coefficients in a coordinate system defined by the anchors,
the new representation of x is given by its similarities with respect to
the anchors. Anchors are orthogonal in this example only for visual-

ization purposes.

Out of domain anchors. Surprisingly, the choice of the anchors is not restricted to
elements in the training distribution. Given an encoder pre-trained on a fixed training
distribution, we can pick elements from a set Â that is out-of-domain w.r.t. X, and
build the RRs on top of Â. We refer to these as OOD anchors and exploit them, e.g.,
to solve domain adaptation tasks where we do not have access to a correspondence,
and have scarce data labels. We refer to the Sections 4.4.2 and 4.4.3 for real-world
examples.

Universal Representations. In this work, we choose the cosine similarity as the
similarity function due to the properties it induces on the RR. The cosine similarity
is the dot product of unit vectors, corresponding to the cosine of the angle cos θ
between the two. Importantly, cos θ does not change if we apply the same angle-
norm preserving transformation T to them, i.e., the cosine similarity is invariant
to rotations, reflections, and independent rescaling of each point. While this is
not true for translations, NNs commonly employ normalization techniques (e.g.,
InstanceNorm (Ulyanov, Vedaldi, and Lempitsky, 2016)) to center the latent spaces.
Under this assumption, cosine similarity guarantees RRs invariant also to translations.

This means we have the freedom to change the embedding function E with any
other function E′ that produces different representations with same angles, i.e.:

[d(x̃i, ã1), . . . , d(x̃i, ã|A|)] = [d(T x̃i, T ã1), . . . , d(T x̃i, T ã|A|)] (4.4)

where d is the cosine similarity and T , induced by E′, is an arbitrary angle-norm
preserving transformation.

An implication of this invariance is that we can solve the LCP (defined in Chap-
ter 3), simplified by the assumption that T is the class of angle-norm preserving
transformations. Indeed, we can define TX and TY as independent relative projections
over parallel anchors AXY:

TX(x̃) = Rp(x̃; ÃX, cosine) ∀ x̃ ∈ X̃ (4.5)

TY(ỹ) = Rp(ỹ; ÃY, cosine) ∀ ỹ ∈ Ỹ ,
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these transformations are enough to unify the latent manifold embeddings:

TX(φX̃(M̃X)) = TY(φỸ(M̃Y)) ⊆ U , (4.6)

as we demonstrate empirically in Sections 4.3 and 4.4. Additionally, as we demon-
strate in Section 4.3.3, the original task can be solved in this universal space with a
comparable performance.

We remark that other choices of similarity function can be made to enforce differ-
ent invariances into the representation, refer to Chapter 7 for an extensive exploration
of this aspect.

4.3 Latent Evaluation

In this Section, we demonstrate how RRs can effectively be used to produce latent
spaces that are stable under a variety of factors ϕ as described in Section 3.3.2. To
remark, our main question is the following: Given two different learning models that
are trained independently, can we compare their latent embeddings? We answer in
the positive, showing the gained invariance enables effective communication between
different, but semantically equivalent latent spaces.

In particular, we analyze how different word embedding spaces, once projected
onto RRs, are intrinsically the same (Section 4.3.1); we then show how the similarity
between the relative counterparts of two or more embedding spaces is a surprisingly
good predictor of model downstream performance (Section 4.3.2); finally, we confirm
that RRs in the training phase are not detrimental to performance (Section 4.3.3).

4.3.1 Word Embeddings

Experimental setting. We select two different word embeddings on the English
language, namely FastText and Word2Vec. Both models are pre-trained on different
data, but partly share a vocabulary from which we extract ≈ 20K words. Using 300
randomly drawn parallel anchor, we convert each embedding space to a relative
one. In Table 4.1 (left), we show the original and the relative embeddings. For
each word w, we consider its corresponding encodings x and y in the source and
target space. We apply three different metrics to measure their similarity (in a setting
similar to Vulić, Ruder, and Søgaard, 2020): (i) Jaccard: the discrete Jaccard similarity
between the set of word neighbors of x in source and target; (ii) Mean Reciprocal Rank:
measures the (reciprocal) ranking of w among the top-k neighbors of x in the target
space; (iii) Cosine: measures the cosine similarity between x and y. Additional details
in Appendix A.3.1.

Result analysis. Table 4.1 (left) highlights clusters of semantically similar words and
shows that the absolute representations are incoherent across the two latent spaces,
while the relative embeddings are highly similar. The average Jaccard distance
reported in Table 4.1 (right), says that the word neighborhoods of the RRs are matched
exactly 34% of the time in one direction, and 39% of the time in the other one (the
missing 61% is due to semantic differences, that are not taken into account by the
discrete nature of the Jaccard metric). By contrast, the absolute embeddings are never
matched exactly (Jaccard score equal to zero); for a match to happen, it would mean
that the FastText and Word2Vec embeddings of a given English word are almost the
same, which is highly unlikely. MRR, close to a perfect score for the RRs, shows that



26 Chapter 4. Universal Representations

TABLE 4.1: Qualitative (left) and quantitative (right) comparisons of
English word embeddings using absolute and RRs. PCA is applied
only for visualization. All metrics are calculated with K = 10 averaged
over 20k words and across 10 different random seeds. See Figure A.4
for other dimensionality reductions, refer to Table A.2 and Figure A.5
for the same experiment on CIFAR-10, showcasing this result also

holds on different data modalities.

FastText Word2Vec
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Source Target Jaccard ↑ MRR ↑ Cosine ↑

A
bs

ol
ut

e FT
FT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
W2V 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

W2V
FT 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
W2V 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

R
el

at
iv

e FT
FT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
W2V 0.34 ± 0.01 0.94 ± 0.00 0.86 ± 0.00

W2V
FT 0.39 ± 0.00 0.98 ± 0.00 0.86 ± 0.00
W2V 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

the most-similar word to a given one is usually itself, even if their cosine similarity
doesn’t reach 1.

Overall, these results show that RRs are preserved across different word embed-
ding models, validating our assumptions.

4.3.2 Latent distance as a performance proxy

Experimental setting. In this experiment, we consider a node classification task on
the Cora graph dataset. We first train a reference model that achieves good accuracy
on a validation set. Then, we train ≈ 2000 models with various combinations of
seed, number of epochs, number of layers, dropout probability, activation functions,
optimizer type, learning rate or type of graph embedder (refer to Table A.4 for
further details). All the models are trained using absolute representations, which are
converted to relative post-training by projecting the embeddings onto 300 randomly
drawn but fixed anchors. For each model, we measure its classification accuracy and
compute the similarity of its space with the reference one. This similarity is computed
as the average cosine similarity between the node embeddings produced by a given
model and the corresponding embeddings in the reference one.
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FIGURE 4.3: Graph node classification task on Cora. Left: Correlation
between the performance of ≈ 2000 models and the similarity of their
latent spaces with respect to a well-performing reference model. Right:
The same correlation plotted over time. The mean Pearson correlation
over all models is 0.955, after filtering out the models having the best

validation accuracy below 0.5.
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Result analysis. The scatter plot in Figure 4.3 (left) shows that better-performing
models tend to be the ones with the latent spaces most similar to the reference model.
The performance-similarity correlation also holds over time, as shown in Figure 4.3
(right). Additional correlation examples are in Figure A.3. Interestingly, this metric
is differentiable, enabling an explicit supervision signal on the latent space, which
does not require labeled data and could be readily exploited in a teacher-student
framework.

Overall, these results suggest that the similarity between the RRs of latent spaces
is a remarkably good proxy to evaluate model performance.

4.3.3 Training with Absolute vs. Relative representations

Experimental setting. Finally, we compare architectures that do or do not employ
the RR while training. In these experiments, the models vary slightly according to the
dataset; however, the relative and absolute versions are always comparable in terms
of architecture, number of learnable parameters and hyperparameters. We refer to
Appendix A.3 and the open-source code for further details on their implementation.
In this Section, we consider classification tasks on several datasets, spanning the
image domain (Xiao, Rasul, and Vollgraf, 2017; L. Deng, 2012; Krizhevsky, 2009) and
the graph domain (Yang, Cohen, and Salakhutdinov, 2016).

TABLE 4.2: Performance comparison between relative and absolute
representations on various image and graph datasets. The metric is

the classification weighted F1 score (± std), over 6 seeds.

Image Classification Graph Node Classification

MNIST F-MNIST CIFAR-10 CIFAR-100 Cora CiteSeer PubMed

Relative 97.91 ± 0.07 90.19 ± 0.27 87.70 ± 0.09 66.72 ± 0.35 0.89 ± 0.02 0.77 ± 0.03 0.91 ± 0.01
Absolute 97.95 ± 0.10 90.32 ± 0.21 87.85 ± 0.06 68.88 ± 0.14 0.90 ± 0.01 0.78 ± 0.03 0.91 ± 0.01

Result analysis. The results, reported in Table 4.2, show that RRs, when used at
training time, are not detrimental to performance in general. This is further shown in
Tables 4.3 to 4.6 and A.9 to A.12, where a subset of the results compares the absolute
and RRs on a variety of domains, datasets, and tasks. While the information relevant
to the machine learning task seems to be preserved, an intriguing future research
question is to determine what specific information is lost when infusing specific
invariances to unify the representations.

Overall, these results show that RRs are effective when involved in end-to-end
training, without significant performance drops in the downstream task.

4.4 Zero-Shot Model Stitching

Hereafter, we showcase the Zero-Shot Stitching, as defined in Section 3.3.1, capabilities
of RR across combinations of different stochasticity sources (Figure 4.4 and table 4.3),
neural architectures (Tables 4.4 and 4.5) or datasets (Table 4.6). Finally, we present
strong real-world applications in NLP (Section 4.4.2) and CV (Section 4.4.3), e.g.,
zero-shot predictions on novel languages. Refer to Appendix A.3 for additional
implementation details.
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FIGURE 4.4: Zero-Shot Stitching Reconstruction examples. Each col-
umn is a different image, row pairs are different architectures. In each
pair, we first report the non-stitched reconstructions, then the stitched

ones.

4.4.1 Image Reconstruction

Experimental setting. We perform Zero-Shot Stitching with AEs and VAEs trained
on RRs end-to-end on several datasets. For each combination of model and dataset,
we perform 5 trainings with different seeds, and zero-shot stitch together the resulting
encoders and decoders.

Result analysis. In Figure 4.4, the stitched models that employ absolute represen-
tations (Abs.) produce erroneous predictions, since the latent spaces obtained from
distinct trainings are incompatible. Interestingly, although the absolute VAE does
not produce compatible latent spaces, it is regularized. As a result, the embeddings
produced by the encoders correspond to incorrect but semantically meaningful re-
constructions. Instead, VAE based on RRs (Rel.) exhibit almost indistinguishable
reconstructions between the models trained end-to-end and the stitched ones. Quan-
titative results are in Table 4.3.

These results support our claim that RRs are empirically invariant to the variation
factors ϕ.

TABLE 4.3: Zero-Shot Stitching performance. The MSE (± std) be-
tween the ground truth X and the reconstructions is computed over
5 different seeds. Stitching with our RRs yields an error up to two

orders of magnitude less than the absolute counterpart.

MNIST F-MNIST CIFAR-10 CIFAR-100 MSE ↓

A
E A

bs
. Non-Stitch. 0.66 ± 0.02 1.57 ± 0.03 1.94 ± 0.08 2.13 ± 0.08 1.58 ± 0.05

Stitch. 97.79 ± 2.48 120.54 ± 6.81 86.74 ± 4.37 97.17 ± 3.50 100.56 ± 4.29

R
el

. Non-Stitch. 1.18 ± 0.02 3.59 ± 0.04 2.83 ± 0.13 3.50 ± 0.08 2.78 ± 0.07
Stitch. 2.83 ± 0.20 6.37 ± 0.29 5.39 ± 1.18 18.03 ± 12.46 8.16 ± 3.53

V
A

E A
bs

. Non-Stitch. 1.31 ± 0.04 4.38 ± 0.03 2.68 ± 0.06 3.00 ± 0.03 2.84 ± 0.04
Stitch. 98.51 ± 1.49 118.96 ± 2.96 69.02 ± 1.54 78.57 ± 1.88 91.27 ± 1.97

R
el

. Non-Stitch. 2.97 ± 0.14 6.81 ± 0.06 5.18 ± 0.22 5.93 ± 0.14 5.22 ± 0.14
Stitch. 13.43 ± 6.79 24.03 ± 13.15 11.20 ± 3.15 11.23 ± 2.38 14.97 ± 6.37
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4.4.2 Text Classification

In this Section, we show practical examples of the use of parallel anchors (Section 4.2).

Experimental setting. We consider two different text classification settings.
Cross-lingual: given a review, predict the associated star rating, done on multi-

lingual data from the Amazon Reviews dataset. Following the original paper, we
work on a binarized version of the task, with FScore and MAE as metrics. In Ta-
ble A.10, we report results on the fine-grained formulation. We adopt four different
pre-trained language-specific RoBERTa transformers and evaluate their Zero-Shot
Stitching performance on languages never seen by the classifier. We use parallel
anchors in two modalities: (i) Translated: consider English reviews translated3 into
the other languages; (ii) Wikipedia: adopt an external corpus, WikiMatrix (Schwenk
et al., 2021), providing parallel sentences extracted from Wikipedia.

Cross-architecture: assessed on three different datasets: TREC (coarse), DBpedia,
Amazon Reviews (English split). We adopt two different pre-trained BERT transform-
ers, BERT-C and BERT-U, ELECTRA and RoBERTa.

TABLE 4.4: Cross-lingual Zero-Shot Stitching performance comparison.
The table reports the mean weighted F1 (± std) and MAE on Amazon

Reviews coarse-grained, across 5 different seeds.

Absolute Relative

Translated Wikipedia

Decoder Encoder FScore MAE FScore MAE FScore MAE

en

en 91.54 ± 0.58 0.08 ± 0.01 90.06 ± 0.60 0.10 ± 0.01 90.45 ± 0.52 0.10 ± 0.01
es 43.67 ± 1.09 0.56 ± 0.01 82.78 ± 0.81 0.17 ± 0.01 78.53 ± 0.30 0.21 ± 0.00
fr 54.41 ± 1.61 0.45 ± 0.02 78.49 ± 0.66 0.21 ± 0.01 70.41 ± 0.57 0.29 ± 0.01
ja 48.72 ± 0.90 0.51 ± 0.01 65.72 ± 0.55 0.34 ± 0.01 66.31 ± 0.80 0.34 ± 0.01

TABLE 4.5: Cross-architecture Zero-Shot Stitching performance com-
parison. The table reports the mean weighted F1 (± std) for each

dataset, across 5 different seeds.

TREC DBpedia Amazon Reviews

Coarse Fine

A
bs

. Non-Stitch 91.70 ± 1.39 98.62 ± 0.58 87.81 ± 1.58 55.35 ± 3.19
Stitch 21.49 ± 3.64 6.96 ± 1.46 49.58 ± 2.95 19.01 ± 2.04

R
el

. Non-Stitch 88.08 ± 1.37 97.42 ± 2.05 85.08 ± 1.93 48.92 ± 3.57
Stitch 75.89 ± 5.38 80.47 ± 21.14 72.37 ± 7.32 33.24 ± 7.21

Result analysis. Tables 4.4 and 4.5 show for the first time that it is possible to
learn to solve a downstream task on a specific language or transformer and perform
predictions on another.

Stitching with absolute representations yields performances comparable to ran-
dom guessing across the board, proving that RRs are a key element for the success of
this kind of Zero-Shot Stitching. Moreover, Table 4.4 highlights the robustness that
RRs have on the choice of anchors, even when they are noisy (Translated case), or
their distribution differs from one of the downstream task (Wikipedia case), as long as

3We used the =GOOGLETRANSLATE function available in Google Sheets.
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their encoding can be handled correctly by the encoder. In our case, the encoder is
pre-trained to represent a variety of texts in a specific language, thus, even if Wiki-
Matrix has a completely different domain from Amazon Reviews, the transformer still
computes a meaningful representation, comparable with those of the reviews. We
report in Tables A.9 and A.10 complete results on all languages combination, and in
Table A.11 the performance obtained by a multi-lingual transformer; that, to the best
of our knowledge, is the only alternative for obtaining compatible representations
across languages.

According to these results, RRs show invariance to different architectures and
data distribution shifts (e.g., different train languages).

4.4.3 Image Classification

In this Section, we show practical examples of the use of OOD anchors (Section 4.2).

Experimental setting. We consider a classification task on the datasets ImageNet1k
and CIFAR-100 with coarse labels (20), and 4 different pre-trained image encoders:
three variants of the ViT transformer (ViT-S/16, ViT-B/16 and RViT-B/16) and RexNet.

TABLE 4.6: Zero-Shot Stitching performance comparison with different
encoding techniques. The table reports the mean weighted F1 (± std)

on CIFAR-100 coarse-grained and ImageNet1k, across 5 seeds.

