
Sapienza University of Rome

Department of Computer Science

PhD in Computer Science

Thesis For The Degree Of Doctor Of Philosophy

Effective, Efficient and Reliable
Large Language Models

Thesis Advisor

Prof. Emanuele Rodolà
Candidato

Andrea Santilli
1893210

Academic Year 2020-2024 (XXXVI cycle)

Abstract

In recent years, Large Language Models (LLMs) have fundamentally transformed the field of Natural
Language Processing (NLP), reshaping the landscape of AI research and applications. This thesis represents
the culmination of four years of doctoral research, which began in 2020 when LLMs were still an emerging
technology and GPT-3 had just been introduced. Over the course of this research, we have both observed and
contributed to the advancement of some of the technologies underpinning LLMs, from their early stages to
their current role as cutting-edge AI systems. Specifically, this thesis combines some of the works carried out
during this time under three critical dimensions of LLMs: Effectiveness, Efficiency, and Reliability.

On the Effectiveness dimension, we contributed to the development of instruction tuning - a key technique
now ubiquitous in the training pipeline of LLMs. Our work demonstrated that smaller, instruction-tuned LLMs
can outperform models up to 16 times their size, including GPT-3 [1]. We also developed PromptSource, an
integrated development environment for creating, managing, and sharing natural language prompts, which
has become a valuable resource for the NLP community [2]. Both of these contributions were carried out
during the BigScience Workshop, a year-long open research initiative by Hugging Face targeting the study of
LLMs. Finally, along this dimension, we studied how to make these models handle multimodal database-like
queries [3].

Addressing the Efficiency dimension, we tackled the challenge of accelerating LLM inference. We
introduced three novel parallel decoding algorithms that significantly speed up text generation without
compromising output quality [4]. This has since evolved into an active research area known as speculative
or parallel decoding. Furthermore, we developed an efficient, language-specific instruction-tuned LLM for
the Italian language, demonstrating a cost-effective approach to creating high-quality models for specific
languages [5].

Our research on Reliability addresses the critical issue of making these models reliable since they have
been shown to systematically generate incorrect information - a phenomenon known as hallucinations. In this
direction, we investigated whether it’s possible to detect the model’s confidence in its outputs. We conducted
a comprehensive assessment of current uncertainty quantification methods and their evaluation protocols
[6] and explored novel approaches to combine these methods to improve the detection and quantification of
uncertainty in LLM outputs [7].

Our work paves the way for more Effective, Efficient, and Reliable large language models, addressing
key challenges in their development and deployment while opening new avenues for future research in this
rapidly evolving field.

Keywords: Large Language Models, Instruction Tuning, Efficient Decoding, Uncertainty Estimation in
LLMs

Contents

List of Publications v

List of Figures vii

List of Tables viii

Nomenclature x

1 Introduction 1
1.1 Key Contributions . 2
1.2 Structure of the Thesis . 3
1.3 Author Contribution Statement . 4

2 Effective Large Language Models 5
2.1 Training Language Models with Instruction Tuning 6

2.1.1 Related Work . 7
2.1.2 Measuring Generalization to Held-Out Tasks 8
2.1.3 Experimental Setup . 10
2.1.4 Results . 11
2.1.5 Conclusion . 16

2.2 Converting Supervised Datasets into Promptable Format 17
2.2.1 Background and Related Work . 18
2.2.2 System Design and Workflow . 19
2.2.3 Prompting Language . 20
2.2.4 The PromptSource UI . 21
2.2.5 Community Guidelines and Process . 22
2.2.6 Case Studies . 22
2.2.7 Conclusion . 25

2.3 Handling Multimodal Queries in Large Language Models 26
2.3.1 Multimodal Neural Databases . 27
2.3.2 Experiments . 31
2.3.3 Results . 32
2.3.4 Related Work . 37
2.3.5 Conclusion . 38

2.4 Conclusion Effective LLMs . 39

3 Efficient Large Language Models 40
3.1 Accelerating Inference in Large Language Models . 40

3.1.1 Related Work . 42
3.1.2 Method . 42
3.1.3 Experiments . 47
3.1.4 Conclusions . 52

iv

3.2 Efficient Instruction-tuning for the Italian Language 54
3.2.1 Background . 54
3.2.2 Method . 55
3.2.3 Experiments . 57
3.2.4 Conclusion . 60

3.3 Conclusion Efficient LLMs . 61

4 Reliable Large Language Models 62
4.1 Evaluating Uncertainty in Large Language Models 62
4.2 Effective Uncertainty Quantification in Large Language Models 62
4.3 Conclusion Reliable LLMs . 63

5 Conclusion 64

Bibliography 68

A Appendix “Multitask Prompted Training Enables Zero-shot Task Generalization” 97
A.1 Broader Impacts . 97

A.1.1 Environmental Costs . 97
A.1.2 Risks in Developing and Releasing Large Language Models 97
A.1.3 Bias and Fairness . 98

A.2 Annotation system - PromptSource . 99
A.3 Datasets . 101

A.3.1 Categorizing Datasets into Tasks . 101
A.3.2 How Unseen are the Held-Out Tasks? . 101
A.3.3 LAMBADA . 102
A.3.4 Table of All Datasets . 103

A.4 Contamination Analysis of Pretraining Corpus on Test Tasks 105
A.5 Full Results . 106

B Appendix “Promptsource: An Integrated Development Environment And Repository For
Natural Language Prompts” 108
B.1 Data and Statistics . 108
B.2 Complete Views . 109

C Appendix “Accelerating Transformer Inference for Translation via Parallel Decoding” 111
C.1 Additional implementation details . 111
C.2 FLOPs calculation details . 111
C.3 Additional results . 112

D Appendix “Camoscio: An italian Instruction-tuned LLaMA” 116
D.1 Implementation Details . 116

D.1.1 Exact Match via ChatGPT . 116
D.1.2 Generation Examples . 117

D.2 NewSum-IT (“Il Post”) . 117
D.3 NewSum-IT (“Fanpage.it”) . 117
D.4 XFORMAL-IT (F→I) . 118
D.5 XFORMAL-IT (I→F) . 119
D.6 SQuAD-IT . 119

Publications in this Thesis

[1] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen
Xu, Urmish Thakker, Shanya Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal
V. Nayak, Debajyoti Datta, Jonathan D. Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng-Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos
Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan, Stella
Biderman, Leo Gao, Tali Bers, Thomas Wolf and Alexander M. Rush. “Multitask Prompted Training
Enables Zero-Shot Task Generalization.” In International Conference on Learning Representations.
2022.

[2] Stephen Bach, Victor Sanh, Zheng Xin Yong, Albert Webson, Colin Raffel, Nihal V. Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, Zaid Alyafeai, Manan Dey, Andrea Santilli,
Zhiqing Sun, Srulik Ben-david, Canwen Xu, Gunjan Chhablani, Han Wang, Jason Fries, et al.. 2022.

“PromptSource: An Integrated Development Environment and Repository for Natural Language
Prompts”. In Proceedings of the 60th Annual Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 93–104, Dublin, Ireland. Association for Computational
Linguistics.

[3] Giovanni Trappolini, Andrea Santilli, Emanuele Rodolà, Alon Y. Halevy and Fabrizio Silvestri.
“Multimodal Neural Databases.” In Proceedings of the 46th International ACM SIGIR Conference
on Research and Development in Information Retrieval (2023).

[4] Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi, Ric-
cardo Marin, and Emanuele Rodola. 2023. “Accelerating Transformer Inference for Translation
via Parallel Decoding”. In Proceedings of the 61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 12336–12355, Toronto, Canada. Association for
Computational Linguistics.

[5] Andrea Santilli and Emanuele Rodolà. “Camoscio: an Italian Instruction-tuned LLaMA.” In
CLiC-it 2023: 9th Italian Conference on Computational Linguistics, Nov 30 — Dec 02, 2023, Venice,
Italy.

[6] Andrea Santilli, Miao Xiong, Michael Kirchhof, Pau Rodrigues, Federico Danieli, Xavier Suau,
Luca Zappella, Sinead Williamson, Adam Goliński. “On a Spurious Interaction between Uncertainty
Scores and Answer Evaluation Metrics in Generative QA Tasks” In Workshop of Safe Generative AI
Workshop @ NeurIPS 2024

[7] Miao Xiong, Andrea Santilli, Michael Kirchhof, Adam Goliński, Sinead Williamson. “Efficient
And Effective Uncertainty Quantification For LLMs” In Workshop of Safe Generative AI Workshop
@ NeurIPS 2024

vi

Other Publications

[1] Emilian Postolache*, Giorgio Mariani*, Michele Mancusi*, Andrea Santilli, Luca Cosmo and
Emanuele Rodolà. “Latent Autoregressive Source Separation.” In Proceedings of the AAAI Confer-
ence on Artificial Intelligence 37 (8), 9444-9452.

[2] BigBench Contributors “Beyond the Imitation Game: Quantifying and extrapolating the capabilities
of language models.” In Transaction of Machine Learning Research.

[3] Michele Miranda, Elena Sofia Ruzzetti, Andrea Santilli, Fabio Massimo Zanzotto, Sébastien
Bratières and Emanuele Rodolà. “Preserving Privacy in Large Language Models: A Survey on
Current Threats and Solutions” In Transaction of Machine Learning Research

[4] Andrea Bacciu, Giovanni Trappolini, Andrea Santilli, Emanuele Rodolà, Fabrizio Silvestri “Fauno:
The Italian Large Language Model that will leave you senza parole!” In IIR 2023 - 13th Italian
Information Retrieval Workshop.

[5] BigScience Workshop contributors “BLOOM: A 176B-Parameter Open-Access Multilingual Lan-
guage Model.” In arXiv preprint arXiv:2211.05100.

[6] Michele Mancusi, Emilian Postolache, Giorgio Mariani, Marco Fumero, Andrea Santilli, Luca
Cosmo, Emanuele Rodolà “Unsupervised source separation via Bayesian inference in the latent
domain” In arXiv preprint arXiv:2110.05313.

[7] Antonio Norelli, Giorgio Mariani, Luca Moschella*, Andrea Santilli*, Giambattista Parascandolo,
Simone Melzi, Emanuele Rodolà “Explanatory learning: Beyond empiricism in neural networks” In
arXiv preprint arXiv:2201.10222.

vii

List of Figures

1.1 Number of “Large Language Model” papers on ArXiv 2

2.1 T0 Model Architecture . 6
2.2 T0 datasets and task taxonomy . 8
2.3 Prompt templates from the P3 prompt collection . 9
2.4 Results for T0 task generalization experiments compared to GPT-3 12
2.5 Results for a subset of BIG-bench . 13
2.6 Effect of more prompts per dataset . 14
2.7 Effect of prompts from more datasets . 15
2.8 The five stages of creating prompts in PromptSource 18
2.9 PromptSource browser view . 21
2.10 PromptSource Sourcing view . 23
2.11 Another example of the the Sourcing view . 24
2.12 PromptSource Helicopter view . 25
2.13 Multimodal Neural Databases architecture (MMNDB) 27
2.14 Prototype of MMNDB . 28

3.1 Parallel Decoding . 41
3.2 Parallel Decoding algorithms . 42
3.3 Inference-time scaling experiments on WMT16 En-De 50
3.4 DDGviz visualizer . 52
3.5 Diversity of the examples in the Stanford Alpaca dataset 55

A.1 Effect of the size of the pretrained model . 106

B.1 Most of the datasets have between 5 and 10 prompts. 108
B.2 Complete example of the Browse view. 109
B.3 Complete example of the Sourcing view. 110
B.4 Complete example of the Helicopter view. 110

C.1 Qualitative translation examples . 114
C.2 DGGviz additional visualizations . 115

viii

List of Tables

2.1 Comparison of different Retriever models under the “Mixed” retrieval strategy. . . . 29
2.2 Results performance on the query type count . 31
2.3 MMNDB Comparison among different retrieval strategies. 33
2.4 MMNDB models performance under PerfectIR setting 33
2.5 Results for the query type MAX . 34
2.6 Results for the query type IN . 35

3.1 Comparison of parallel decoding algorithms . 45
3.2 Comparison over different languages . 45
3.3 Comparison of parallel decoding algorithms . 48
3.4 Comparison of different methods for parallel MT on WMT14 En-De 48
3.5 BLEU scores on MBart50 . 49
3.6 Results of Camoscio on SQuAD-IT . 56
3.7 Results of Camoscio on XFORMAL IT . 57
3.8 Results of Camoscio on NewSum-IT . 59

A.1 Carbon emissions information for T0 and T5. 98
A.2 A few problematic predictions from T0++. 98
A.3 Average and median accuracies on CrowS-Pairs and WinoGender 99
A.4 Accuracies on WinoBias coreference task. 100
A.5 All training and evaluation datasets . 104
A.6 Results for T5+LM and all T0 model variants on all tasks 107
A.7 Results for T0 model variants on a subset of BIG-bench tasks. 107

C.1 Data Statistic . 112
C.2 FLOPs comparison with other models. 112

ix

Nomenclature

Autoregressive Decoding The standard method of text generation in LLMs, where each token is predicted
based on the previously generated tokens.

Few-shot Learning A learning paradigm where a model can perform a new task with only a few examples.

Hallucination The phenomenon where a LLM generates plausible but factually incorrect information.

Instruction Tuning A fine-tuning technique that trains language models on a diverse set of tasks formatted
as natural language instructions.

Large Language Model (LLM) A neural network-based model trained on vast amounts of text data to
understand and generate human-like text.

LoRA (Low-Rank Adaptation) A parameter-efficient fine-tuning technique for large language models.

Multimodal Neural Database A system combining LLM capabilities with traditional database functionali-
ties to handle queries across different data modalities.

Parallel Decoding A technique to accelerate text generation in LLMs by predicting multiple tokens simulta-
neously.

Prompt Engineering The practice of designing and refining input prompts to elicit desired behaviors from
language models.

Prompt piece of text or instruction given to a model to elicit a specific response or guide its output.

Reinforcement Learning from Human Feedback (RLHF) A training approach that fine-tunes language
models based on human preferences via Reinforcement Learning.

Selective Answering A strategy where an AI system chooses whether to answer a query based on its
confidence in providing an accurate response.

Transformer A neural network architecture using self-attention mechanisms to process sequential data,
forming the backbone of most modern LLMs.

Uncertainty Quantification Methods to estimate and quantify the confidence of an LLM’s outputs.

Zero-shot Learning The ability of a model to perform a task without any specific training examples.

x

Chapter 1

Introduction

The field of Natural Language Processing (NLP) has experienced a significant shift in recent years, primarily
due to the rapid development of Large Language Models (LLMs) [8, 9]. The key behind their success lies in
their remarkable flexibility, which allows them to address a broad range of tasks with minimal task-specific
data, often requiring only contextual information. Their ability to perform effectively in zero-shot scenarios
or learn from just a few examples through in-context learning has greatly expanded the scope of artificial
intelligence applications, leading to a growing interest in the LLM research field.

Although the concept of language modeling is not new, the rise of neural models in recent years has led
to a dramatic improvement in both the quality and range of tasks these models can handle [10, 11]. The
primary driver behind this progress has been the scaling of models in both size (number of parameters) and
the amount of training data (hence the name “large") [12, 13] and the subsequent development of techniques
like Instruction tuning and Reinforcement Learning with Human Feedback (RLHF) [1, 14, 15]. These
advancements have resulted in LLMs that excel not only in language generation and manipulation but also in
understanding context, following instructions, and adapting to new tasks with minimal guidance sparking the
development of general text assistants like ChatGPT or GPT-4 [9, 16].

This thesis encompasses a critical period in the evolution of LLMs, spanning from 2020 to 2024. When
this research began, LLMs were in their infancy, and several key innovations in the field were yet to emerge
(See Figure 1.1). Over this time, we have not only witnessed but also contributed to the rapid advancement
of LLM technologies. The work presented herein addresses three fundamental crucial dimensions of the
development of LLMs: Effectiveness (Chapter 2), Efficiency (Chapter 3), and Reliability (Chapter 4).

Under the Effectiveness direction (Chapter 2), we tackled the challenge of improving LLM capabilities.
The first generation of language models primarily relied on self-supervised pretraining with large unannotated
text corpora. We introduced instruction tuning as a second fine-tuning step after the initial pretraining. This
approach involves training the model on a diverse set of tasks formulated as natural language instructions,
significantly improving its zero-shot performance on unseen tasks [1]. This chapter also introduces Prompt-
Source, an integrated development environment for creating and managing prompts [2]. PromptSource
has become a valuable resource for the NLP community, facilitating standardized prompt engineering and
collaborative research. Additionally, we explore the concept of Multimodal Neural Databases, extending the
capabilities of LLMs to handle complex queries across different data modalities [3].

Under the Efficiency direction (Chapter 3), we tackled the problem of speeding up the generation of
LLMs. These models are parallel during training but inefficient during generation since they rely on slow
sequential autoregressive decoding, where models generate text one word at a time, which can be slow.

1

1.1. Key Contributions

Figure 1.1: Cumulative number of papers on ArXiv containing the keyword “large language model” (since October
2019) in title or abstract (exact match). Important landmark models are depicted in the picture at the time of their
appearance on ArXiv or release. Data extracted from Zhao et al. [8]. The model T0 that introduced instruction tuning is
part of this thesis (Chapter 2).

We introduced three novel parallel decoding algorithms that significantly speed up text generation without
compromising output quality [4]. This has since evolved into an active research area known as speculative
or parallel decoding. Furthermore, we developed an efficient, language-specific instruction-tuned LLM for
the Italian language, demonstrating a cost-effective approach to creating high-quality models for specific
languages [5].

Under the Reliability section (Chapter 4), we address the challenge of enhancing the reliability of current
models. Despite notable progress in their capabilities and efficiency, reliability remains a major concern. A
key issue in this area is the phenomenon of hallucinations, where models produce outputs that, while fluent
and confident, are factually incorrect or misleading [17, 18]. We conducted a comprehensive assessment of
current uncertainty quantification methods and their evaluation protocols [6] and explored novel approaches
to combine these methods to improve the detection and quantification of uncertainty in LLM outputs [7]. As
LLMs are increasingly deployed in critical domains such as healthcare, finance, and legal systems, the ability
to accurately assess model confidence and detect potential errors becomes paramount.

By focusing on these three interconnected aspects, this thesis aims to provide a comprehensive collection
of advancements in language models under the axes of effectiveness, efficiency, and reliability produced
during the course of doctoral studies. We hope that our work can serve as a foundation for future research
and practical applications of LLMs. The following chapters detail our methodologies, findings, and insights,
offering a view into the rapidly evolving landscape of LLMs. Through this work, we seek to contribute to the
development of more capable, resource-efficient, and dependable language AI systems.

1.1 Key Contributions

This thesis presents advancements in Large Language Model research, focusing on Effectiveness, Efficiency,
and Reliability. Our work addresses key challenges in LLM development and application, offering practical
solutions. The following contributions represent the core of our research, each targeting a specific aspect.

Effective, Efficient and Reliable Large Language Models 2

1.2. Structure of the Thesis

Effectiveness (Chapter 2)

• We propose instruction tuning [1] as a way to improve the zero-shot capabilities of language models. By
fine-tuning models on a diverse set of tasks formulated as natural language instructions, we demonstrate
that smaller models can outperform much larger ones (up to 16x their size) on a wide range of unseen
tasks (Section 2.1).

• We develop PromptSource [2], an integrated development environment for prompt engineering. This
tool facilitates the creation, management, and sharing of natural language prompts, becoming a valuable
resource for the NLP community (Section 2.2).

• We introduce Multimodal Neural Databases [3]. This work investigates how LLMs can handle
complex, database-like queries across different modalities, demonstrating their potential in integrating
and reasoning over diverse data types (Section 2.3).

Efficiency (Chapter 3)

• We tackle the challenge of accelerating LLM inference by introducing three novel parallel decoding
algorithms [4]. These algorithms significantly speed up text generation without compromising output
quality, paving the way for more efficient deployment of LLMs in real-time applications (Section 3.1).

• We develop Camoscio [5], the first open instruction-tuned LLM for the Italian language. This
project demonstrates a cost-effective approach to creating high-quality, language-specific models
using parameter-efficient fine-tuning techniques like LoRA. Camoscio showcases how to effectively
adapt large language models to specific languages with limited computational resources (Section 3.2).

Reliability (Chapter 4)

• We conduct a comprehensive assessment of current uncertainty quantification methods for LLMs
[6]. This work identifies inconsistencies and limitations in existing evaluation protocols, proposing
improved methodologies for assessing uncertainty estimation in LLMs. Our findings highlight the
importance of robust evaluation practices in developing reliable AI systems (Section 4.1).

• Building on our assessment, we explore novel approaches to combine uncertainty estimation meth-
ods [7]. We demonstrate that strategically combining simple, computationally efficient uncertainty
estimation techniques can match or even surpass the performance of more complex methods. This
work offers a promising path toward developing more reliable and trustworthy LLMs without incurring
excessive computational costs (Section 4.2).

1.2 Structure of the Thesis

The thesis is structured as a collection of the main articles published during the doctoral research period
[1–7]. These works are divided into three chapters according to their topic: Effectiveness (Chapter 2) [1–3],
Efficiency (Chapter 3) [4, 5] and Reliable (Chapter 4) [6, 7]. Each chapter begins with a custom-written
introduction tailored specifically for this thesis, explaining the rationale behind grouping the included papers.
After the introduction, each paper is presented in its own section within the chapter. The papers are reproduced
as verbatim copies of the original conference articles, with only minor stylistic adjustments to align them with
the thesis format. Finally, a chapter with the overall thesis conclusions is proposed to the reader (Chapter 5).

Effective, Efficient and Reliable Large Language Models 3

1.3. Author Contribution Statement

1.3 Author Contribution Statement

The research presented in this thesis was conducted by Andrea Santilli under the supervision of Prof.
Emanuele Rodolà at Sapienza University of Rome. Andrea Santilli authored all the publications included in
this thesis, which are also co-authored by collaborators who made invaluable contributions to the final devel-
opment of the respective research projects. These collaborators are acknowledged in the "Acknowledgments"
section at the end of this document.

The works [1] and [2] were carried out as part of the BigScience Workshop1, a collaborative year-long
initiative dedicated to studying LLMs and datasets, involving over 600 researchers from 50 countries and
more than 250 institutions. These two works were the outcome of the BigScience Prompt Engineering
working group, which focused on the role of prompting in LLM training. This open-science initiative by
Hugging Face enabled researchers, including Andrea Santilli, to engage in large-scale experimentation and
investigation into prompting techniques for LLMs.

Given the scale and computational resources required for these projects, academic institutions alone
lacked the capacity to undertake such research. Thus, large collaborations like BigScience were essential,
especially during the period when this research was conducted (circa 2021).

Within the BigScience collaboration, Andrea Santilli’s primary contributions were the implementation of
prompting templates and the conversion of supervised datasets into promptable formats using the Prompt-
Source tool. The order of authorship for these publications reflects the contributions to the project’s code and
other implementation aspects (at least 3 commits).

For all other publications included in this thesis, Andrea Santilli was responsible for or significantly
contributed to various stages of the research pipeline, including conceptualization, design, execution of
experiments, and development of methodologies, with the extent of involvement varying according to the
order of authorship. In these cases, as a general rule, the order of authorship reflects the relative magnitude of
each collaborator’s contribution.

1https://bigscience.huggingface.co/

Effective, Efficient and Reliable Large Language Models 4

https://bigscience.huggingface.co/

Chapter 2

Effective Large Language Models

When Brown et al. [19] introduced GPT-3 in July 2020 the main modality of training for LLMs was self-
supervision: the model was trained on large unannotated corpora from the web to predict the next word given
the previous context. Doing this allows the emergence of some interesting properties from the model like
zero-shot generalization and in-context learning i.e., the model was able to leverage examples or prompts
provided within the input context to generate appropriate outputs without explicit retraining, adapting to new
tasks based on the immediate information presented and able to solve a broad set of tasks verbalized in the
prompt without explicit retraining. The prevailing hypothesis posited that the emergence of these abilities
was a consequence of the scale [20].

In the first work of this chapter (§2.1), we asked whether this zero-shot generalization capability of LLM
could instead be inducted by explicit multitask training on a supervised dataset converted to a promptable
format with verbalized instruction in natural language. The results showed that this was not only possible
but really useful to improve these models and align them better to follow human instruction. During
the International Conference on Learning Representations in 2022, instruction tuning was concurrently
introduced in our work [1] and Wei et al. [14] and it’s now a part of the standard training pipeline of any
language model after the self-supervised stage on unannotated corpora [21]. Instruction tuning consists
of further training LLMs using (INSTRUCTION, OUTPUT) pairs where INSTRUCTION represents the
prompt provided for the model, and OUTPUT signifies the expected response that corresponds to that
INSTRUCTION.

The second work in this chapter presents PromptSource (§2.2), an integrated development environment for
prompt engineering. This tool was used for the creation of the instruction prompts for the first work and aims
to facilitate the creation, management, and sharing of natural language prompts. A large instruction-tuning
dataset with over 2,000 prompts for roughly 170 datasets was released together with the tool.

Finally, the last chapter (§2.3) concludes with our exploration into multimodal capabilities of LLMs,
introducing the concept of Multimodal Neural Databases. This work investigates how LLMs can handle
complex, database-like queries across different modalities, demonstrating their potential in integrating and
reasoning over diverse data types. By extending the effectiveness of LLMs beyond text to include other
modalities, we open new avenues for their application in more complex, real-world scenarios.

The first two works of this chapter were carried out during the BigScience Workshop1 as part of
contributions from the author of this thesis in the Prompt Engineering working group, a subgroup of the
large project focused on investigating the role of prompting in LLMs. The broad BigScience project was an

1https://bigscience.huggingface.co/

5

https://bigscience.huggingface.co/

2.1. Training Language Models with Instruction Tuning

Review: We came here on a Saturday night
and luckily it wasn't as packed as I

thought it would be [...] On a scale of 1
to 5, I would give this a

I know that the answer to “What team did
the Panthers defeat?” is in “The Panthers
finished the regular season [...]”. Can

you tell me what it is?

T0

Graffiti artist Banksy
is believed to be

behind [...]

4

Yes

Arizona Cardinals

Summarization

Question Answering

Sentiment Analysis

Suppose “The banker contacted the professors
and the athlete”. Can we infer that "The

banker contacted the professors"?

The picture appeared on the wall of a
Poundland store on Whymark Avenue [...] How
would you rephrase that in a few words?

Natural Language Inference

Multi-task training
Zero-shot generalization

Figure 2.1: Our model and prompt format. T0 is an encoder-decoder model that consumes textual inputs and produces
target responses. It is trained on a multitask mixture of NLP datasets partitioned into different tasks. Each dataset is
associated with multiple prompt templates that are used to format example instances to input and target pairs. Italics
indicate the inserted fields from the raw example data. After training on a diverse mixture of tasks (top), our model is
evaluated on zero-shot generalization to tasks that are not seen during training (bottom).

open science [22] research initiative by Hugging Face targeting the study of LLMs involving 600 researchers
from 50 countries and more than 250 institutions. Given the scale and the resources necessary to train these
models, this collaboration allowed us to pursue this kind of research.

2.1 Training Language Models with Instruction Tuning

This section presents the paper “Multitask Prompted Training Enables Zero-shot Task Generalization”[1].
Recent work has shown that large language models exhibit the ability to perform reasonable zero-shot

generalization to new tasks [23, 24]. Despite being trained on only language modeling objectives, these
models can perform relatively well at new tasks that they have not been explicitly trained to perform, for
instance answering a question on a passage or performing summarization. An influential hypothesis is that
large language models generalize to new tasks as a result of an implicit process of multitask learning [12].
As a byproduct of learning to predict the next word, a language model is forced to learn from a mixture of
implicit tasks included in their pretraining corpus. For example, by training on generic text from a web forum,
a model might implicitly learn the format and structure of question answering. This gives large language
models the ability to generalize to held-out tasks presented with natural language prompts, going beyond prior
multitask studies on generalization to held-out datasets [25, 26]. However, this ability requires a sufficiently
large model and is sensitive to the wording of its prompts [27–29].

Further, it is an open question how implicit this multitask learning really is. Given the scale of recent
language models’ pretraining corpora, it is reasonable to expect that some common natural language
processing (NLP) tasks would appear in an explicit form in their pretraining corpora, thereby directly
training the models on those tasks. For example, there are many websites that simply contain lists of trivia
questions and answers,2 which are precisely supervised training data for the task of closed-book question
answering [30]. We hypothesize that such multitask supervision in pretraining plays a large role in zero-shot

2For example, https://www.quizbreaker.com/trivia-questions, https://www.scarymommy.com/best-trivia-questions-answers/,
and https://parade.com/944584/parade/trivia-questions-for-kids/.

Effective, Efficient and Reliable Large Language Models 6

https://www.quizbreaker.com/trivia-questions
https://parade.com/944584/parade/trivia-questions-for-kids/

2.1. Training Language Models with Instruction Tuning

generalization.
In this section, we focus on explicitly training language models in a supervised and massively multitask

fashion. Our approach uses a training mixture consisting of a large set of different tasks specified in natural
language prompts. Our goal is to induce a model to better generalize to held-out tasks without requiring
massive scale, as well as being more robust to the wording choices of the prompts. To convert a large set of
natural language tasks into prompted form, we use a simple templating language for structured datasets. We
develop an interface for prompt collection from public contributors that facilitated the collection of a large
multitask mixture with multiple prompts per dataset [31]. We then train a variant of the T5 encoder-decoder
model [32, 33] on a subset of the tasks (each with multiple datasets) and then evaluate tasks and prompts that
the model was not trained on.

Our experiments study two questions. First, does multitask prompted training improve generalization to
held-out tasks? Second, does training on a wider range of prompts improve robustness to prompt wording?
For the first question, we find that multitask training enables zero-shot task generalization by showing that
our model matches or exceeds the performance of GPT-3 [23] on 9 out of 11 held-out datasets, despite
being about 16× smaller. We also show that the model improves over a large baseline language model on
13 out of 14 tasks in the BIG-bench benchmark [34]. For the second question, we find that training on
more prompts per dataset consistently improves the median and decreases the variability of performance on
held-out tasks. Training on prompts from a wider range of datasets also generally improves the median but
does not consistently decrease the variability.

2.1.1 Related Work

In this work, we distinguish implicit multitask learning in language model pretraining from explicit multitask
learning [35], the technique for mixing multiple tasks into a single supervised training process. Models
trained with multitask learning have long been shown to have improved performance in NLP [36]. Since
different tasks have different outputs, applying multitask learning requires a shared format, and various
have been used [37, 38]. Several multitask works also explore few-shot and zero-shot generalization to new
datasets with large pretrained models (e.g., 26, 39).

Natural language prompting is the method of reformatting NLP tasks in the format of a natural language
response to natural language input. The development of text-to-text pretrained models such as T5 [32] makes
prompts a particularly useful method for multitask learning. For example, Khashabi et al. [25] reformat 20
question-answering datasets into a single prompt of question: ... (A)... (B)... (C)...

context: ..., while later work such as Zhong et al. [40] and Wang et al. [41] cast a range of datasets
into a single boolean QA prompt or a single NLI prompt, respectively. Although effective, these single-prompt
methods typically do not generalize to new prompts or new tasks inexpressible in their fixed format.

More generally, Schick and Schütze [42] and Brown et al. [23] popularized using prompts as a generic
method for all NLP tasks. Mishra et al. [43] further extend this approach to a multitask setup, training on
prompts for 61 narrowly defined tasks (e.g., question generation, incorrect answer generation) adapted from
9 datasets’ crowdsourcing instructions, whereas we train on and measure generalization across 62 datasets
and 12 tasks as traditionally defined in the NLP literature (§2.1.2). Additionally, their prompts include
labeled examples in addition to instructions, whereas we focus on zero-shot generalization. Lastly, concurrent
work by Wei et al. [44] shares a similar research question with us, although we differ in several substantive
regards, e.g., prompt diversity, model scale, and held-out-task scheme. We discuss our differences in detail in
Section 2.1.4.

Effective, Efficient and Reliable Large Language Models 7

2.1. Training Language Models with Instruction Tuning

SummarizationSentiment

Paraphrase
Identification

Coreference
Resolution

QQP

MRPC

PAWS

Yelp

Rotten Tomatoes

App Reviews

IMDB

Amazon

Topic Classification

AG News

DBPedia

TREC

Structure-To-Text

Wiki Bio

Common Gen

MultiNews

Gigaword

XSum

SamSum

CNN Daily Mail

Closed-Book QA

Hotpot QA

Wiki QA

Extractive QA

ROPES

Adversarial QA

DuoRC

Multiple-Choice QA
CommonsenseQA

DREAM

QuAIL

QuaRTz

Social IQA

Cosmos QA

QASC

WiQA

SciQ

QuaRel

COPA

Sentence Completion

HellaSwag

Story Cloze

Natural Language
Inference

ANLI

CB

RTE

WSC

Winogrande

Word Sense
Disambiguation

WiC

Quoref

Wiki Hop

BIG-Bench

Code Description

Conceptual

Hindu Knowledge

Known Unknowns

Language ID

Logic Grid

Logical Deduction

Misconceptions

Movie Dialog

Novel Concepts

Strategy QA

Syllogisms

Vitamin C

Winowhy

Figure 2.2: T0 datasets and task taxonomy. (T0+ and T0++ are trained on additional datasets. See Table A.5 for the full
list.) Color represents the level of supervision. Yellow datasets are in the training mixture. Green datasets are held out
and represent tasks that were not seen during training. Hotpot QA is recast as closed-book QA due to long input length.

Finally, in explaining the success of prompts, the leading hypothesis is that models learn to understand
the prompts as task instructions which help them generalize to held-out tasks [23, 42–44]. However, the
extent to which this success depends on the semantic meaningfulness of the prompts has been challenged
[45, 46]. Thus, in this work, we remain agnostic as to why prompts support generalization. We only claim
that prompts serve as a natural format for multitask training which empirically supports generalization to
held-out tasks.

2.1.2 Measuring Generalization to Held-Out Tasks

We begin by assuming an underlying partition of NLP datasets into tasks. We use the term “task” to refer to a
general NLP ability that is tested by a group of specific datasets. To evaluate zero-shot generalization to new
tasks, we train on a subset of tasks and evaluate on a held-out group of tasks.

Unfortunately, NLP task categorization is fuzzy, particularly if one tries to isolate a unique skill. For
example, many datasets evaluate commonsense knowledge, and some multitask works (e.g., 23, 44) define
commonsense as a standalone task. However, commonsense datasets differ vastly, ranging from innate
knowledge and grade-school science to DIY instructions, US cultural norms, and graduate-level theorems
(see Appendix A.3.1 for a detailed discussion).

Noting that grouping by task is an imperfect heuristic, we err on the side of organizing our task taxonomy
according to the task format as opposed to required skill based on conventions in the literature [26, 39, 47].
We collect all datasets from these papers and exclude those that are not in English (which also excludes
programming languages and structured annotations such as parse trees) or if they require special domain
knowledge (e.g., biomedicine). This yields 12 tasks and 62 datasets with publicly contributed prompts in our
training and evaluation mixtures (Figure 2.2) as of writing. All experiments use datasets in the Hugging Face
datasets library [48].

To test zero-shot generalization, we hold out all constituent datasets of four tasks: natural language
inference (NLI), coreference resolution, sentence completion, and word sense disambiguation. We choose

Effective, Efficient and Reliable Large Language Models 8

2.1. Training Language Models with Instruction Tuning

Document The picture appeared on the wall of a
Poundland store on Whymark Avenue...

Summary Graffiti artist Banksy is believed to be
behind...

Document The picture appeared on the wall of a
Poundland store on Whymark Avenue...

Summary Graffiti artist Banksy is believed to be
behind...

Document The picture appeared on the wall of a
Poundland store on Whymark Avenue...

Summary Graffiti artist Banksy is believed to be
behind...

QQP Paraphrase) XSum (Summary)

{Question1} {Question2}
Pick one: These questions

are duplicates or not
duplicates.

I received the questions
"{Question1}" and

"{Question2}". Are they
duplicates?

{Choices[label]}

{Document}
How would you

rephrase that in
a few words?

First, please read the article:
{Document}

Now, can you write me an
extremely short abstract for it?

{Summary}

Question1 How is air traffic controlled?

Question2 How do you become an air traffic controller?

Label 0

Question1 How is air traffic controlled?

Question2 How do you become an air traffic controller?

Label 0

Question1 How is air traffic controlled?

Question2 How do you become an air traffic controller?

Label 0

Question1 How is air traffic controlled?

Question2 How do you become an air traffic controller?

Label 0

Document The picture appeared on the wall of a
Poundland store on Whymark Avenue...

Summary Graffiti artist Banksy is believed to be
behind...

{Choices[label]} {Summary}

Figure 2.3: Prompt templates from the P3 prompt collection. Each dataset has multiple prompt templates consisting
of an input and a target template. These use the fields of the raw data examples as well as template metadata,
e.g., the left paraphrasing identification prompts use Choices, a template-level list variable [‚Not duplicates‚,
‚Duplicates‚]. These templates are materialized to produce the prompted instance shown in Figure 2.1.

NLI as a held-out task because humans also zero-shot generalize to NLI as an held-out task: Most humans
are never explicitly trained to classify whether a premise sentence entails or contradicts a hypothesis sentence,
yet they find it intuitive to perform this task without training [49]. For the same reason, we also hold out
coreference resolution and word sense disambiguation. We further hold out sentence completion because it is
a task possibly too similar to NLI (Appendix A.3.2 discusses this in detail). Additionally, we do not train our
main model on any datasets that Brown et al. [23] used for evaluation, so that our main results will be a fair
zero-shot comparison. We also verify that data for those tasks is not leaked through the pretraining corpus
(Section A.4).

Lastly, we further evaluate on a subset of the datasets from BIG-bench, which is a recent community-
driven benchmark to create a diverse collection of difficult tasks to test the abilities of large language
models. The subset of BIG-bench comprise a language-oriented selection of tasks for which the BIG-bench
maintainers have prepared preliminary results and which constitute text that is in-vocabulary for the T5
tokenizer (i.e. only contain English-language text without emojis or other special characters). All tasks from
BIG-bench are novel tasks that are held out from our training.

A Unified Prompt Format

All datasets are given to our model in natural language prompted form to enable zero-shot experimentation.
To facilitate writing a large collection of prompts, we develop a templating language and an application
that make it easy to convert diverse datasets into prompts. We define a prompt as consisting of an input
template and a target template, along with a collection of associated metadata. The templates are func-
tions mapping a data example into natural language for the input and target sequences. Practically, the
templates allow the user to mix arbitrary text with the data fields, metadata, and other code for rendering
and formatting raw fields. For example, in the case of an NLI dataset, the example would include fields for
Premise, Hypothesis, Label. An input template would be If {Premise} is true, is

it also true that {Hypothesis}?, whereas a target template can be defined with the label
choices {Choices[label]}. Here Choices is prompt-specific metadata that consists of the options
yes, maybe, no corresponding to label being entailment (0), neutral (1) or contradiction (2). Other
metadata documents additional properties, such as an evaluation metric. Each data example is materialized
with many different prompt templates as shown in Figure 2.3.

Effective, Efficient and Reliable Large Language Models 9

2.1. Training Language Models with Instruction Tuning

To develop prompts, we built an interface for interactively writing prompts on datasets. We put out
an open call in the research community for users to contribute prompts. 36 contributors affiliated with 24
institutions in 8 countries participated. Since our goal was to train a model to be robust to prompt format,
and since the question of what makes a prompt effective remains unresolved [28, 45, 46], we encouraged
contributors to be open in their style and create a diverse set of prompts. The main annotation guideline
was that prompts needed to be grammatical and understandable by a fluent English speaker with no prior
experience of the tasks. Additionally, prompts that required explicit counting or numerical indexing were
removed in favor of natural language variants. For example, instead of predicting indices of a span extracting
answers from a passage, the model is expected to copy the span’s text instead. With these minimal constraints,
prompt writers were encouraged to use both formal and creative prompts and various orderings of the data.

Most of the prompts correspond directly to a version of the original proposed task, although we also
allow prompts that permuted the original task (for instance, generating a document from its summary). Such
non-original-task prompts are included in our training mixtures for improved diversity, but they are not
reported in evaluation since they deviate from the metrics and baselines reported by the original datasets.

The details of the prompting language and tool are given in Appendix A.2 and Bach et al. [31]. We
collected prompts for English datasets, excluding ones that included potentially harmful content or non-natural
language such as programming languages. We refer to this collection as the Public Pool of Prompts (P3).
As of writing, P3 contains 2073 prompts for 177 datasets (11.7 prompts per dataset on average). Prompts
used in experiments are all sourced from P3 except for BIG-bench, the prompts of which are provided by its
maintainers.

2.1.3 Experimental Setup

Model At a high level, we fine-tune a pretrained model on our multi-task training mixture of natural
language prompted datasets. Our model uses an encoder-decoder architecture with input text fed to the
encoder and target text produced by the decoder. The model is trained to autoregressively generate the target
through standard maximum likelihood training. Unlike decoder-only language models such as GPT-3, it is
never trained to generate the input.

All models we trained are based on T5, a Transformer-based encoder-decoder language model pretrained
with a masked language modeling-style objective on 1T tokens from C4 [32]. Since T5’s pretraining objective
is generating tokens and only tokens that have been removed from the input text, it is different from the
natural text generation format of prompted datasets. Therefore, we use Lester et al. [33]’s LM-adapted T5
model (referred to as T5+LM), produced by training T5 on 100B additional tokens from C4 on a standard
language modeling objective.

Training Our main model, T0, is trained on the multitask mixture detailed in Section 2.1.2 and Table A.5.
Meanwhile, T0+ is the same model with identical hyperparameters except trained on a mixture that adds
GPT-3’s evaluation datasets. Lastly, T0++ further adds SuperGLUE [50] to the training mixture (except RTE
and CB), which leaves NLI and the BIG-bench tasks as the only held-out tasks.

The above T0 variants are all initialized from the 11B parameters version of T5+LM. To study the effect
of scaling and to aid researchers with less resources, we also train T0 (3B), which has the same training
mixture as T0 but is initialized from the 3B parameters version of T5+LM (results reported in Section A.5).

We perform checkpoint selection by choosing the checkpoint that yields the highest score on the validation
splits of our training datasets. This still satisfies the true zero-shot [27] setting as we do not use any examples

Effective, Efficient and Reliable Large Language Models 10

2.1. Training Language Models with Instruction Tuning

from any of the held-out tasks to select the best checkpoint.
We assemble our multitask training mixture by combining and shuffling all examples from all training

datasets. This is equivalent to sampling from each dataset in proportion to the number of examples in the
dataset. However, the number of examples in each of our training datasets varies by two orders of magnitude.
We therefore follow the strategy used in Raffel et al. [32] and treat any dataset with over 500’000 examples
as having 500’000 / num_templates examples for the purposes of sampling, where num_templates
is the number of templates created for the dataset.

We truncate input and target sequences to 1024 and 256 tokens, respectively. Following Raffel et al.
[32], we use packing to combine multiple training examples into a single sequence to reach the maximum
sequence length. We use a batch size of 1024 sequences (corresponding to 220 total input tokens per batch)
and the Adafactor optimizer [51]. Following standard practice for fine-tuning T5, we use a learning rate of
1e-3 and a dropout rate of 0.1.

Evaluation We evaluate zero-shot generalization on 11 datasets in 4 held-out traditional NLP tasks: natural
language inference, coreference, word sense disambiguation, and sentence completion, as well as 14 novel
tasks from BIG-bench (§2.1.2). Unless specified otherwise, we report performance on the validation splits.
All reported datasets use accuracy as their metric.

For tasks that involve choosing the correct completion from several options (e.g. multiple choice question
answering), we follow [23] and use rank classification to evaluate our model: we compute the log-likelihood
of each of the target options under the fine-tuned model and select the option with the highest log-likelihood
as the prediction. For simplicity, we do not apply length normalization to the log-likelihoods of the target
options.

We do not perform prompt selection by comparing the performance of different prompts on the validation
split; [27] highlights how such a strategy leaks information from the evaluation splits, which makes the
evaluation not “true” zero-shot. For a given dataset, we report the median performance across all prompts for
this dataset along with their interquartile range (Q3 - Q1) to measure the model’s robustness to the wording
of the prompts.

2.1.4 Results

Generalization to Held-Out Tasks

Our first research question is whether multitask prompted training improves generalization to held-out tasks.
In Figure 2.4, we compare T0 against our T5+LM baseline on four held-out tasks. Our approach leads to
significant gains over our baseline on all datasets, demonstrating the benefits of multitask prompted training
over only language modeling training with an identical model and prompts.

Next, we compare T0 to the zero-shot performance of the largest language models available as of writing,
i.e., various GPT-3 models up to 175B parameters. Note that Brown et al. [23] report performance on a
single prompt,3 whereas we report the median and interquartile range of performance across all prompts in
P3 without cherry picking. We find that T0 matches or exceeds the performance of all GPT-3 models on 9
out of 11 held-out datasets. Notably, neither T0 nor GPT-3 is trained on natural language inference, yet T0
outperforms GPT-3 on all NLI datasets, even though our T5+LM baseline does not. The same is true for

3Our experiments in Section 2.1.4 lead us to believe that this performance corresponds to the best prompt found after manual
tuning according to validation set performance.

Effective, Efficient and Reliable Large Language Models 11

2.1. Training Language Models with Instruction Tuning

0

20

40

60

80

0

20

40

60

80

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

GPT-3 (6.7B) GPT-3 (13B) GPT-3 (175B) T5+LM (11B) T0 (11B)

RTE CB ANLI R1 ANLI R2 ANLI R3

WSC Winogrande COPA StoryCloze HellaSwag WiC

Natural Language Inference

Coreference Resolution Sentence Completion Word Sense

Figure 2.4: Results for T0 task generalization experiments compared to GPT-3 [23]. Each dot is the performance of
one evaluation prompt. The baseline T5+LM model is the same as T0 except without multitask prompted training.
GPT-3 only reports a single prompt for each dataset.

most datasets of other held-out tasks. The two exceptions are Winogrande and HellaSwag, which we discuss
in Section 2.1.4.

To evaluate our models on more held-out tasks, we assess the zero-shot performance of T0, T0+, and
T0++ on a subset of BIG-bench [34]. Tasks from BIG-bench cover a variety of novel skills not included
in our training tasks, such as deducing the order of a sequence of objects, solving logic grid puzzles, and
telling apart true statements from common misconceptions. The maintainers of BIG-bench provide a prompt
for each dataset, with which we compare our models to a series of preliminary diagnostic baseline models
trained by Google and evaluated by the BIG-bench maintainers. These models are decoder-only Transformer
language models trained on a standard language modeling objective with varying model size. We find that at
least one of the T0 variants outperform all baseline models on all tasks except for StrategyQA (Figure 2.5).
In most cases, the performance of our models improves as the number of training datasets increases (i.e.,
T0++ outperforms T0+ which outperforms T0).

Prompt Robustness

Our second research question is whether training on a wider range of prompts improves robustness to the
wording of the prompts. We conduct two ablation experiments on the effects of the average number of
prompts per dataset (p) and the number of datasets (d) used during training.

Effect of More Prompts per Dataset In this analysis, we fix d and compare T0 to models with a varying
number of prompts per dataset. T0 was trained on some prompts that do not map onto the dataset’s original

Effective, Efficient and Reliable Large Language Models 12

2.1. Training Language Models with Instruction Tuning

0

20

40

60

0

20

40

60

80

0

10

20

30

40

0

20

40

60

0

5

10

15

20

0

10

20

30

40

0

20

40

0

20

40

0

20

40

0

10

20

30

0

20

40

60

0

20

40

0

20

40

60

0

20

40

LM (8.5B) LM (28B) LM (68B) T5+LM (11B) T0 (11B) T0+ (11B) T0++ (11B)

Code Description Conceptual Hindu Knowledge Known Unknowns Language ID Logic Grid Logical Deduction

Misconceptions Movie Dialog Novel Concepts Strategy QA Syllogisms Vitamin C Winowhy

Figure 2.5: Results for a subset of BIG-bench which has available baselines. The baseline models are Transformer-
based language models provided by BIG-bench maintainers, who also provide one prompt per dataset. T0, T0+ and
T0++ are identical except for increasing the number of training datasets (§2.1.3). BIG-bench Tasks are all zero-shot for
all the reported models.

task, for example “given an answer, generate a plausible question”. Including these prompts results in p being
8.03 on average (which corresponds to our main T0 model). We compare T0 to models where p = 1 (one
randomly chosen original-task prompt per dataset), p = 5.7 on average (all original-tasks prompts for all
datasets), and p = 0 (corresponding to T5+LM without any prompted training). We train all models with the
same hyperparameters and the same number of steps. Figure 2.6 shows that, even with just one prompt per
dataset, performance on held-out tasks can improve substantially over the non-prompted baseline, although
the spread (interquartile range between Q1 and Q3) does not consistently improve with p = 1. Meanwhile,
further increasing p from 1 to an average of 5.7 does yield additional improvement in both median (increases
for 8/11 datasets) and spread (decreases for 7/11 datasets). This reinforces our hypothesis that training on
more prompts per dataset leads to better and more robust generalization to held-out tasks. Finally, we find
that T0’s inclusion all prompts (including those that do not correspond to the dataset’s original task) further
improves the median (increases for 9/11 datasets) and spread (decreases for 8/11 datasets), showing that
training on non-original-task prompts can also be beneficial.