CIFAR-100 ImageNet1k

Decoder Encoder Absolute Relative Absolute Relative

RexNet

RexNet 82.06 ± 0.15 80.22 ± 0.28 73.78 ± 0.29 72.61 ± 0.16
ViT-B/16 - 54.98 ± 0.44 - 37.39 ± 0.36
RViT-B/16 - 53.33 ± 0.37 - 42.36 ± 0.36
ViT-S/16 - 59.82 ± 0.32 - 43.75 ± 0.27

ViT-B/16

RexNet - 76.81 ± 0.49 - 30.78 ± 0.81
ViT-B/16 93.15 ± 0.05 91.94 ± 0.10 80.91 ± 0.29 78.86 ± 0.33
RViT-B/16 6.21 ± 0.33 81.42 ± 0.38 0.07 ± 0.05 44.72 ± 0.57
ViT-S/16 - 84.29 ± 0.86 - 48.31 ± 0.72

RViT-B/16

RexNet - 79.79 ± 0.43 - 53.46 ± 0.68
ViT-B/16 4.69 ± 0.07 84.46 ± 0.19 0.08 ± 0.04 62.21 ± 0.54
RViT-B/16 91.41 ± 0.09 90.77 ± 0.16 82.55 ± 0.30 81.88 ± 0.16
ViT-S/16 - 84.66 ± 0.16 - 61.32 ± 0.36

ViT-S/16

RexNet - 75.35 ± 0.41 - 37.58 ± 0.44
ViT-B/16 - 81.23 ± 0.31 - 50.08 ± 0.63
RViT-B/16 - 78.35 ± 0.69 - 45.45 ± 1.41
ViT-S/16 90.07 ± 0.19 88.85 ± 0.44 77.73 ± 0.41 76.36 ± 0.40

Result analysis. The results in Table 4.6 highlight how the RRs allow stitching
modules with different encoding dimensionality, since the decoder receives a RR
with guaranteed equal size equal to the number of anchors. Furthermore, the results
demonstrate the ability to generalize and perform Zero-Shot Stitching on CIFAR-100,
although that data was never seen by the encoder since it is a frozen transformer
trained on ImageNet1k. Interestingly, RexNet is the only transformer whose latent
dimensionality is higher than the number of anchors, and the biggest drop in stitching
performance happens when the decoder is trained on it. This suggests the number of
anchors is an important hyperparameter; we refer to Figure A.1 for a more in-depth
analysis.

Overall, these results prove that RRs can bridge general purpose encoders and
pre-trained task-specific decoders.
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Chapter 5

Direct Translation
Latent Space Translation via Semantic Alignment1

In this Chapter, we address the LCP as defined in Chapter 3, incorporating
an additional assumption: either TX or TY is the identity function. Refer-
ring to Figure 3.1, this means that we assume the transformation T ∈ T,
that maps the latent manifold embeddings from one space to another,
can be directly approximated by some T̂ . In the following, we show that
good approximations T̂ ≈ T are simpler than previously thought, i.e., at
most affine transformations, and can often be estimated using standard,
well-understood algebraic procedures with closed-form solutions.

5.1 Introduction

X̃ Ỹ

U

DX DY

DU

T̂

Rp(X̃; ÃX , d) Rp(Ỹ; ÃY, d)

Absolute

Relative

FIGURE 5.1: Zero-shot stitching between absolute spaces utilizing
RRs and the method presented in this Chapter (the estimation of
T̂ ≈ T ). The proposed approach does not require a decoder DU
specifically trained on RRs. Instead, we directly translate latent spaces,
enabling the use of arbitrarily pre-trained decoders originally trained

on absolute spaces, i.e., DX and DY.

One of the key findings from Chapter 4 is the empirical evidence demonstrating
that the signal encoded in the angle norms, with respect to a reduced set of data points
A, suffices to represent the latent manifold φX̃(M̃X) embedded within the latent
space. This representation is accurate enough to allow downstream performance
comparable to using absolute embeddings, in the specific tasks considered.

1Valentino Maiorca*, Luca Moschella*, Antonio Norelli, Marco Fumero, Francesco Locatello, and
Emanuele Rodolà (2023). “Latent Space Translation via Semantic Alignment”. In: Thirty-seventh
Conference on Neural Information Processing Systems. URL: https://openreview.net/forum?id=
pBa70rGHlr

https://openreview.net/forum?id=pBa70rGHlr
https://openreview.net/forum?id=pBa70rGHlr
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Source X̃ Target Ỹ

︸︷︷︸ Normalization ︸︷︷︸ Denormalization

Centering Scaling T̂ ≈ T De-Scaling De-Centering

≈

FIGURE 5.2: Method illustration on a synthetic example. Given a
source space X̃, the steps to translate it to a target Ỹ are sequentially
applied as described in Section 5.2. Note that the translation is not

perfect due to an arbitrary distortion of the data.

Building on this intuition of the existence of a relatively simple transformation
relating the latent manifolds, we show the effectiveness and applications of directly
translating between different latent spaces. Specifically, we show that it is feasible to
directly approximate a transformation T with some T̂ , given that a partial (and
possibly sparse) correspondence between data points AXY ⊆ π is established. Unex-
pectedly, the process of seamlessly combining different NNs – each pre-trained on
different datasets, modalities, architectures, or domains – turns out to be surprisingly
straightforward.

For instance, we show how it enables the ability to effectively integrate any pre-
trained text encoder with any image classification head, and vice versa; without
requiring any additional re-training or assumptions, e.g., without assuming the
decoders are trained on RRs as in Chapter 4. The method difference is emphasized in
Figure 5.1, Zero-Shot Stitching (Section 3.3.1) with RRs assumes the use of a single
decoder specifically trained on a relative space; meanwhile, the method presented in
this Chapter allows to zero-shot stitch and reuse decoders originally trained on the
absolute spaces.

Our main contributions can be summarized as follows:

• We explore the direct translation between latent spaces of distinct NNs to solve
the LCP, as defined in Chapter 3 and illustrated in Figure 3.1. In particular,
leveraging a semantic correspondence between the input spaces AXY ⊆ π, we
directly approximate T for the first time across different trainings, architectures,
and modalities. We obtain excellent stitching performances even in cross-
modal settings, where we apply arbitrary text classifiers on top of pre-trained image
encodings (and vice versa).

• We show that different downstream tasks, namely classification and genera-
tion, require modeling different transformations to obtain the most out of the
translation between their latent spaces.

5.2 Latent Space Translation

5.2.1 Assumptions

In this Chapter, we address the LCP described in Chapter 3 and Figure 3.1, with the
additional assumption that either TX or TY is the identity. This means that we are
directly trying to approximate T̂ ≈ T ∈ T. Without loss of generality, we always
assume that TY is the identity, thus T̂ ≈ TX = T . Furthermore, we assume that T̂ is
at most an affine transformation. Please refer to Chapter 3 and Figure 3.1 for a formal
definition of the LCP.
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5.2.2 Method

Consider two latent spaces, X̃ ∈ Rn×d1 and Ỹ ∈ Rn×d2 . Our objective is to estimate
the transformation T̂ ≈ T ∈ T that translates φX̃(M̃X) ⊆ X̃ into φỸ(M̃Y) ⊆ Ỹ,
i.e.: φỸ(M̃Y) = T̂ φX̃(M̃X), exploiting the semantic alignment C observed through
AXY ⊆ π between the input spaces X and Y.

Throughout this work, we identify two main steps in the translation process: pre-
processing the spaces and estimating the transformation T̂ , as outlined in Figure 5.2.

Pre-processing. Generally, the two spaces X̃ and Ỹ may have different dimension-
alities – in those cases, we zero-pad the smaller one to match the dimension of the
other without changing its underlying structure (Williams et al., 2021). Moreover, we
standardize each feature to have zero mean and unit variance (standard scaling) if
not otherwise specified, whose statistics are computed only on the anchor sets for
both source and target space, to perform the necessary denormalization.

Estimating T̂ ≈ T . In Chapter 4, it is empirically shown that the spaces often
differ by an angle-norm preserving transformation. Nevertheless, we broaden our
investigation by considering different ways of obtaining T̂ to evaluate the robust-
ness of that assumption. Throughout our experiments, we primarily operate under
the assumption that T̂ can be constrained to encode, at most, an affine transforma-
tion: T̂ (X̃) = RX̃ + b.

This general formulation, without additional constraints, corresponds to our
affine method in the experiments, and it is optimized via gradient descent. The
other transformations are trivially obtained by progressively adding constraints on
this one:

• linear. To model a linear transformation, we can just set the bias term to zero
b = 0⃗ and optimize via Least Square. Here, we are both simplifying the class
of transformations and switching from a gradient descent optimization to a
closed-form procedure.

• l-ortho. Additionally, we could require R to be orthogonal to encode an
isometry. In this case, we obtain this by applying Singular Value Decomposition
(SVD) on the corresponding R obtained by the linear solution. Through
this, we aim to understand the implications of enforcing orthogonality on a
transformation that was originally not constrained to be so, in a setting similar
to Xing et al., 2015.

• ortho. To obtain the optimal orthogonal R, we apply Procrustes analysis
(Gower, 1975). Please refer to Section 2.3 for further details.

The transformation T̂ is estimated from samples in semantic correspondence
AXY ⊆ π, i.e., the parallel anchors defined in Section 3.2.

This methodology facilitates efficient and precise zero-shot translation between
disparate latent spaces, providing a robust and versatile foundation for model reuse
and interoperability in diverse machine learning contexts.

5.3 Latent Communication via Translation

In this Section, we evaluate the capabilities and effectiveness of our translation
method through various scenarios, highlighting its applicability in diverse contexts.
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FIGURE 5.3: Performance comparison of affine, linear, l-ortho,
and ortho at varying number of anchors on classification accuracy. Re-
sults on CIFAR-100 fine-grained. The same analysis for the generation

case is in Figure B.2 in the Appendix.

We present empirical results in three different settings: (i) cross-architecture; (ii)
cross-modality; (iii) autoencoding. In each case, the translation performance of each
method for obtaining the transformation T̂ is evaluated against two baselines, the
naive absolute one and the relative one.

Stitching Procedure. In line with the Zero-Shot Stitching concept we introduced
in Section 3.3.1, we combine independent encoders and decoders (e.g., classifiers,
generators) without further training or fine-tuning. This study does not necessitate
a decoder trained on relative representations; instead, we directly employ the orig-
inal decoders trained on absolute spaces. Each one of the benchmarks we conduct
follows the same procedure unless otherwise specified: we measure the mean perfor-
mance over all the possible combinations of (encoder, decoder) for each test set in
different settings:

• no-stitch. The end-to-end performance of the decoder applied to the original
space it was trained on. This is useful to establish un upper-bound in perfor-
mances.

• absolute. The result of using the encodings without any transformation, we
consider this as a probe for any pre-existing compatibility among encodings
and, therefore, a lower-bound.

• translation. These are the results of the application of our latent translation
method, with the estimation of T̂ via affine, linear, l-ortho and ortho.

In each instance, we use the same parallel anchors AXY, that are uniformly chosen,
in a quantity comparable with the dimensionality of the absolute representation.

5.3.1 Cross-Architecture

Firstly, we test our method in a cross-architecture setting, Zero-Shot Stitching together
encodings coming from a variety of pre-trained networks and their associated ab-
solute decoders (classifiers). This scenario provides an extensive testing ground for
our method and demonstrates its robustness across different architectures. Please
refer to Table B.5 in the Appendix for further results on cross-architecture stitching in
generation tasks.
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TABLE 5.1: Cross-architecture stitching with various methods for
estimating T̂ and applying standard scaling. The stitched decoders are
SVMs with a linear kernel. 5 runs for each encoder-decoder pair. (C)
and (F) next to CIFAR-100 indicate, respectively, coarse-grained and
fine-grained. Please refer to the Appendix in Table B.2 for additional

results with MLPs as classification heads.

Dataset no-stitch absolute relative affine linear l-ortho ortho

V
is

io
n

CIFAR-10 0.95 ± 0.03 0.16 ± 0.22 0.80 ± 0.22 0.92 ± 0.05 0.88 ± 0.11 0.90 ± 0.09 0.93 ± 0.04
CIFAR-100-C 0.85 ± 0.07 0.11 ± 0.21 0.54 ± 0.25 0.78 ± 0.09 0.73 ± 0.16 0.77 ± 0.11 0.81 ± 0.07
CIFAR-100-F 0.76 ± 0.09 0.07 ± 0.21 0.30 ± 0.24 0.68 ± 0.11 0.62 ± 0.19 0.64 ± 0.16 0.71 ± 0.09
F-MNIST 0.88 ± 0.01 0.15 ± 0.20 0.63 ± 0.23 0.86 ± 0.01 0.83 ± 0.06 0.82 ± 0.05 0.85 ± 0.02
MNIST 0.96 ± 0.01 0.15 ± 0.21 0.50 ± 0.22 0.94 ± 0.01 0.89 ± 0.08 0.81 ± 0.11 0.91 ± 0.02

Te
xt

TREC 0.87 ± 0.12 0.20 ± 0.06 0.36 ± 0.13 0.82 ± 0.12 0.74 ± 0.25 0.57 ± 0.25 0.79 ± 0.11
AG News 0.73 ± 0.09 0.25 ± 0.02 0.39 ± 0.13 0.65 ± 0.08 0.62 ± 0.08 0.61 ± 0.10 0.66 ± 0.10
DBpedia 0.78 ± 0.23 0.07 ± 0.01 0.16 ± 0.10 0.66 ± 0.24 0.62 ± 0.23 0.57 ± 0.23 0.66 ± 0.22
IMDB 0.61 ± 0.04 0.50 ± 0.01 0.51 ± 0.02 0.59 ± 0.04 0.57 ± 0.04 0.56 ± 0.03 0.59 ± 0.04

Experimental setting. We consider a variety of Computer Vision (MNIST, F-MNIST
(Fashion MNIST), N24News, CIFAR-10, CIFAR-100) and Natural Language Processing
(TREC, DBpedia, N24News, AG News, IMDB) datasets. For the text domain we consider
6 different language models as encoders (BERT-C, BERT-U, ELECTRA, RoBERTa,
ALBERT, XLM-R, and the text encoder of CLIP), and for the image domain 6 encoders
(RexNet, ViT-S/16, ViT-B/16, ViT-B/16L, RViT-B/16, and the image encoder of CLIP),
all pre-trained and frozen. The full encoder list can be found in Table B.4 in the
Appendix. For each dataset and for each encoder, we train an SVM classification
head (decoder) on top of their specific encodings. We then proceed with the standard
stitching procedure outlined in Section 5.3 and collect the results. Please see Table B.5
in the Appendix for cross-architecture stitching in generation tasks, where we extend
this analysis by verifying that our method works even across autoencoders of different
bottleneck sizes.

TABLE 5.2: Cross-architecture stitching with various methods for
estimating T̂ and applying L2 normalization. The stitched decoders
are SVMs with linear kernel. 5 runs for each encoder-decoder pair. (C)
and (F) next to CIFAR-100 indicate, respectively, coarse-grained and
fine-grained. Please refer to Table B.3 in the Appendix for additional

results with MLPs as classification heads.

Dataset no-stitch absolute relative affine linear l-ortho ortho

V
is

io
n

CIFAR-10 0.95 ± 0.03 0.16 ± 0.22 0.80 ± 0.22 0.93 ± 0.04 0.78 ± 0.27 0.88 ± 0.12 0.91 ± 0.09
CIFAR-100-C 0.85 ± 0.07 0.11 ± 0.21 0.54 ± 0.25 0.79 ± 0.07 0.65 ± 0.25 0.73 ± 0.17 0.79 ± 0.10
CIFAR-100-F 0.76 ± 0.09 0.07 ± 0.21 0.30 ± 0.24 0.69 ± 0.10 0.52 ± 0.25 0.62 ± 0.19 0.68 ± 0.13
F-MNIST 0.88 ± 0.01 0.15 ± 0.20 0.63 ± 0.23 0.86 ± 0.01 0.65 ± 0.23 0.83 ± 0.06 0.84 ± 0.05
MNIST 0.96 ± 0.01 0.15 ± 0.21 0.50 ± 0.22 0.94 ± 0.01 0.61 ± 0.23 0.90 ± 0.08 0.90 ± 0.04

Te
xt

TREC 0.87 ± 0.12 0.20 ± 0.06 0.36 ± 0.13 0.82 ± 0.12 0.44 ± 0.20 0.74 ± 0.23 0.77 ± 0.12
AG News 0.73 ± 0.09 0.25 ± 0.02 0.39 ± 0.13 0.66 ± 0.08 0.56 ± 0.10 0.62 ± 0.08 0.64 ± 0.10
DBpedia 0.78 ± 0.23 0.07 ± 0.01 0.16 ± 0.10 0.66 ± 0.24 0.44 ± 0.20 0.62 ± 0.23 0.60 ± 0.22
IMDB 0.61 ± 0.04 0.50 ± 0.01 0.51 ± 0.02 0.59 ± 0.04 0.55 ± 0.03 0.58 ± 0.04 0.59 ± 0.04

Result analysis. The stitching results are in Table 5.1. As expected, the absolute en-
codings obtain a score comparable to random guessing while also considering fewer
encoder combinations out of the possible ones due to the dimensionality mismatch
between some of them. These results show that the transformation relating to these
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pre-trained encoders is indeed mostly orthogonal: (i) ortho and affine, the narrow-
est and the broadest transformation classes considered, are the better-performing
translation methods. But while the former is obtained via a simple and efficient
closed-form algorithm, the latter is SGD-optimized (Section 5.2.2). (ii) the l-ortho
version improves or has small drops in performances over the linear transformation
it is obtained from, confirming that the least squares procedure converges to an R
which is almost orthogonal. Note that these results demonstrate the feasibility of
combining pre-trained models without the need for retraining or fine-tuning, with
negligible drops in performances across the board, and without any additional as-
sumption on the decoders. Please refer to Tables B.2 and B.3 in the Appendix for
results with different decoders. In the Appendix (Figure B.1), we extend the cross-
architecture transfer to decoders trained on different domains (styles) of the same
CIFAR-10 dataset: the original one and a grayscale one.

Sensibility to Anchor Quantity. The number of anchors is an essential parameter in
our approach. In Figure 5.3, we evaluate how the quantity of these anchors impacts
the residual error and the overall performance of our method for this experimental
setting. This analysis offers insights into the optimal number of anchors necessary for
efficient latent space translation.
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FIGURE 5.4: Scale distribution in encodings of different pre-trained
encoders on the N24News dataset.

Role of Scaling. Our approach is designed to accommodate generic (re)scaling
methods as pre-processing steps. We advocate for the use of standard scaling, as it
shows reliable performance in our experiments, indicating that the scale of the data
points is useful in estimating the latent transformation T̂ .