Effect of Prompts from More Datasets In this experiment, we fix p = all available prompts and increase
d from 39 to 49 to 55 (T0, T0+, T0++, respectively. See Section 2.1.3 for details.) Figure 2.7 shows that the
median performance of all 5 held-out datasets increases as d increases from 39 to 49. However, the spread
only decreases for 1 out of 5 datasets. For some datasets (e.g., ANLI), this is an artifact of the fact that some
prompts always perform poorly, so that when other prompts improve, the spread is stretched larger. For other
datasets (e.g., CB), however, the spread does decrease with T0+. As d increases from 49 to 55, the median
performance of all datasets again increases, but the spread only decreases for 2 out of 5 datasets. Although
further investigation is needed, it appears that increasing d does not consistently make the model more robust

Effective, Efficient and Reliable Large Language Models 13

2.1. Training Language Models with Instruction Tuning

0

20

40

60

80

0

20

40

60

80

30

35

40

45

50

30

35

40

45

50

30

35

40

45

50

30

40

50

60

70

80

30

40

50

60

70

80

40

60

80

100

40

60

80

100

20

25

30

35

40

40

50

60

70

p = 0 (T5+LM) p = 1 p = 5.7 p = 8.03 (T0)

RTE CB ANLI R1 ANLI R2 ANLI R3

WSC Winogrande COPA StoryCloze HellaSwag WiC

Natural Language Inference

Coreference Resolution Sentence Completion Word Sense

Figure 2.6: Effect of more prompts per dataset. Zero-shot performance of T0 and T5+LM when increasing number of
training prompts per dataset. Each dot is the performance of one evaluation prompt. The main T0 model (p = 8.03)
includes non-original-task prompts (see Section 2.1.2). Adding more training prompts consistently leads to higher
median performance and generally lower interquartile range for held-out tasks.

to the wording of prompts.

Comparing T0 and GPT-3’s robustness Because Brown et al. [23] only report one prompt per dataset
with no standard deviation, we evaluate GPT-3 via OpenAI’s API4 on RTE using the same 10 prompts we
evaluate T0 in order to estimate GPT-3 robustness’ to different wording of prompts. One of these templates
is identical to Brown et al. [23, p. 59]’s reported prompt, which scores an accuracy of 58.8%, lower than
the 63.5% reported in Brown et al. [23]. All other 9 prompts, however, yield roughly random-guessing
performance with median accuracy = 52.96% and interquartile range = 1.28%. These results suggest that T0
could be more robust to prompt formulation than GPT-3.

Discussion

Concurrent to our work, Wei et al. [44] proposes FLAN, which shares largely the same method of enabling
zero-shot generalization through multitask prompted training. With a mixture of datasets similar to ours, they
train multiple decoder-only language models, each with a single held-out task (cf. we focus on training one
model with multiple held-out tasks in order to evaluate the model’s ability to generalize to diverse tasks.)
Compared to FLAN, T0’s zero-shot performance is better on CB and RTE, similar on Story Cloze and
COPA, and worse on Winogrande and ANLI. T0++ outperforms FLAN on CB, RTE, and COPA and matches

4https://beta.openai.com/ We use the “base GPT-3 model” davinci. Although OpenAI does not disclose which
one of their commercially available models corresponds to which models reported in Brown et al. [23], Gao et al. [52] estimate that
davinci corresponds to the 175B model.

Effective, Efficient and Reliable Large Language Models 14

https://beta.openai.com/

2.1. Training Language Models with Instruction Tuning

0

20

40

60

80

0

20

40

60

80

30

35

40

45

50

30

35

40

45

50

30

35

40

45

50

T0 (d = 39) T0+ (d = 49) T0++ (d = 55)

RTE CB ANLI R1 ANLI R2 ANLI R3

Figure 2.7: Effect of prompts from more datasets. Zero-shot performance of three models with varying number of
datasets (T0, T0+, T0++). Adding more datasets consistently leads to higher median performance but does not always
reduce interquartile range for held-out tasks.

FLAN’s performance on Winogrande and ANLI. Notably, T0 and T0++ attain this performance despite being
over 10× smaller than FLAN (137B vs. 11B parameters).

Both T0 and FLAN underperform GPT-3 on Winogrande and HellaSwag [53, 54], for which Wei et al.
[44] conjecture that for tasks such as coreference resolution that can be formatted as finishing an incomplete
sentence, adding task instructions to prompts is “largely redundant”. Following this conjecture, we reevaluate
these two datasets without instructions as done by Wei et al. [44] and Brown et al. [23] and find that it
improves performance on HellaSwag from a median of 33.65% to 57.93%, matching the performance of
FLAN. For Winogrande, however, using FLAN’s prompt without instructions does not make a substantial
difference (accuracy = 62.15%).

Surprisingly, Wei et al. [44] perform an ablation with a model of comparable size (8B parameters) to
T0 (11B parameters) and find that that performance on held-out tasks decreases after multitask prompted
training, whereas we find that multitask prompted training improves the performance of models at least as
small as 3B parameters (Figure A.1). We identify two key differences between the models that could explain
this discrepancy: First, we use an encoder-decoder model that was pretrained with a different objective
(masked language modeling) before being trained as a standard language model and finally fine-tuned on the
multitask mixture. We note that masked language modeling has repeatedly been shown to be a dramatically
more effective pre-training strategy [32, 55, 56].

Second, our prompts are qualitatively more diverse in terms of their length and creativity (§2.1.2). For
example, consider one of our prompts for Quora Question Pairs (paraphrasing identification): I’m an

administrator on the website Quora. There are two posts, one that asks

”question1” and another that asks ”question2”. I can merge questions

if they are asking the same thing. Can I merge these two questions? We
hypothesize that this diversity could have concrete effects. For example, it could explain why Wei et al. [44]
present ablation results where increasing the number of prompts has a negligible impact on performance
whereas we observe an improvement when adding more prompts (§2.1.4). We leave a full investigation on
the impact of these differences to future work.

Effective, Efficient and Reliable Large Language Models 15

2.1. Training Language Models with Instruction Tuning

2.1.5 Conclusion

We demonstrate that multitask prompted training can enable strong zero-shot generalization abilities in
language models. This approach provides an effective alternative to unsupervised language model pretraining,
often enabling our T0 model to outperform models many times its size. We also perform ablation studies
demonstrating the importance of including many diverse prompts and the impact of increasing the number of
datasets in each task. To enable future work on improving zero-shot generalization, we release all models
trained in this section in addition to the collection of prompts we created and our prompt annotation tool.

Effective, Efficient and Reliable Large Language Models 16

2.2. Converting Supervised Datasets into Promptable Format

2.2 Converting Supervised Datasets into Promptable Format

This section presents the paper “Promptsource: An Integrated Development Environment And Repository
For Natural Language Prompts” [2].

Prompt engineering is emerging as a new focus in NLP, particularly in zero- and few-shot learning
settings. Prompting is the practice of representing a task as a natural language utterance in order to query a
language model for a response [57]. For example, if a language model is conditioned on the text “She hit a
home run. The previous sentence is about ...”, then the model’s subsequent generation would be interpreted
as a prediction of the topic of the preceding sentence, e.g. by mapping a response such as “sports” to a
class label. In specific contexts, prompting has been shown to have advantages over traditional classification,
for example facilitating adaptation of language models to ad-hoc tasks and improving sample efficiency in
low-data settings [13, 58–60]. These advantages motivate a practical challenge: How can we enable users to
create, refine, and share prompts?

The process of prompt engineering is critical for successful deployment as choices in prompting can
affect downstream predictions significantly, particularly in the zero-shot setting [61–63]. Furthermore,
training directly on collections of prompts can enable large models to generalize to new prompts more
robustly [64–67]. There is therefore a growing need for tools that support the creation of corpora of prompts.

PromptSource is an integrated development environment and repository for natural language prompts
to use in the context of zero-shot (or gradient-based few-shot) learning. It provides a Web-based GUI that
enables developers to write prompts in a templating language and immediately view their outputs on different
examples. The system is integrated with the HuggingFace Datasets library [68], so that users can load any
dataset automatically, browse existing prompts, and create new ones. Through the course of writing thousands
of prompts, we converged on three key aspects to the design of PromptSource:

• Flexible Templating Language. We adapt a templating language to represent prompts. Prompt authors
can define prompts in terms of dataset fields, hard-coded text, and simple control logic. This choice
provides the flexibility of a programming environment without the mental overhead of having to write
and read arbitrary code. Prompt templates can easily be distributed and used in other systems.

• Tools for Prompt Management. PromptSource has multiple view to address the needs of prompt
authors at different stages of the prompt engineering cycle. A global view lets authors browse datasets
and existing prompt templates. A local view facilitates iteration on prompt wording and metadata, as
well as testing on individual examples.

• Community-Driven Quality Standards. PromptSource includes a set of guidelines for prompting
based on a large-scale prompt writing pilot. PromptSource’s collection is meant to be useful for a wide
range of research, based on iterative refinement of a set of quality standards. Prompts in PromptSource
are also annotated with various pieces of metadata to make finding and using prompts easier.

The PromptSource system includes over 2,000 open-source prompts for roughly 170 datasets, which have
all been reviewed to meet the quality standards. This collection, which we call the Public Pool of Prompts
(P3), allows users to materialize prompted forms of datasets for hundreds of different tasks. The T0 series
of models [64] for zero-shot inference were fine-tuned on a subset of P3. Since then, PromptSource and
P3 have been extended for research on multi-lingual prompting [69] and priming, i.e., in-context few-shot
learning [66]. The PromptSource system and associated content is a first step in the study of systems for
prompt engineering, an area that is likely to continue to grow.

Effective, Efficient and Reliable Large Language Models 17

2.2. Converting Supervised Datasets into Promptable Format

2.2.1 Background and Related Work

PromptSource builds on recent work in prompting and prompt engineering. It is also related to work on
systems for other types of annotations.
Prompting Recently, prompting has emerged as a new focus within NLP as it can dramatically improve
language models’ few-shot and zero-shot performance in a wide range of downstream tasks [13, 64, 65, 70].
Prompts and prompt engineering come in several varieties [57]. PromptSource is focused on facilitating
research with human-written prompts, in which natural language is the medium for describing tasks. This
approach has the advantage that prompts can be understood, modified, and applied without being tied to a
specific model. In contrast, past work has also aimed to automatically construct prompts by framing the search
for a good prompt as a learning problem. These prompts can either be expressed in natural language [60, 71]
or as arbitrary vectors (a.k.a. “continuous” or “soft” prompts) not corresponding to words in the model’s
original vocabulary [72, 73]

When using human-written prompts, there are several possible approaches to learning. One is a zero-shot
setting, where the goal is to generalize to prompts for which no training examples are given. Prompts can
also be used in a few-shot setting, in which a model is either (1) trained on prompted examples of the target
task via gradient updates, or (2) priming (i.e. in-context learning), in which labeled examples are included in
an input sequence in order to prime models to make predictions without gradient updates [13].

PromptSource was originally designed for zero-shot learning, so it emphasizes explicit task instructions
and no priming examples. If needed, users can extend PromptSource for few-shot learning (e.g., as done in
69 and 66, described in §2.2.6).

S1: Exploration S2 + S3 + S4: Creation S5: Review

Browse

SNLI

The SNLI corpus (version 1.0) is a
collection of 570k human-written
English sentence pairs manually
labeled for the task of NLI…

{ premise: “The kids…”,

 hypothesis: “All kids…”,

 label: 2 }

{ premise: “A person…”,

 hypothesis: “A person…”,

 label: 1 }

Sourcing

SNLI

Browse

SNLI

The SNLI corpus (version 1.0) is a
collection of 570k human-written
English sentence pairs manually
labeled for the task of NLI…

“The kids…” Based on the previous
passage, is it true that “All kids…”?
Yes, no, or maybe? |||
No

“A person…” Based on the previous
passage, is it true that “A
person…”? Yes, no, or maybe? |||
Maybe

Based…

based on the previous passage

{{premise}} Based on the
previous passage, is it true
that "{{hypothesis}}"?
Yes, no, or maybe? |||
{{ answer_choices[label] }}

Original Task Choices in Prompt

Adapted from the BoolQ prompts in
Schick & Schütze 2021.

Yes ||| No ||| Maybe Accuracy

Figure 2.8: The five stages of creating prompts in PromptSource. The Browse view for Dataset Exploration (S1). The
Sourcing view for Prompt Writing (S2), Prompt Documentation (S3), and Iteration and Variation (S4). The Browse
view for performing a Global Review (S5).

Systems for Annotating Data Most work on collecting annotations has focused on labels and other
annotations at the level of individual examples [74]. GATE [75] was an early system for annotating text, and
includes support for many data types such as labels and entity tags. Since then, many Web-based systems
for annotating text have been developed [76–82]. Other systems support collaboration among multiple
annotators [83, 84]. More recently, many annotation systems have begun to incorporate learned models to
improve workflow, using techniques such as active learning [85, 86] and example recommendation [87, 88].
These systems are possible because the annotations to be collected are labels, for which metrics like inter-
annotator agreement and model confidence are available.

There has also been some work on collecting annotations other than labels. AlvisAE [89] and TreeAnno-
tator [90] support creating ontologies and other structured annotations. Prompts differ from these annotations

Effective, Efficient and Reliable Large Language Models 18

2.2. Converting Supervised Datasets into Promptable Format

in that they are semi-structured functions, requiring new tools for developers.

2.2.2 System Design and Workflow

Creating prompts differs from other types of data collection and annotation. We focus on three challenging
aspects on which prompting differs from traditional NLP annotation:

• Functions, not Labels. A single prompt is a function that maps dataset examples (dictionaries
of arbitrary fields) to natural language input/target pairs. Creating a prompt is therefore more like
programming than typical data annotation. How should a prompt format trade off between expressivity
and simplicity?

• Dataset-Level Choices. Prompts are associated with datasets, unlike label annotations that are local to
single examples. Prompt engineering requires developers to evaluate their choices across all examples.
What interfaces do authors need to inspect and debug their prompts?

• Variation in Prompt Construction. Unlike with labels, it is often desirable to have variation within
prompt construction, as different prompt choices may lead to different results. However, variation
complicates quality judgment, and makes it impossible to apply simple metrics like inter-annotator
agreement. How can multiple authors collaborate to build a high-quality corpus of prompts and
associated metadata?

To illustrate these distinct aspects, we start with a concrete overview of the prompt creation process of
PromptSource. For this example, we imagine that a user of PromptSource is creating prompts for a natural
language inference dataset, specifically SNLI [91]. The goal is to design a prompt query such that the answer
can be mapped onto the SNLI classes. A prompt author can accomplish this goal with PromptSource via the
following five steps (Figure 2.8):

S1: Dataset Exploration The prompt author starts in the Browse view to read the dataset description,
including linked READMEs and papers, and to browse through examples. In this case, they would see that
SNLI is a dataset for natural language inference: assume a given premise sentence is true, the goal is to
determine whether a hypothesis sentence is true (entailment), false (contradiction), or undetermined (neutral).

S2: Prompt Writing The prompt author uses the Sourcing view to try out a prompt wording, and then
adjusts it by observing prompted examples (Figure 2.8 middle, full example in Figures 2.10 and 2.11).

S3: Prompt Documentation To facilitate using the prompt, the author fills in various metadata including
possible metrics to evaluate the prompt, valid outputs if applicable, whether the prompt expresses the original
intended task of the dataset, and whether the template explicitly states the valid outputs.

S4: Iteration and Variation The prompt author then iterates through S2 and S3 to create multiple
prompts for the dataset. Authors are encouraged to vary multiple factors such as the formulation of the
prompt and the targeted task (see Section 2.2.5).

S5: Global Review The author saves the draft prompts in a structured file which are then verified by
other contributors through code reviews. New prompts need to meet the quality standard with a series of
automatic tests and by validation through prompted instances. Upon passing review, the new prompts can be
merged into a global prompts collection.

Upon submission, prompts can be viewed through PromptSource by other users. The full collection is
stored globally and can be used outside of the tool, for instance to be applied on an example from a dataset of
the Datasets library [68].

Effective, Efficient and Reliable Large Language Models 19

2.2. Converting Supervised Datasets into Promptable Format

from promptsource.templates import DatasetTemplates

from datasets import load_dataset

prompts = DatasetTemplates(’’snli’’)

prompt_key = ’’based on the previous passage’’

p = prompts[prompt_key]

dataset = load_dataset(’’snli’’, split=’’train’’)

example = dataset[0]

result = p.apply(example)

print(’’INPUT: ’’, result[0])

print(’’TARGET: ’’, result[1])

With this workflow in mind, we next describe the key aspects of the PromptSource system in greater detail.

2.2.3 Prompting Language

A key design decision is the format for prompts. Previous works on prompting tended to use code for
specifying each prompt. We experimented with this format and found a trade-off between expressivity and
explicit structure. On one side, a maximally expressive format such as pure Python code would let users
write complex programs to manipulate the semi-structured examples into prompted examples. However,
interpreting and analyzing these programs becomes difficult. This difficulty limits downstream manipulation
and analysis of the prompts, for example for possible future work on automatic prompt augmentation. On the
other side, a maximally structured format, such as rule-based generation, limits the kinds of prompts that
users can create. We found it infeasible to enumerate types of rules sufficient for the wide range of tasks and
data formats for which we wanted prompts.

We therefore settled on a middle ground between the two: a templating language. Specifically, we
use the Jinja2 templating engine,5 originally designed for producing web markup. Users write templates
as prompts with placeholders, such as If {{premise}} is true, is it also true that

{{hypothesis}}? ||| {{entailed}}. The separator ||| denotes the break between the condi-
tioning text and the desired completion. Placeholders refer to fields in the underlying example (represented as
a Python dict by Datasets [68]). Users also have access to Jinja’s built-in functions, such as manipulating
strings and structured data. For each prompt, prompted examples are created by applying the prompt to
all examples in the corresponding dataset. While Jinja is a complete programming language, our review
guidelines encourage simple functions with minimal additional logic (see Figure 2.10 and 2.11 for example).

During the development of PromptSource, we found that a few idioms were particularly useful. First,
not all templates are applicable to all examples in a dataset. Users can wrap templates in Jinja’s built-in
conditional statements, and any example that results in an empty prompted example is simply skipped.
Second, many examples can be used to make multiple training instances, such as a question that has multiple
valid answers. We therefore added a choice function that selects an element from a list in a way that can
be controlled during dataset generation, such as picking a random element using a seeded random number
generator or generating different prompts for each combination of elements in the template. Third, many
tasks such as classification and binary question answering have a small set of possible valid completions,
and it is common to make predictions for these tasks by scoring only the valid completions and returning
the highest one [13, 64, 65]. Users therefore can list the valid completions in a separate field and access

5https://jinja.palletsprojects.com

Effective, Efficient and Reliable Large Language Models 20

https://jinja.palletsprojects.com

2.2. Converting Supervised Datasets into Promptable Format

Figure 2.9: Prompt creators can browse through the dataset examples (left-column) and their prompted form (right
column) using the Browse view.

them as a list in their prompts (displayed as Answer choices in Figure 2.10). These completions are
then explicitly available when evaluating predictions for these prompted examples.

2.2.4 The PromptSource UI

The PromptSource system is designed to enable prompt creators to view data (S1), write prompts in a standard
format (S2, S3, and S4), and verify that their templates work correctly (S5). We implemented a lightweight
interface for the tool in Streamlit6 so that users could download, run locally in a web browser, and then
upload their results to a central repository. Testing iterations of the interface on pilot template-writing tasks,
we converged on three views for the interface.

V1: Browse This view (Figure 2.9) lets users inspect datasets before creating prompts (S1). Once
prompts are created, they can select prompts and browse the prompted examples generated by them (S5).
The original example is viewed side-by-side with the resulting prompted example, with the substituted text
highlighted to distinguish from text hard-coded in the template. Users can quickly scroll through many
examples, verify the behavior of their prompt, and return to the sourcing view if changes are needed.

V2: Sourcing This view (Figures 2.10 and 2.11) allows users to select a dataset to prompt, browse
examples from that dataset in the form of tables, and enter a prompt for that dataset. As the user writes their
template (S2, S3, and S4), every time they save it, the output of the template applied to the current example is
displayed next to the editor. We also collect metadata like a name for the template, and a reference for any
bibliographic information or rationale for the template.

V3: Helicopter This view (Figure 2.12) allows users to see what datasets are available for writing
templates and how many are written for each, to prioritize user attention. This view is particularly useful for
moving between datasets and for the prompt reviewers (S5).

6https://streamlit.io/

Effective, Efficient and Reliable Large Language Models 21

https://streamlit.io/

2.2. Converting Supervised Datasets into Promptable Format

2.2.5 Community Guidelines and Process

Due to the variety of existing NLP datasets, we found it challenging to exhaustively describe the characteristics
of a good prompt: there are no simple metrics like inter-annotator agreement on example-level labels. Instead,
over a few iterations, we converged on community guidelines7 with three objectives in mind: (a) provide a
standardized vocabulary for discussing prompts between prompt authors, reviewers and users, and minimum
requirements for a valid prompt, (b) highlight common errors and best practices, (c) collect the necessary
information about the prompts to support current and future research on prompt engineering. The guidelines
were enforced in the use of PromptSource by a code review process in which each prompt was reviewed
before being committed to the central repository.

Guidelines apply to the combination of a template (a function that maps an example into an input/target
pair in natural language) and a set of metadata about the template. The most important constraint we imposed
for a template to be valid is that it is formulated in natural language (both for the input and the target). We
forbid the use of non-natural language prompts such as pure code. Each prompt should clearly state what
task should be solved, in a way a non-specialist adult can understand. We found this guideline strikes a
good balance between freedom and expressivity in the wording of the prompts on one side and short generic
prompts on the other side.

In early experiments, we found that user-written prompts that did not explicitly state the possible valid
completions tended to perform worse in experiments than their counterparts in which the possible valid
completions were listed. We encouraged prompt authors to explicitly state the valid outputs in some of their
prompts. In addition, when working with training prompts that include target text, we found it useful to
remove variations on the target format that led to spurious ambiguity. For instance, the target template should
only contain the answer to the task. It should not contain any extra text such as “The answer is ...”, which can
be equivalently moved to the input template.

One of the research question we hope to enable with PromptSource is whether the diversity of the
prompt formulation during training leads to models that are more robust to the prompt formulation at test
time. Therefore, we encouraged prompt authors to create between 5 and 10 (or more) prompts per dataset
while varying the prompt formulation. For a given dataset, authors produce multiple prompts per example,
sometimes for task formulations that differed from the original dataset. For instance, for question answering
dataset, one prompt can ask to extract the answer to a given question from a given passage, while a second
prompt can ask to generate a potential question given an answer and a passage.

As part of the community process and to facilitate future research, PromptSource asks prompt authors to
include additional metadata for each prompt. Metadata fields include a name for the prompt, a reference to
the paper it was extracted from (or any relevant explanation), whether the prompt expresses the task originally
intended by the dataset, the valid outputs (if relevant), whether the input template states the valid outputs, and
possible metrics to evaluate the prompted examples. These can be used in future systems to evaluate how the
style and structure of prompts leads to different downstream results.

2.2.6 Case Studies

A system for creating, maintaining, and using prompts is a key tool for supporting the emerging research
area of prompting in a standardized and reproducible manner. We highlight three recent research projects for

7Complete guidelines can be found at https://github.com/bigscience-workshop/promptsource/blob/
main/CONTRIBUTING.md.

Effective, Efficient and Reliable Large Language Models 22

https://github.com/bigscience-workshop/promptsource/blob/main/CONTRIBUTING.md
https://github.com/bigscience-workshop/promptsource/blob/main/CONTRIBUTING.md

2.2. Converting Supervised Datasets into Promptable Format

Figure 2.10: With the Sourcing view, prompt authors can write new prompts, fill in the associated metadata, observe
the result on examples, and iterate.

which PromptSource was a key resource.
Massively multitask prompted training Sanh et al. [64] study the question of zero-shot behaviors in large
language models and ask whether zero-shot generalization can be induced by training a language model on
a massively multitask mixture of prompts. To test this question, they use PromptSource to create diverse
prompts for a large collection of NLP datasets. Their training and evaluation prompts are a subset of P3. This
work demonstrates that PromptSource allows training a language model on a massively multitask mixture of
prompted datasets and evaluating the ability of models trained with such a procedure to perform unseen tasks.
Multilingual prompting Lin et al. [69] study the zero- and few-shot learning abilities of an multilingual
autoregressive language model trained on 30 languages. In particular, they are interested in the cross-lingual
generalization of such models and benchmark a variety of tasks in multiple languages. PromptSource allows
using a massive set of high-quality English prompts. Moreover, the English prompts serve as support to
create prompts in other languages (through either machine or human translation).
Priming (in-context learning) Min et al. [66] study improving models’ few-shot priming performance by
first fully training a model (with gradient updates) on a multitask mixture formatted with priming examples.
They find that incorporating templates from P3 significantly further improves performance compared to
training on priming examples alone. Although PromptSource was not originally designed for this specific
form of prompting, users were able to easily use P3’s template collection and the templating language for

Effective, Efficient and Reliable Large Language Models 23

2.2. Converting Supervised Datasets into Promptable Format

Figure 2.11: Another example of the the Sourcing view, focusing on the editor. The templating language strikes a
balance between expressivity and explicit structure. This prompt for QA-ZRE [92], a dataset for zero-shot relation
extraction, shows how to manipulate strings and do conditional statements with Jinja.

Effective, Efficient and Reliable Large Language Models 24

2.2. Converting Supervised Datasets into Promptable Format

Figure 2.12: The Helicopter view indicates what datasets have prompts and how many prompts are available for each
dataset.

their own priming methods.

2.2.7 Conclusion

PromptSource is an open-source system for creating, sharing, and using natural language prompts and
addresses the need for new collaborative and centralized tools to support the emerging research around
prompting. The tool is designed to answer three key needs: a flexible template language, a suite of tools for
prompt management, and community-driven quality standards. As of January 2022, PromptSource includes a
growing collection of 2,000 public prompts for roughly 170 datasets, and has already been an instrumental
resource for multiple recent research projects.

Effective, Efficient and Reliable Large Language Models 25

2.3. Handling Multimodal Queries in Large Language Models

2.3 Handling Multimodal Queries in Large Language Models

This section presents the paper “Multimodal Neural Databases”[3].
The amount and variety of data available have increased dramatically in recent years, and as more devices,

such as smart glasses, become widespread, this trend is likely to accelerate. While current devices generate
mostly text and image data, smart glasses will likely increase the amount of audio and video data individuals
create. With the emergence of generative AI, we will likely see an explosion of valuable generated data.
Multimedia Information Retrieval (MMIR) has always attracted the attention of scientists and practitioners in
Information Retrieval. MMIR aims to address the challenges of processing queries on multimedia collections.
Due to the enormous increase in data availability, MMIR has also seen a surge in its interest. The field has
explored topics such as retrieval from large image archives, query by image, and retrieval based on face
or fingerprint [93]. However, this section brings forward a novel and transformative idea: given the huge
impact that the field of AI is having in all of the areas of technology, we argue that the MMIR field needs to
explore systems that can handle more expressive database-like queries called multi-modal neural databases
(MMNDBs).

We illustrate the potential of MMNDBs with an example. Consider the following query over an image
archive: how many images contain musical instruments? Assume that the images in the collection are labeled
with the objects that are identified in them (e.g., trumpet, avocado, person). Hence, an MMIR system is likely
to be able to return images with trumpets, or other musical instruments. However, finding which objects are
wind instruments (or a more detailed category) requires an additional reasoning step of a join with a database
of instruments. Moreover, counting the number of images that satisfy our condition requires reasoning about
the size of the answer set, an operation routinely done by database systems but not supported by MMIR
systems. Examples can be more complicated, such as finding the most common musical instrument appearing
in the photos or considering only photos taken in cities that hosted the Olympic games. As seen from the
examples above, one of the critical needs of MMNDBs is the ability to reason about sets.

In this perspective section, we propose to study, design, and build MMNDBs by combining the capabilities
of large multimodal models, multi-media information retrieval, and database query processing, as shown in
Figure 2.13. We have been inspired by the work on neural databases [94–96] that have garnered interest in
the NLP, database, and IR communities. However, we differentiate from that work as we position ourselves
as an evolution of the field of MMIR by means of modern and, more recently proposed, multimodal AI
technologies.

We develop a first principled prototype to show the proposed task’s feasibility. We will later stress
that this is only one of the possible architectures to solve MMNDBs and that future research will unveil
new strategies. At a high level, we build our prototype on the retriever-reasoner-aggregator model. Given
a query, the retriever returns a small subset of documents from the database that is relevant to the query.
However, typically even that subset is too big to be provided as input to a single reader, which is essentially
a transformer. Hence, the system runs multiple copies of the reasoner in parallel, each producing a partial
result for the query. Finally, the aggregator component of the MMNDB will create the query result from
the intermediate ones. For example, if the query counts the number of images that contain people, the
intermediate results would be 1 or 0, depending on whether the image contains a person. The aggregator will
add up the 1s.

MMNDB systems will be designed to handle a wide range of multimedia data, including images, videos,
audio, and text. The system will be able to process queries in natural language, allowing users to express

Effective, Efficient and Reliable Large Language Models 26

2.3. Handling Multimodal Queries in Large Language Models

Figure 2.13: A possible use case for MMNDBs. Imagine walking around the city with smart glasses and collecting
information in a multimodal database. In the evening, you could be interested in knowing which are good places to eat
that satisfy some criteria. MMNDBs could help make that decision by answering a database-like query posed in natural
language (or voice!), combining multiple information sources and modalities.

their queries intuitively and easily. The system will also be able to extract features from multimedia data and
use them to improve the performance of retrieval tasks.

This section describes a first step towards the realization of MMNDBs flexible enough to scaffold
future models. We consider queries over collections of images and validate several aspects of our proposed
architecture, as seen in Figure 2.14. We perform a rich set of experiments that show the feasibility and
potential of the proposed task across a subset of possible query types. Finally, we discuss possible future
research directions stemming from the analysis brought forward in this section and the introduction of
Multimodal Neural Databases. We release all code and data on GitHub 8.

2.3.1 Multimodal Neural Databases

We refer to a corpus of documents coming from different modalities as a multimodal database. The definition
of documents we provide here is intentionally very loose. In general, it could be any self-contained piece of
data. Multimodal databases could include wildly different sources. For instance, it could contain information
in natural language form, images, sounds, geo-tagging information, a timestamp, and many others. Unlike a
traditional database, a multimodal database is unstructured in the sense that it does not need to have a schema,
or even less, it does not need to have any particular ordering but can be just the unordered and unstructured
set of these documents.

Multimodal databases arise in several contexts. One existing context today is that of online social media,
where users post content of different kinds (text, images, memes, videos, audio). Here, each post is a

8https://github.com/GiovanniTRA/MultimodalNeuralDatabases

Effective, Efficient and Reliable Large Language Models 27

2.3. Handling Multimodal Queries in Large Language Models

Figure 2.14: Schema for our proposed MMNDB prototype. Given a query, documents are first filtered by a retriever
module. A reasoner produces intermediate answers that are then processed by an aggregator to produce the final answer.

document in the multimedia database, with the added peculiarity that the database would have to keep track
of the graph of friendships between users. Another context that will arise in the near future when smart
glasses are prevalent is the record of a user’s day. Just by doing simple activities, like getting a coffee in a
bar, the glasses will capture (adhering to whatever privacy conventions get adopted) sensory data, pictures
(videos) of who is at the bar and what they are eating, audio of the background track playing, and photos of
receipts for one’s purchases.

Ideally, we would like to be able to query these rich, large, and unstructured collections of data the same
way we query a database. Going further, unlike a standard database, we would like to use natural language
to perform queries instead of a rigid language like SQL. Specifically, given a multimodal database D and a
query q, we would like to be able to perform the following types of query: (a) Set queries; set queries are
extractive queries that return a list of spans, such as entities, from the facts. (b) Boolean queries; that return
either True or False as an answer. (c) Join queries; which require the combination of two or more documents
to produce each answer.

We note that unlike traditional databases (or even neural databases), Multimodal databases can produce
answers consisting of heterogeneous modalities. For instance, a set query can produce answers that include
images, audio, and natural language (and their combination) seamlessly.

Designing a Multimodal Neural Database presents several substantial challenges.
First, it is crucial that the system is able to reason on the modalities given in input. For instance, if I were

to look for images of cats and dogs fighting, I need to recognize both the presence of these animals and that
the interactions between the two is indeed that of fighting (a poster of Mike Tyson boxing in the background
is not sufficient). Similarly, if the query mentions someone whispering or yelling, the system must understand
such subtleties in an audio frame. Recently, deep learning techniques, particularly large deep learning models,
have shown excellent reasoning capabilities [97]. The tasks of Visual Question Answering and multi-hop
question answering have reached near human results [98] for natural language processing, with promising
candidates in the multimodal setting as well.

However, these models are usually extremely large, with billions of parameters, leading to the next
challenge, namely scale. Given a large collection of documents, it is infeasible to run such models on every
query-document pair, or even on every document for that matter.

Open domain question answering systems (ODQA), developed for answering queries from natural
language text, provide a methodology for scaling to larger document collections. ODQA answers a query by
first retrieving relevant documents from the document collection and feeding them as context to a transformer
along with the query. However, transformers can only accept contexts of limited sizes (currently, 512 to 1024

Effective, Efficient and Reliable Large Language Models 28

2.3. Handling Multimodal Queries in Large Language Models

Model µF1 µRecall µPrecision F1 Recall Precision

RN50 0.315 ± 0.002 0.819 ± 0.003 0.195 ± 0.002 0.320 ± 0.018 0.731 ± 0.035 0.302 ± 0.026
RN50x4 0.424 ± 0.002 0.794 ± 0.003 0.290 ± 0.002 0.447 ± 0.022 0.717 ± 0.031 0.419 ± 0.027
RN50x16 0.440± 0.002 0.791 ± 0.003 0.305± 0.002 0.478± 0.023 0.710 ± 0.029 0.457± 0.028
RN50x64 0.331 ± 0.002 0.837 ± 0.003 0.206 ± 0.002 0.384 ± 0.019 0.759 ± 0.034 0.343 ± 0.025
RN101 0.344 ± 0.002 0.873 ± 0.003 0.214 ± 0.002 0.388 ± 0.021 0.809 ± 0.028 0.317 ± 0.024
ViT-B/32 0.378 ± 0.002 0.876 ± 0.003 0.241 ± 0.002 0.395 ± 0.018 0.813 ± 0.022 0.298 ± 0.019
ViT-L/14 0.324 ± 0.002 0.931 ± 0.002 0.196 ± 0.001 0.329 ± 0.015 0.894 ± 0.018 0.219 ± 0.013
ViT-L/14@336px 0.337 ± 0.002 0.932± 0.002 0.205 ± 0.002 0.347 ± 0.016 0.905± 0.015 0.228 ± 0.014

Table 2.1: Comparison of different Retriever models under the “Mixed” retrieval strategy. While CLIP’s versions
featuring resnets as a backbone have higher F1 and precision scores, ViT-based models achieve higher recall. We opt
for the latter, as it allows the Reasoner module to receive as much relevant information as possible, ultimately reducing
the final pipeline error.

tokens). Even though extending these sizes is a very active area of research, it will always likely be smaller
than the size necessary to process the kinds of queries we are striving for. The number of documents that
need to be processed for answering database queries can be arbitrarily big, as can the intermediate result
sets. In contrast, ODQA systems usually consider queries whose answers are small and can be obtained by
feeding just a few documents to the transformer. Furthermore, a multimodal database is an unordered set of
documents, so we cannot exploit any locality heuristic to retrieve the relevant documents.

Last but definitely not least, there is a challenge of bridging between the different modalities in a
multimodal database. To answer queries over multimodal data, one has to process, reason, and combine
information coming not only from different documents but also from documents expressed in different
modalities. The literature in natural language processing and computer vision has recently paved the way and
achieved outstanding results in the field. Multimodal models have followed, showing excellent results in the
task of text-to-image, image-to-text, and text-to-music. However, most multimodal models available today
tackle either the text-visual or the text-audio tasks. Combining multiple modalities, while not unexplored [99],
still needs additional research efforts to reach suitable levels to address the task at hand. In particular, to
suitably address the task of MMNDB, we would need a “true” multimodal model, which can reason on any
possible modality given as input. For further discussion on this and other current limitations/future research
directions, we refer to Section 2.3.3.

A first prototype for MMNDB

To demonstrate the feasibility MMNDBs, this section describes a first prototype of such a system, for a
restricted case. We consider databases in which all the documents are images, and queries, which are posed
in natural language, can express COUNT, MAX, and IN. However, as we explain below, the architecture for
our preliminary system can apply to broader settings as well. We hope that this architecture forms the basis
for other approaches to MMNDBs.

Our system takes an input query q over a database D. It includes three components. The first component
is the retriever, which selects a subset of the documents in D that are relevant to answer the query. The
second component is the reasoner, which processes, possibly in parallel, subsets of the retrieved documents.
The reasoner provides a partial answer to the query. The third component is an aggregation operator that
synthesizes the answers provided by the reasoner to compute the final answer to the query.

The strength of our architecture is that it enables us to exploit recent advances in multimodal neural

Effective, Efficient and Reliable Large Language Models 29

2.3. Handling Multimodal Queries in Large Language Models

models when implementing the retriever and the reasoner. Specifically, these models are able to map multiple
modalities into the same embedding space, and therefore reason about the contents of images and text together.
For example, these models can identify objects in images and create textual captions that describe the main
aspects of the image.

Before we explain each of the components, we give an end-to-end overview of how a query is processed
in our system. Consider the query “How many people are playing the guitar in a blue t-shirt on a beach”.
The reasoner considers a single image in D and uses the latest neural methods to determine whether the
image contains a person playing guitar on the beach. However, applying such powerful reasoning on each of
the documents in D is infeasible, so we use a retriever to filter to only a small subset of the images in D,
P (D, q). Multiple instances of the reasoner then are applied in parallel to the retrieved images in P (D, q)

to determine which image satisfies the query. In our example, if an image satisfies the query, the reasoner
returns 1 and otherwise 0. The aggregator then counts the number of 1’s to return the final answer. We now
describe each of the components.
Retriever. The goal of the retriever is to return a subset P (D, q) of documents from D that are relevant to the
query q. The main requirement from the retriever is that it be scalable. While the reasoning we expect from
the retriever is not at the same granularity as the reasoner, it should weed out the vast majority of irrelevant
images. To retrieve documents that are relevant to the query, we encode both the query and the documents in
the same latent embedding space. However, as noted earlier, it is important that the embedding of a document
not be dependent on the query q, otherwise, we would have to compute a new embedding for every document
in D for any given query. Hence, as we describe in Section 2.3.2, we consider several methods for embedding
the documents in D in a query-independent way.
Reasoner. An instance of the reasoner P (D, q) takes one of the documents in D as input and returns an
intermediate answer to our query Ap. In the example above, the reasoner returns either 1 or 0 depending on
whether the image satisfies the conditions in the query. However, the intermediate result may be different.
For a query such as ”What is the maximum number of people in the images” the reasoner would return,
for every image, the number of people in that image. As another example, for the query ”What is the most
common musical instrument seen in the database”, the output of the reasoner would be the list and number of
occurrences of each of the instruments it identified in the image.

The crucial role of the reasoner is, precisely, to reason about the relationship between the image and the
query. In our example, the reasoner needs to determine whether there is a person wearing a blue outfit, that
the same person is the one playing the guitar, and that they are physically located on a beach. The reasoner
leverages the recent advances in neural models that are able to perform such reasoning by embedding the
image and text in the same latent space and generating textual captions of images. It is worth noticing,
however, that these models compute a dynamic embedding of the query and of the image, that depends on
both, i.e., F (I|T) ̸= F (I) and vice versa, where I is the image, and T is natural language (could be any two
modalities). This has profound computational implications. In fact, to be able to answer the query, one would
need to process any possible D, q pair. Furthermore, since the query is known only at inference time, it is
not possible to precompute the embeddings. It is then clearly unfeasible to run the reasoner on the entire
database. For this reason, we introduce an additional module in our pipeline, namely the retriever.
Aggregator. The Aggregator takes as input the query and the set of intermediate outputs from all the instances
of the reasoners and produces the answer to the query. Conceptually, this component of the system is the
simplest because the intermediate results need to be aggregated depending on the semantics of the query.
In our example, the aggregator would count the number of images for which 1 was returned. For the query

Effective, Efficient and Reliable Large Language Models 30

2.3. Handling Multimodal Queries in Large Language Models

Total Error ↓ ∆ Error ↓ Accuracy ↑

Stock Error Error TP Error FP Error FN ∆ Error ∆ Error TP ∆ Error FP Accuracy Accuracy TP Accuracy FP

Perfect IR 0.46± 0.07 0.46 ± 0.07 N/A N/A 4.64 ± 1.94 4.64 ± 1.91 N/A 0.60 ± 0.02 0.60 ± 0.02 N/A
Noisy IR 0.77 ± 0.16 0.46 ± 0.07 0.31± 0.15 N/A 2.66± 1.04 4.64 ± 1.91 0.31± 0.02 0.81± 0.01 0.60 ± 0.02 0.92 ± 0.01
Dmg. IR 1.24 ± 0.32 0.46 ± 0.07 0.78 ± 0.32 N/A 4.22 ± 1.41 4.64 ± 1.91 2.31 ± 1.15 0.70 ± 0.02 0.60 ± 0.02 0.76 ± 0.02
Full 1.27 ± 0.17 0.42± 0.07 0.76 ± 0.13 0.09 ± 0.02 3.33 ± 1.16 4.83 ± 2.03 1.96 ± 0.80 0.73 ± 0.02 0.61± 0.02 0.75 ± 0.02

FTmodel

Perfect IR 0.14± 0.01 0.14± 0.01 N/A N/A 1.46± 0.10 1.46± 0.10 N/A 0.67± 0.02 0.67± 0.02 N/A
Noisy IR 0.22± 0.01 0.14± 0.01 0.08± 0.01 N/A 0.90± 0.06 1.46± 0.10 0.43± 0.05 0.86± 0.01 0.67± 0.02 0.93± 0.01
Dmg. IR 0.54± 0.05 0.14± 0.01 0.40± 0.05 N/A 1.25± 0.08 1.46± 0.10 1.04± 0.09 0.73± 0.01 0.67± 0.02 0.73± 0.02
Full 0.99± 0.06 0.11± 0.01 0.79± 0.06 0.09± 0.02 1.10± 0.07 1.42± 0.10 0.99± 0.07 0.72± 0.01 0.69± 0.02 0.72± 0.02

Table 2.2: Results performance on the query type count. The PerfectIR setting acts as an ideal upper bound, showing
the full potential of the MMNDB framework. The Full Pipeline (Full), on the other hand, shows excellent accuracy and
∆ error but a total error that, while being good, is not at the level of PerfectIR. We empirically show that this is not
caused by noise introduced by the retriever module, as indicated by the excellent results achieved in the NoisyIR setting.
Instead, this is caused by damaging documents picked up by the retriever that trick the reasoner resulting in a large
False Positives error and, ultimately, a large total error.

counting the total number of people, the aggregator would sum the intermediate results returned from the
reasoners.

2.3.2 Experiments

This section describes the experiments we performed to validate the promise of our prototype. We begin by
describing the experimental settings.

Experimental setup

In this section, we outline the experimental setup utilized to verify the validity of our approach.

Dataset Our experiments use the MS-COCO dataset (Common Object in Context) [100], which is the
single most popular benchmark dataset in computer vision. We use the latest version made available by
the authors. The COCO dataset contains approximately 123K labeled images. Each image is associated
with 5 captions and is annotated with the objects that are identified in it. The objects are drawn from a
collection of 1.5M object instances across 80 object categories. The dataset is divided into train and eval
subsets, containing 118K and 5K images, respectively. We use the train set to train/fine-tune our methods
while we report our results on the eval set.

Queries We use the MS-COCO dataset to build our queries. For the COUNT query type, we may ask a
query of the type “How many {object} are in the database?”, where object can be any of the object categories
contained in the COCO dataset. Similarly, for the MAX query type, we may be interested in the image of the
dataset with the most frequent annotation of a particular kind. Finally, for the In query, we are interested in
images whose annotations satisfy certain conditions.

Models We now describe the neural models we used throughout our experiment.
For the Reasoner, we employ OFA [101]. OFA is a deep learning model trained on a wide variety of

multimodal (text and image) tasks, ranging from image captioning to image generation, showing great results
on unseen tasks as well. OFA is open-source (code and weights) and is currently one of the best-performing

Effective, Efficient and Reliable Large Language Models 31

2.3. Handling Multimodal Queries in Large Language Models

multimodal models. We test four different versions of OFA, namely medium, base, large, and huge, with the
largest featuring close to 1B parameters. OFA is a transformer-based model that builds a joint representation
of the input, namely text and visual, that is used to generate a textual response. We stress again the fact that,
given adequate computational resources, this module of the pipeline is highly parallelizable, hence capable of
producing intermediate answers in the span of a few seconds.

For the Retriever, we employed the CLIP model [102]. These models are trained in an unsupervised,
contrastive manner by matching captions and images. They take either text or images and align them
in a shared latent space that can be used for later inferences and to measure their distance, with similar
image-caption pairs being close together. We test on 8 different versions of CLIP, namely RN50, RN101,
RN50x4, RN50x16, RN50x64, ViT-B/32, ViT-L/14, ViT-L/14@366px. CLIP’s salient feature is that the
created embeddings are static, meaning they do not depend on the query. This allows us to pre-compute the
embeddings for all images beforehand, meaning that only the embedding for the query has to be computed
at inference time. Once the embeddings are computed, a strategy is needed to select which documents are
considered relevant (and passed to the reasoner) and which ones are not. To do this, we craft three strategies:
(i) TopK: in this case, we compute the dot product between the embeddings of the documents and the query,
we sort them, and we select the TopK documents.
(ii) Threshold: we compute the cosine similarities between the embeddings of the text and the images, and
we return all the documents for which the cosine similarity is greater than a certain threshold τ that depends
on the particular CLIP model we are using, lying in a range between 0.15 and 0.4.
(iii) Neural Selector: here, we train a small neural network that, given the q and D embeddings, returns a
binary outcome that indicates whether the document is relevant for the query or not and whether it should be
returned.
The actual number of parameters depends on the CLIP version employed, but it is always in the order of
thousands. It is worth noticing that, while it is still much more scalable with respect to the large 1B parameters
models the reasoner employs, this strategy requires a “dynamic” processing; namely, the decision on which
documents to select relies on a neural model evaluating all q, D pairs.

In a practical system, it is possible to circumvent some of the issues above by borrowing techniques from
the literature on online aggregation literature [103]. In practice, we can sort the embedding of the images
according to the dot product they have with the query. We then process them in batches of predetermined
sizes w. We stop once a specific tolerance criterion is met, namely when no more than c documents are
predicted as relevant by the model.

This leads us to our fourth strategy, which we call Mixed. As the name suggests, we mix two of the
strategies already introduced, Neural Selector and TopK. Specifically, we take the set union of the TopK
(With a small K) and Neural Selector documents to retrieve and to be passed onto the Reasoner.

2.3.3 Results

In this section, we present the experimental evidence to support the ideas presented in this section. First, we
will show results that test the performance of single architecture components. Following that, we proceed to
evaluate the entirety of our pipeline. Results for all metrics are reported together with their standard error.