However, for completeness, we also consider L2 normalization, which is the
standard normalization in RRs. This normalization method generalizes the class
of transformations handled by our method and introduces an element of complete
scale invariance. It is important to note that when this level of generalization is
introduced, a scale-invariant decoder is required, since the norm information is
effectively removed. In Chapter 4, this is implicitly accomplished by training a
decoder on RRs. In our setting, since we do not train the decoder, we just assume it is
scale invariant; in Appendix B.1.1 we elaborate why this is a reasonable assumption
that happens in practice.

This investigation exemplifies the flexibility of our approach, capable of adapting
to different normalization and pre-processing strategies based on the specific require-
ments of the task at hand. The results presented in Table 5.2, when compared with
Table 5.1, indicate a stronger reliance on the information encoded in the norm in the
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text modality. This is aligned with existing literature in the NLP domain (Oyama,
Yokoi, and Shimodaira, 2022), which suggests that the scale of the encodings contains
information (e.g., it is correlated with the token frequency).

These results in diverse scenarios showcase the flexibility and adaptability of our
method, especially its robustness in translating between latent spaces of different
dimensionality and domains.

5.3.2 Cross-Modality

This scenario illustrates the applicability of our method in cross-modality settings,
where we aim to translate between text and image latent spaces.

Experimental setting. We adopt N24News, a multimodal news classification dataset
that contains both text and associated pictures. We apply the standard encoding
procedure to these two features separately, using different pre-trained uni-modal
encoders. Then, we train a classification head (an SVM, please refer to Appendix
Figure B.3 for further results employing an MLP as classification head) on top of each
one. Lastly, we zero-shot stitch each encoder with a classification head different from
its corresponding one, measuring its classification accuracy, without further training
or fine-tuning.

D
ec

od
er

Encoder

Encoder Score Scale

V
is

io
n

ViT-B/16 0.40 90.45
RexNet 0.33 13.46
ViT-B/16L 0.41 89.66
ViT-S/16 0.39 50.17
RViT-B/16 0.41 32.10
DarkNet 0.34 11.62

Te
xt

BERT-C 0.61 15.43
BERT-U 0.42 14.54
ELECTRA 0.50 11.94
RoBERTa 0.75 11.06
ALBERT 0.27 32.27
XLM-R 0.73 18.75

FIGURE 5.5: Performance comparison between different encoders and
data modalities on the N24News multimodal dataset. On the right
the accuracy of models trained end-to-end on a single data modal-
ity (Score) and their average norm (Scale). On the left the stitching
performance between pairs of encoders and decoder. This shows the
importance of translating from good encoders, that can even improve
unimodal decoder performances. Results obtained with 2000 anchors
and ortho, with an SVM as classification head. In the Appendix Fig-

ure B.3, additional results using MLPs as decoders.

Scale distributions. In Figure 5.4, we present the scale distribution of the embed-
dings produced by several encoders on the N24News dataset. This empirical analysis



38 Chapter 5. Direct Translation

shows a consistent pattern among encoders: the scale distribution of their embed-
dings follows a Gaussian one with a single mode and a well-defined mean, which are
usually compatible with standard scaling. This consistent behavior across encoders is
likely attributed to their architectural choices, such as the normalization techniques,
regularizations and the optimization problems they are designed to solve.

Result analysis. The discrepancy in the mean accuracy represented by the marginal
bar plots in Figure 5.5 is a signal that can be used to identify spaces more suited to
be decoded into and the ones that are stronger in encoding from. In fact, the language
models as source space for the translation exhibit stronger performance than the
vision encoders. We relate this behavior to the higher generality of the text domain
data used during pre-training with respect to the image domain one (Zhai et al.,
2022a). A remarkable finding in this setting is the improvement in classification
performance when a modality-specific classifier trained on images is fed zero-shot
with corresponding text encodings translated to the image domain via our method.
This result underlines the significance of a good encoder and demonstrates the broad
applicability of our technique. In practice, this means we can seamlessly apply image
classifiers on textual data, and vice versa.

These results show that our method: (i) obtains effective zero-shot translation
over different modalities; (ii) improves unimodal decoders when translating from a
better encoder than the one it was trained on.

5.3.3 Autoencoding

In this setting, our method is applied to align latent spaces of different trainings of
the same AE. The novelty of this scenario lies in the generation setting itself, as most
prior works (Section 2.3) primarily focus on classification tasks. One key observation
explored in Chapter 7 is that the task at hand (e.g., classification, generation) defines a
certain class of transformations T (e.g., rotations) which act among the latent spaces. To
ensure the best possible performance and efficiency, it is essential to limit the search
for the transformation to the appropriate class.

S
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affine

linear

l-ortho

ortho

FIGURE 5.6: Reconstruction examples grouped by dataset. Each col-
umn is a different image, from top to bottom: original image, absolute
stitching, affine stitching linear stitching, l-ortho stitching, and
ortho stitching. No additional normalization applied on the decoder
part. Please refer to Figures B.4 and B.5 in the Appendix for decoders

trained with L2 normalization.

Experimental setting. We utilize four datasets for these experiments, namely MNIST,
F-MNIST, CIFAR-10 and CIFAR-100. For each dataset, we train two standard CNN-
based AE, with convolutions in the encoder and deconvolutions in the decoder, please
refer to the Appendix for further implementation details. The two AEs are identical
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TABLE 5.3: Zero-shot stitching for generation with various methods
for estimating T̂ . The representation is normalized using Standard
Scaling, and no additional normalization is applied to the stitched
decoders. We report the latent cosine similarity (lcos) and MSE (lmse)
between the target encoding and the translated one, but also the recon-
struction MSE (rmse) between the input and the output. The absolute
space dimension is 500, and we used 1000 anchors. Please refer to
Table B.1 for results on decoders scale-invariant by design (with L2

normalization on the encodings).

MNIST F-MNIST CIFAR-10 CIFAR-100

lcos lmse rmse lcos lmse rmse lcos lmse rmse lcos lmse rmse

absolute 0.09 0.27 0.14 0.17 0.23 0.23 0.30 0.29 0.34 0.34 0.53 0.40
affine 0.94 0.08 0.02 0.94 0.06 0.03 0.96 0.03 0.05 0.96 0.04 0.05
linear 0.92 0.09 0.02 0.93 0.07 0.04 0.94 0.03 0.05 0.94 0.04 0.06
l-ortho 0.79 0.14 0.02 0.78 0.12 0.05 0.85 0.05 0.06 0.84 0.07 0.07
ortho 0.90 0.10 0.02 0.90 0.08 0.04 0.94 0.03 0.06 0.93 0.04 0.06

in structure, differing only in the random seed used for weight initialization and
data shuffling. To perform Zero-Shot Stitching, we first translate each data point
from the latent space of the first encoder to the latent space of the second using 1000
parallel anchors. We then apply the second decoder to the translated data, without
any additional training or fine-tuning.

Result analysis. This experiment analyzes the alignment of latent spaces in different
training regimens of the same AE. The performance evaluation, as shown in Table 5.3,
demonstrates that all methods affine, linear, l-ortho, and ortho yield satisfactory
results. Moreover, qualitative results depicted in Figure 5.6 reveals minimal visual
differences in the stitching outcomes across various datasets using different meth-
ods. Please refer to Figures B.4 and B.5 for other qualitative results. In fact, these
results suggest that the latent spaces of image AEs are not exclusively correlated by
orthogonal transformations. Consequently, in order to constrain and improve their
approximation, more research is necessary to investigate and model the particular
class of transformations that control the correlation between NNs during image au-
toencoding. For additional results pertaining to decoders with L2 normalization on
their input, we refer to the Table B.1 in the Appendix.

Overall these results, combined with Cannistraci, Moschella, Fumero, et al., 2024
presented in Chapter 7 and Section 5.3.1, confirm that latent spaces in image AEs
trained end-to-end are related by a class of transformations larger than orthogonal
transformations.
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Part III

Overcoming Limitations
in Latent Communication
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Chapter 6

Current limitations

The methodologies explored in Chapters 4 and 5 have demonstrated significant
potential in addressing the LCP (Latent Communication Problem) illustrated in
Figure 3.1 and detailed in Chapter 3. Despite these advancements, there exist major
constraints within these approaches that merit further discussion.

Assumptions on the transformation class T. The approaches delineated in Chap-
ters 4 and 5 presuppose a known transformation class T between latent manifold
embeddings φX̃(M̃X) ⊆ X̃ and φỸ(M̃Y) ⊆ Ỹ. Specifically, Chapter 4 assumes that T
comprises transformations preserving angle norms, whereas Chapter 5 assumes it
to be simple, exploring different possibilities (i.e., either affine, linear or orthogonal).
However, this assumption does not always align with practical scenarios. Indeed,
the latent manifolds embeddings are subject to changes due to several factors ϕ, as
explained in Section 3.2.1, and the precise nature of T connecting these embeddings
often remains undetermined a priori.

Observable partial correspondence π. Both methodologies assume that a partial
correspondence π between the input spaces exists and, most importantly, that it is
at least partially observable through the parallel anchors AXY ⊆ π. This premise,
however, is not universally applicable, as the parallel anchors AXY are typically not
available in large quantities. The assumption that AXY is sufficiently large to define
RRs without losing information, in Chapter 4, and to accurately estimate the trans-
formation T̂ ≈ T , in Chapter 5, does not hold in many practical instances. This
limitation is particularly evident in multimodal data contexts. Here, the available par-
tial correspondence AXY often falls short of the threshold necessary for the effective
application of these methodologies, especially when considering domains different
from images-text pairs.

In the following Chapters, we will explore methods to overcome these limitations.
In Chapter 7, we introduce a novel approach to tackle the LCP without any specific
assumption on the transformation class T. Meanwhile, in Chapter 8 we delineate
a methodology capable of discovering new parallel anchors from a limited known
set, thereby expanding AXY ⊆ π and facilitating the communication between these
spaces.
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Chapter 7

Unknown Latent Transformation
From Bricks to Bridges: Product of Invariances to Enhance Latent Space
Communication1

In this Chapter, we address the LCP outlined in Chapter 3, without im-
posing any additional explicit assumptions on the transformation class
T that connects the latent manifold embeddings, φX̃(M̃X) ⊆ X̃ and
φỸ(M̃Y) ⊆ Ỹ. Leveraging the RRs framework introduced in Chapter 4,
we define both TX and TY as multiple relative projections, each character-
ized by distinct similarity functions d. This approach enables the construc-
tion of a product space of invariant components, obviating the need for
pre-existing knowledge about the specific invariances to be incorporated.

7.1 Introduction

Achieving invariance to specific groups of transformations within latent spaces is at
the core of solving the LCP. In fact, the RRs framework presented in Chapter 4 en-
ables communication between latent spaces by infusing an invariance to angle-norm
preserving transformations in them. However, as shown in Figure 7.1, the transfor-
mations relating different latent manifold embeddings are not always consistently
within a specific class of transformations T. Determining a priori which T relates
distinct latent manifold embeddings is challenging due to complex interactions in the
data, and multiple nuisance factors that are typically irrelevant but can nevertheless
affect the representation, i.e., the factors ϕ outlined in Section 3.2.1.

To address this challenge, we expand upon the method of RR, presenting a
framework to efficiently incorporate a set of invariances into the learned latent space. This
is achieved by constructing a product space of invariant components on top of the
latent representations of, possibly pretrained, neural models. Each component of
this product space is a RR produced with a different similarity function d. Thus, we
can infuse invariances to specific transformation classes into each component of the
product space.

Our main contributions can be summarized as follows:

• We show that the transformation class T that relates latent manifold embeddings
learned by distinct NNs – trained on data semantically related by π – may vary
and directly depends on the factors ϕ.

1Irene Cannistraci, Luca Moschella, Marco Fumero, Valentino Maiorca, and Emanuele Rodolà
(2024). “From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication”.
In: The Twelfth International Conference on Learning Representations (ICLR 2024, spotlight, top 5%). URL:
https://openreview.net/forum?id=vngVydDWft

https://openreview.net/forum?id=vngVydDWft
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FIGURE 7.1: CKA similarity (Kornblith et al., 2019) of pretrained
models on F-MNIST, measured on projections of the latent space onto
subspaces invariant to specific classes of transformations (Conformal2,
Euclidean, Orthogonal). In each bar, we report the distribution of
similarity to the other models while infusing a specific invariance. The
score diversity highlights the absence of a universal transformation

connecting all latent spaces.

• We introduce a framework to construct a product space of invariant compo-
nents and improve the LCP solution proposed in Chapter 4; achieving the best
performance without any prior knowledge of the transformation class T or the
factors ϕ that may affect it.

• We validate our findings on classification and reconstruction tasks, observing
consistent latent similarity and downstream performance improvements in the
Zero-Shot Stitching setting (Section 3.3.1). The experimental analysis comprises
three modalities (vision, text, and graphs), twelve pretrained foundational
models, eight benchmarks, and several architectures trained from scratch.

7.2 Infusing invariances

In this Chapter, our focus is to leverage different choices of the similarity function d
in the RR framework to induce a set of invariances into the representations to capture
complex transformations between latent spaces. Meanwhile, in Chapter 4, d was
always the cosine similarity, inducing a RR invariant to angle-norm preserving
transformations.

Overview. As illustrated in Figure 3.1 and Chapter 3, when considering different
encoders EX, EY, we are interested in modeling the class of transformations T that
relates their latent manifold embeddings φX̃(M̃X) ⊆ X̃ and φỸ(M̃Y) ⊆ Ỹ. In
general, this transformation can be induced by any change in the factors ϕ which
could affect φX̃(M̃X) and φỸ(M̃Y) in unpredictable ways, as observed in Figure 7.1,
e.g., their training dynamics, by architectural changes, or even domain changes. The
resulting T could be something known, e.g., rotations, or a nontrivial, complex class
of transformations.

2More precisely, global orthogonal transformations composed with local rescalings.
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7.2.1 Method

What we look for are the transformations TX and TY, as per Figure 3.1, that inde-
pendently projects the latent manifold embeddings φX̃(M̃X) and φỸ(M̃Y) into a
universal space U, where they become the same TX(φX̃(M̃X)) = TY(φỸ(M̃Y)) ⊆ U.
This is achieved by independently enforcing an invariance to T in each space, i.e.,

TX(x̃) = TX(T x̃) ∀ T ∈ T and ∀ x̃ ∈ φX̃(M̃X), (7.1)

and similarly for TY. Generalizing the RRs to arbitrary similarity functions d, or
distance metrics, gives us a straightforward way to define representations invariant
to specific classes of transformations.

However, T is typically unknown a priori, and it is also improbable to accurately
characterize it as a singular, well-defined class of transformations (as observed in
Figure 7.1 and Section 7.3.1). To overcome this, we approximate U with a product
space Û := ∏N

i=1 Ui, where each component is obtained by projecting samples of X̃
and Ỹ in a RR equipped with a different similarity function di. Each Ui will have
properties induced by a similarity function di invariant to a specific, known, class of
transformations Ti (e.g., dilations). By combining this set of invariances, we want to
construct TX and TY such that they are invariant to T. We define TX, and equivalently
TY, formally as the product projection from X̃ to Û:

Definition (Product projection). Given a latent space X̃ produced by some encoding func-
tion EX, a set of encoded anchors ÃX, the definition of relative projection Rp in Equation (4.2),
and a set of similarity functions D each one invariant to a specific known class of transforma-
tions Ti (e.g., rotations), i.e., Rp(x̃; ÃX, di) = Rp(T x̃; T ÃX, di) ∀T ∈ Ti. We define TX as
a product projection:

TX(x̃) = ρ ◦ Rp(x̃; ÃX, di) ∀ di ∈ D (7.2)

where ρ is an aggregation function (further details in Section 7.2.2) responsible for merging
the relative spaces induced by each di ∈ D.

Distance-induced invariances. We leverage the RR framework considering the
following similarity functions d: Cos. (Cosine), Eucl. (Euclidean), L1, and L∞, each
one inducing invariances to a specific, known class of transformations. In Table 7.1, we
summarize the invariances guaranteed by different distance metrics concerning the
following standard classes of transformations: IS (Isotropic Scaling), OT (Orthogonal
Transformation), TR (Translation), PT (Permutation), AT (Affine Transformation) and
LT (Linear Transformation).

TABLE 7.1: Invariances summary. Overview of the different distance-
induced invariances.

Similarity IS OT TR PT AT LT

Absolute × × × × × ×
Cos.

√ √
×

√
× ×

Eucl. ×
√ √ √

× ×
L1 × ×

√ √
× ×

L∞ × ×
√ √

× ×

Note how, in general, it is not straightforward to characterize the set of invari-
ances induced by a similarity function. For example, the L∞ distance does not enforce
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isometry invariance (in the L2 sense of rigidity) in the representation, but induces an
invariance to perturbations in dimensions that are not the maximum one. Formalizing
and analyzing such types of invariances presents challenges since these transforma-
tions cannot be neatly classified into a specific simple class of transformations.

7.2.2 Aggregation functions.

This section summarizes the different aggregation strategies ρ to construct the product
space Û:

• Concatenation (Concat): the subspaces are independently normalized and con-
catenated.

• Aggregation by sum (MLP+Sum): similar to DeepSet (Y. Zhang, Hare, and Prugel-
Bennett, 2019), the subspaces are independently normalized and non-linearly
projected. The resulting components are summed.

• Self-attention (SelfAttention): the subspaces are independently normalized and
aggregated via a self-attention layer.

When not specified, all the results are obtained using the Aggregation by sum strategy.
For the implementation details of each strategy, please refer to Cannistraci, Moschella,
Fumero, et al., 2024.

The product space Û is a robust latent representation, made of invariant compo-
nents which are combined to capture nontrivial, complex transformations, improving
LCP solutions and boosting the performance on downstream tasks.

7.3 Experiments

In this Section, we perform qualitative and quantitative experiments to analyze the
effectiveness of our framework in constructing representations invariant to complex
T. Specifically, Section 7.3.1 provides empirical motivation, implicitly analyzing the
transformations classes that emerge between different pretrained models on multiple
datasets and modalities (i.e., vision and text); meanwhile, Section 7.3.2 evaluates the
Zero-Shot Stitching performance of our framework across text, vision, and graph
modalities; finally, Section 7.3.3 examines attention weights and their role in selecting
the optimal relative subspace. Refer to Cannistraci, Moschella, Fumero, et al., 2024
for further experiments and details.