We start by evaluating our retriever strategy. We argue that, for our pipeline, a good retriever should
have a high level of recall since every relevant document that is failed to be retrieved will produce an error
that will propagate to the subsequent components and onto the final response. For this reason, we explicitly
express a preference for models and strategies obtaining a high recall. We tested each of the 8 CLIP model

Effective, Efficient and Reliable Large Language Models 32

2.3. Handling Multimodal Queries in Large Language Models

Selection Strategy µF1 µRecall µPrecision F1 Recall Precision

Top-K 0.211 ± 0.001 0.683 ± 0.004 0.125 ± 0.001 0.201 ± 0.009 0.852 ± 0.018 0.125 ± 0.009
Threshold 0.351± 0.003 0.226 ± 0.003 0.791± 0.006 0.445± 0.029 0.377 ± 0.030 0.776± 0.022
Neural 0.337 ± 0.002 0.932± 0.002 0.205 ± 0.002 0.343 ± 0.016 0.898 ± 0.018 0.235 ± 0.016
Mixed 0.337 ± 0.002 0.932± 0.002 0.205 ± 0.002 0.347 ± 0.016 0.905± 0.015 0.228 ± 0.014

Table 2.3: Comparison among different retrieval strategies. The Threshold strategy achieves higher F1 and precision
scores, while the “Mixed” strategy has a higher recall. Once again, we opt for the strategy that achieves higher recall,
namely Mixed, as it allows the Reasoner module to receive as much relevant information as possible, ultimately
reducing the final pipeline error.

versions on each of the 4 crafted strategies. For the sake of space efficiency, we only show results for the
various models in the chosen final setting - mixed strategy - and the comparison between different strategies
using the best model - ViT-L/14@366px. In Table 2.1, you can see the performance of the various models
in the Mixed Strategy setting. The first thing we can notice is that while there is a shift in scale between µ

and macro metrics, at least for precision and recall, the ranking between different models does not really
change. Furthermore, While ViT-L/14@366px is the best model neither with respect to F1 nor precision, it
is the best model when considering a recall. In fact, it consistently beat other models in that regard, with
the exception of its twin ViT-L/14, with which the difference in terms of performance is minimal. Since the
difference in the number of parameters and general complexity is almost unnoticeable, too, we saw no reason
not to proceed with the former. In Table 2.3, we report results for the 4 retrieving strategies we tested. Once
again, while Threshold offers the best precision, the Neural Selector, particularly the Mixed Strategy, offers
the best overall results with comparable F1 and much higher Recall. In Table 2.4, we show the difference in
performance between the various OFA version we tested. We only show results for the COUNT query type
for the sake of not being repetitive since the difference between these models transfers across tasks. In this
case, unlike the retriever, we see significant differences in results between the model versions tested. Larger
models clearly outperform smaller ones by a wide margin. Moreover, OFA-huge outperforms OFA-large in
terms of total error and ∆ error, while the latter achieves higher accuracy. We choose OFA-large for two
reasons: (i) we favor accuracy over the other two metrics, and (ii) it has half the parameters with respect to
the huge version (0.5B vs. 1B). We also report on a finetuned version of OFA-large (OFA-large FT), obtained
by finetuning OFA-large on the train set for 10 epochs with a learning rate of 5e − 5 with the same task.
Finetuning the OFA model significantly boosts its performance on the MMNDB task.

Model Total Error ↓ ∆ Error ↓ Accuracy ↑
OFA-base 0.831 ± 0.024 2.876 ± 0.217 0.094 ± 0.014
OFA-medium 0.871 ± 0.013 2.869 ± 0.180 0.074 ± 0.005
OFA-large 0.460 ± 0.073 4.645 ± 1.944 0.597± 0.022
OFA-huge 0.392± 0.025 2.363± 0.179 0.533± 0.023

OFA-large FT 0.138± 0.011 1.455± 0.100 0.668± 0.018

Table 2.4: We test different neural models to be used as the building block for the reasoner on the PerfectIR setting.
Smaller models clearly fail to compete with their larger counterparts. OFA-huge achieves a smaller total and ∆ error,
while OFA-large has higher accuracy. We choose the latter as we favor accuracy over the other metrics and because it
has half the amount of parameters. We also report on a finetuned version that significantly improves over the stock
versions.

The metrics tracked, though spun off, are the same as in the test whose results are reported in Table 2.2.
Here, we test both the reasoner capabilities and the full pipeline. We perform our testing under 4 different
scenarios, considering both the case in which we have a stock model or a finetuned one, reporting on 10

Effective, Efficient and Reliable Large Language Models 33

2.3. Handling Multimodal Queries in Large Language Models

different metrics. We use the PerfectIR setting as a baseline. In this setting, the set of documents retrieved
Dr is the set of documents that are actually relevant, taken directly from the ground truth. This, of course, is
an ideal setting in which we assume a perfect retriever and acts as a sort of upper bound for our method. Full
pipeline instead refers to our actual setting, in which our mixed strategy retriever passes the set of retrieved
documents. The metrics we collect are of two kinds: one, with the word total as antecedent, refers to the
whole pipeline; the others, without the word total in them, are meant as a test on the intermediate answers
Ap produced by the reasoner. In particular, By accuracy, we mean the percentage of intermediate answers
Api that are exactly equal to their ground truth value. This is then averaged over all queries. We then further
divide this computation into two disjoint sets, namely, accuracy for true positives (TP), documents in Dr

that are actually relevant, and accuracy on false positives (FP), documents in Dr that should not have been
retrieved. Please note that in the case of PerfectIR, the set of FP documents is empty by definition. Since the
task at hand is that of the query type COUNT, we are also interested in knowing of close an intermediate
answer is to the ground truth value. We track this with the metric ∆ error. Here, similarly to the accuracy
metric, we register the mean absolute deviation between the intermediate answer Api and the ground truth,
averaged over all queries. Once again, we spun this off into its two components, namely TP and FP.

Stock Total Error ↓ ∆ Error ↓ Accuracy ↑

Perfect IR 2.845± 1.759 29.263± 17.598 0.188 ± 0.044
Noisy IR 4.576 ± 2.486 41.438 ± 21.343 0.200 ± 0.045
Dmg. IR 4.258 ± 2.035 53.325 ± 23.933 0.188 ± 0.044
Full 4.280 ± 2.014 53.063 ± 24.027 0.213± 0.046

FTmodel

Perfect IR 0.229± 0.035 1.813 ± 0.271 0.575± 0.056
Noisy IR 0.229± 0.035 1.800± 0.273 0.550 ± 0.055
Dmg. IR 0.303 ± 0.060 2.100 ± 0.320 0.525 ± 0.056
Full 0.317 ± 0.056 2.263 ± 0.342 0.563 ± 0.055

Table 2.5: Results for the query type MAX. It can be immediately noticed how much the finetuning process improves
the performance of the MAX query type. In particular, we notice that finetuned models are less prone to produce
indecisive intermediate answers such as “many” and “a lot”, which are highly relevant to this query. We also notice how
close the Full Pipeline setting is to PerfectIR compared to other queries. We argue this is due to the reduced impact of
damaging documents, i.e., it is unlikely that a damaging document will be a likely candidate for MAX.

Under these two metrics, we can see that the Full Pipeline results are competitive, if not better, with the
PerfectIR version. Upon further inspection, we can also deduct the cause. In fact, in Full Pipeline, false
positive documents are added to the computations. Many of these documents are actually easier to deal with
since they do not contain the object of interest and can produce an intermediate answer of 0, raising both
the accuracy and the ∆ error of the Full Pipeline version. In our experiments, we also noticed that the stock
model was struggling to produce useful intermediate results in some instances. For instance, the model would
produce indecisive answers like “many” and “few”. Using some prompt engineering, explicitly asking the
model to “Answer with a number” alleviated the problem but did not totally eradicate it. For this reason, as
mentioned earlier, we produced a finetuned version of the reasoner, which improves the accuracy score and
dramatically reduces the ∆ error. Finally, we report results on the total error metric. Under this metric, we
consider the final outcome of the pipeline o, and we compute its absolute deviation from the ground truth,
averaged over all queries, and normalized by cardinality. The PerfectIR version achieves excellent results
for this task, fully demonstrating the feasibility of the task we propose in this section. Full Pipeline, while

Effective, Efficient and Reliable Large Language Models 34

2.3. Handling Multimodal Queries in Large Language Models

Stock Model Total Error ↓ Accuracy ↑

Perfect IR 0.131± 0.014 0.869 ± 0.014
Noisy IR 0.404 ± 0.176 0.906± 0.007
Damaging IR 0.829 ± 0.357 0.811 ± 0.013
Full 0.793 ± 0.150 0.672 ± 0.018

FTmodel

Perfect IR 0.060± 0.007 0.940 ± 0.007
Noisy IR 0.085 ± 0.007 0.946± 0.004
Damaging IR 0.436 ± 0.054 0.838 ± 0.008
Full 0.330 ± 0.015 0.877 ± 0.007

Table 2.6: Results for the query type IN. Once again, we observe a gap in performance for the fine-tuned models. In
particular, the fine-tuned version produces answers that are much more robust to noise. Moreover, while results are
generally satisfactory, we observe an increase in error for the Full Pipeline. We attribute this to damaging documents
that trick the reasoner into mispredicting the presence of an object, as evidenced by the high loss for the DamagingIR
setting.

achieving good scores, lags behind the PerfectIR setting. To further investigate this difference in performance,
we divide the total error into its components. Once again, TP refers to documents correctly retrieved, FP to
documents wrongly retrieved, and false negatives (FN) to documents that should have been retrieved but have
not (These last two components are null in the case of PerfectIR by definition). We notice how the total error
TP is actually comparable between the two versions, slightly lower in the case of Full Pipeline since a few of
the more challenging documents are not retrieved. Upon further inspection, we notice that the total error FN
is almost negligible, meaning that the gap in total error is not caused by documents not being retrieved. From
the experimental evidence, it is clear that this gap is actually caused by false positives, documents that should
not have been retrieved, but they were, nonetheless. To further investigate this phenomenon, we devise an
additional setting called NoisyIR. In this setting, we assume Dr is composed, as in PerfectIR, of the set of
relevant documents to which we add, however, some non-relevant documents (300) taken at random. We
notice that the NoisyIR setting performs only slightly worse than the PerfectIR setting, showing that our
model is actually robust to noise.

Following this experiment, we devised a new setting, identical to NoisyIR, but in which the negative
documents are not taken at random anymore. In fact, we take the non-relevant document whose CLIP
embedding with the query is the highest. We call this setting DamagingIR. Results clearly show that these
documents are able to ”trick” the reasoner into generating wrong intermediate answers, causing a large FP
error and ultimately a more significant total error resulting in a performance difference between the PerfectIR
version and the Full Pipeline one.

DamagingIR has already been observed by [96] and, to the best of the authors’ knowledge, has not been
yet fully addressed. At the end of this Section, we provide a complete commentary on this issue.

In Table 2.6, we show results for the IN query type. This query answers questions of the type “In how
many pictures there are {object}?”. We consider two metrics in this scenario that mirror the ones defined for
the COUNT setting. First, we consider accuracy, that is, the percentage of time the intermediate results Api

are exactly equal to their respective ground truths. The total error indicates the absolute deviation of the total
number of documents found satisfying the condition from its ground truth, later averaged over all queries and

Effective, Efficient and Reliable Large Language Models 35

2.3. Handling Multimodal Queries in Large Language Models

normalized by cardinality. We can immediately notice that the finetuned version of the reasoner generally
performs better with respect to its stock counterpart. We also notice the positive results obtained by the Full
Pipeline, even though they are lower than the near-perfect PerfectIR. Once again, even more clearly than
before, we can attribute this reduction in performance to DamagingIR, that is, to false positive documents
that manage to “trick” the model into thinking that there is an object in the image when there is really not, as
evidence by the drop in performance observed under this regime. Finally, we report results for the MAX
query type, which return the document with the max instances of a particular object in the collection. We test
on the same 4 scenarios and report on three metrics. ∆ and total error are specular to previous settings, while
total accuracy is the percentage of queries in which the correct document is found. This is the scenario that
shows the most significant difference between the stock reasoner and its finetuned version. We attribute this
gap to an issue cited earlier, in which for pictures with high instances of a particular object, the model would
produce indecisive answers like “many”, a problem that the finetuned model does not feature. Furthermore,
we notice that the difference between the PerfectIR and the Full Pipeline version is rather small. This stems
from the fact that, unlike in the two other scenarios, false positives documents are unlikely to be appetible
candidates for the MAX type of query, failing to impact the final outcome. We also register that, even when
the model is not able to retrieve the correct max document, the picture found has a comparable number of
instances, as indicated by the total error.

Overall, the results are very promising and fully show the potential for Multimodal Neural Databases.
We managed to build an effective and efficient retrieval system with a high recall. The reasoner module, and
the pipeline as a whole, show good performance and resistance to noise, with low error and high accuracy,
coupled with a resistance to noise. However, like other systems in IR, it is weak to DamagingIR, as shown
by the increased caused false positives. We argue that by tackling this issue we can further increase the
performance of MMNDB and bring it close to the optimum.

Future Research Directions

The introduction of Multimodal Neural Databases paves the way toward new and exciting research directions;
in this section, we proceed to discuss some of the more interesting ones.

In this section, we have shown the feasibility of the proposed task but have yet to explore many open
problems.

First and foremost, a key feature in any database system is the ability to update its information. In a
typical database system, one would expect to be able to remove, add, or modify the information as he wishes.
This is not straightforward under our current paradigm and needs more research efforts.

On this line, it would be crucial to account for the importance of time in databases. I could ask the
database question like ”What is the place I visited the most between 1 pm and 3 pm this year?” Furthermore,
we have restricted ourselves to only two modalities, and in particular, a database made of strictly images.
Expanding available modalities is a clear path with obvious benefits. Additionally, we could consider not
only documents but documents and their meta-data. To provide an example, whenever we take a picture with
our smartphone, we collect a variety of information, such as the location and time, which would definitely be
helpful for a database of this kind. To remain in the field of smartphones, recently, video-clip sharing has
become very popular among social network users. Asking database-like queries on videos is an open problem
that presents many challenges. Among all, it is crucial to be able to identify entities along frames to be able to
answer queries effectively. While recognizing an entity (like a person) is generally feasible for text, it is much
more complex when considering different modalities. Solving this will be critical for the development of

Effective, Efficient and Reliable Large Language Models 36

2.3. Handling Multimodal Queries in Large Language Models

MMNDBs. In our presentation, we stressed the fact that the proposed architecture is not the only possible way
of solving this problem. In fact, recently, we have witnessed the power of large foundational models to solve a
wide array of tasks, with chatGPT and GPT-x models, in general, leading the way [12]. We believe that these
large foundational models could bring an advance to this field as well. However, this is not straightforward,
and some issues should be addressed. These models require a large amount of data to be pre-trained; this
begs the question of how one could encapsulate the memory used during training from the actual Multimodal
Database to avoid knowledge contamination. By knowledge contamination, we mean the known phenomenon
for which data used during pretraining is spilled when generating answers in a completely unrelated context.
Knowledge contamination proved troublesome in many applications, with some systems allegedly revealing
private keys or even personal phone numbers. Furthermore, true multimodality in these large models remains
an open research direction and a major roadblock toward conversational multimodal systems. Finally, we
have taken Multimodal Neural Database in its most general setting. However, one might be interested in
specific scenarios with more precise guidelines and goals. For instance, there may be cases in which one has
a precise idea of which kind of queries are to be expected. In that case, strategies could be crafted to optimize
the system. In traditional database systems, for example, indexing or creating views for common queries is a
prevalent practice. Creating equivalent procedures for MMNDB is still unexplored.

2.3.4 Related Work

Multimedia Information Retrieval (MMIR) Bridging the gap between multimodal unstructured data and
structured database systems has always been a central key endeavor in Information Retrieval [104]. The
former is vastly highly available on the web but challenging to digest and query compared to the latter.
Particular focus has been posed on content-based image retrieval [105–107] and recently on cross-modal
retrieval [108, 109], which have been made possible with the recent advancements in deep learning [110].
Specifically, there has been an explosion of such approaches for Image-text retrieval [111–116]. However,
these systems are primarily concerned with retrieving relevant documents (e.g., images) based on a given
query (e.g., text). In contrast, MMNDBs focus on answering database-like queries on large data collections,
which current cross-modal retrieval methods cannot achieve.
Multimodal Neural Models There has been a recent surge in the development of multimodal neural models
that can handle data in different forms, primarily images, and text, for various applications. Usually, this is
performed via a single neural multimodal encoder [101, 117–120] or via different encoders for each modality
that is jointly aligned via a shared space [102, 121]. In MMNDBs, we take advantage of this characteristic
by using a separate encoder system as a Retriever to precompute and index visual tokens, thus reducing
computation and time at runtime by only using the text encoder to compute the textual embedding of the
query. However, directly applying these neural models to the MMNDB task would not be scalable due to the
high computational cost. We use them as components in our architecture, building on their successes in other
vision-language tasks.
Visual Question Answering (VQA) Most of these multimodal vision-text models are evaluated on the task of
visual question answering [97], where the goal is to generate an accurate and semantically coherent response
based on a question about an image. Usually, these involve using reasoning and other capacities that are
non-trivial, even for current neural architectures. Compared to the task of MMNDBs, VQA is defined on a
single image-question pair and requires reasoning over the image to answer the question. Closer to the task of
MMNDBs, is Open-domain Question Answering (OpenQA) [122] and the multimodal variant WebQA [123]
which aim to answer natural language questions over large-scale unstructured textual documents. Compared

Effective, Efficient and Reliable Large Language Models 37

2.3. Handling Multimodal Queries in Large Language Models

to the task of MMNDBs, their scope is different and involves multimodal, open-domain question-answering,
while we want to focus on efficiently answering database-like queries over a collection of documents in
different formats (e.g., images).
Answering Database Queries There has been substantial effort put into converting queries expressed in
natural language into SQL queries for databases with known structure [124–126], and there have also been
advancements in adapting this approach for semi-structured data and knowledge bases [127, 128]. Recently,
Thorne et al. [94, 95] proposed NeuralDB as a way to perform database queries over a collection of textual
documents without the need to translate data or queries into a predefined database schema but using parallel
neural techniques instead. Their approach is very effective but it: (i) requires preprocessing and analysis for
the aggregation operator; (ii) is limited to simple queries and (iii) is capable of handling data just in textual
format. In this section, we stem from this research approach and tackle the third limitation extending the
original architecture proposed to multimodal document processing.
Retrieval-augmented models Recently there has been a surge of interest in the line of research concerning
retrieval-augmented neural models [129]. Most of the current models focus on augmenting current language
models’ capabilities with an external memory or retrieval mechanism that retrieves relevant documents given
an input query, reducing the number of parameters and non-factual errors [130].

2.3.5 Conclusion

In this section, we have proposed to expand the field of Multimedia Information retrieval through the
introduction of Multimodal Neural Databases. MMNDBs promise to answer complex database-like queries
that involve reasoning over multiple modalities at scale. We have demonstrated the feasibility and potential
of this system by proposing a first principled approach to solve this problem with an architecture composed
of three modules - retriever, reasoner, and aggregator - and performing a rich set of experiments. We have
discussed potential future research directions that could stem from the system introduced in this section.
MMNDBs set a new research agenda that strives to simultaneously act as a bridge between information
retrieval and database systems and reduce the gap between the two. We believe MMNDBs have the potential
to substantially advance not only the field of MMIR but the general field of Information Retrieval in its
entirety.

Effective, Efficient and Reliable Large Language Models 38

2.4. Conclusion Effective LLMs

2.4 Conclusion Effective LLMs

This section has explored methods to enhance the effectiveness of large language models through instruction
tuning, prompt engineering, and multimodal integration. Instruction tuning emerged as a critical step in the
training pipeline, demonstrating that fine-tuning models on a diverse set of tasks formatted as natural language
instructions significantly improves their generalization to unseen tasks. Importantly, these improvements
do not rely solely on model scale; smaller instruction-tuned models were shown to outperform much larger
models, such as GPT-3, in certain benchmarks. This finding challenges the assumption that performance
scales linearly with model size and underscores the value of task-specific and multitask optimization strategies.

The development of PromptSource further advanced the effectiveness of LLMs by enabling systematic
and community-driven prompt engineering. With over 2,000 prompts across 170 datasets, PromptSource
provided the necessary tools to create a broad range of task formats, enabling LLMs to align more closely
with human instructions. This aligns with the broader observation that the flexibility and diversity of task
representation, rather than brute-force model size, are key to improving performance across a wide range of
applications.

Finally, the exploration of multimodal neural databases (MMNDB) extended the scope of LLM effec-
tiveness to real-world scenarios requiring reasoning across multiple modalities. By integrating text, images,
and other data formats, LLMs were demonstrated to be capable of handling complex, database-like queries,
thereby expanding their applicability in practical settings.

Together, these contributions highlight that the effectiveness of LLMs depends not only on their ability
to process large-scale data but also on their alignment with task-specific instructions and their adaptability
to diverse inputs. Instruction tuning and prompt engineering, in particular, show that structured training
approaches can yield substantial gains in performance while remaining computationally efficient. Moreover,
the multimodal capabilities of LLMs open new possibilities for their deployment in complex, multimodal
environments.

In conclusion, the findings presented in this section underscore that improving the effectiveness of
LLMs requires a multifaceted approach, combining robust task alignment, prompt diversity, and multimodal
integration. These strategies ensure that LLMs are not only powerful but also versatile and adaptable to the
nuanced demands of real-world applications. As LLMs continue to evolve, focusing on effectiveness through
tailored training and alignment techniques will remain a cornerstone of their development.

Effective, Efficient and Reliable Large Language Models 39

Chapter 3

Efficient Large Language Models

This chapter focuses on our contributions to improving the efficiency of LLMs, addressing two key aspects:
accelerating inference in transformer models (§3.1) and developing resource-efficient, language-specific
models (§3.2).

In the first part of this chapter (§3.1), we present our work on parallel decoding algorithms [4]. Despite
the inherently sequential nature of autoregressive language generation, we demonstrate that it is possible to
significantly speed up the decoding process without compromising the quality of the generated text in the
context of Machine Translation (MT). We introduce three novel algorithms that leverage parallel computing
resources to accelerate inference in transformer-based models. This work has introduced the concept of
parallel decoding (decoding multiple tokens in parallel) without any additional training (sometimes referred
to as Jacobi decoding), which is now an active area of research to speed up the generation of language models
[131–133]. This area is now included under the umbrella term of speculative decoding from a paper that
concurrently proposed to decode multiple tokens in parallel starting from a draft of a smaller auxiliary model
[134].

The second part of the chapter (§3.2) explores an efficient approach to developing language-specific
LLMs, focusing on our work on Camoscio [5], an instruction-tuned model for the Italian language. We
demonstrate how parameter-efficient fine-tuning techniques, specifically LoRA (Low-Rank Adaptation),
can be used to create high-quality, specialized language models with limited computational resources. This
approach resulted in the first open instruction-tuned LLM for the Italian language, since then several other
Italian LLMs have been proposed [135–137].

3.1 Accelerating Inference in Large Language Models

This section presents the paper “Accelerating Transformer Inference for Translation via Parallel Decoding”
[4].

In recent years there have been dramatic improvements in Machine Translation (MT) [138, 139] thanks
to the transition to neural models and the advent of the Transformer architecture [140]. These models can
produce high-quality translations while being extremely parallelizable during training. However, Transformers
are used sequentially at inference time, generating one token per time (i.e., sending each token as input
for the next autoregressive iteration). This process of autoregressive inference hampers the efficiency of
neural machine translation systems in terms of latency, limiting applications and portability. Considering that
these systems are extensively used in production multiple times to produce new translations (e.g., Google

40

3.1. Accelerating Inference in Large Language Models

Translate1, DeepL Translator2), even a minor speedup would be beneficial in the long run, especially if the
translation is done on embedded devices.

To address this issue, the community proposed ad-hoc trained models specific for parallel machine
translation under the umbrella term of Non-Autoregressive Machine Translation models (NAT) [141]. These
models produce the translation in parallel but require (i) a complete reengineering of the MT system, (ii)
extensive training resources and (iii) complex design choices like distillation from larger autoregressive
models. These requirements are quite demanding and not easily satisfiable. For example, production systems
are heavily optimized for hardware and software and even introducing a minimal modification requires
non-trivial human effort [142, 143]. Furthermore, training a new model from scratch is not always possible
due to non-released training data or low-resource languages having few or lacking parallel corpora.

Figure 3.1: On the left, the classical Autoregressive Decoding for MT. The target sentence is produced token-by-token
sequentially, sending the partial result as input for the next autoregressive iteration up to the length m of the target.
On the right Parallel Decoding proposed in this section. This method changes only the decoding algorithm (orange
block) and is usable on top of any autoregressive model without modifications. Parallel Decoding algorithms resolve
the whole sentence or a block of b tokens in parallel: initial tokens (PAD tokens) are gradually refined with k steps until
a stopping condition is reached. Crucially, k ⩽ m with quality guarantees and overall decoding speedups.

In this section, we propose to address the problem of parallel machine translation with an orthogonal
approach consisting in novel decoding algorithms that work in parallel and can be used on top of existing
autoregressive models for MT. We overcome previous limitations with a flexible and generic method that does
not require any modification to the model or costly retraining. Specifically, inspired by previous successes
in speeding up feedforward computation for image generation [144], we reframe the greedy autoregressive
decoding for MT as a system of nonlinear equations solvable in parallel. This simple formulation speeds up
the decoding procedure by using fixed-point iteration methods like Jacobi and Gauss-Seidel while having
mathematical guarantees on the quality of the translation. A high-level description of the method is available
in (Fig. 3.1). Our contributions can be summarized as the following:

• We reframe the standard greedy autoregressive decoding procedure in MT with a parallel formulation,
introducing three parallel decoding algorithms (PJ, PGJ, HGJ) and a stopping condition that preserves
translation quality.

• We perform extensive experiments with different transformer sizes (base and large) and datasets,
showing speedups up to 38% in time, obtaining a nearly 2× speedup when scaling the model on
parallel resources while preserving quality. To the best of our knowledge, this is one of the first studies
to introduce a speedup in multilingual machine translation.

• We introduce a decoding dependency graph visualizer (DDGviz) to inspect the learned tokens’ condi-
tional dependence and when parallel decoding is effective.

1https://translate.google.com/
2https://www.deepl.com/

Effective, Efficient and Reliable Large Language Models 41

3.1. Accelerating Inference in Large Language Models

All the code is publicly released3.

3.1.1 Related Work

PJ PGJ HGJ

Figure 3.2: Parallel Decoding algorithms: PJ resolves the whole sequence in parallel iteratively. PGJ resolves blocks
in parallel; once a block is finished, it moves on to the next one and decodes it again in parallel (in figure b = 3). HGJ
decodes the sentence in parallel as PGJ up to a certain length h; afterwards, it goes autoregressively until [EOS] token
is generated. Decoding actually happens in sub-word tokens (not depicted here).

Gu et al. [141] first introduced Non-Autoregressive Translation models (NAT) as ad-hoc trained models
capable of producing the translation all at once in parallel. With NATs, it is possible to consistently reduce
the latency and speed up the translation at the expense of a slightly worse translation quality due to the
multimodality problem (i.e., we lose the dependency between tokens in the target output). Finding a tradeoff
between translation quality and speed is an active research direction, with current methods trying to fill the
gap in terms of translation quality [145, 146]. Nevertheless, all proposed NAT models are learning-based
and require different tricks to reach the quality of autoregressive models [147]. The most common is the
sequence-level knowledge distillation of large autoregressive models into parallel models [148]. Other
approaches include defining alternative training objectives [149–152], architectures that model dependencies
between output sentence tokens [147, 153–156] or multi-iteration methods [145, 146, 157–161] that apply
iterative refinements to a translation, trading some speed for greater quality. In our approach, we also
employ iterative refinements of solutions to non-linear equations, but we do not perform any training or
modification to the model. Other works that require retraining or modifications to the model add additional
decoding heads [162] or use shallow decoders [163]. We refer the reader to Xiao et al. [164] for a thorough
survey on NAT methods. Further orthogonal approaches use specialized hardware (TPU) with low-precision
calculations [142] or software optimizations [143]. In the context of Grammatical Error Correction, Sun
et al. [165] recently proposed aggressive parallel decoding, assuming that the model output is similar to
the input. More recently, inspiring our work, Song et al. [144] showed that it is possible to parallelize
feedforward computations by thinking of them as a system of non-linear equations. They parallelized the
backpropagation of RNNs, feedforward layers and autoregressive generative models on images. We extend
the approach defined on dense pixel prediction to the discrete conditional token generation in MT. While
this work was under submission and anonymity period, Leviathan et al. [134], Chen et al. [166] and Kim
et al. [167] concurrently proposed decoding approaches that speed up inference of a large transformer model
by using another smaller model to draft tokens. Compared to these approaches our method requires just an
existing autoregressive model (no matter the size) and mathematically guarantees the output quality. In the
next Section we describe the method.

3.1.2 Method

In this Section, we introduce notations, develop the theory behind Parallel Decoding, present three algorithms
(Fig. 3.2), and discuss the initialization and stopping conditions for the proposed approaches.

3https://github.com/teelinsan/parallel-decoding

Effective, Efficient and Reliable Large Language Models 42

https://github.com/teelinsan/parallel-decoding

3.1. Accelerating Inference in Large Language Models

Notation

The goal of MT is to translate a sentence x in a source language (e.g., Italian) with its translation y in the
target language (e.g., English). Source and target sentences are generally tokenized in words or subwords
[168–171]; here, we use the subfix notation x = (x1, . . . , xn) and y = (y1, . . . , ym) to indicate specific
tokens in the sequence. We also use the notation x1:n to indicate a slice of a sequence as a shorthand of
x = (x1, . . . , xn). From a probabilistic perspective, an MT model estimates pθ(y | x). Once an MT model
has been trained, the inference phase is traditionally performed by sampling tokens from the model probability
conditioned on the input sequence x and previously generated tokens (y1, . . . , yi−1):

pθ (yi | y1, . . . , yi−1,x) . (3.1)

Different sampling strategies are employed (e.g., Greedy, Top-K, Top-p [172, 173]) alongside search strate-
gies that estimate the total conditional probability (e.g., Greedy search, Beam search [174]). The most
straightforward strategy, Greedy Search, selects the element yi of a sequence with:

yi = argmax pθ(yi | y1:i−1,x). (3.2)

Given the formalization above, a standard autoregressive setting runs m inference steps sequentially to
generate an output sequence of m elements.

Parallel Decoding. Given Equation (3.2), it is possible to write the greedy decoding procedure on all tokens
as:

y1 = argmax pθ(y1 | x)
y2 = argmax pθ(y2 | y1,x)
...
ym = argmax pθ(ym | y1:m−1,x)

(3.3)

Defining f(yi,y1:i−1,x) = yi − argmax pθ(yi | y1:i−1,x) , we can rewrite the system of Equations (3.3)
as:

f(y1,x) = 0

f(y2, y1,x) = 0
...
f(ym,y1:m−1,x) = 0

(3.4)

This system has m non-linear equations (each equation employ a neural network) with m variables.

Parallel Decoding Algorithms

The autoregressive decoding implicitly solves the system of Equations (3.4) by substitution, i.e., given the
[BOS] token and the input sentence x, it solves equations from first to last, progressively replacing the
resolved variables. In this section, we rely on Jacobi and Gauss-Seidel (GS) fixed-point iteration methods
[175] to solve in parallel system (3.4) until a stopping condition is reached. This formulation is particularly
flexible and has several advantages: Firstly, it is completely agnostic to the underlying MT model used;

Effective, Efficient and Reliable Large Language Models 43

3.1. Accelerating Inference in Large Language Models

Secondly, it can be analyzed with analytical tools and has guarantees of convergence to the exact solution for
system (3.4); Thirdly, it can be potentially extended by drawing from the numerical methods literature for
non-linear equations solving methods [176]. We see that, with the proper stopping condition, it is possible to
have quality guarantees over the output. We present here three algorithms (PJ, PGJ, HGJ) that leverage these
fixed-point iteration methods to speedup decoding in MT.

Parallel Jacobi (PJ) Decoding. First, we propose Algorithm 1. This algorithm works by initializing a draft
translation for the whole target sentence and then iteratively translating the whole sentence in parallel until
the stopping condition is triggered. This is equivalent to solving system (3.4) with Jacobi, hence the name of
the method.

Parallel GS-Jacobi (PGJ) Decoding. Decoding the whole target sentence in parallel may introduce
difficulties in inferring long dependencies between tokens since the underlying model is trained to model
the conditional distribution of a token given the previous tokens. In general, we observed that shorter
dependencies are easily predicted since decoding happens at the sub-word level, and the model can decode
sub-word unities in parallel rather than the whole sentence. To this end, we propose Algorithm 2, called
GS-Jacobi, that splits the sentence into contiguous b-dimensional blocks. Starting from the first one, it
decodes in parallel all its elements. Once a block is finished or the stopping condition within the block is
triggered, the algorithm performs a sequential (Gauss-Seidel) step and proceeds with (Jacobi) decoding on
the next one.

Hybrid GS-Jacobi (HGJ) Decoding. Algorithms 1 and 2 assume to know beforehand the number of
equations m (i.e., the target length). This is not usually the case for MT, where the model dynamically
controls the length through the emission of a special end-of-sentence token [EOS]. To overcome this issue,
we propose a flexible Hybrid Algorithm 3 that mixes PGJ computations with standard autoregressive decoding.
This algorithm performs parallel GS-Jacobi decoding up to a certain prefixed length h. If the [EOS] token is
generated within a block, then the algorithm stops, returning the translation up to [EOS]. Otherwise, the
algorithm concludes the translation by reaching the [EOS] token with standard autoregressive decoding. In
this case, the length h regulates the trade-off between parallel and sequential computation, limiting the waste
of resources beyond [EOS].

Initialization and Stopping

Our algorithms share two components: the initialization procedure and the stopping condition.

Initialization INITT(x). The initialization procedure is a function that inputs the source sentence and
produces an initial draft translation as output. In this section we experimented with a simple initialization
procedure that initialize the translation with all [PAD] tokens. This choice is fast and doesn’t depend on the
underlying MT model. We leave as future work the research of different initialization procedures to further
speedup the decoding.

Stopping Condition STOPC(yk−1, yk). The stopping condition is a function that takes as input the
previous-iteration sentence yk−1 and the current-iteration sentence yk and decides whether to stop the

Effective, Efficient and Reliable Large Language Models 44

3.1. Accelerating Inference in Large Language Models

Algorithm 1 Parallel Jacobi Decoding
Input: x = (x1, . . . , xn), pθ
Output: y = (y1, . . . , ym)

1: y← INITT(x)
2: m← len(y)
3: for i = 1 to m do
4: o← copy(y1:m)
5: y1:m ← argmax(pθ(y1:m|y1:m,x))
6: stop← STOPC(o,y1:m)
7: if stop then
8: break
9: end if

10: end for
11: return y

Decoding Algorithm en→de de→en en→ro ro→en
Speed BLEU Speed BLEU Speed BLEU Speed BLEU

Opus
Greedy Autoregressive 1.00× 28.24 1.00× 33.10 1.00× 27.41 1.00× 37.01
Beam Search (beam = 5) 0.71× 28.68 0.72× 33.92 0.70× 27.61 0.72× 37.84
PJ Decoding 0.73× 28.24 0.75× 33.10 0.66× 27.41 0.66× 37.01
PGJ Decoding (b = 5) 1.28× 28.24 1.32× 33.10 1.33× 27.41 1.29× 37.01
PGJ Decoding (b = 3) 1.34× 28.24 1.37× 33.10 1.38× 27.41 1.35× 37.01
HGJ Decoding (b = 3) 1.34× 28.24 1.37× 33.10 1.38× 27.41 1.35× 37.01
MBart50
Greedy Autoregressive 1.00× 23.97 1.00× 31.58 1.00× 24.99 1.00× 34.77
Beam Search (beam = 5) 0.76× 24.93 0.77× 32.61 0.77× 25.31 0.76× 35.16
PJ Decoding 0.88× 23.97 0.88× 31.58 0.86× 24.99 0.85× 34.77
PGJ Decoding (b = 5) 0.98× 23.97 0.98× 31.58 0.97× 24.99 0.99× 34.77
PGJ Decoding (b = 3) 1.06× 23.97 1.08× 31.58 1.03× 24.99 1.04× 34.77
HGJ Decoding (b = 3) 1.05× 23.97 1.07× 31.58 1.01× 24.99 1.02× 34.77

Table 3.1: Comparison of parallel decoding algorithms (highlighted in grey) with sequential decoding using Opus
(CPU) and MBart50 (GPU) on WMT14 and WMT16. Speed is measured in time w.r.t. the autoregressive baseline.

algorithm or not. This function is crucial since it regulates the trade-off between speedup and translation
quality. In this section we introduce as stopping condition for MT:

yk−1 − yk = 0 (3.5)

i.e., the sentence from the previous step has not changed. This stop condition allows for preserving quality
and quickening translations simultaneously.

WMT17 IITB IWSLT15 FLORES
En-Fi En-Hi En-Vi En-It En-Fr

Dec. Algorithm Speed ← → ← → ← → ← → ← →

PJ Iters 1.04× 1.04× 1.04× 1.04 × 1.06× 1.03× 1.02× 1.04× 1.03× 1.03×
Time 0.86× 0.88× 0.89× 0.89× 0.87× 0.86× 0.85× 0.86× 0.85× 0.85×

PGJ (b=3) Iters 1.07× 1.09× 1.09× 1.09× 1.10× 1.07 × 1.07× 1.08× 1.08× 1.11×
Time 1.01× 1.05× 1.05× 1.07× 1.04× 1.02× 1.02× 1.03× 1.03× 1.05×

HGJ (b=3) Iters 1.05× 1.07× 1.07× 1.07× 1.07× 1.06× 1.07× 1.06× 1.05× 1.07×
Time 1.01× 1.03× 1.04× 1.05× 1.03× 1.01× 1.01× 1.02× 1.01× 1.03×

Table 3.2: Comparison over different languages in terms of speedup and iterations on MBart50. Arrows indicate the
direction of translation. Qualitative results and BLEU scores are available in the appendix C.3.

Effective, Efficient and Reliable Large Language Models 45

3.1. Accelerating Inference in Large Language Models

Algorithm 2 Parallel GS-Jacobi Decoding
Input: x = (x1, . . . , xn), pθ, b
Output: y = (y1, . . . , ym)

1: y← INITT(x)
2: m← len(y)
3: i← 1
4: while i ⩽ m do
5: o← copy(yi:i+b)
6: yi:i+b ← argmax(pθ(yi:i+b|y1:i+b,x))
7: stop← STOPC(o, yi:i+b)
8: if stop then
9: i← i+ b

10: break
11: end if
12: end while
13: return y

Quality Guarantees

Compared to NAT methods which do not have any quality guarantee since a novel parallel model is trained
from scratch, our formulation guarantees to have the same quality of using autoregressive decoding with the
same MT model. System (3.4) is known in literature as a triangular system of m equations with m variables,
this characterization allows to state an important property.

Proposition 1. Algorithms 1, 2, 3 converge and yield the same results of greedy autoregressive decoding in
at most m parallel iterations, for any initialization and providing stopping condition (3.5).

We refer the reader to Song et al. [144] for a formal proof. Intuitively, with m steps the algorithm used the
same number of iterations of autoregressive, hence the final solution is the same regardless the initialization.
In this worst case, the wall-clock time is the same but in general the algorithm reach the stopping condition
earlier with a lower wall-clock time and overall speedup.

DDGviz

Equation 3.1 models the dependency between tokens in the decoding phase. In the classical autoregressive
mode, each token depends on all the previous ones for the generation. However, it is possible to show that
this dependency is actually relaxed (i.e., not all tokens depends on all the previous ones), thus it would be
interesting to visualize the actual distribution pθ (yi | ·,x) learned by an existing MT model. To this end, we
build the Decoding Dependency Graph visualizer (DGGviz) to visualize the dependency graph of tokens in
the decoding phase. In the standard autoregressive decoding this graph is a fully-connected chain where the
i-th token is connected to all the previous tokens, starting from the encoding x: to decode yi you need to
decode first y1, . . . , yi−1. Instead we show that there are skipping connections between independent tokens
that can be visualized with DGGviz. We detail DGGviz with an example in section 3.1.3.

Algorithms details

We propose here the pseudocode of Algorithms 2 and 3.

Effective, Efficient and Reliable Large Language Models 46

3.1. Accelerating Inference in Large Language Models

The function copy(yi:i+b) creates a copy of the tensor in input detached from the source. This is done
in practice to avoid the overwriting of pointers to the same memory location. Function CHECKEOS(yi:i+b)

returns the index of the token EOS in the block if present, else −1. Function CHECKEOS(yi) returns
True if the tokes in exactly the token EOS, else False. The function argmax selects from the model
distribution over the vocabulary the index (token) with maximum probability. This procedure is done for all
the tokens in parallel, in the case of parallel decoding, or for just a single token in the case of autoregressive
decoding. Generally, the output is the prediction for the next token; hence it should be shifted left before the
reassignment to a variable. We omitted this implementation detail for clarity.

3.1.3 Experiments

Experimental Settings

Datasets. We evaluate our approach using standard evaluation datasets proposed for parallel MT [141]:
WMT14 English-German [En-De], WMT16 English-Romanian [En-Ro] [177, 178]. Additionally, we tested
our method on different language pairs with varying (low-medium) resources: IWSLT15 (English-Vietnamese
[En-Vi]) [179], IITB (English-Hindi [En-Hi]) [180], WMT17 (English-Finnish [En-Fi]) [181], FLORES-101
(English-Italian [En-It]; English-French [En-Fr]) [182]. All the datasets are evaluated in both directions.

Evaluation. All the evaluations are performed using the official test split for each dataset, downloaded using
Huggingface dataset library [68]. No training or hyperparameters tuning is performed. We use SacreBLEU
to evaluate the translation quality [183, 184]. We measure speedup in wall-clock time and iterations w.r.t. the
same autoregressive model. GPU times are calculated after calling torch.cuda.synchronize(). All
the experiments were performed by caching the past Keys and Values of the transformer to further speed
up the computation [185] and in the online inference setting with batch size equal to 1. For the Jacobi and
GS-Jacobi algorithms, we assume to know beforehand the length m of the target and measure the speedup in
the ideal condition. For the Hybrid GS-Jacobi algorithm, we set h equal to the maximum (i.e., the stopping
condition is triggered within a parallel block) to decouple the effective speedup regardless of the length
produced by the initialization function (see Section 3.1.2). We remark that HGJ does not assume to know
beforehand the target length and is applicable to real MT translation scenarios.

Model Configuration. We tested transformer models in the two standard configurations: base (512 model
dimension, 6 attention layers for both encoder and decoder) and big (1024 model dimension, 12 attention
layers for both encoder and decoder). We used pretrained models of Opus [186] for the former and MBart50
[187] for the latter. Opus is a transformer base model (74M parameters) trained on language pairs from the
homonymous dataset [188]. MBart50 is a large multilingual transformer model fine-tuned for translation on
50 languages (610M parameters). We tested the models on CPU since this is the default environment for
MT models in production, except for the model MBart50 which runs on GPU. We run the experiments on
a standard 16-core machine, except for the scaling experiments. Additional specifications are available in
Appendix C.1

Algorithms Comparison

In Table 3.1 we compare the proposed parallel decoding algorithms with the standard sequential autoregressive
decoding baselines. As we can observe, the fastest algorithms are PGJ Decoding (b=3) and HGJ Decoding

Effective, Efficient and Reliable Large Language Models 47

3.1. Accelerating Inference in Large Language Models

Decoding Algorithm en→de de→en en→ro ro→en
Time Iters Time Iters Time Iters Time Iters

Opus
Greedy Autoregressive 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Beam Search (beam = 5) 0.71× 1.00× 0.71× 1.00× 0.70× 1.00× 0.72× 1.00×
PJ Decoding 0.72× 1.03× 0.74× 1.04× 0.69× 1.04× 0.67× 1.03×
PGJ Decoding (b = 3) 1.16× 1.04× 1.19× 1.07× 1.17× 1.05× 1.17× 1.03×
HGJ Decoding (b = 3) 1.16× 1.04× 1.19× 1.06× 1.17× 1.05× 1.17× 1.03×
MBart50
Greedy Autoregressive 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Beam Search (beam = 5) 0.76× 1.00× 0.77× 1.00× 0.77× 1.00× 0.76× 1.00×
PJ Decoding 0.88× 1.03× 0.88× 1.03× 0.86× 1.04× 0.85× 1.03×
PGJ Decoding (b = 3) 1.06× 1.10× 1.08× 1.11× 1.03× 1.08× 1.04× 1.11×
HGJ Decoding (b = 3) 1.05× 1.07× 1.07× 1.01× 1.01× 1.02× 1.02× 1.08×

Table 3.3: Comparison of parallel decoding algorithms (highlighted in grey) with sequential decoding using Opus
(CPU) and MBart50 (GPU) on WMT14 and WMT16. Speed is shown here both in Time and Iterations w.r.t. the greedy
autoregressive baseline.

Method Requirements WMT14 Efficiency
Arch Loss seq-KD Speed ↑ BLEU ↑ Train FLOPs ↓ Total FLOPs ↓ FLOPs / Speed ↓

Parallel Decoding - HGJ (Ours) No No No 1.34× 28.24 0 2.53e+13 1.89e+13
SUNDAE †[146] Yes No No 1.4× 28.46 5.27e+21 5.27e+21 3.77e+21
ShallowDec (12-1) [163] Yes No No 1.4× 26.90 1.02e+19 1.02e+19 7.30e+18
Semi-NAT [189] Yes No Yes 1.5× 26.90 1.55e+17 1.55e+17 1.03e+17
DisCo [158] Yes Yes Yes, Big 3.5× 27.34 4.06e+19 4.06e+19 1.16e+19
DSLP [152] Yes Yes Yes 14.8× 27.02 1.93e+19 1.93e+19 1.31e+18
F-VAE [147] Yes Yes Yes, Big 16.5× 27.49 4.06e+19 4.06e+19 2.46e+18

Table 3.4: Comparison of different methods for parallel MT on WMT14 En-De. Results are ordered by speed,
highlighted in green the two highest BLEU scores, † indicates diffusion models. Existing methods require training,
architecture modifications, additional losses to force parallel translation, and distillation from an additional MT
transformer model (”Big” indicates the size). Details on FLOPs computation are available in the Appendix C.2.

(b=3) which are up to 34% and 38% times faster on Opus and up to 5% and 8% faster on MBart50, depending
on the language pair. We note also that results empirically show that all the parallel decoding algorithms
guarantee the same quality of greedy autoregressive decoding, as evidenced by the unchanged BLEU scores.
This is an experimental verification of the formal Proposition 1. The table also shows that the Beam Search
algorithm with a beam size of 5 generally performs better in terms of BLEU score, although at a cost of speed.
This difference in terms of BLEU is expected, as beam search is a heuristic search strategy, while our method
is a decoding algorithm. We discussed better this aspect in the ”Beam Search” paragraph. Nevertheless,
beam search is ∼30% slower than greedy autoregressive and 63% to 68% slower than PGJ, depending on the
model and language pair. This means that the proposed parallel algorithms allow trading a little translation
quality (e.g., on en→ro the difference between beam search and parallel decoding algorithms in BLEU is just
0.20 points) for greater decoding speed.

Another aspect to note is that the algorithms PJ and PGJ (b=5) are sometimes slower than greedy
autoregressive. There are several factors that can influence the actual wall-clock time like how the underlying
hardware schedule and execute the various operations, which might vary according to the architecture and
the workload. In particular, longer sequences (e.g., the whole sentence in PJ or blocks of 5 tokens in PGJ)
may require more memory to store, and the CPU/GPU may have to perform more memory accesses, which
can slow down the computation (although theoretically it should happen in parallel). In the end, these
computational overheads slow down the actual execution. This is also the case for the difference in speedups
between MBart50 and Opus. We better investigated this aspect in the section ”Computational Scaling” and

Effective, Efficient and Reliable Large Language Models 48

3.1. Accelerating Inference in Large Language Models

WMT17 IITB IWSLT15 FLORES
En-Fi En-Hi En-Vi En-It En-Fr

Dec. Algorithm ← → ← → ← → ← → ← →

Autoregressive 17.55 25.34 16.50 24.70 31.92 33.94 22.78 26.38 39.51 38.90
Beam Search 18.39 26.04 16.87 25.24 32.14 34.59 23.52 26.80 39.59 39.21
PJ 17.54 25.35 16.50 24.69 31.92 33.94 22.78 26.38 39.50 38.90
PGJ (b=3) 17.55 25.35 16.50 24.70 31.93 33.94 22.78 26.38 39.51 38.90
HGJ (b=3) 17.55 25.35 16.50 24.70 31.93 33.94 22.78 26.38 39.51 38.90

Table 3.5: BLEU scores on MBart50.

report in the appendix results on a different architecture, with also results in terms of iterations speedups
which are architecture agnostic.