7.3.1 Latent space analysis

Experimental setting. In this Section, we analyze the similarity of latent spaces
produced by pretrained foundational models in both the vision and text domains.
For the vision domain, we evaluated five distinct foundational models (either convo-
lutional or transformer-based) using the CIFAR-10, CIFAR-100, MNIST, and F-MNIST
datasets. Meanwhile, in the text domain, we assessed seven different foundational
models using the DBpedia, TREC (coarse), and N24News (Text) datasets.

Result Analysis. In Figure 7.2, we report the Linear CKA correlations for various
models and datasets for vision (left) and text (right) modalities. This analysis high-
lights the absence of a universally shared transformation class that connects latent
spaces of foundation models across distinct conditions. For example, on CIFAR-10
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FIGURE 7.2: Latent Spaces Cross-Architecture Similarity. Linear
CKA similarity of latent spaces across several pretrained models and
datasets. In each bar, we report the space similarities distribution to
the other models while infusing a specific invariance. There is no
singular projection that consistently outperforms others across all con-

figurations.

(left), the highest similarity is achieved with different projection functions when using
different architectures. Interestingly, from Figure 7.2, it is possible to see that similar
architectures (i.e., ViT-based models) exhibit similar trends; hinting at the possibil-
ity that the choice of architecture plays a major role in influencing the emerging
transformation class T.

Takeaway. The transformation class T that correlates different latent manifold
embeddings produced by different models depends on the dataset, architecture,
modality, and possibly other factors ϕ.

7.3.2 Zero-Shot Stitching

The Zero-Shot Stitching (Section 3.3.1) methodology allows combining components
of different NNs to obtain a new model, where each element of the stitched model
functions as an autonomous frozen module: the encoder handles data embedding,
while the dedicated relative decoder manages the downstream task.

TABLE 7.2: Graph and Text Stitching Performance. Zero-shot accuracy
scores across various decoders, seeds, and datasets. In the text domain,
results are obtained from stitching across pretrained models, while in
the graph domain, we train GNN (Graph Neural Network) models
from scratch and evaluate the stitching across seeds. Using the Aggre-
gation by sum (last row) we consistently achieve the best performance.

Text Graph

ALBERT GNN

Projection DBpedia Cora Cora

Cosine 0.50 ± 0.02 0.54 ± 0.03 0.53 ± 0.06
Euclidean 0.50 ± 0.00 0.60 ± 0.03 0.27 ± 0.06
L1 0.52 ± 0.01 0.65 ± 0.02 0.26 ± 0.06
L∞ 0.18 ± 0.02 0.29 ± 0.06 0.12 ± 0.03

Cosine,Euclidean,L1,L∞ 0.53 ± 0.01 0.65 ± 0.02 0.77 ± 0.01
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Experimental setting. We perform Zero-Shot Stitching classification using text,
vision, and graph modalities with various models and datasets. For the Vision
and Text domains, we used the same datasets and pretrained models employed in
Section 7.3.1. For the Graph domain, we employed the Cora dataset (Sen et al., 2008)
and a GNN architecture trained from scratch. Relative decoders are trained with
three different seed values, and the resulting representations are transformed into
RRs by projecting the encodings onto 1280 randomly selected but fixed anchors.

TABLE 7.3: Image Stitching Performance Cross-Architecture and Cross-
Seed. Zero-shot accuracy score across different pretrained models,
seeds, and datasets. The proposed method with Aggregation by sum
consistently achieves the highest accuracy score or comparable results,
even without prior knowledge of the optimal projection to employ.

Accuracy ↑

Encoder Projection CIFAR-100 CIFAR-10 MNIST F-MNIST

CLIP Cosine 0.52 ± 0.03 0.87 ± 0.02 0.61 ± 0.06 0.68 ± 0.02
Euclidean 0.53 ± 0.02 0.87 ± 0.02 0.66 ± 0.05 0.70 ± 0.03
L1 0.53 ± 0.04 0.87 ± 0.02 0.66 ± 0.05 0.70 ± 0.03
L∞ 0.27 ± 0.04 0.52 ± 0.04 0.57 ± 0.03 0.55 ± 0.01

Cosine,Euclidean,L1,L∞ 0.58 ± 0.03 0.88 ± 0.02 0.68 ± 0.05 0.70 ± 0.01

RViT-B/16 Cosine 0.79 ± 0.03 0.94 ± 0.01 0.69 ± 0.04 0.76 ± 0.03
Euclidean 0.79 ± 0.03 0.94 ± 0.01 0.71 ± 0.04 0.77 ± 0.03
L1 0.77 ± 0.04 0.95 ± 0.01 0.71 ± 0.04 0.79 ± 0.03
L∞ 0.31 ± 0.03 0.75 ± 0.04 0.61 ± 0.05 0.60 ± 0.03

Cosine,Euclidean,L1,L∞ 0.81 ± 0.04 0.95 ± 0.01 0.72 ± 0.04 0.76 ± 0.04

ViT-B/16 Cosine 0.75 ± 0.05 0.96 ± 0.01 0.59 ± 0.05 0.79 ± 0.03
Euclidean 0.76 ± 0.05 0.96 ± 0.01 0.65 ± 0.06 0.81 ± 0.02
L1 0.76 ± 0.06 0.96 ± 0.01 0.66 ± 0.07 0.81 ± 0.02
L∞ 0.42 ± 0.02 0.70 ± 0.05 0.42 ± 0.05 0.52 ± 0.04

Cosine,Euclidean,L1,L∞ 0.81 ± 0.05 0.96 ± 0.01 0.66 ± 0.04 0.80 ± 0.04

TABLE 7.4: Stitching Index Across Architectures and Seeds on Cora.
Composing different projections using the Aggregation by sum (last
row) enables Zero-Shot Stitching without any performance drop in this

setting, ensuring competitive end-to-end performance.

Projection Accuracy ↑ Stitching index ↑

Absolute 0.14 ± 0.04 0.18
Cosine 0.53 ± 0.06 0.71
Euclidean 0.27 ± 0.06 0.58
L1 0.26 ± 0.06 0.58
L∞ 0.12 ± 0.03 1.00

Cosine,Euclidean,L1,L∞ 0.77 ± 0.01 1.00

Results Analysis. Tables 7.2 and 7.3 present the performance of various projection
functions for different modalities. As previously observed in Section 7.3.1, the experi-
ments reveal the absence of a single optimal projection function across architectures,
modalities, and even within individual datasets. Our proposed method consistently
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achieves superior accuracy across most scenarios. It is important to emphasize that
the dimensionality of each independent projection and the aggregated product space
remains constant, ensuring fair comparison.

To compare the performance with the end-to-end reference (reported in Cannis-
traci, Moschella, Fumero, et al., 2024), we also propose an additional evaluation
metric named the Stitching Index computed as the ratio between the stitching score
and the end-to-end score. It measures how closely the stitching accuracy aligns
with the original score, i.e., a stitching score of one indicates there is no drop in
performance when stitching modules. Results in Table 7.4 highlight that our method
enables Zero-Shot Stitching without any performance drop in this setting, while still
ensuring competitive end-to-end performance.

Takeaway. A product space with invariant components can improve the Zero-Shot
Stitching performance, solving the LCP defined in Chapter 3, without any prior
knowledge of the class of transformation T that relates the manifold embeddings.

7.3.3 Subspace selection

In the preceding sections, we discussed integrating individual and multiple invari-
ances into the representation through various projection functions and appropriate
aggregation strategies. In this Section, we aim to analyze and understand if tuning
only the aggregation strategy at stitching time is a reasonable cost for selecting the
optimal subspace. We focus on the Self-attention aggregation, which is a single self-
attention layer as described in Section 7.2.2, and fine-tune only the QKV (Query, Key,
Value) parameters (i.e., the ones responsible for subspace blending). Each subspace is
generated by its own projection function. We remark that stitching-time fine-tuning
is exclusive to this experiment.

Original QKV opt MLP opt

FIGURE 7.3: Comparison of attention weights for the stitched model
with RexNet as encoder and ViT-B/16 as decoder on CIFAR-100, before
and after fine-tuning. (left) the attention weights of the initial zero-shot
stitched model, which remain unchanged (right) when fine-tuning the
classifier (MLP opt). Conversely, fine-tuning the QKV projections (QKV
opt) leads to a notable shift in attention weights (center), assigning
lower importance to the subspace that performs worst individually.

Experimental setup. We identify two crucial components within the stitched model:
(i) the linear projections associated with QKV in the attention mechanism, which is
responsible for selecting and blending subspaces, and (ii) the MLP in the classification
head following the attention mechanism, which classifies the aggregated embeddings.
We examine two distinct approaches: the first approach fine-tunes only the first
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component (QKV opt), while the second one fine-tunes the second component (MLP
opt). All the experiments in this Section are conducted on the CIFAR-100 dataset,
employing the RexNet as encoder and the ViT-B/16 as decoder.

TABLE 7.5: Classification accuracy for the stitched model with RexNet
as encoder and ViT-B/16 as decoder on CIFAR-100, using different
projection functions and aggregation strategies. Fine-tuning the sub-
space selection and blending part (QKV opt) has a more significant
effect on performance than fine-tuning only the larger MLP (MLP opt).

Projection Aggregation Accuracy ↑

Cosine - 0.50
Euclidean - 0.38
L1 - 0.24
L∞ - 0.21

Cosine, Euclidean, L1, L∞ SelfAttention 0.17
Cosine, Euclidean, L1, L∞ MLP+Sum 0.45

Cosine, Euclidean, L1, L∞ SelfAttention + QKV opt 0.75
Cosine, Euclidean, L1, L∞ SelfAttention + MLP opt 0.52

Result Analysis. Table 7.5 summarizes downstream classification accuracy for the
stitched model using various projection functions and aggregation strategies. Incor-
porating multiple invariances and aggregating them via Self-attention (fifth row) does
not perform well; meanwhile, using the MLP+Sum or the Cosine projection alone is
more effective. This is expected, considering the attention mechanism is primarily
trained to improve end-to-end performance rather than to maximize compatibility
between different spaces. Incorporating the adaptation strategies at stitching time sig-
nificantly boosts performance, either focusing on the subspace selection and blending
(QKV opt) or the classification head (MLP opt). We find that an informed fine-tuning
of the parameters responsible for the subspace blending (i.e., only the QKV projec-
tions) significantly impacts performances, even more than tuning the whole classifier.
Figure 7.3 illustrates the attention weights averaged over the test dataset: the left
figure shows the attention weights of the zero-shot stitched model, that remain un-
changed when fine-tuning only the classifier, as reported on the right. Meanwhile, the
center figure shows that fine-tuning the QKV projection shifts the attention weights to
allocate less importance to worse-performing projections (i.e., L∞).

Takeaway. Appropriate subspace selection and aggregation are crucial to further
enhance latent communication between neural models.
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Chapter 8

Limited Semantic Correspondence
Bootstrapping Parallel Anchors for Relative Representations1

The previous Chapters 4, 5 and 7 presented potential solutions to solve
the LCP (Chapter 3). Nevertheless, they all rely on a certain amount of
parallel anchors AXY ⊆ π to be given, which can be impractical to obtain
in certain scenarios. To overcome this limitation, in this Chapter, we
propose an optimization-based method to discover new parallel anchors
from a limited known set ΛXY, denoted as seed. Our approach expands
the semantic correspondence between different domains, enabling the
solution of the LCP in scenarios where it was previously not possible.

8.1 Introduction

The previous Chapters presented potential solutions to solve the LCP, either by
projecting the latent manifold embeddings into a universal space U or by directly
approximating a specific transformation T that relates φX̃(M̃X) ⊆ X̃ and φỸ(M̃Y) ⊆
Ỹ. Nevertheless, they all rely on the existence of an abstract correspondence C,
observable directly in the input spaces through π and provided in input as a certain
amount of parallel anchors AXY ⊆ π. However, obtaining a sufficient number of
parallel anchors in specific applications can be challenging or impossible, hindering
the use of the aforementioned methods.

In this Chapter, we focus on the scenario where only a very limited number of
parallel anchors is available, denoted as seed Λ, and we aim to expand this initial set
through an AO (Anchor Optimization) process. Our method achieves competitive
performance in NLP and Vision domains while significantly reducing the number of
required parallel anchors by one order of magnitude.

8.2 Method

In this Section, we introduce an optimization procedure that reduces the required
number of parallel anchors by one order of magnitude. This method does not
require complete knowledge of AXY but only of few initial seed anchors, denoted
as ΛXY ⊆ AXY, where |Λ| ≪ |AXY|. With no prior knowledge of AY, we initialize
the optimization process by approximating its embeddings ÃY with the known
seed embeddings: Λ̃Y =

⊕
a∈ΛY

EY(a), where
⊕

denotes row-wise concatenation,

1Irene Cannistraci, Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, and
Emanuele Rodolà (2023). “Bootstrapping Parallel Anchors for Relative Representations”. In: The First
Tiny Papers Track at ICLR 2023, Tiny Papers at ICLR 2023. URL: https://openreview.net/pdf?id=
VBuUL2IWlq

https://openreview.net/pdf?id=VBuUL2IWlq
https://openreview.net/pdf?id=VBuUL2IWlq
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TABLE 8.1: Qualitative (left) and quantitative (right) comparisons of the
three methods when optimizing over the Word2Vec space, to discover
the parallel anchors AXY between Word2Vec and FastText. All metrics
are calculated with K = 10 averaged over 20k words across 5 random

seeds. Refer to Appendix A.3.1 for the metric definitions.

FastText Word2Vec

G
T

Se
ed

A
O

Source Target Jaccard ↑ MRR ↑ Cosine ↑

G
T

FT
FT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
W2V 0.34 ± 0.01 0.94 ± 0.00 0.86 ± 0.00

W2V
FT 0.39 ± 0.00 0.98 ± 0.00 0.86 ± 0.00
W2V 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Se
ed

FT
FT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
W2V 0.06 ± 0.01 0.11 ± 0.01 0.85 ± 0.01

W2V
FT 0.06 ± 0.01 0.15 ± 0.02 0.85 ± 0.01
W2V 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

A
O

FT
FT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
W2V 0.52 ± 0.00 0.99 ± 0.00 0.94 ± 0.00

W2V
FT 0.50 ± 0.01 0.99 ± 0.00 0.94 ± 0.00
W2V 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

concatenated with |AXY| − |ΛXY| random embeddings N, i.e., ÃY = Λ̃Y ⊕ N with
N ∼ N (0, I). Thus, we define the following objective function optimizing over ÃY:

arg min
ÃY s.t. ||a||2=1 ∀a∈ÃY

∑
ỹ∈Ỹ

MSE(Rp(Π(ỹ), ÃX, d), Rp(ỹ, ÃY, d)) (8.1)

where d is the cosine similarity and Π : Ỹ → X̃ is a correspondence estimated at each
optimization step by the Sinkhorn algorithm (Cuturi, 2013) exploiting the initial seed
and the current approximation of the remaining anchors:

Π = sinkhorn (Rp(X̃, ÃX, d), Rp(Ỹ, ÃY, d)). (8.2)

After convergence, ÃY is discretized into AY ⊆ Y considering the nearest embed-
dings in Ỹ.

8.3 Experiments

This section assesses the effectiveness of the AO method in reducing the reliance on
parallel anchors AXY to the minimum necessary and automatically expanding the
provided semantic correspondence between domains.

Experimental Setting We utilize 15 seed anchors to approximate 300 parallel an-
chors that serve as ground truth in all downstream tasks. Specifically, we compare
the performance of our method against two different baselines: (i) GT, the Ground
Truth employs all the anchors that our method aims to semantically approximate;
and, (ii) Seed, exploits only the seed anchors. Refer to Appendix A.3.1 for the metric
definitions, and to Cannistraci, Moschella, Maiorca, et al., 2023 for complete details.

Retrieval Task. AO effectively discovers new parallel anchors in the NLP and
Vision domains, as demonstrated in Tables 8.1 and 8.2. Specifically, we explore
different word embeddings and pre-trained foundational visual encoders, and assess
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TABLE 8.2: Evaluation of the AO method in the vision domain on
CIFAR-10. The table reports the mean results for each metric and its

standard deviation across 5 different random seeds.

Mode Type Source Target Jaccard ↑ MRR ↑ Cosine ↑
G

T A
bs

ol
ut

e ViT-B/16 ViT-B/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
ViT-S/16 - - -

ViT-S/16 ViT-B/16 - - -
ViT-S/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

R
el

at
iv

e ViT-B/16 ViT-B/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
ViT-S/16 0.11 ± 0.00 0.27 ± 0.01 0.97 ± 0.00

ViT-S/16 ViT-B/16 0.10 ± 0.00 0.28 ± 0.01 0.97 ± 0.00
ViT-S/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Se
ed A

bs
ol

ut
e ViT-B/16 ViT-B/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

ViT-S/16 - - -

ViT-S/16 ViT-B/16 - - -
ViT-S/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

R
el

at
iv

e ViT-B/16 ViT-B/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
ViT-S/16 0.03 ± 0.00 0.03 ± 0.01 0.97 ± 0.00

ViT-S/16 ViT-B/16 0.03 ± 0.00 0.04 ± 0.01 0.96 ± 0.00
ViT-S/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

A
O A

bs
ol

ut
e ViT-B/16 ViT-B/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

ViT-S/16 - - -

ViT-S/16 ViT-B/16 - - -
ViT-S/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

R
el

at
iv

e ViT-B/16 ViT-B/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
ViT-S/16 0.10 ± 0.01 0.23 ± 0.03 0.97 ± 0.00

ViT-S/16 ViT-B/16 0.10 ± 0.00 0.28 ± 0.01 0.97 ± 0.00
ViT-S/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

the quality of the discovered anchors through a retrieval task. Results demonstrate
that, when given the same number of starting anchors, our method outperforms the
approach that relies solely on those without optimizing. Our results are comparable to
those obtained employing all the ground truth parallel anchors.