Analysis and Validation

Cross Languages. In order to demonstrate the robustness of our decoding algorithms with respect to the
translation languages, we leveraged the multilingual capabilities of the MBart50 model and selected a diverse
range of language pairs for evaluation. The results, presented in Table 3.2, show that both PGJ and HGJ
achieve a consistent speedup in comparison to the autoregressive decoding method, with an improvement
ranging from 2-7% for PGJ and 1-5% for HGJ, regardless of the language pair used. Additionally, we
observed a speedup in terms of iterations of 7-11% for PGJ and 5-7% for HGJ. These findings indicate
that our algorithms have the potential to match or surpass the speedup in terms of wall-clock time by fully
exploiting this saving in terms of iterations. We note that, similar to the previous experiment, PJ suffers
from an overhead problem. To the best of our knowledge, this is one of the first studies that have achieved a
speedup in multilingual machine translation, concurrent with the work of Song et al. [156], while this latter is
significantly different in spirit and requirements (NAT model). We leave BLEU scores in the Appendix C.3
for space constraints together with qualitative results in different languages.

Computational Scaling. In Figure 3.3, we present an analysis of the scalability of our proposed methods
in relation to increasing computational resources. Starting with 8 cores, our methods demonstrate a slight
improvement in terms of wall-clock time for PGJ and HGJ, with speedups of 1.11 and 1.09 respectively. On
the other hand, this amount of resources is too restricting for PJ which needs to fit the whole sentence and
thus achieve a score of 0.46 due to the aforementioned overhead problem. As the resources are increased,
our method demonstrates the ability to effectively leverage hardware and significantly reduce decoding time,
while the autoregressive baseline is constrained by sequential processing. With 122 cores, a substantial
speedup of 1.98× and 1.99× is achieved for PGJ and HGJ respectively, while the autoregressive baseline is
bounded by sequential processing at 1.00×. It is important to note that this experiment does not simulate
a real production system, but rather it is meant to show what results can be achieved when the underlying
computation is properly optimized to run in parallel. In our case, we simulated this setting with increasing
cores, nevertheless similar results can be achieved with additional software optimizations to further reduce
latency and overheads [143, 190] and increase the speed gain with parallel-optimized computations. Overall
this experiment serves as a proof of concept for the capabilities of parallel decoding in contexts with limited
overhead and shows a promising direction for further improvements.

Effective, Efficient and Reliable Large Language Models 49

3.1. Accelerating Inference in Large Language Models

Figure 3.3: Scaling experiments on WMT16 En-De with PGJ and HGJ blocks = 3. Increasing the number of available
resources (number of CPU cores) allows the methods to decrease the parallel overheads. As a result, the speedup
increases and the methods scale.

Comparison with NATs. Table 3.4 reports the comparison of our parallel decoding algorithm with a
selection of NAT methods for parallel MT. Following prior works, we report for each method the speedup
relative to the autoregressive transformer base baseline from their original paper [164]. It is worth noting that,
although these methods can achieve higher speedups, they are very demanding in terms of computational
resources which must be accounted for in a fair comparison. To estimate quantitatively this cost, we evaluated
the number of floating point operations (FLOPs) required for training and inference on WMT14.

Results show that our method HGJ uses the least number of computational resources, even considering
the additional cost at inference time. Relating the speedup obtained with the used resources (FLOPs/speed),
our method still achieves the best cost-benefit ratio. Furthermore, NATs generally degrade the translation
quality if compared to their autoregressive baseline. On the contrary, our method mathematically guarantees
the same quality of autoregressive decoding, which is higher than standard NAT models.

SUNDAE achieves BLEU of 28.46, but requires more resources than training RoBERTa [191] on 16
TPUs (see Appendix C.2). Other methods require further elaborate techniques like profound architectural
changes, additional losses to force parallel translation and sequence-level distillation from large autoregressive
transformers [147]. Our approach is a decoding method that does not involve any training or modification to
the model and can be used to speed up existing models on standard desktop hardware.

Speedup Analysis. We provide here a preliminary analysis of the factors responsible for the observed
speedup in our method. We first distinguish between two types of speedup: wall-clock speedup and iterations
speedup. The former is primarily driven by the parallelization capability of our method, as demonstrated in the
”Computational Scaling” section. With parallel decoding, underlying operations can be optimized and fused
to be executed fastly. Compared to Sheng et al. [192], our method allows parallelizing sequence operations
(”row-by-row” setting). The latter instead may vary consequently to several factors (e.g., model/vocabulary
size, training data, language, etc). For this reason, we experimented with several variations of these factors
(models Transformer Base vs. Big, vocabularies 58K Marian vs. 250K MBart50, languages, and hardware).
While it is challenging to decouple different elements, our analysis point out several interesting insights. For

Effective, Efficient and Reliable Large Language Models 50

3.1. Accelerating Inference in Large Language Models

Algorithm 3 Hybrid GS-Jacobi Decoding
Input: x = (x1, . . . , xn), pθ, b
Output: y = (y1, . . . , ym)

1: y← INITT(x)
2: h← len(y)
3: i← 1
4: eos_cond← False
5: while i ⩽ h do
6: o← copy(yi:i+b)
7: yi:i+b ← argmax(pθ(yi:i+b|y1:i+b,x))
8: stop← STOPC(o,yi:i+b)
9: eos_ind← CHECKEOS(yi:i+b)

10: if stop and eos_ind > −1 then
11: y← y1:eos_ind
12: eos_cond← True
13: break
14: end if
15: if stop then
16: i← i+ b
17: break
18: end if
19: end while
20: while eos_cond ! = True do
21: yi ← argmax(pθ(yi|yi−1,x))
22: i← i+ 1
23: eos_cond← ISEOS(yi)
24: end while
25: return y

example, we observed that iteration results on MBart50 are generally higher compared to Marian (Tables
3.2-3.3), possibly due to the finer-grained tokenization of MBart50. We also hypothesize that language and
linguistic features, such as inflectionally rich or agglutinative/gendered languages, may influence iteration
speedups. To facilitate this type of analysis, we developed DDGviz, which we believe will be useful for
research in this area.

Visualizing Parallel Decoding. In previous experiments, we demonstrated that parallel decoding is feasible.
This suggests that the dependency learned by the model between certain tokens is relaxed, as some tokens
can be decoded in parallel. Analyzing and understanding when this happens allows shedding light on the
behavior of existing models and a separate study focused on this issue would be needed. In this work, we lay
the ground for a such study introducing the necessary inspection tools. While we have already introduced
DDGviz in Section 3.1.2, in this experiment we show how it works and how it can be used with a practical
example. In summary, the DDGviz visualizer allows to show the real decoding distribution pθ (yi | ·,x)
learned by a MT model. This decoding distribution is plotted as a graph, where a connection indicates the
dependency pθ(yi | ·), by using Parallel Jacobi decoding. At each PJ decoding iteration (vertical axis of
Figure 3.4), DDGviz keeps track of which tokens have been correctly decoded w.r.t. the gold autoregressive
reference of the model, showing the tokens correctly decoded and the probability of each one (horizontal
axis). Figure 3.4 shows DDGviz applied on an example. The example shows that for y4 = _sa it is possible

Effective, Efficient and Reliable Large Language Models 51

3.1. Accelerating Inference in Large Language Models

Figure 3.4: DDGviz. Visualization of the translation En-Ro: ”How satisfied are the Romanian couples: men versus
women”→”Cât de satisfacuti sunt cuplurile romanes, ti: bărbat,ii împotriva femeilor”. (Highlighted tokens decoded
in parallel). On top: the Decoding Dependency Graph, omitting redundant edges on non-parallel tokens to ease
visualization. On bottom: DDGviz shows at each Parallel Jacobi iteration (vertical axis) which tokens have been
generated in parallel (horizontal axis) with the corresponding probability (cell number).

to decode more than one token in parallel y5 = tis, y6 = fa, hence here the decoding of y6 does not depend
on the decoding of y5 - pθ (y6 | y1:4,x). We observed this phenomenon frequently, explaining the speedups
in the previous experiments. The example also shows that the model is able to decode five tokens in parallel
after y7 = _cu. This is a peculiar case since the model, given ”How satisfi_”, is generating all at once ”_ed
are the Romanian couples” (proposed here in English for better readability, original version in Romanian
is available in Figure). This example indeed shows how DDGviz can be used to highlight possible biases
encoded in the model as it is not clear how the model can be so confident (see cell probability) that after
”satisfied” the most straightforward tokens to decode are ”Romanian couples” [193, 194]. We leave other use
cases for future works and show in Appendix C.3 several visualizations with equally interesting phenomena.

3.1.4 Conclusions

In this section, we showed that is possible to speed up existing machine translation models by simply changing
the decoding algorithm with a parallel formulation. We introduced three parallel decoding methods which
achieve consistent speedups without requiring any training, modifications, or quality loss. Our solution is
orthogonal to previous approaches proposed in literature which often entail demanding requirements in terms
of data, computational resources, and engineering effort. Although our method is not without shortcomings,
it is a first valuable step toward integrating parallel decoding algorithms into any model. This is particularly
relevant in limited-resource scenarios where NATs are not a viable option and to speed up any transformer
model, especially fine-grained or character-level models [195]. We believe that further advancements in this
area, including the exploration of optimal initialization procedures and stopping conditions, as well as the use
of alternative parallel solvers for non-linear equations, will close the gap with learning-based techniques and
continue to improve the efficiency and effectiveness of parallel decoding algorithms.

Effective, Efficient and Reliable Large Language Models 52

3.1. Accelerating Inference in Large Language Models

Limitations

The proposed algorithms allow to speed up an existing model out-of-the-box, without any modification
or retraining. However, there are some considerations to bear in mind when using parallel decoding in
order to have a speedup in terms of wall-clock time. Firstly, as the name implies, the method executes the
decoding phase in parallel. Therefore, to appreciate the speedup one should be able to run computations
in parallel. Using parallel decoding without parallel resources or parallel-optimized software may increase
wall-clock time due to overheads, leading to a waste of computation. This is further discussed in Section
3.1.3 ”Computational Scaling”. The reported wall-clock time results are thus to be considered within the
scope of the experimental setup proposed in this section and they may vary depending on the underlying
hardware and software. Secondly, the method allows speedup of the decoding by scaling on parallel resources.
This implies an additional computational cost during the inference phase to achieve a speedup. While using
parallel decoding, one should consider a trade-off between the desired acceleration and the utilization of
computational resources. Thirdly, since our method performs the decoding in parallel, as for NAT systems, it
is difficult to combine it with Beam Search. Beam Search is inherently a dynamic programming algorithm
and it is not possible to efficiently maximize the joint probability of the large search space without using
sequential intermediate computations. We better explain this aspect in the next paragraph.

Beam Search. Beam search is widely employed to enhance the translation quality in MT [196, 197] as well
as in other domains such as audio [174, 198]. However, it is an inherently sequential procedure that stores
partial joint probabilities of the entire sequence (beams) while progressing with autoregressive decoding.
Determining the maximal joint probability of all sequences in parallel is a challenging task, equivalent to a
full maximum a posteriori (MAP) estimation. This is an open research problem and it is also an issue for
NAT methods. NAT methods patch up this limitation with sequence-level KD which has the advantage of
”not requiring any beam search at test-time” [148] thanks to learning and distillation from large models. Since
our method is a decoding algorithm, we cannot use the same approach without learning. Nevertheless, the
quality guarantee allows our methods to have performance on par with greedy autoregressive and generally
better than a NAT model. We think of our method, not as a replacement for beam search, but rather as a way
to obtain a speedup at inference time that is a middle ground between autoregressive greedy decoding (high
quality, no requirements, no speed) and NATs (quality compromises, increasing requirements with increasing
speed). Future works might address the quality gap with beam search by combining parallel decoding with
alternative techniques like Minimum Bayes Risk [199].

Ethics Statement

Increasing the inference speed of MT can positively impact society by giving people a fast and good
translation. This will enable people from different language backgrounds to communicate with each other
and help remove cultural and trade barriers. As demonstrated by comparing the number of FLOPs in Table 3,
our method uses fewer resources compared to alternatives and thus has a smaller carbon footprint, making
it a more sustainable choice [200]. Furthermore, since our method does not involve training procedures
or change the quality of results, we do not introduce any societal bias (e.g. racism, sexism, homophobia)
into the translations. The latter, however, can be introduced through data in the training of the backbone
autoregressive models and NATs. It is the task of those who train these models to mitigate this problem.
DDGviz can also help investigate and visualize some potential harmful biases encoded in the model.

Effective, Efficient and Reliable Large Language Models 53

3.2. Efficient Instruction-tuning for the Italian Language

3.2 Efficient Instruction-tuning for the Italian Language

This section presents the paper “Camoscio: An italian Instruction-tuned LLaMA” [5].
In recent years, Large Language Models (LLMs) have made remarkable advancements in the field of

natural language processing, demonstrating state-of-the-art performance on various tasks [19, 201, 202].
However, the majority of these models are typically controlled by for-profit organizations that release just a
paid API for receiving responses based on input textual prompts. This severely constrains researchers from
conducting comprehensive and meaningful research, as they lack access to both the model’s weights and the
training data regime. This limitation is particularly relevant for privacy-sensitive applications (e.g., medical
domain) where data cannot be shared with external providers.

On the other hand, several open-source models4 have been proposed as an alternative to closed models
[203–205]. However, most of these models are English-centric or multilingual, albeit with performance
that lags behind their monolingual counterparts. Furthermore, in these latter models, support for the Italian
language is usually poor. For example, BLOOM – the largest open multilingual model available up to date –
has not been trained on any Italian data, while LLaMA has only a small percentage of training data in the
Italian language 5. In addition to this, most of these models are only trained with the standard language
modeling objective (i.e., predict the next token given the previous ones) on corpora of raw textual data,
while it has been shown that a second training step of instruction-tuning is crucial to increase downstream
performance [1, 206, 207]. Recently, a step in this direction has been made by Taori et al. [208] with the
release of Stanford Alpaca, an instruction-tuned version of LLaMA for the English language. Following
this approach, in this section we propose Camoscio as an instruction-tuned version of LLaMA for the
Italian language by translating to Italian the instruction-tuning dataset of Stanford Alpaca. In particular,
we finetuned the smallest version of LLaMA (7 billion parameters) with LoRA [209], a parameter-efficient
finetuning technique that allows to train larger models on standard desktop hardware. Our contributions are
the following:

• We introduce an instruction-tuning dataset for the Italian language, stemming from the Stanford Alpaca
[208] dataset, translating it to Italian.

• We train Camoscio on this dataset and evaluate its zero-shot performance on several downstream tasks
for the Italian language (NewsSum-IT, SQuAD-IT, XFORMAL IT).

• We release all the artifacts (code, dataset, model checkpoints) to the community.

3.2.1 Background

Large language models have emerged as a general class of models capable of performing a wide range of
tasks without explicit finetuning by just leveraging in-context examples [210]. They’ve garnered popularity
not only in the natural language processing domain but also across audio, image, and multimodal domains
[3, 211, 212], with most of the approaches scaling or optimizing their performance [4, 201].

In the context of the Italian language, the availability of pre-trained language models is currently limited;
generic multipurpose LMs are almost nonexistent. Notable mentions include: AlBERTo [213], an Italian
version of BERT [214] trained on Italian tweets from TWITA [215]; GePpeTto [216], a version of GPT-2 base
(117 million parameters) finetuned using Italian Wikipedia and the ItWac corpus [217]; IT5 [218] a T5 model

4Actual openness depends on the model license.
5Less than 4.5% of training data comes from Wikipedia in 20 different languages, including Italian.

Effective, Efficient and Reliable Large Language Models 54

3.2. Efficient Instruction-tuning for the Italian Language

Figure 3.5: Diversity of the examples in the Stanford Alpaca dataset. Illustration from Taori et al. (2023). The inner
circle shows the root verb on the instruction while the outer circle shows the direct object. The dataset of Camoscio is
constructed by translating all these examples to Italian via gpt-3.5.

tailored for Italian using a refined version of the mC4 corpus [219]; and BART-IT [220], an Italian variant
of BART [221] trained on the same mixture of data as IT5. Concurrently to our work, Bacciu et al. [135]
proposed Fauno, an Italian version of Baize [222] that is a LM trained on a corpus of self-chat performed by
ChatGPT. Compared to our work, their approach is tailored to develop a conversational agent for the Italian
language. After our work, Michael [223] released on their GitHub repository an instruction-tuned version of
LLaMA on a translation to Italian of the GPT-4-LLM dataset [224].

3.2.2 Method

For the construction of our instruction-tuning dataset for the Italian language, we stem from the Stanford
Alpaca dataset [208] and Alpaca LoRA [225] for their finetuning approach.

Dataset

Stanford Alpaca is an instruction-tuning dataset constructed using the self-instruct method [226]. Specifi-
cally, the authors started with a set of 175 human-written instruction-output pairs from the original self-instruct
paper6 and used them as in-context examples to prompt OpenAI text-davinci-003. A total of 52.000 novel ex-
amples are generated with this technique. Each example includes an instruction, in natural English language,
the answer (output), and optionally an additional context (input) for some datapoints (e.g., a short paragraph
for question answering). Figure 3.5 shows different types of instructions in the dataset.

Translation. Inspired by Croce et al. [227], Scaiella et al. [228] and Larcher et al. [229], we translated
the original dataset of Stanford Alpaca to Italian using gpt-3.5-turbo with the prompt “Translate the

6https://github.com/yizhongw/self-instruct

Effective, Efficient and Reliable Large Language Models 55

https://github.com/yizhongw/self-instruct

3.2. Efficient Instruction-tuning for the Italian Language

SQuAD-IT

F1 EM EM-GPT R1 R2 RL BS
DrQA-IT [227] .659 .561 - - - - -
mBERT [230] .760 .650 - - - - -
BERT3 [214] .753 .638 - - - - -
MiniLM [231] .720 .577 - - - - -
MiniLM+st [231] .745 .620 - - - - -
XLM-R Large+st [231] .804 .676 - - - - -
mT5 Small [218] .660 .560 .684 .617 .347 .617 .712
mT5 Base [218] .757 .663 .745 .709 .396 .708 .770
IT5 Small [218] .716 .619 .602 .671 .372 .671 .743
IT5 Base [218] .761 .663 .600 .712 .406 .712 .770
IT5 Large [218] .780 .691 .641 .730 .412 .729 .784
Camoscio-7b (0-shot) .270 .077 .576 .242 .133 .241 .237

Table 3.6: Results on SQuAD-IT. All the models are trained on the SQuAD-IT training set, except for Camoscio which
is evaluated in a zero-shot fashion. The additional evaluation metric Exact Match via ChatGPT is highlighted in grey.
The scores F1 and EM for competitor models are reported from their respective papers.

following text to Italian: {text}”. We translated all the fields in the dataset (instruction, input, output).
We decided to use ChatGPT instead of other APIs for translation (e.g., Google Translate, Microsoft Azure
Translator, DeepL) because we found it to be more robust for translating code examples i.e., it translates
correctly just the comments in the code and not also the coding lexicon of the programming language. We
provide here an example from the dataset. Instruction: “Data una parola, costruisci i suoi antonimi.”,
Input: “Luce”, Output: “Scuro, pesante, denso”.

Clearly the translation is not always perfect, but it is a fast-and-cheap method to bootstrap a noisy
instruction-tuning dataset for the Italian language.

Training & Prompting

We finetuned the smallest version of LLaMA [205] (7 billion) on an instruction-tuning dataset for the Italian
language, obtained by translating to Italian the dataset of Stanford Alpaca as described in the paragraph
above.

The model is trained with supervision with the standard objective of predicting the next token given the
previous ones. The dataset has instruction, input, output fields, but the input is not available
for all data points (e.g., open-ended generation). For such cases, we construct the prompt: “Di seguito è
riportata un’istruzione che descrive un task. Scrivete una risposta che completi adeguatamente la richiesta.
Istruzione: {instruction} ### Risposta: {output}”. If, instead, the datapoint also has an input
(e.g., question answering where the input is the contextual paragraph), we construct the prompt: “Di seguito
è riportata un’istruzione che descrive un task, insieme ad un input che fornisce un contesto più ampio.
Scrivete una risposta che completi adeguatamente la richiesta. ### Istruzione: {instruction} ###
Input: {input} ### Risposta: {output}”.

At inference time, the same prompt is used to generate the answer. Only the text generated after “[...] ###
Risposta:” is used as final output. We sample from the model using top-p sampling [232] with a temperature
of 0.2, p = 0.75, k = 40, and beam search with 4 beams.

We refer to Appendix D.1 for the additional implementation details.

Effective, Efficient and Reliable Large Language Models 56

3.2. Efficient Instruction-tuning for the Italian Language

XFORMAL (IT) F→ I XFORMAL (IT) I→ F

R1 R2 RL BS R1 R2 RL BS

mT5 Small .651 .450 .631 .666 .638 .446 .620 .684
mT5 Base .653 .449 .632 .667 .661 .471 .642 .712
IT5 Small .650 .450 .631 .663 .646 .451 .628 .702
IT5 Base .652 .446 .632 .665 .583 .403 .561 .641
IT5 Large .611 .409 .586 .613 .663 .477 .645 .714
Camoscio-7b (0-shot) .645 .436 .623 .651 .622 .428 .600 .667

Table 3.7: Results on formality style transfer (XFORMAL IT) for the formal-to-informal (F→ I) and informal-to-formal
(I→ F) directions. Competitors’ scores reported from Sarti and Nissim (2022).

3.2.3 Experiments

Currently, there is a very limited availability of datasets for a solid evaluation of the broad capabilities these
general-purpose models possess. This is true for English but especially for the Italian language, although the
community is moving towards this direction [233]. To evaluate our model we decided to follow the same
evaluation protocol proposed in Sarti and Nissim [218]. Compared to their approach, we do not perform any
training on the downstream tasks, i.e., we perform just the evaluation on the test set in a zero-shot fashion by
providing to the model a textual description of the task (e.g., “Riassumi il seguente articolo”). We compared
the performance of our model on standard Italian benchmarks for summarization (NewsSum-IT), question
answering (SQuAD-IT), and style transfer (XFORMAL IT).

Compared to Sarti and Nissim [218], we do not include the Wikipedia for Italian Text Summarization
(WITS) corpus [234] since Wikipedia is included in the original training corpus of LLaMA [205]. We also
omitted the news style transfer task between “Il Giornale” to “La Repubblica” (and vice-versa) based on
CHANGE-IT [235], since Camoscio has no concepts of “Il Giornale” or “La Repubblica” styles (i.e., it
was never exposed during training or finetuning to this kind of articles, although we recognize it might be
interesting to analyze this in a few-shot setting). We describe in the next paragraphs the three datasets used
for the evaluation.

News Summarization. We evaluate the news article summarization capabilities of Camoscio using the
dataset NewSum-IT proposed by Sarti and Nissim [218]. This dataset is obtained by merging two newspaper
sources (“Fanpage.it” and “Il Post”) scraped by the Applied Recognition Technology Laboratory7 and
available on the Hugging Face Hub [68]. We used only the test split for the zero-shot evaluation and asked
the model to generate an answer given the instruction “Dopo aver letto il testo qui sotto, riassumilo
adeguatamente.” provided in the textual prompt and the news text provided as input (complete prompt as
explained in §3.2.2). We use the same evaluation metrics of Sarti and Nissim [218] and report the average
across the two newspapers as in their work.

Question Answering. To assess the model performance on extractive question answering, we used the
SQuAD-IT dataset [227]. This dataset is composed of sets of paragraphs, questions, and answers derived
from the original SQuAD dataset [236] via machine translation and subsequent filtering of problematic
instances. As for the previous datasets, we used just the test split for zero-shot evaluation. The model is

3https://huggingface.co/antoniocappiello/bert-base-italian-uncased-squad-it
7https://huggingface.co/ARTeLab

Effective, Efficient and Reliable Large Language Models 57

https://huggingface.co/antoniocappiello/bert-base-italian-uncased-squad-it
https://huggingface.co/ARTeLab

3.2. Efficient Instruction-tuning for the Italian Language

asked to generate an answer given the instruction “Dopo aver letto il paragrafo qui sotto, rispondi
correttamente alla successiva domanda”. We evaluated the generated answers using the script from Sarti and
Nissim [218]. Furthermore, we also used an additional metric “ChatGPT Exact Match” to better assess the
performance. We explain this metric in the following subsubsection “Evaluation Metrics”.