TABLE 8.3: Cross-lingual Zero-Shot Stitching performance evaluation.
The table reports the mean weighted F1 and MAE on Amazon Reviews

fine-grained across 5 random seeds.

GT Seed AO

Decoder Encoder Fscore MAE Fscore MAE Fscore MAE

en en 0.64 ± 0.01 0.43 ± 0.01 0.50 ± 0.01 0.69 ± 0.01 0.62 ± 0.01 0.44 ± 0.01
es 0.51 ± 0.01 0.67 ± 0.02 0.44 ± 0.01 0.80 ± 0.01 0.48 ± 0.01 0.70 ± 0.02

es en 0.50 ± 0.02 0.72 ± 0.04 0.41 ± 0.01 0.92 ± 0.02 0.46 ± 0.01 0.76 ± 0.02
es 0.60 ± 0.01 0.45 ± 0.01 0.48 ± 0.01 0.70 ± 0.01 0.61 ± 0.01 0.44 ± 0.01

Zero-Shot Stitching task. Furthermore, Table 8.3 demonstrates that our method
can discover parallel anchors across different domains: the method finds aligned
Amazon reviews in different languages with unavailable ground truth. Using only 15
out-of-domain anchors Â (refer to Section 4.2 for their definition), our method enables
Zero-Shot Stitching (Section 3.3.1), allowing to train a classifier on one language and
perform predictions on another one without any fine-tuning.
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Part IV

Applying Latent Communication
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Chapter 9

Case Studies

In this Chapter, we examine three case studies that highlight the potential impacts of
solving the LCP. The first case, discussed in Section 9.1, shows that it is possible to
create a multimodal model from unimodal models, solving CLIP-like tasks without
ever training a multimodal model. The second case, discussed in Section 9.2, analyzes
the possibility to merge latent spaces with differing sample and class compositions.
This investigation provides insights into the theoretical and practical aspects of latent
space manipulation, showcasing methods for the coherent integration of diverse
datasets, which is crucial for the enhancement of model generalization and data
utilization. Finally, the third case, outlined in Section 9.3, explores the Zero-Shot
Stitching between policies and encoders trained on different variants of the Car
Racing environment. This case study illustrates the application of LCP solutions
in RL (Reinforcement Learning), particularly in the transfer and generalization of
policies across varied environment, underscoring the potential for policy reuse in RL
methodologies.

Through these case studies, this Chapter aims to showcase the broad applicability
and significance of solving the LCP, ranging from multimodal data processing to RL.
Please refer to Section 11.2 for additional applications of LCP solutions.

9.1 ASIF: Coupled Data Turns Unimodal Models to Multi-
modal Without Training1

Large multimodal models such as CLIP (Radford et al., 2021) are rapidly becoming
the standard for foundation models in computer vision. This is largely due to their
zero-shot and open-world capabilities that enable diverse suites of downstream tasks,
from classification to detection and visual search. Still, training NNs at such scale
presents several challenges beside the obvious infrastructure and training costs. In
fact, it requires collecting massive training sets, making it difficult to interpret the
predictions of the model in light of their training data. Additionally, the training
assets are often not owned by the institution training the model.

In Norelli, Fumero, et al., 2023, we present ASIF, building on the RR framework
introduced in Chapter 4, to turn pre-trained uni-modal image and text encoders into
a multi-modal model using a relatively small2 collection of image-text pairs and no
additional training, as depicted in Figure 9.1. The resulting model is functionally
equivalent to CLIP, effectively producing aligned representations of images and their

1Antonio Norelli, Marco Fumero, Valentino Maiorca, Luca Moschella, Emanuele Rodolà, and
Francesco Locatello (2023). “ASIF: Coupled Data Turns Unimodal Models to Multimodal without
Training”. In: Thirty-seventh Conference on Neural Information Processing Systems. URL: https://
openreview.net/forum?id=XjOj3ZmWEl

2CLIP (Radford et al., 2021) experiments used from 400M to 15M captioned images as training
samples, LiT (Zhai et al., 2022b) from 901M to 10M. ASIF uses 1.6M.

https://openreview.net/forum?id=XjOj3ZmWEl
https://openreview.net/forum?id=XjOj3ZmWEl
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CLIP LiT ASIF

FIGURE 9.1: ASIF aligns latent spaces of frozen pre-trained encoders.

captions. The key insight is that captions of similar images are themselves similar, and
therefore a representation crafted using just similarities to ground-truth multimodal
pairs is quasi modality-invariant.

TABLE 9.1: Zero shot classification accuracy of different multimodal
designs. CLIP and LiT implementations vary by dataset and the visual

transformer used as image encoder.

Method Dataset size ImageNet CIFAR100 Pets ImageNet v2

CLIP Radford et al., 2021 400M (private) 68.6 68.7 88.9 -
CLIP Radford et al., 2021 15M (public) 31.3 - - -
LiT Zhai et al., 2022b 10M (public) 66.9 - - -
CLIP Zhai et al., 2022b 901M (private) 50.6 47.9 70.3 43.3
LiT Zhai et al., 2022b 901M (private) 70.1 70.9 88.1 61.7

ASIF (sup vis. encoder) 1.6M (public) 60.9 50.2 81.5 52.2
ASIF (unsup vis. encoder) 1.6M (public) 53.0 46.5 74.7 45.9

As shown in Table 9.1, despite the simplicity of the approach, a multimodal dataset
that is up to 250 times smaller than in prior work, and the lack of actually training
the model on multimodal data; ASIF achieves zero-shot classification accuracy on
downstream datasets that is comparable to CLIP (Zhai et al., 2022b; Radford et al.,
2021). For a comprehensive overview and discussion, please consult Norelli, Fumero,
et al., 2023. The key points are summarized as follows:

• The introduction of ASIF, a method that transforms two pre-existing frozen
unimodal encoders into an interpretable multimodal model.

• The demonstration of ASIF efficacy in zero-shot image classification tasks,
exhibiting comparable performance to CLIP while requiring significantly fewer
image-text pairs.



9.2. From Charts to Atlas: Merging Latent Spaces into One 61

9.2 From Charts to Atlas: Merging Latent Spaces into One3

In Crisostomi, Cannistraci, et al., 2023, we investigate a natural follow-up question:
when, and under what assumptions, can two latent spaces be merged into one? In
principle, given two comparable representations that may partially overlap, or be
entirely disjoint, it should be possible to generate a unified representation in which
both coexist consistently. We refer to this problem as Latent Space Aggregation. Space
aggregation raises several questions on (i) the representational power of the unified
representation space, (ii) its ability to accommodate both spaces without collisions,
and (iii) its robustness to complementary information present in only one of the two
spaces. In fact, naively aggregating the sample representations by computing their
mean in absolute coordinates would not account for the different latent configurations
caused by the factors ϕ, resulting in an inconsistent aggregation of different entities
based on spurious random factors.

X̃ ỸX̃rel ỸrelRLSA(X̃rel, Ỹrel)

d(·, 2)d(·, 2)d(·, 2)

d(·, 1)d(·, 1)d(·, 1)

FIGURE 9.2: Relative Latent Space Aggregation description. Given
two absolute spaces X̃ and Ỹ, we first project these spaces into two
comparable RRs X̃rel, Ỹrel. Then, we combine these representations

into a single, unified relative space RLSA(X̃rel, Ỹrel).

Motivated by the above challenges, we propose RLSA (Relative Latent Space
Aggregation) illustrated in Figure 9.2. The approach involves two steps: we first
switch to a RR (Chapter 4) where the latent spaces are represented with respect to a
set of anchors A, and then aggregate the obtained representations of shared samples
by computing their mean. The first step makes the spaces comparable, enabling a
meaningful aggregation of samples that are common to multiple latent spaces, at the
same time avoiding collisions.

To test the RLSA framework, we partition a classification dataset into multiple
learning tasks. These tasks can vary in terms of class composition, such as covering
disjoint subsets of classes, or in sample composition, such as being sampled with
different class distributions. These diverse tasks enable us to train task-specific
models, extract their latent spaces, and subsequently examine their aggregation. We
consider three different cases: (i) tasks sharing a set of samples, (ii) tasks sharing the
same classes but disjoint sample sets, and (iii) tasks disjoint both at the class and at
the sample level. In the first case, we select the anchors from the shared samples,
while in the disjoint scenarios they are sampled from unseen samples in the training
dataset. We then analyze the quality of the aggregation by (i) comparing it to the
space of an end-to-end model trained on all the tasks, (ii) assessing the performance

3Donato Crisostomi, Irene Cannistraci, Luca Moschella, Pietro Barbiero, Marco Ciccone, Pietro Lio,
and Emanuele Rodolà (2023). “From Charts to Atlas: Merging Latent Spaces into One”. In: NeurIPS
2023 Workshop on Symmetry and Geometry in Neural Representations. URL: https://openreview.net/
forum?id=ZFu7CPtznY

https://openreview.net/forum?id=ZFu7CPtznY
https://openreview.net/forum?id=ZFu7CPtznY
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TABLE 9.2: Relative Latent Space Aggregation classification accuracy
comparison. Each quarter shows a dataset-model combination, with
end-to-end model accuracy on the right. For each S (shared classes),
N (novel classes) combination, we report the accuracy of a classifier
trained on the aggregated space over all the classes (total), along with
accuracy when considering only non-shared and shared classes. Improv
is the improvement over the end-to-end model, reported in the header,

while vanilla the accuracy of naive merging.

S N tasks vanilla non-shared shared total improv vanilla non-shared shared total improv

CI
FA

R1
00

VanillaCNN 0.39 EfficientNet 0.70

80 10 2 0.36 0.60 0.39 0.43 +0.04 0.68 0.80 0.71 0.73 +0.02
60 10 4 0.39 0.64 0.45 0.53 +0.14 0.72 0.82 0.76 0.79 +0.08
40 10 6 0.42 0.64 0.50 0.58 +0.19 0.75 0.87 0.80 0.84 +0.14
20 10 8 0.47 0.65 0.52 0.62 +0.23 0.80 0.88 0.84 0.87 +0.17

80 5 4 0.37 0.77 0.41 0.49 +0.10 0.71 0.84 0.72 0.75 +0.05
60 5 8 0.39 0.71 0.45 0.55 +0.16 0.76 0.85 0.78 0.81 +0.11
40 5 12 0.44 0.74 0.49 0.64 +0.25 0.80 0.90 0.80 0.86 +0.16
20 5 16 0.51 0.76 0.55 0.72 +0.33 0.83 0.93 0.83 0.90 +0.20

TI
NY

VanillaCNN 0.22 EfficientNet 0.69

100 25 4 0.22 0.37 0.23 0.30 +0.08 0.68 0.75 0.71 0.73 +0.05
50 25 6 0.24 0.36 0.36 0.36 +0.14 0.72 0.77 0.74 0.77 +0.08

of a classifier over the aggregated space, as reported in Table 9.2, and (iii) quantifying
the separability of the classes within it.

For a complete description of the experiments and results, refer to Crisostomi,
Cannistraci, et al., 2023. To summarize, the main contributions are three-fold:

1. The introduction of a novel framework for Latent Space Aggregation, which, for
the first time, enables the merging of different latent spaces without requiring
weight averaging, sharing, or any model-specific details.

2. The evaluation of the proposed framework on aggregating tasks sharing sam-
ples, classes, or neither, assessing representational power, class separability, and
similarity to the global space.

3. The analysis of the improved performance on class-disjoint tasks, empirically
demonstrating that it is a natural consequence of utilizing task-specific embed-
ders.
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9.3 Zero-Shot Stitching in Reinforcement Learning4

In the domain of RL, it is commonplace to train agents from scratch in an end-to-end
manner, training both the feature extractor and the policy together. This methodology,
while effective for singular tasks, presents scalability challenges both when agents
need to adapt to multiple tasks within the same environments and when the same
task must be tackled across environment variations.

FIGURE 9.3: The modified version of the Car Racing environment,
where we can change the color of the background.

An example of this challenge is illustrated in Figure 9.3, where we would like to
train a policy that drives the car in one environment, and reuse it across variations of
that environment without retraining. Ideally, a model trained on a specific task would
maintain its policy while being able to substitute its encoder for another, thereby
facilitating adaptation to environmental changes – such as varying weather conditions
– without the need for retraining the policy. Driven by this insight, our investigation
fully described in Ricciardi et al., 2023, and similar concurrent work (Jian et al., 2023),
leverage RRs (Chapter 4) to prove the feasibility of Zero-Shot Stitching (Section 3.3.1)
between encoders and policies trained on different environmental variations.

TABLE 9.3: Episode maximum return comparing in stitching. Encoder
(rows) and policy (columns) colors represent the track background on

which that module was trained on.

Policy ↑

green red blue yellow

Rel Abs Rel Abs Rel Abs Rel Abs

En
co

de
r green 714 ± 288 863 ± 109 840 ± 94 7 ± 0.7 870 ± 84 26 ± 4 685 ± 237 12 ± 4

red 774 ± 275 19 ± 3.8 692 ± 251 829 ± 116 288 ± 105 7 ± 0.7 638 ± 235 7 ± 0.7
blue 256 ± 163 7 ± 1 307 ± 124 7 ± 0.6 690 ± 200 759 ± 288 556 ± 71 8 ± 3

yellow 713 ± 204 7 ± 0.7 678 ± 81 33 ± 4 167 ± 66 26 ± 4 675 ± 233 874 ± 85

The preliminary exploration was carried out within a modified version of the
CarRacing environment, featuring a discrete action space and the capability to alter
the background color. We trained end-to-end agents, employing a conventional CNN
as feature extractor, paired with a policy module. The empirical results, reported
in Table 9.3, show that by employing RRs, a policy trained in conjunction with
an encoder under a specific background color setting can be effortlessly used in a
different background scenario with the corresponding encoder; resulting in minimal
to no degradation in performance.

4Antonio Pio Ricciardi, Valentino Maiorca, Luca Moschella, and Emanuele Rodolà (2023). “Zero-
shot stitching in Reinforcement Learning using Relative Representations”. In: Sixteenth European
Workshop on Reinforcement Learning. URL: https://openreview.net/forum?id=4tcXsImfsS1

https://openreview.net/forum?id=4tcXsImfsS1
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Chapter 10

Conclusions

In this dissertation, we introduced the LCP (Latent Communication Problem) frame-
work, as formalized in Chapter 3 and illustrated in Figure 3.1. It is a novel, unifying
approach that recognizes the presence of unobservable abstract manifolds, represent-
ing the underlying semantics of data. These manifolds become observable when
embedded in high-dimensional spaces, such as images, texts, or latent spaces. The
objective of the LCP is to identify two specific transformations, TX and TY, that mod-
ify the entire latent spaces to align the manifolds within them. This framework has
allowed us to reinterpret several of our recent works, Cannistraci, Moschella, Fumero,
et al., 2024; Cannistraci, Moschella, Maiorca, et al., 2023; Crisostomi, Cannistraci,
et al., 2023; Maiorca* et al., 2023; Moschella*, Maiorca*, et al., 2023; Norelli, Fumero,
et al., 2023; Ricciardi et al., 2023, from a new, unifying perspective.

Throughout this manuscript, we have showcased these methodologies to tackle
the challenges presented by the LCP, building upon the foundational concepts intro-
duced in the initial problem formalization. Our research spans from the exploration
of universal representations (Chapter 4) and direct translation (Chapter 5), as well as
overcoming inherent methodological limitations. These efforts include eliminating
the need to know the specific transformation class relating different spaces (Chap-
ter 7) and dealing with the limited available semantic correspondence between data
domains (Chapter 8).

Indeed, beyond theoretical considerations, solving the LCP offers tangible bene-
fits, as described in Section 3.3. One of the most salient outcomes is the concept of
model compositionality through Zero-Shot Model Stitching (Section 3.3.1). This inno-
vative methodology ensures that neural architectures can function as modular units,
facilitating their reuse without the necessity for extensive retraining or fine-tuning.
Furthermore, LCP solutions allow the direct comparisons between independently
obtained latent spaces. Therefore, when an appropriate reference model is avail-
able, they provide a quantitative latent measure of performance (Section 3.3.2), which
is often differentiable, and is correlated with standard performance measures such
as accuracy on downstream tasks. Finally, it supports the development of advanced
retrieval systems (Section 3.3.3) that leverage independently computed representations.
This enables the retrieval of data points from one space using queries from another,
eliminating the need for a shared training dataset. We illustrate these advantages with
three detailed case studies in Chapter 9, covering diverse fields, including Computer
Vision, Natural Language Processing and Reinforcement Learning.

This dissertation concludes with a brief overview of its impact on the broader field
in Chapter 11, along with a discussion of the limitations, future research directions,
and opportunities introduced by our works, detailed in Chapter 12.
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Chapter 11

Contributions to the field

This Section delineates our contributions to the broader field, underscoring its adop-
tion and impact across a diverse array of academic venues. The UniReps: Unifying
Representations in Neural Models workshop at NeurIPS 2023, which our team co-
organized, attests the significance and timeliness of our work (Section 11.1). Moreover,
our research has been recognized and further developed in numerous preprints, peer-
reviewed journals and articles presented at leading conferences (Section 11.2).

11.1 UniReps Workshop: Unifying Representations in Neural
Models

The concept of Latent Communication has been a central theme at the NeurIPS 2023
workshop titled “UniReps: Unifying Representations in Neural Models”, which our
team co-organized, and where I had the honor of serving as a Program Chair.

The workshop’s mission focused on core questions about when, how, and why
different neural models converge on similar representations. This phenomenon has
piqued the interest of researchers across Neuroscience, Artificial Intelligence, and
Cognitive Science, indicating a thriving interdisciplinary field of study. It focused
on three main themes: (i) When. Understanding the patterns by which these similar-
ities emerge in different neural models and developing methods to measure them;
(ii) Why. Investigating the underlying causes of these similarities in neural represen-
tations, considering both artificial and biological models; (iii) What for. Exploring and
showcasing applications in modular deep learning, including model merging, reuse,
stitching, efficient strategies for fine-tuning, and knowledge transfer between models
and across modalities.

The workshop’s success is underscored by its substantial engagement and out-
comes, demonstrating widespread interest in Latent Communication. It attracted 800+
attendees and received 90+ submissions, supported by a program committee of 150+
experts. Featuring invited talks from leading researchers in both industry (such as
DeepMind, Anthropic) and academia (including UCSB, Princeton), the workshop was
also sponsored by notable entities like Google DeepMind, Gatsby, and Translated.

11.2 Works by other researchers

This Section is dedicated to showcasing the influence and impact of our methodolo-
gies, briefly describing how they have been adopted, adapted, and extended by other
researchers.

State of the art in WVLP. C. Chen et al., 2023 “proposes a relative representation-
based WVLP (Weakly Supervised Vision-and-Language Pretraining) framework
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that can both retrieve and generate weakly aligned image-text pairs for learning
cross-modal representations” that “outperforms strong Weakly Supervised Vision-
and-Language Pretraining baselines and further closes the performance gap between
Weakly Supervised Vision-and-Language Pretraining and standard VLP”.

Generalizing Task Semantics Across Language Models. Z. Wu, Y. Wu, and Mou,
2024 “addresses a novel setting of zero-shot continuous prompt transfer, which allows
for the reuse of continuous prompts across different language models”; suggesting
“an encode-then-search strategy that maps a continuous prompt into a relative space
for transfer between language models”.

Understanding Shared Speech-Text Representations. G. Wang et al., 2023 employs
relative representations to reveal that the shared encoder learns a more compact and
overlapping speech-text representation than the uni-modal encoders.

Policy Stitching: Learning Transferable Robot Policies. Jian et al., 2023 generalizes
relative representations to enable “Policy Stitching, a model-free reinforcement learn-
ing framework for robot transfer learning among novel robot and task combinations”
demonstrating clear advantages “in both zero-shot and few-shot transfer learning
through simulated and physical 3D manipulation tasks”.

Relative Representations for Cognitive Graphs. Kiefer and Buckley, 2024 extends
“relative representations to discrete state-space models, using Clone-Structured Cog-
nitive Graphs (CSCGs)”; showing that “the probability vectors computed during
message passing can be used to define relative representations on CSCGs” enabling
effective Latent Communication across agents trained in different settings.

Model Stitching with Static Word Embeddings. Ye et al., 2024 introduces “MoSE-
CroT, a novel and challenging task for (especially low-resource) languages where
static word embeddings are available”, and proposes “a solution that leverages rela-
tive representations to construct a common space for source and target languages and
that allows zero-shot transfer for the target languages”.

Knowledge Distillation with Relative Representations. Ramos, Alampay, and
Abu, 2023 designs “a knowledge distillation scheme centered around matching the
relative representations of a student to those of a teacher” and show that the proposed
method “outperforms similar relation-based distillation approaches across a variety
of benchmarks, with results extending to transfer learning”.

Direct Alignment of Latent Spaces. Lähner and Moeller, 2023 proposes, concur-
rently to the work presented in Chapter 5, “the theory that semantically related latent
spaces even of very different network architectures are related by a linear transforma-
tion” and demonstrates that “aligning the latent space with a linear transformation
performs best while not needing more prior knowledge”.

Boosting Visual-Language Models. H. Wang et al., 2023 employs relative repre-
sentations to “propose a novel hard sample selection technique for the identification
of hard negative samples” and “consistently improve CLIP model checkpoints by
finetuning”.
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Chapter 12

Limitations and Future Directions

In this Section, we summarize some open questions and potential avenues for future
research based on the contributions presented in this dissertation. Our work has laid
a strong foundation in the LCP framework, opening several pathways for further
exploration and development. In the following paragraphs, we outline some of the
most promising directions.

Modular Neural Components. Our exploration of Latent Communication paves the
way for leveraging neural models in a modular, compositional fashion, potentially cir-
cumventing the exhaustive fine-tuning or retraining currently prevalent. Yet, bridging
the performance gap across training modalities – especially between zero-shot and
fine-tuning approaches – remains an elusive challenge. This disparity is particularly
pronounced in industrial ML applications, where performance maximization often
comes at the expense of computational efficiency. Our Zero-Shot Stitching methodol-
ogy offers a partial solution; however, the quest for models that adapt dynamically to
changes in feature representation with minimal retraining persists. Future research
might focus on self-adjusting mechanisms akin to Test-Time Training (Sun et al., 2020;
D. Wang et al., 2020), integrated with Latent Communication strategies, to address
this gap.

Latent Communication without Semantic Correspondence. The dependency on
initial seed anchors for parallel domains limits the current scope of Latent Communi-
cation. Removing this constraint could involve developing unsupervised methods for
identifying parallel anchors or methods for learning the anchors from the data. The
Gromov-Wasserstein distance (Mémoli, 2011) presents a promising theoretical under-
pinning for such methods, e.g., potentially revolutionizing cross-domain retrieval
systems by eliminating the need for parallel data.

Latent Communication on sequences. Currently, we have devised solutions for
the LCP when samples can be represented as a single embedding, i.e., a point in a
high-dimensional space. An interesting direction could be to solve the LCP natively
on sequences, e.g., by considering the latent space of a sequence of embeddings. This
would allow a more natural handling of sequential data, such as textual embeddings,
without the need to aggregate all the token embeddings into a single one (e.g.,
considering the final token, the CLS or the mean of the token embeddings). However,
this would require the use of a similarity function that can compare embedding
sequences, or the development of novel methods to achieve LCP in this context.

Neural Networks Inspection. Solutions to the LCP could be used to analyze the
latent spaces of NNs, e.g., providing insights into the evolution of the representations
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during training. They could be an interesting tool to understand when and how
NNs develop or refine their ability to represent information. Indeed, it is yet to be
understood how the latent spaces evolve during training, and there are a variety
of phenomenon (e.g., emergent abilities (Wei et al., 2022), neural collapse (Papyan,
X. Y. Han, and Donoho, 2020), double descent (Nakkiran et al., 2019)) that could be
investigated exploiting the LCP framework and a known reference model, inspired
by Section 3.3.2.

Partial Latent Communication. Requiring a full alignment of the manifold embed-
dings might be too restrictive in some scenarios, e.g., in cases where the two data
distributions are only partially semantically overlapping. In these cases, it would be
interesting to develop methods for Partial Latent Communication to align only a subset
of the data manifolds. Similar techniques could be used to ensure the best alignment
for a particular subset of the data of interest, such as particular classes or categories.

Representation Interpretability. The framework of RRs offers a novel lens for repre-
sentation interpretability, associating specific meanings with each dimension through
the anchor semantic. This could be further exploited by more tailored similarity
functions, e.g., by performing a change of basis to obtain a more interpretable RR.
This would allow interpreting the dimensions of the representation as the directions
in the data space associated with specific semantic concepts, defined by the anchor,
thus providing a more intuitive understanding of the latent space.

Learnable Similarity Functions. The framework described in Chapter 4 allows
incorporating invariances into the latent representation, exploiting specific similarity
functions. Moreover, in Chapter 7 we have shown how to extend it to infuse a set of
invariances, instead of a single one. Nevertheless, this can still be limiting when the
similarity function that induces an invariance to T cannot be modeled analytically or
expressed in closed form. In such cases, an interesting direction would be to learn the
desired similarity function d.

Geodesic Relative Representations. Another fascinating line of research to improve
the representation expressivity would be to estimate geodesic distances over the data
manifold, instead of adopting distances in the ambient spaces. This could allow
defining RRs that better capture the intrinsic structure of the data, especially when
the manifold embedding is complex. However, this would require the development
of innovative methods for efficient geodesic estimation in high-dimensional spaces.

Higher Order Relative Representations. The RR framework is currently limited to
employ pairwise similarity functions, i.e., it can only capture first-order relationships
between data points. In practice, this means that there can be only one anchor
associated with each dimension. Extending it to higher-order n-way relationships,
e.g., by considering triplets or quadruplets, could allow capturing more complex
relationships between data points, and thus provide a more expressive representation.

Anchors selection methods. The interplay between anchor composition and the
expressiveness of RRs warrants further investigation. Questions surrounding optimal
anchor selection and the necessary number of anchors remain mostly unanswered.
Developing methodologies for selecting anchors – guided by considerations of data
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distribution, transformation classes, or specific tasks – stands as a significant frontier
for future research.

Weights Similarity. Throughout this dissertation, we have explored the emerging
similarities in the latent spaces of NNs. At the same time, a growing body of research
has focused on emerging similarities between networks in the weight space, and
how to exploit them (Ainsworth, Hayase, and Srinivasa, 2023; Ilharco et al., 2023;
Ortiz-Jimenez, Favero, and Frossard, 2023; Ramé et al., 2023; Entezari et al., 2022;
Matena and Raffel, 2022; Wortsman et al., 2022; Frankle et al., 2020; Singh and Jaggi,
2020; Tatro et al., 2020). An exciting research direction would be to investigate the
relationship between the latent spaces and the weights of the models, answering the
following question: “Are NNs with similar latent spaces also similar in the weight
space?”

Automatic Data Curation. Data-centric AI and automatic data curation are experi-
encing rapid growth. This evolution underscores a realization: the “quantity” is not
the sole determinant of AI performance. Rather, the “quality” of data plays a crucial,
if not more significant, role in enhancing the training processes, boosting model
performance, and optimizing model size. Within this context, the LCP methodology
emerges as a powerful tool. It introduces a paradigm shift by employing trained
models not just for predictions, but as a means to critically assess and ensure the
quality of datasets – for instance, automating the process of identifying and elimi-
nating noisy data alignments. This direction holds considerable promise for future
research, particularly when dealing with multimodal data, where aligning diverse
data modalities presents considerable challenges.
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Appendix A

Universal Representations

A.1 Anchors analysis

The cardinality of the anchors set A and the choice of specific anchors is crucial
to the quality of the relative representations. At the extreme, selecting one single
anchor or the same repeated data points for all anchors, will produce collapsed
relative representations. We believe that additional research is required to obtain a
better understanding on the optimal choice for A. Questions like “Are anchors set
composed only by stopwords worse than the ones composed by meaningful and
diverse words?” require empirical evidence and could help revealing the semantics
of the latent space. Indeed, each anchor is associated with a dimension in a relative
representation; one could inspect the anchor data point to get a sense of the meaning
of that latent dimension.

Anchor number. Below, we report a preliminary study on the performance sensitiv-
ity against the cardinality of the anchors set. In Figure A.1 we report the performance
on the node classification task on Cora, with a model trained end-to-end adopt-
ing the relative representations while training, and on image classification tasks on
CIFAR-100, with a frozen encoder. The performance improves monotonically as the
number of anchors increase when the absolute representations are frozen (right). Dif-
ferently, training models end-to-end proves to be more susceptible to model collapse
and instabilities, as increasing the number of anchors does not always improve the
performance (left). Further research on the relation between the absolute latent space
dimensionality and the relative representation dimensionality (i.e., the number of
anchors) is needed to clarify how the two quantities impact the performance, when
training end-to-end or not.

Anchor selection. In Tables A.1 and A.2, we analyze different anchor selection strate-
gies under an experimental setting analogous to the one described in Section 4.3.1:

• uniform The first selection strategy is the one adopted in Chapter 4. We ran-
domly select the anchors with a uniform probability distribution over all the
available samples.

• fps We select the anchors according to a farthest point sampling strategy.

• kmeans We select the anchors as the words more close to the centroids of
K-means clustering with K = number of anchors.

• top{k} We select the anchors as the k most frequent words, after skipping the
first 400 which are mostly stopwords.
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FIGURE A.1: Accuracy vs Number of anchors. Each point is a trained
model. Left: Trained embedder on Cora, node classification. Right:
Frozen transformer on CIFAR-100 coarse-grained, image classification.
Left is less stable because the absolute embeddings are trained, and we
are working on a domain that is less stable (graphs). Some collapsed

examples are not visualized.

We expect strategies that better cover the absolute space with anchors to be the
most effective ones. Indeed, the results are comparable across selection strategies,
but fps reaches everywhere the best Jaccard and MRR scores while k-means the
best Cosine ones. We attribute this behavior to their different nature: they both rely
on the geometry of the latent spaces they are applied to, but k-means also favors
high-density regions, and this can become a negative bias for the task at hand. In
general, the uniform sampling is the most straightforward to apply, since it does
not require additional computation for the selection process, and still achieves good
performances.

A.2 Dataset Information

In Table A.3 we summarize the datasets utilized in Chapter 4, and for each one, we
specify the number of classes, to give an idea about the classification difficulty.

A.3 Implementation Details

In this Section, following the corresponing sections in Chapter 4, we report imple-
mentation details for all the experimental settings considered.

Tools & Technologies. In all the experiments presented in this work, the following
tools were used:

• NN-Template GrokAI, 2021, to easily bootstrap the project and enforce best
practices.

• PyTorch Lightning (Falcon and The PyTorch Lightning team, 2019), to ensure
reproducible results while also getting a clean and modular codebase.

• Weights and Biases (Biewald, 2020), to log experiments and compare runs across
huge sweeps.
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• Transformers by HuggingFace (Wolf et al., 2020), to get ready-to-use transformers
for both text and images.

• Datasets by HuggingFace (Lhoest et al., 2021), to access most of the NLP datasets
and ImageNet for CV.

• DVC (Kuprieiev et al., 2023), for data versioning.

• PyTorch Geometric (Fey and Lenssen, 2019), to handle graph datasets and get
ready-to-use GNN architectures.

A.3.1 Word Embeddings

For both the Figure and the Table in Section 4.3.1, the number of anchors is set to 300
for a fair comparison with the dimensionality of the original spaces. For visualization
purposes, we needed the figure to both show an easy clusterable and restricted set of
word embeddings. They are obtained by subsampling the shared vocabulary with
the following procedure: we select 4 random pivot words, and for each of them we
consider the top-200 words in their neighborhood. This results in a total of 800 points
divided in 4 clusters, the ones used only for the visualization part. For the quantitative
part (table results), we select 20K random words from the shared vocabulary with a
fixed seed for reproducibility purposes.

For the computer vision counterpart (Figure A.5 and table A.2), the procedure is
similar but with the following differences: (i) the number of anchors is set to 500 to
balance between the different encoding dimensions of the two transformers (384 for
ViT-S/16 and 768 for ViT-B/16); (ii) the subsampling for visualization purposes is
done by selecting 4 classes and randomly picking 200 samples for each of them;

Evaluation metrics. Consider the source space X̃′ and target space Ỹ′ and a set of
≈ 20k samples S ⊆ (X ∩ Y) (words for the NLP test, images for the CV one); for
any sample s ∈ S, we compute its representation in X̃′ and Ỹ′ through the functions
fX̃′ : S → X̃′ and fỸ′ : S → Ỹ′ (e.g. f can be the encoder composed with a relative
proejction) and define the metrics as follows:

Jaccard(s) =
|KNNX̃′

k ( fX̃′(s)) ∩ KNNỸ′
k ( fX̃′(s))|

|KNNX̃′
k ( fX̃′(s)) ∪ KNNỸ′

k ( fX̃′(s))|

MRR(s) =
1

RankỸ′( fX̃′(s), fỸ′(s))

Cosine(s) =
fX̃′(s) · fỸ′(s)

∥ fX̃′(s)∥∥ fỸ′(s)∥

where KNNS
k (v) is a function that returns the k-top similar samples (according to

cosine similarity) to v in the space S, and RankS(v, u) is a function that returns the
index at which u is found in the ordered KNNS

k (v). The final score for each metric is
the mean over each s ∈ S.

A.3.2 Relative representation space correlations

In this Section, we analyze how similarities in absolute and relative spaces are corre-
lated. Let us consider two spaces alignable in the relative space. We denote elements
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of the spaces with A ∈ Rm1×n1 and B ∈ Rm2×n2 and corresponding relative embed-
dings with C ∈ Rm1×d, D ∈ Rm2×d. Examples of A and B can be the FastText and
Word2Vec word embedding spaces. We already observed in Table 4.1 how the spaces
A and B are well aligned in the relative space. We can go further and analyze how
self similarities in each space are preserved by the relative transform. In Figure A.2,
we show that relative representations not only facilitate latent communication, but
also preserve the underlying (absolute) latent space metric up to a certain degree.

FIGURE A.2: Self similiarities correlations between each space, mea-
sured with the Pearson correlation coefficient. In blue, we denote the
self similarities in the absolute spaces A, B of FastText and Word2Vec;
in green we depict the relative spaces C, D. The correlation in the ver-
tical arrows indicate how much the underlying metric in the abolute

space is preserved by the relative coordinate transformation.

A.3.3 Latent distance as a performance proxy

The hyperperameters used in Section 4.3.2 are summarized in Table A.4.

A.3.4 Training with Absolute vs. Relative Representations

The models trained on relative representations do not backpropagate through the
anchors, which encourages a smoother optimization of the anchors’ representations.

Image Classification. The architecture is a standard deep CNN. We run a sweep for
each dataset where we vary only the random seed (over 10 possible in total). We then
aggregate by dataset and encoding type to obtain the final results with their standard
deviation.

Graph Classification. We run a sweep identical to the one in Table A.4 for the
reference model, except that we sweep on the “Number of layers” with two values:
32 and 64. Each configuration is repeated with 10 different seeds, then we aggregate
by dataset and encoding type to obtain the final results with their standard deviation.

A.3.5 Image Reconstruction

The relative and absolute models appearing in Figure 4.4 are vanilla AEs and VAEs,
the same for all the datasets, and have a comparable number of trainable parameters.
Their architecture is composed by simple convolutions, deconvolutions and mean
squared error as reconstruction loss. The number of anchors is 500 and the latent
dimensionality of the absolute representations is 500.
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A.3.6 Text Classification

We report in Tables A.5 to A.7 details on the transformers and anchors adopted in
Section 4.4.2.

Preprocessing. Following the original work in which the Amazon Reviews dataset
was proposed (Keung et al., 2020), we utilize both the title and body of each review.
We differ in not using the category and in how we merge them; namely, we add the
title as prefix for the body and add a full stop as separator when needed (avoiding
duplicates). To obtain a single latent encoding for each sample, with fixed shape, we
take the last hidden state and select the representation corresponding to the [CLS]
token.

Wikipedia anchors. We use WikiMatrix, a corpus of sentences extracted from Wiki-
pedia. The sentences are parallel between pairs of languages (i.e., same sentences
translated in two languages), and since we are looking for a collection of parallel
anchors between all 4 languages, we decided to use the English language as a pivot
to compute the intersection. To get the final results, we considered only the sentences
with margin score ≥ 1.06, getting high-quality sentence alignments. In Table A.7 we
show the total number of parallel sentences when computing the intersections. We
randomly selected 768 samples to use as anchors.

A.3.7 Image Classification

The details of the transformers used in Section 4.4.3 are summarized in Table A.8.

A.4 Additional results

In this Section we report additional results on the correlation between latent similar-
ity and performance in Figure A.3, results on the multilingual stitching both with
Amazon coarse-grained in Table A.9 and fine-grained in Table A.10, results on the
image classification stitching on CIFAR-100 fine-grained in Table A.12. Moreover, we
evaluate the stitching performance of a multilingual transformer in Table A.11.
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FIGURE A.3: Correlations between performance and latent similarity
with the reference model for multiple different models, over time.
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FIGURE A.4: Same encodings as in Table 4.1 (left) but with tSNE (left)
dimensionality reduction or visualizing only their first two dimensions

(right).
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TABLE A.1: Extended results from Section 4.3.1 with different anchor
selection strategies. The table reports the mean score for each metric

and its std across 10 different seeds.

Mode Type Source Target Jaccard ↑ MRR ↑ Cosine ↑
un

if
or

m A
bs

ol
ut

e FastText
FastText 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Word2Vec 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

Word2Vec
FastText 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
Word2Vec 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

R
el

at
iv

e FastText
FastText 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Word2Vec 0.34 ± 0.01 0.94 ± 0.00 0.86 ± 0.00

Word2Vec
FastText 0.39 ± 0.00 0.98 ± 0.00 0.86 ± 0.00
Word2Vec 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

fp
s A

bs
ol

ut
e FastText

FastText 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Word2Vec 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

Word2Vec
FastText 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
Word2Vec 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

R
el

at
iv

e FastText
FastText 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Word2Vec 0.34 ± 0.01 0.94 ± 0.00 0.81 ± 0.00

Word2Vec
FastText 0.41 ± 0.00 0.98 ± 0.00 0.83 ± 0.00
Word2Vec 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

km
ea

ns A
bs

ol
ut

e FastText
FastText 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Word2Vec 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

Word2Vec
FastText 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
Word2Vec 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

R
el

at
iv

e FastText
FastText 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Word2Vec 0.35 ± 0.00 0.94 ± 0.00 0.87 ± 0.00

Word2Vec
FastText 0.39 ± 0.00 0.97 ± 0.00 0.87 ± 0.00
Word2Vec 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

to
p1

00
0

A
bs

ol
ut

e FastText
FastText 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Word2Vec 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

Word2Vec
FastText 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
Word2Vec 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

R
el

at
iv

e FastText
FastText 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Word2Vec 0.27 ± 0.01 0.84 ± 0.01 0.85 ± 0.00

Word2Vec
FastText 0.35 ± 0.01 0.97 ± 0.00 0.85 ± 0.00
Word2Vec 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

to
p5

00
0

A
bs

ol
ut

e FastText
FastText 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Word2Vec 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

Word2Vec
FastText 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
Word2Vec 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

R
el

at
iv

e FastText
FastText 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Word2Vec 0.32 ± 0.00 0.92 ± 0.00 0.86 ± 0.00

Word2Vec
FastText 0.38 ± 0.00 0.97 ± 0.00 0.86 ± 0.00
Word2Vec 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

to
p1

00
00 A
bs

ol
ut

e FastText
FastText 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Word2Vec 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

Word2Vec
FastText 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
Word2Vec 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

R
el

at
iv

e FastText
FastText 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Word2Vec 0.34 ± 0.00 0.93 ± 0.00 0.86 ± 0.00

Word2Vec
FastText 0.39 ± 0.01 0.97 ± 0.00 0.86 ± 0.00
Word2Vec 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
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TABLE A.2: Generalization of the results from Section 4.3.1 on word
embeddings to a different data modality, with different anchor selec-
tion strategies (See Appendix A.1 for their description). The dataset
considered is CIFAR-10, and the table reports the mean score for each

metric and its std across 10 different seeds.

Mode Type Source Target Jaccard ↑ MRR ↑ Cosine ↑

un
if

or
m A
bs

ol
ut

e ViT-B/16 ViT-B/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
ViT-S/16 - - -

ViT-S/16 ViT-B/16 - - -
ViT-S/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

R
el

at
iv

e ViT-B/16 ViT-B/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
ViT-S/16 0.11 ± 0.00 0.27 ± 0.01 0.97 ± 0.00

ViT-S/16 ViT-B/16 0.11 ± 0.00 0.30 ± 0.01 0.97 ± 0.00
ViT-S/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

fp
s A

bs
ol

ut
e ViT-B/16 ViT-B/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

ViT-S/16 - - -

ViT-S/16 ViT-B/16 - - -
ViT-S/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

R
el

at
iv

e ViT-B/16 ViT-B/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
ViT-S/16 0.12 ± 0.00 0.37 ± 0.01 0.96 ± 0.00

ViT-S/16 ViT-B/16 0.12 ± 0.00 0.39 ± 0.01 0.96 ± 0.00
ViT-S/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

km
ea

ns A
bs

ol
ut

e ViT-B/16 ViT-B/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
ViT-S/16 - - -

ViT-S/16 ViT-B/16 - - -
ViT-S/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

R
el

at
iv

e ViT-B/16 ViT-B/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
ViT-S/16 0.11 ± 0.00 0.25 ± 0.01 0.97 ± 0.00

ViT-S/16 ViT-B/16 0.10 ± 0.00 0.27 ± 0.00 0.97 ± 0.00
ViT-S/16 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

TABLE A.3: All the datasets utilized in Chapter 4 with their number of
classes.

Dataset Number of Classes

Im
ag

e

MNIST 10
Fashion MNIST 10
CIFAR-10 10
CIFAR-100 20 (coarse) | 100 (fine)
ImageNet1k 1000

G
ra

ph Cora 7
CiteSeer 6
PubMed 3

Te
xt

TREC 6 (coarse) | 50 (fine)
DBpedia 14
Amazon Reviews 2 (coarse) | 5 (fine)
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TABLE A.4: The reference model and exhaustive hyperparameter
combinations pertaining Section 4.3.2.

Hyperparameter Reference Model Sweep

Seed 1 0, 1, 2, 3, 4
Epochs 500 10, 30, 50
Number of layers 32 32, 64
Dropout Probability 0.5 0.1, 0.5
Hidden Activations ReLU ReLU, Tanh
Convolution Activation ReLU ReLU, Tanh
Optimizer Adam Adam, SGD
Learning Rate 0.02 0.01, 0.02
Graph Embedder GCNConv GCNConv, GINConv

TABLE A.5: The HuggingFace transformers models employed in Sec-
tion 4.4.2 to tackle the Cross-lingual setting.

Language HuggingFace transformers name Encoding Dim

English roberta-base 768
Spanish PlanTL-GOB-ES/roberta-base-bne 768
French ClassCat/roberta-base-french 768
Japanese nlp-waseda/roberta-base-japanese 768

TABLE A.6: The HuggingFace transformers models employed in Sec-
tion 4.4.2 to tackle the Cross-architecture setting.

HuggingFace transformers name Encoding Dim

bert-base-cased 768
bert-base-uncased 768
google/electra-base-discriminator 768
roberta-base 768

TABLE A.7: WikiMatrix analysis. Each row shows the number of
parallel sentences having a translation available in all the languages of
that row. Since we consider all four languages, we have 3338 parallel

sentences available.

Languages Number of Sentences

en, es 2302527
en, ja 264259
en, fr 1682477
en, es, fr 23200
en, es, ja 147665
en, fr, ja 20990
en, es, fr, ja 3338
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TABLE A.8: Timm transformers used in Section 4.4.3.

Version Timm model name Encoding Dim Training data

ViT vit_base_patch16_224 768 JFT-300M, ImageNet
ViT vit_small_patch16_224 384 ImageNet
ViT vit_base_resnet50_384 768 ImageNet
RexNet rexnet_100 1280 ImageNet

TABLE A.9: Stitching performance comparison with different encod-
ings techniques. The table reports the mean weighted F1 (± std) and
MAE classification performance on Amazon Reviews coarse-grained,

across 5 different seeds. All the language pairs are shown.

Absolute Relative

Translated Wikipedia

Decoder Encoder FScore MAE FScore MAE FScore MAE

en

en 91.54 ± 0.58 0.08 ± 0.01 90.06 ± 0.60 0.10 ± 0.01 90.45 ± 0.52 0.10 ± 0.01
es 43.67 ± 1.09 0.56 ± 0.01 82.78 ± 0.81 0.17 ± 0.01 78.53 ± 0.30 0.21 ± 0.00
fr 54.41 ± 1.61 0.45 ± 0.02 78.49 ± 0.66 0.21 ± 0.01 70.41 ± 0.57 0.29 ± 0.01
ja 48.72 ± 0.90 0.51 ± 0.01 65.72 ± 0.55 0.34 ± 0.01 66.31 ± 0.80 0.34 ± 0.01

es

en 33.23 ± 1.00 0.66 ± 0.01 78.68 ± 2.74 0.21 ± 0.03 76.65 ± 3.23 0.23 ± 0.03
es 91.64 ± 1.02 0.08 ± 0.01 89.96 ± 0.77 0.10 ± 0.01 89.62 ± 0.94 0.10 ± 0.01
fr 47.66 ± 0.70 0.52 ± 0.01 78.57 ± 1.80 0.21 ± 0.02 75.25 ± 0.76 0.25 ± 0.01
ja 53.10 ± 2.27 0.46 ± 0.02 67.69 ± 0.24 0.32 ± 0.00 61.84 ± 0.61 0.38 ± 0.01

fr

en 51.00 ± 2.63 0.49 ± 0.03 83.32 ± 1.80 0.17 ± 0.02 75.55 ± 0.37 0.24 ± 0.00
es 51.96 ± 2.81 0.48 ± 0.03 82.50 ± 0.83 0.17 ± 0.01 77.12 ± 0.88 0.23 ± 0.01
fr 88.22 ± 0.75 0.12 ± 0.01 85.68 ± 1.37 0.14 ± 0.01 86.45 ± 0.96 0.13 ± 0.01
ja 50.32 ± 4.16 0.50 ± 0.04 69.38 ± 0.73 0.31 ± 0.01 62.79 ± 0.27 0.37 ± 0.00

ja

en 53.82 ± 2.62 0.46 ± 0.03 68.66 ± 3.62 0.31 ± 0.04 70.26 ± 3.16 0.29 ± 0.03
es 44.91 ± 2.21 0.55 ± 0.02 70.37 ± 6.94 0.29 ± 0.06 58.54 ± 1.21 0.41 ± 0.01
fr 66.46 ± 1.30 0.34 ± 0.01 76.49 ± 1.13 0.23 ± 0.01 63.94 ± 2.70 0.36 ± 0.02
ja 83.30 ± 0.67 0.17 ± 0.01 81.04 ± 0.82 0.19 ± 0.01 80.80 ± 1.25 0.19 ± 0.01

TABLE A.10: Stitching performance comparison with different en-
codings techniques. The table reports the mean weighted F1 (± std)
and MAE classification performance on Amazon Reviews fine-grained,

across 5 different seeds. All the language pairs are shown.

Absolute Relative

Translated Wikipedia

Decoder Encoder FScore MAE FScore MAE FScore MAE

en

en 65.46 ± 2.89 0.38 ± 0.02 61.18 ± 1.92 0.44 ± 0.02 62.36 ± 2.23 0.43 ± 0.02
es 22.70 ± 0.41 1.39 ± 0.03 51.67 ± 1.20 0.62 ± 0.01 45.40 ± 0.68 0.76 ± 0.01
fr 30.75 ± 0.67 1.19 ± 0.02 49.18 ± 0.83 0.69 ± 0.02 40.29 ± 0.90 0.91 ± 0.02
ja 24.85 ± 0.91 1.37 ± 0.07 37.34 ± 1.49 0.99 ± 0.02 37.73 ± 0.70 1.01 ± 0.02

es

en 21.24 ± 0.81 1.43 ± 0.07 51.02 ± 2.54 0.68 ± 0.05 47.70 ± 5.08 0.73 ± 0.10
es 61.29 ± 3.04 0.43 ± 0.02 57.89 ± 3.80 0.48 ± 0.03 57.96 ± 4.40 0.48 ± 0.03
fr 29.02 ± 0.85 1.26 ± 0.05 48.40 ± 1.02 0.71 ± 0.02 44.92 ± 1.83 0.77 ± 0.01
ja 29.23 ± 1.32 1.22 ± 0.02 37.22 ± 1.56 1.03 ± 0.04 34.56 ± 0.87 1.08 ± 0.04

fr

en 27.39 ± 1.22 1.23 ± 0.06 45.55 ± 3.55 0.76 ± 0.09 39.01 ± 1.25 0.88 ± 0.06
es 29.47 ± 3.68 1.18 ± 0.07 40.29 ± 1.72 0.90 ± 0.04 41.29 ± 2.01 0.83 ± 0.04
fr 56.40 ± 1.89 0.51 ± 0.01 53.58 ± 0.70 0.57 ± 0.01 54.23 ± 0.95 0.56 ± 0.01
ja 25.92 ± 1.31 1.25 ± 0.05 38.60 ± 1.03 0.96 ± 0.02 35.22 ± 0.56 1.08 ± 0.02

ja

en 29.36 ± 0.59 1.17 ± 0.04 38.19 ± 2.28 0.88 ± 0.03 36.57 ± 1.72 0.98 ± 0.02
es 25.64 ± 1.77 1.28 ± 0.04 34.23 ± 2.62 1.00 ± 0.05 33.16 ± 2.28 1.06 ± 0.03
fr 31.79 ± 1.91 1.06 ± 0.02 38.50 ± 2.46 0.89 ± 0.02 36.68 ± 3.14 1.00 ± 0.05
ja 54.09 ± 1.35 0.60 ± 0.02 50.89 ± 1.70 0.65 ± 0.02 51.64 ± 1.47 0.65 ± 0.02
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TABLE A.11: Stitching performance comparison on XLM-R, a multilin-
gual model by design. The table reports the mean weighted F1 (± std)
and MAE classification performance on Amazon Reviews fine-grained,

across 5 different seeds.

Absolute Relative
Decoder Encoder FScore MAE FScore MAE

en

en 65.27 ± 0.94 0.41 ± 0.01 58.24 ± 1.92 0.51 ± 0.03
es 59.55 ± 0.76 0.48 ± 0.01 52.81 ± 1.57 0.62 ± 0.02
fr 58.58 ± 1.04 0.49 ± 0.01 54.01 ± 1.34 0.59 ± 0.02
ja 57.98 ± 0.77 0.52 ± 0.01 48.47 ± 2.67 0.71 ± 0.04

es

en 60.32 ± 1.50 0.47 ± 0.01 45.69 ± 2.19 0.87 ± 0.07
es 61.25 ± 1.74 0.44 ± 0.01 57.61 ± 0.73 0.51 ± 0.01
fr 59.50 ± 1.41 0.47 ± 0.01 45.16 ± 3.30 0.83 ± 0.09
ja 58.24 ± 1.31 0.51 ± 0.02 41.14 ± 1.76 0.99 ± 0.05

fr

en 58.00 ± 4.21 0.49 ± 0.03 52.37 ± 1.66 0.66 ± 0.03
es 56.87 ± 3.79 0.49 ± 0.03 54.99 ± 0.46 0.57 ± 0.01
fr 57.99 ± 3.88 0.47 ± 0.02 57.00 ± 0.90 0.52 ± 0.01
ja 55.83 ± 3.32 0.53 ± 0.03 39.15 ± 1.21 1.02 ± 0.03

ja

en 59.53 ± 1.73 0.48 ± 0.01 39.46 ± 2.34 1.04 ± 0.07
es 57.02 ± 1.36 0.51 ± 0.00 40.74 ± 2.75 0.97 ± 0.09
fr 57.48 ± 1.06 0.51 ± 0.01 43.36 ± 3.70 0.89 ± 0.11
ja 61.43 ± 0.97 0.45 ± 0.01 57.67 ± 1.17 0.51 ± 0.01

TABLE A.12: Stitching performance comparison with different en-
codings techniques. The table reports the mean weighted F1 (± std)
classification performance on CIFAR-100 fine-grained, across 5 differ-

ent seeds.

Decoder Encoder Absolute Relative

RexNet

RexNet 72.77 ± 0.19 71.39 ± 0.18
ViT-B/16 - 40.68 ± 0.50
RViT-B/16 - 38.18 ± 0.24
ViT-S/16 - 44.11 ± 0.84

ViT-B/16

RexNet - 57.81 ± 0.39
ViT-B/16 88.69 ± 0.14 87.05 ± 0.34
RViT-B/16 1.08 ± 0.19 66.65 ± 1.79
ViT-S/16 - 73.73 ± 0.60

RViT-B/16

RexNet - 66.91 ± 0.79
ViT-B/16 1.10 ± 0.09 75.70 ± 0.68
RViT-B/16 85.85 ± 0.18 85.04 ± 0.38
ViT-S/16 - 75.52 ± 0.36

ViT-S/16

RexNet - 56.60 ± 0.39
ViT-B/16 - 70.14 ± 0.46
RViT-B/16 - 62.85 ± 1.22
ViT-S/16 84.11 ± 0.14 83.24 ± 0.13
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ViT-B/16 ViT-S/16
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ViT-B/16 ViT-S/16 ViT-B/16 ViT-S/16

FIGURE A.5: Different dimensionality reduction techniques applied
to absolute and relative spaces on CIFAR-10. From left to right: PCA
(Principal Component Analysis), tSNE, and visualizing only their
first two dimensions. Only 800 randomly sampled points are shown,

belonging to the classes "bird", "ship", "cat", and "frog".
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Appendix B

Direct Translation

B.1 Additional results

In Figure B.3, we present the outcomes of the multimodal experiment presented in
Section 5.3.2 with an MLP employed as the classification head, instead of SVMs. The
findings highlight the MLP’s capability to leverage cross-modal information, leading
to improved performance. However, the underlying mechanisms responsible for this
enhancement remain unclear and warrant further investigation.

A
cc

ur
ac

y

Method
FIGURE B.1: Cross-domain stitching on CIFAR-10 and grayscale
CIFAR-10. 84 stitched pairs (pre-trained encoder - SVM classifier)

for 5 different seeds.

In Tables B.2 and B.3 quantitative results for stitching of MLP classifiers (again,
differently from Tables 5.1 and 5.2 where SVMs are used) trained on top of pre-trained
feature extractors, with and without additional L2 normalization, respectively.

In Figures B.4 and B.5, there are additional reconstruction examples with the
same autoencoding setting as in Figure 5.6, and with additional L2 normalization,
respectively.

In Table B.1 there are more quantitative results for stitching of autoencoders, with
added L2 normalization (at training time) to the decoders of the reconstruction setting
of Table 5.3.
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R
ec

on
st

ru
ct

io
n

M
SE

Number of anchors
FIGURE B.2: Performance comparison (reconstruction error) of affine,
linear, l-ortho and ortho at varying anchor number on reconstruc-
tion task. Results on stitching 2 different CIFAR-100-trained AEs with
5 samplings for each anchor quantity. The naive absolute baseline is

flat on 0.38 as mean.

D
ec

od
er

Encoder

Encoder Score Scale

V
is

io
n

ViT-B/16 0.46 90.45
RexNet 0.38 13.46
ViT-B/16L 0.47 89.66
ViT-S/16 0.40 50.17
RViT-B/16 0.44 32.10
DarkNet 0.37 11.62

Te
xt

BERT-C 0.40 15.43
BERT-U 0.39 14.54
ELECTRA 0.27 11.94
RoBERTa 0.51 11.06
ALBERT 0.30 32.27
XLM-R 0.41 18.75

FIGURE B.3: Performance comparison between different encoders
and data modalities on the N24News multimodal dataset. On the right,
the accuracy of models trained end-to-end on a single data modal-
ity (Score) and their average norm (Scale). On the left the stitching
performance between pairs of encoders and decoder. This shows the
importance of translating from good encoders, that can even improve
unimodal decoder performances. Results obtained with 2000 anchors

and SVD, with a MLP as classification head.

B.1.1 Scale invariance

In this Section, we delve into the concept of scale invariance in NNs and its impli-
cations for model compositionality. We start by focusing on the effect of rescaling
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FIGURE B.4: Reconstruction examples grouped by dataset. Each col-
umn is a different image, from top to bottom: original image, absolute
stitching, LSS stitching, OLSS stitching, and SVD stitching. An L2 nor-

malization is applied to the decoder input.
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FIGURE B.5: Additional reconstruction examples grouped by dataset.
Each column is a different image, from top to bottom: original image,
absolute stitching, LSS stitching, OLSS stitching, and SVD stitching. In
the first row, no additional normalization is applied on the decoder

input; in the second row, an L2 normalization is applied instead.

TABLE B.1: Zero-shot stitching for generation. With SVD for estimating
T̂ and standard scaling as pre-processing. An L2 normalization is
applied to the decoder input. We report the latent cosine similarity
(lcos) and MSE (lmse) between the target encoding and the translated
one, but also the reconstruction MSE (rmse) between the input and the

output.

MNIST F-MNIST CIFAR-10 CIFAR-100

lcos lmse rmse lcos lmse rmse lcos lmse rmse lcos lmse rmse

Abs. 0.39 0.98 0.28 0.53 0.97 0.33 0.62 1.23 0.46 0.59 1.17 0.38
affine 0.99 0.15 0.01 0.99 0.16 0.03 0.99 0.16 0.04 0.99 0.12 0.05
linear 0.98 0.17 0.01 0.98 0.18 0.03 0.99 0.16 0.04 0.99 0.13 0.05
l-ortho 0.89 0.41 0.02 0.91 0.41 0.04 0.96 0.39 0.05 0.93 0.30 0.08
ortho 0.97 0.21 0.02 0.97 0.23 0.03 0.99 0.21 0.05 0.96 0.22 0.07

operations on the latent input encodings and demonstrate that, by construction, cer-
tain classifiers exhibit scale-invariance properties without the need for additional
priors. Then, by examining the behavior of networks when subjected to a specific
type of input manipulation, rescaling injection, we aim to demonstrate the robustness
and versatility of NNs in handling different scales of input data. As illustrated in
Chapter 5, this is a key advantage in improving the adaptability of our method.
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TABLE B.2: Cross-architecture stitching with various methods for
estimating T̂ and employing standard scaling. The stitched decoders
are simple MLPs. 5 runs for each encoder-decoder pair. (C) and
(F) next to CIFAR-100 indicate, respectively, coarse-grained and fine-

grained.

Dataset no-stitch absolute relative affine linear l-ortho ortho

V
is

io
n

CIFAR-10 0.95 ± 0.03 0.16 ± 0.22 0.73 ± 0.21 0.93 ± 0.05 0.89 ± 0.11 0.90 ± 0.09 0.93 ± 0.04
CIFAR-100-C 0.82 ± 0.07 0.11 ± 0.21 0.39 ± 0.17 0.76 ± 0.08 0.71 ± 0.15 0.74 ± 0.11 0.78 ± 0.07
CIFAR-100-F 0.68 ± 0.14 0.06 ± 0.20 0.13 ± 0.09 0.59 ± 0.13 0.55 ± 0.18 0.56 ± 0.17 0.62 ± 0.12
F-MNIST 0.87 ± 0.02 0.14 ± 0.20 0.64 ± 0.12 0.85 ± 0.02 0.83 ± 0.05 0.80 ± 0.06 0.84 ± 0.02
MNIST 0.92 ± 0.03 0.15 ± 0.20 0.36 ± 0.14 0.92 ± 0.03 0.87 ± 0.08 0.74 ± 0.12 0.88 ± 0.03

Te
xt

TREC 0.41 ± 0.07 0.15 ± 0.04 0.27 ± 0.09 0.40 ± 0.08 0.37 ± 0.11 0.23 ± 0.08 0.41 ± 0.09
AG News 0.76 ± 0.08 0.24 ± 0.02 0.36 ± 0.10 0.68 ± 0.08 0.65 ± 0.08 0.64 ± 0.10 0.68 ± 0.10
DBpedia 0.64 ± 0.19 0.07 ± 0.02 0.15 ± 0.08 0.57 ± 0.19 0.53 ± 0.19 0.44 ± 0.21 0.56 ± 0.17
IMDB 0.62 ± 0.04 0.50 ± 0.01 0.50 ± 0.01 0.59 ± 0.04 0.58 ± 0.04 0.57 ± 0.04 0.60 ± 0.04

TABLE B.3: Cross-architecture stitching with various methods for
estimating T̂ and applying L2 as normalization. The stitched decoders
are simple MLPs. 5 runs for each encoder-decoder pair. (C) and
(F) next to CIFAR-100 indicate, respectively, coarse-grained and fine-

grained.

Dataset no-stitch absolute relative affine linear l-ortho ortho

V
is

io
n

CIFAR-10 0.95 ± 0.03 0.16 ± 0.22 0.73 ± 0.21 0.93 ± 0.04 0.89 ± 0.11 0.89 ± 0.11 0.93 ± 0.04
CIFAR-100-C 0.82 ± 0.07 0.11 ± 0.21 0.39 ± 0.17 0.77 ± 0.07 0.75 ± 0.13 0.71 ± 0.15 0.78 ± 0.06
CIFAR-100-F 0.68 ± 0.14 0.06 ± 0.20 0.13 ± 0.09 0.60 ± 0.12 0.57 ± 0.18 0.54 ± 0.18 0.61 ± 0.12
F-MNIST 0.87 ± 0.02 0.14 ± 0.20 0.64 ± 0.12 0.86 ± 0.02 0.79 ± 0.09 0.83 ± 0.05 0.84 ± 0.02
MNIST 0.92 ± 0.03 0.15 ± 0.20 0.36 ± 0.14 0.91 ± 0.03 0.80 ± 0.17 0.86 ± 0.08 0.86 ± 0.04

Te
xt

TREC 0.41 ± 0.07 0.15 ± 0.04 0.27 ± 0.09 0.51 ± 0.06 0.27 ± 0.10 0.47 ± 0.13 0.49 ± 0.06
AG News 0.76 ± 0.08 0.24 ± 0.02 0.36 ± 0.10 0.68 ± 0.08 0.64 ± 0.10 0.65 ± 0.08 0.66 ± 0.10
DBpedia 0.64 ± 0.19 0.07 ± 0.02 0.15 ± 0.08 0.55 ± 0.19 0.53 ± 0.21 0.51 ± 0.18 0.49 ± 0.15
IMDB 0.62 ± 0.04 0.50 ± 0.01 0.50 ± 0.01 0.60 ± 0.04 0.58 ± 0.04 0.59 ± 0.04 0.59 ± 0.04

The softmax function, commonly used in neural classifiers, is known to be a
temperature-controlled variant of the maximum function:

softmax(x)i =
e

yi
T

∑N
j e

yj
T

. (B.1)

This means that the softmax temperature can be used to control the level of confidence
of the classifier’s predictions. In this study, we show that a similar effect can also be
achieved by rescaling the latent encodings given as input to a trained (and frozen)
classifier.

In order to demonstrate this, we first note that the rescaling factor, α, can be
factored out of the matrix multiplication in the Linear layers of the classifier. This can
be represented mathematically as: y = αWx + b, where x is the input latent encoding,
W is the weight matrix, b is the bias vector, α is the rescaling factor, and y is the output
of the linear layer. This implies that the rescaling operation can be “pushed through”
the classifier without affecting its final prediction as it becomes equivalent to some
temperature value applied at the softmax level.

Furthermore, we investigate the effect of rescaling when non-linear activation
functions are involved and posit that as long as the function has a monotonic interval,
if we rescale all the dimensions by an amount similar to the mean scale of the
encodings on which the classifier was trained, we end up in the monotonic interval,
without losing the scale-invariance property.

In summary, our study provides empirical evidence that neural classifiers that
utilize the softmax activation function can, in practice, maintain their scale-invariance
properties when the input latent encodings are rescaled. This property is essential
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to our method, as it allows us to ignore the exact scale when decoding toward an
L2-normalized absolute space.

Pre-trained models and scale-invariance. We observed that large pre-trained mod-
els, such as transformers and resnets, are robust to internal rescaling of the encodings.
Although we do not have a strong theoretical explanation for this phenomenon, we
hypothesize that normalization layers and the linear separability of the information
encoded in the angles instead of the norms may play a significant role. In Figure B.6,
we demonstrate the invariance a large transformer exhibits when the rescaling injec-
tion is applied at different layers: surprisingly, when the rescaling surpasses a certain
threshold, the performance difference becomes negligible. These results further em-
phasize the robustness of these pre-trained models to the rescaling injection and
suggest that the scale of the embedding is not a critical factor in their performance.
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FIGURE B.6: Scale invariance of RoBERTa according to the perfor-
mance of a downstream classifier trained on the encodings of the last
attention layer. At each layer (with 0 being the embedding layer and
12 the output one), one for each run, we rescale the encodings by the
specified α and measure its effect on the final accuracy. The perfor-

mance without any rescaling is 0.92.

Rescale Injection. We define the rescaling injection as the operation of artificially
altering the scale of the features produced at a specific layer of the network. This is
achieved by normalizing the embeddings to unit norm and then rescaling them by a
factor of α. By varying the value of α, we can observe how the network’s performance
is affected at different scales. Through this empirical analysis, we aim to provide
insight into the scale invariance properties of NNs and their potential for use in model
compositionality.

In Figure B.7, we present experimental results investigating the scale invariance
properties of NNs. We trained simple multi-layer perceptrons (MLPs) composed of
two hidden layers, with no normalization layers, using encodings produced by the
Clip Vision transformer (clip-vit-base-patch32) on the CIFAR-100 (fine) dataset.
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FIGURE B.7: Performance comparison of three MLPs with different
activation functions, namely cosine (blue), ReLU (orange), and tanh
(green) at different rescaling factors α. The ReLU and tanh MLPs
exhibit scale invariance, while the cosine activation function is only

invariant on the mean data scale and its periodic cycles.

The MLPs were evaluated using different activation functions: cosine (blue), tanh
(orange), and ReLU (green). The rescaling injection technique was applied directly to
the input embeddings, rescaling them by α.

We can observe that the scale of the embeddings does not significantly impact
the MLPs’ performance when using monotone activation functions that do not flip
signs. This is a non-trivial result, as the nonlinearity of the activation function, the
presence of bias terms b, and the absence of normalization layers make it difficult
to predict the effect of an input rescaling on the performance of the network. It is
particularly interesting to see that the cosine activation function shows an oscillatory
performance, comparable to the original embeddings when rescaled by the mean
embeddings scale (vertical red line) or its opposite since it is symmetric.

Our findings indicate that, surprisingly, even the internal layers of large deep
learning models exhibit a positive scale invariance, as illustrated in Figure B.6. The
underlying mechanism for this behavior is not straightforward, but we hypothesize
that it may result from the interplay between various factors, such as the choice of
activation function, the use of normalization layers, the optimization objective and
regularization techniques employed during the training phase. Further research is
needed to understand and explain this phenomenon fully.

B.1.2 Implementation Details

All the experiments were conducted using a machine equipped with an Intel Core
i7-9700k CPU, 64 GB of RAM, and an NVIDIA 2080TI GPU.

Decoder structure. The full implementation details can be found in the attached
code,the various experiments can be run by their corresponding notebook.

• Autoencoding. Since the autoencoders were used only on image data, the ar-
chitecture was a simple sequence of convolutions (in the encoder part) and
deconvolutions (in the decoder part). Each interleaved with nonlinear activa-
tions.

• Classification. Chapter 5 refers to "SVM" as the standard SVM implementation in
scikit-learn (Pedregosa et al., 2011), with default parameters. The experiments
with "MLP" as a classifier refer to a simple stack of 3 linear layers, interleaved
by nonlinear activations.
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Software and Technologies. The research of this study was facilitated by the use of
various technologies and tools, which include:

• NN-Template (GrokAI, 2021), was used to kick-start the project while also ensur-
ing best practices were adhered to.

• DVC (Kuprieiev et al., 2023), was implemented for data versioning.

• PyTorch Lightning (Falcon and The PyTorch Lightning team, 2019), contributed
to maintaining the integrity of the results and promoting clean, modular code.

• Weights and Biases (Biewald, 2020), were employed for logging experiments,
running comparisons over extensive sweeps, and sharing models.

• Transformers by HuggingFace (Wolf et al., 2020), provided pre-configured trans-
formers for processing both image and text data.

• Datasets by HuggingFace (Lhoest et al., 2021), facilitated access to a majority of
NLP datasets and ImageNet for computer vision purposes.

Pre-trained encoders. All the pre-trained encoders used come from HuggingFace
and are listed in Table B.4. They are various both in terms of architecture and encoding
size.

TABLE B.4: HuggingFace models used as encoders (feature extractors)
in the various experiments, with their encoding dimensionality.

Modality HuggingFace model name Encoding Dim

La
ng

ua
ge

bert-base-cased 768
bert-base-uncased 768
google/electra-base-discriminator 768
roberta-base 768
albert-base-v2 768
xlm-roberta-base 768
openai/clip-vit-base-patch32 768

V
is

io
n

rexnet_100 1280
cspdarknet53 768
vit_small_patch16_224 384
vit_base_patch16_224 768
vit_base_patch16_384 768
vit_base_resnet50_384 768
openai/clip-vit-base-patch32 768
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TABLE B.5: Cross-architecture stitching for reconstruction tasks. 5
different seeds, 2 different bottleneck sizes (250, 500) for the same
architecture. Average over all combinations. 500 anchors used and
standard scaling as normalization. The naive absolute baseline is

impossible to compute due to the dimensionality mismatch.

MNIST F-MNIST CIFAR-10 CIFAR-100

lcos lmse rmse lcos lmse rmse lcos lmse rmse lcos lmse rmse

affine 0.95 0.09 0.02 0.95 0.09 0.04 0.98 0.06 0.05 0.98 0.07 0.06
linear 0.64 1.00 0.11 0.66 1.10 0.16 0.77 0.60 0.16 0.78 0.52 0.16
l-ortho 0.87 0.16 0.03 0.89 0.14 0.06 0.95 0.12 0.08 0.95 0.13 0.08
ortho 0.91 0.14 0.03 0.92 0.13 0.06 0.96 0.12 0.09 0.96 0.12 0.09
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Csiszárik, Adrián, Péter Kőrösi-Szabó, Ákos K. Matszangosz, Gergely Papp, and
Dániel Varga (2021). Similarity and Matching of Neural Network Representations. URL:
https://arxiv.org/abs/2110.14633.

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby (2021). “An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale”. In: 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net. URL: https://openreview.net/forum?id=YicbFdNTTy.

Gandikota, Kanchana Vaishnavi, Jonas Geiping, Zorah Lähner, Adam Czapliński, and
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