Formality Style Transfer. We assess the style transfer capabilities of Camoscio using the Italian subset of
the XFORMAL dataset [237], hereafter referred to as XFORMAL-IT. The dataset consists of forum messages
from the GYAFC corpus [238] automatically translated covering several topics (entertainment, music, family,
and relationships). The test set is constructed by using crowdworkers via Amazon Mechanical Turk to collect
formal-informal pairs directly in Italian. The model is evaluated in both style transfer directions (Formal to
Informal and Informal to Formal). We use only the test split for the zero-shot evaluation and ask the model to
generate an answer given the instruction “Dato il seguente testo scritto in modo formale, riscrivilo in
modo informale.” and vice versa according to the style transfer direction.

Evaluation Metrics

We use the same evaluation protocol and scripts of Sarti and Nissim [218]. Specifically, for evaluating lexical
matches, we rely on the language-independent ROUGE metric proposed by Lin [239] in the variants unigram
(R1), bigram (R2), and Longest Common Subsequence (RL). To gauge semantic correspondence, we employ
the trained BERTScore metric [240] with a widely used BERT model pre-trained on Italian8 and the same
baseline scores as Sarti and Nissim [218]. Following previous works, for evaluating the Question-Answering
task we employ exact-match (EM) and F1-score (F1). However, since Camoscio is not trained on the output
distribution of the question-answering dataset, these metrics will fail to assess the correctness of the output
since the EM will count as zero even with a correct output but different wording. To account for these
variations, we used an approach similar to Zheng et al. [241] that leverages an external LM (in our case
gpt-3.5-turbo) to judge whether the answer provided by a model is correct (1) or not (0) given the question
and the ground-truth answer. We refer to this metric as Exact Match via ChatGPT (EM-GPT) and explain it
with additional details in Appendix D.1.1.

Results and Discussion

Question Answering. Table 3.6 shows the results of Camoscio compared to other methods used in the
literature. We observe that the metrics commonly used for the task (Exact Match and F1) are very low
compared to all the other models. Although this is generally expected since we are comparing trained models
with an untrained one, the exact match score is suspiciously low. Looking at the output responses, we noted
that Camoscio produces correct but wordy answers (e.g., “La crisi petrolifera del 1973 è iniziata nell’ottobre
1973.” instead of “ottobre 1973”) making the system to perform bad on this score despite the fact that
it produces correct answers. Since all the other systems are trained on the datasets, they are aligned with
the expected target distribution and the exact match metric is an effective choice. Nevertheless, when it
comes to the zero-shot configuration in Camoscio, this conventional metric fails to accurately capture the true
performance of the task.

To this end, we evaluated the model also with standard evaluation metrics for generative models (R1, R2,
RL, BS). However, we also observe in this case low scores despite the fact that a qualitative examination of

8dbmdz/bert-base-italian-xxl-uncased

Effective, Efficient and Reliable Large Language Models 58

3.2. Efficient Instruction-tuning for the Italian Language

NewsSum-IT

R1 R2 RL BS

mBART Large 9,10 .377 .194 .291 -

mT5 Small .323 .150 .248 .375
mT5 Base .340 .161 .262 .393

IT5 Small .330 .155 .258 .386
IT5 Base .339 .160 .263 .044
IT5 Large .251 .101 .195 .315
Camoscio-7b (0-shot) .250 .104 .174 .190

Table 3.8: Results on NewSum-IT

the provided answers suggests an overall higher quality. This is possibly due to the different lengths between
the produced answers (long) and the ground truth (short) and reinforces the necessity of developing a more
precise metric to accurately gauge task performance.

For this purpose, we used instead the metric Exact Match via ChatGPT explained in §3.2.3. This metric
shows that the actual zero-shot performance of Camoscio is in line with the other trained models (.576) and it
is also way higher compared to the original EM metric (.077), confirming the need for another type of metric
to evaluate the task in the zero-shot setting. Results also show that the EM-GPT metric of trained models
correlates well with the existing EM metric, even though with a little marginal difference. This suggests that
this metric could serve as an approximate estimation of the model’s actual performance, although it might be
subject to bias according to the model used for estimation.

Style Transfer & Summarization. Tables 3.7 and 3.8 show results respectively for the formality style
transfer and news summarization task. We can observe that the zero-shot performance of Camoscio in both
tasks is competitive with trained models. According to the model and training dataset, these latter might
achieve slightly better scores at the expense of a less generalist model. Looking at the qualitative results, we
note however that the summarization task on “Il Post” and “Fanpage” is affected by some common failure
cases.

Failure Cases. The most common failure case consists of the model not producing an answer at all after
the input prompt (4.93% of cases on “Il Post” and 21.16% cases on “Fanpage”). We think that it might be
due to the input document of these examples being too long and out of distribution compared to the training
documents seen in the instruction-tuning dataset (max length 256 tokens). This might confuse the model
and trigger the generation of the end-of-sentence token. Other failure cases include the model responding
with a copy of the instruction prompt. For example, we found that in 0.75% of the cases in the “Il Post”
split of NewSum-IT, when asked to summarize the article the model responded with “Questo articolo non
è più commentabile. Abbonati al Post per commentare le altre notizie.”. We found this behavior peculiar,
considering that the input prompt never mentions that articles were collected from “Il Post”. Looking carefully
at the dataset, we found that these documents were not correctly scraped from the web and the model was
simply verbatim copying the input error message above (i.e., the message is already summarized and the
model is proposing it as-is).

6https://huggingface.co/ARTeLab/mbart-summarization-ilpost
7https://huggingface.co/ARTeLab/mbart-summarization-fanpage

Effective, Efficient and Reliable Large Language Models 59

https://huggingface.co/ARTeLab/mbart-summarization-ilpost
https://huggingface.co/ARTeLab/mbart-summarization-fanpage

3.2. Efficient Instruction-tuning for the Italian Language

Open-ended generation. We show here some qualitative results on the task of open-ended generation.
Compared to the other tasks above, in this task we provide the model with just the instruction without
any specific input. As a tribute to GePpeTto [216], the first generative language model for Italian, we pose
to the model the following instruction: “Riassumi la storia di Pinocchio”. The model answered: “La
storia di Pinocchio racconta di un bambino di nome Pinocchio che vive con i suoi genitori in un piccolo
villaggio. Un giorno, Pinocchio incontra un burattino magico che gli dona la possibilità di diventare un vero
bambino. Pinocchio inizia una serie di avventure mentre cerca di diventare un vero bambino. Durante il
suo viaggio, Pinocchio fa amicizia con molti personaggi e impara molte lezioni di vita. Alla fine, Pinocchio
raggiunge il suo obiettivo e diventa un vero bambino”. At first glance the answer might seem correct,
it is grammatically accurate and fluent in Italian. However, knowing the story, the model makes several
factual errors like characterizing Pinocchio as a kid (instead of a wooden puppet) living with parents (instead
of Geppetto) and introducing a nonexistent magic puppet. Overall this example highlights that, although
promising, these models have well-known limitations like hallucinations, factual errors, and several kinds
of biases [242–244]. Consequently, it is essential to exercise caution when utilizing them, keeping these
limitations in mind.

3.2.4 Conclusion

In this section, we introduced Camoscio, a 7 billion instruction-tuned model for the Italian language, together
with its Italian instruction-tuning dataset. Results show that the zero-shot performance of Camoscio on several
downstream tasks in Italian is competitive with existing models specifically finetuned for those tasks. Despite
the known limitations of these kinds of models, this is a first step towards a generalist model capable of
performing a wide range of tasks in Italian without explicit finetuning. This is particularly relevant especially
in several domains where data is scarce or not available (e.g., medical domain). In an effort to democratize
the available and open resources for the Italian language, we release all the artifacts (code, dataset, model) to
the community.

Limitations

Results shown in the section highlight zero-shot performance competitive with existing finetuned models
on three different tasks: summarization (NewsSum-IT), question answering (SQuAD-IT), and style transfer
(XFORMAL IT). However, it is unclear whether this is true also for other tasks, especially those out of
training distribution of the instruction-tuning dataset (see Figure 3.5). Evaluating and thoroughly assessing
the performance of these kinds of models is still an open research question. In addition to this, as already
mentioned, the model suffers from common problems that affect language models such as hallucinations,
factual errors, and several kinds of biases.

Effective, Efficient and Reliable Large Language Models 60

3.3. Conclusion Efficient LLMs

3.3 Conclusion Efficient LLMs

In this chapter, we examined strategies to enhance the efficiency of large language models, focusing on
accelerating inference and developing resource-effective, language-specific models. The approaches discussed
emphasize that efficiency is not solely about reducing computational requirements but also about making
LLMs more accessible and practical for real-world applications.

The introduction of parallel decoding algorithms represented a significant advancement in addressing
the bottleneck of sequential text generation inherent in autoregressive models. By leveraging parallelization
techniques, it became possible to generate text significantly faster without compromising the quality of the
output. These algorithms demonstrated that efficiency gains can be achieved not only through hardware
advancements but also through innovations in the computational paradigms used during inference.

A complementary focus on language-specific instruction tuning, exemplified by the development of the
Italian instruction-tuned model Camoscio, further highlighted the potential of efficient, parameter-reduction
techniques such as LoRA (Low-Rank Adaptation). This approach demonstrated that high-quality, domain-
specific models can be created with limited resources, making LLM technology more inclusive and accessible
for underrepresented languages and domains. The success of Camoscio underscores that efficiency can
coexist with effectiveness when models are tailored to specific use cases.

Collectively, the strategies presented in this chapter reveal that achieving efficiency in LLMs requires a
balanced approach that combines algorithmic innovations with thoughtful resource management. Accelerating
inference through parallel decoding directly addresses the practical challenges of deploying LLMs in time-
sensitive scenarios, while language-specific tuning offers a pathway for democratizing access to these
powerful tools.

In conclusion, enhancing the efficiency of LLMs involves more than just reducing computational costs—it
requires rethinking how these models are trained, fine-tuned, and deployed. The methods outlined in this
chapter demonstrate that efficiency and effectiveness are not mutually exclusive, and by leveraging innovations
such as parallel decoding and parameter-efficient fine-tuning, LLMs can be made faster, more adaptable, and
more accessible to diverse user needs and contexts. These approaches provide a roadmap for future work
aimed at optimizing the balance between performance, cost, and accessibility in the deployment of LLMs.

Effective, Efficient and Reliable Large Language Models 61

Chapter 4

Reliable Large Language Models

As Large Language Models (LLMs) continue to advance and find applications in increasingly critical domains,
the issue of their reliability has come to the forefront of AI research. While these models demonstrate
impressive capabilities, they are also prone to generating plausible but factually incorrect information, a
phenomenon known as hallucination [17, 18]. This chapter focuses on our contributions to enhancing the
reliability of LLMs, with a particular emphasis on uncertainty quantification methods.

The growing deployment of LLMs in high-stakes applications, such as healthcare, legal systems, and
financial services, underscores the critical need for models that can not only generate accurate responses
but also provide reliable measures of their confidence. Uncertainty quantification in LLMs is a challenging
task, given the complex nature of these models and the diverse range of tasks they perform. Our work in this
chapter addresses this challenge, aiming to develop more trustworthy and dependable language models.

We begin by presenting a comprehensive assessment of current uncertainty quantification methods for
LLMs (§4.1). This study critically examines existing techniques and their evaluation protocols, identifying
inconsistencies and limitations that have hindered progress in this area. By proposing improved methodologies
for assessing uncertainty estimation in LLMs, we lay the groundwork for more robust and reliable evaluation
practices in the field.

Building on this foundation, we explore novel approaches to combine uncertainty estimation methods
(§4.2). Our research demonstrates that strategically integrating simple, computationally efficient uncertainty
estimation techniques can match or even surpass the performance of more complex methods.

4.1 Evaluating Uncertainty in Large Language Models

This section has been rendered unavailable due to the use of data protected by industrial secrecy, following
Article 18, paragraph 11 of the Sapienza PhD Regulation, as issued under Rectoral Decree no. 1150 dated
20/05/2024.

4.2 Effective Uncertainty Quantification in Large Language Models

This section has been rendered unavailable due to the use of data protected by industrial secrecy, following
Article 18, paragraph 11 of the Sapienza PhD Regulation, as issued under Rectoral Decree no. 1150 dated
20/05/2024.

62

4.3. Conclusion Reliable LLMs

4.3 Conclusion Reliable LLMs

This chapter addressed the critical dimension of enhancing the reliability of large language models, focusing
on their ability to produce trustworthy outputs while quantifying and mitigating uncertainty. As LLMs are
increasingly deployed in high-stakes domains, reliability becomes a pivotal challenge, particularly in the face
of issues like hallucinations—situations where models produce fluent yet factually incorrect information.

The first section investigated methods to evaluate uncertainty in LLM outputs. Through a comprehensive
assessment of existing uncertainty quantification (UQ) methods and their evaluation protocols, this work
identified key gaps in the consistency of current approaches. It highlighted the limitations of popular metrics,
such as substring-matching-based measures, when applied to tasks like generative question answering.
This analysis underscored the need for robust evaluation practices tailored to the specific characteristics of
LLM-generated outputs.

Building on these insights, the second section explored novel methods to enhance uncertainty quantifica-
tion. By combining complementary UQ techniques, it was shown that computationally lightweight methods
can achieve performance comparable to more complex, resource-intensive approaches. This advancement
provides a practical pathway to improve model reliability without substantially increasing computational costs.
Furthermore, this work examined the relationship between various UQ methods, offering new perspectives
on how their strengths can be synergistically leveraged.

In conclusion, the findings in this chapter underscore the importance of robust uncertainty estimation
as a cornerstone of reliable LLM deployment. While significant progress has been made in detecting
and quantifying uncertainty, challenges remain in scaling these methods to diverse tasks and modalities.
The approaches outlined here provide a foundation for developing more reliable and trustworthy LLMs,
particularly in critical domains where errors carry substantial consequences. By focusing on scalable and
interpretable UQ techniques, this work contributes to making LLMs safer and more dependable in real-world
applications.

Effective, Efficient and Reliable Large Language Models 63

Chapter 5

Conclusion

This thesis has explored the works carried out during the doctoral studies under three critical dimensions
of Large Language Models (LLMs): Effectiveness, Efficiency, and Reliability. Each direction proposes
several works that have been published addressing key challenges in the area.

Key Contributions and Findings

In the domain of Effectiveness, our work has made several key contributions. The introduction of instruction
tuning [1] demonstrated that smaller models could outperform much larger ones on zero-shot tasks through
explicit multitask training, leading to this technique becoming a standard part of modern LLM training
pipelines. The development of PromptSource [2] provided the NLP community with essential tools for
standardizing prompt engineering and enabling collaborative research. Additionally, our work on Multimodal
Neural Databases [3] extended LLM capabilities beyond text, introducing a framework for handling complex
database-like queries across different modalities.

Our research on Efficiency tackled two major challenges. First, we introduced novel parallel decoding
algorithms [4] that significantly speed up text generation without compromising output quality. This
work helped establish the field of speculative decoding, now an active research area for accelerating LLM
inference. Second, through the development of Camoscio [5], we demonstrated how parameter-efficient fine-
tuning techniques could create high-quality language-specific models with limited computational resources,
providing a blueprint for developing LLMs for lower-resource languages.

In addressing Reliability, we developed systematic approaches to evaluate and improve uncertainty
quantification in LLMs. Our comprehensive assessment of uncertainty quantification methods [6] identified
key limitations in existing evaluation protocols and proposed improved methodologies. Building on this
foundation, we explored novel approaches to combine uncertainty estimation methods [7], showing that
strategically integrating simple techniques can match or exceed the performance of more complex methods
while maintaining computational efficiency.

Implications and Impact

The findings of this thesis hold significant implications for both academic research and real-world applications.
Instruction tuning, a technique concurrently introduced in our work [1] and Wei et al. [14], has emerged
as a cornerstone of the standard training pipeline for language models and is now part of the fine-tuning
process following the self-supervised stage on unannotated corpora [21]. At the time of writing, the paper has

64

Chapter 5. Conclusion

garnered over 1500 citations, underscoring the widespread adoption and relevance of instruction tuning in
directly aligning models with human feedback. This work challenges the predominant assumption that scaling
self-supervision alone drives large language model performance. Instead, it highlights how task-specific
optimizations can empower smaller, more efficient models to achieve unparalleled performance, aligning the
models with humans.

This thesis also introduces advancement in efficiency through the concept of parallel decoding, enabling
the simultaneous generation of multiple tokens without requiring additional training—a method often termed
Jacobi decoding. This innovation has catalyzed an active research area focused on accelerating LLM
generation [131–133]. Speculative decoding, which decodes multiple tokens in parallel using a smaller
auxiliary model [134], has since built upon these foundations. With over 60 citations, this body of work
has demonstrated the potential for significant reductions in computational barriers, democratizing access to
advanced AI technologies and fostering inclusivity. Additionally, our work on Camoscio demonstrates the
feasibility of developing language-specific models using limited computational resources. This achievement
underscores the potential for cost-effective advancements in natural language processing tailored to specific
linguistic contexts. Notably, the impact of this work is reflected in its reception, with over 40 citations at the
time of writing, showcasing significant community interest and affirming the value of open-source models in
driving collaborative progress in the field.

Addressing reliability, this research underscores the importance of understanding when a language
model accurately "knows" its outputs. Despite their remarkable capabilities, LLMs are prone to generating
plausible yet incorrect information, a phenomenon known as hallucination [17, 18]. In high-stakes domains
such as healthcare, law, and finance, it is critical to quantify and communicate a model’s confidence.
The methodologies developed herein lay the groundwork for robust uncertainty quantification, equipping
practitioners with tools to evaluate and mitigate risks in LLM applications. These advancements collectively
pave the way for the development of effective, efficient, and reliable AI systems that address real-world
challenges while fostering equitable and sustainable technological progress.

Limitations

Despite significant advancements achieved in the dimensions of Effectiveness, Efficiency, and Reliability,
this thesis reveals several limitations inherent in the proposed approaches and methodologies. Recognizing
these limitations not only contextualizes the achievements of this work but also highlights promising avenues
for future exploration and development.

While instruction tuning and prompt engineering have significantly improved task performance, their
applicability to highly domain-specific or non-English tasks remains limited. These models are heavily
reliant on the quality and diversity of prompts, which cannot fully encapsulate the diversity of real-world
applications. Furthermore, instruction tuning, though a powerful tool, has the potential to negatively impact
downstream performance when prompts do not adequately align with the nuanced requirements of specific
tasks. This challenge becomes particularly pronounced when addressing tasks in languages or domains with
limited high-quality data.

The development of multimodal databases represents an exciting frontier; however, key features, such
as the ability to dynamically update database information, remain underexplored. In traditional database
systems, users expect seamless capabilities to add, remove, or modify entries, but these operations are not
straightforward in the current paradigm. The preliminary prototype developed here, while spanning two
modalities, is constrained in scope and application. Expanding this approach to consider not only documents

Effective, Efficient and Reliable Large Language Models 65

Chapter 5. Conclusion

but also their associated metadata could significantly enhance its utility and versatility.
On the efficiency front, the proposed parallel decoding algorithms offer noteworthy acceleration in

inference. However, their application thus far has been confined to encoder-decoder models, leaving their
broader scalability untested. Extending this approach to larger and more diverse models presents challenges
that may require advancements in underlying software and hardware frameworks to ensure tokens are
effectively decoded in parallel. The development of an Italian-language instruction-tuned LLM highlighted
cost-effective strategies for creating language-specific models, yet it also underscored difficulties in scaling
such methods to under-resourced languages. One critical issue is the reliance on datasets derived from
machine translation, which risks introducing linguistic bias and failing to represent the cultural and contextual
nuances of the target language. Ideally, models for such languages would benefit from a robust pretraining
phase using native data, followed by instruction tuning. However, the scarcity of high-quality data and the
prohibitive computational demands of pretraining present significant barriers.

In addressing reliability, the assessment and integration of uncertainty quantification methods revealed
persistent challenges. Even state-of-the-art techniques struggle to provide consistent and reliable estimates of
uncertainty. Our findings highlight that evaluating uncertainty is itself a non-trivial endeavor, and careful,
well-designed evaluation protocols are critical to driving the development of more effective methods. Despite
promising results in leveraging uncertainty estimation to mitigate issues like hallucinations, these methods
have yet to offer a comprehensive solution. Hallucinations, where models generate fluent but factually
incorrect information, remain a pervasive and critical issue, particularly as LLMs are increasingly deployed
in high-stakes domains.

Future Directions

Looking ahead, our work opens several promising research directions that intersect with crucial challenges
in the field of Large Language Models. The quest for greater effectiveness remains a fundamental pursuit,
particularly as we move beyond text-only applications [245]. The future of LLMs lies in their ability to
reason across different modalities and handle increasingly complex tasks. This evolution requires not just
architectural innovations, but also new approaches to training that can better align models with human
instructions and intents [1, 14, 15].

The efficiency challenges inherent in LLM development reveal a fundamental trade-off: increasing model
capabilities typically comes at the cost of greater computational complexity [246, 247]. Future research must
continue to explore novel approaches for accelerating both training and inference, while also developing
more resource-efficient architectures [4, 134]. This includes not only algorithmic improvements but also
hardware-aware optimizations and parameter-efficient adaptation techniques [248]. These advancements are
crucial for democratizing access to LLMs and reducing their environmental impact [249].

The reliability dimension perhaps represents the most critical avenue for future research. As LLMs
continue to be deployed in high-stakes applications, from healthcare to legal systems, the ability to accurately
assess their confidence and detect potential errors becomes paramount [250, 251]. Future work must focus on
developing more robust uncertainty quantification methods and better techniques for detecting and preventing
hallucinations. This includes not only improving existing methods but also developing new approaches that
can provide interpretable and actionable measures of model reliability.

These future directions are deeply interconnected - advances in one area often enable or require progress
in others. For instance, more effective multimodal capabilities might require new efficiency techniques to
handle the increased computational demands, while improved reliability measures may need better base

Effective, Efficient and Reliable Large Language Models 66

Chapter 5. Conclusion

models. As the field continues to evolve, maintaining this holistic perspective on effectiveness, efficiency,
and reliability will be crucial for developing LLMs that can be both powerful and trustworthy.

Final Remarks

The contributions of this thesis coincide with a transformative period in AI, where LLMs have matured from
experimental prototypes into powerful tools with wide-ranging applications. By addressing fundamental
challenges in effectiveness, efficiency, and reliability, this work offers a cohesive vision for the next generation
of LLMs. The techniques and insights presented in this thesis provide a foundation for creating more capable,
efficient, and reliable language models.

As LLMs continue to evolve and find applications in increasingly critical domains, the importance of
balancing effectiveness, efficiency, and reliability will only grow. We hope that the methods and frameworks
developed in this thesis will contribute to the responsible advancement of LLM technology, ultimately helping
to realize its potential for positive societal impact while mitigating associated risks and limitations.

Effective, Efficient and Reliable Large Language Models 67

Bibliography

[1] Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin
Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma,
Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le Scao, Stella Biderman,
Leo Gao, Thomas Wolf, and Alexander M Rush. Multitask prompted training enables zero-shot
task generalization. In International Conference on Learning Representations, 2022. URL https:

//openreview.net/forum?id=9Vrb9D0WI4.

[2] Stephen Bach, Victor Sanh, Zheng Xin Yong, Albert Webson, Colin Raffel, Nihal V. Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, Zaid Alyafeai, Manan Dey, Andrea Santilli,
Zhiqing Sun, Srulik Ben-david, Canwen Xu, Gunjan Chhablani, Han Wang, Jason Fries, Maged
Al-shaibani, Shanya Sharma, Urmish Thakker, Khalid Almubarak, Xiangru Tang, Dragomir Radev,
Mike Tian-jian Jiang, and Alexander Rush. PromptSource: An integrated development environment
and repository for natural language prompts. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, pages 93–104, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-demo.9. URL
https://aclanthology.org/2022.acl-demo.9.

[3] Giovanni Trappolini, Andrea Santilli, Emanuele Rodolà, Alon Halevy, and Fabrizio Silvestri. Multi-
modal neural databases. In Proceedings of the 46th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’23, page 2619–2628, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9781450394086. doi: 10.1145/3539618.3591930. URL
https://doi.org/10.1145/3539618.3591930.

[4] Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi, Riccardo
Marin, and Emanuele Rodola. Accelerating transformer inference for translation via parallel decoding.
In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 12336–12355, Toronto, Canada, July 2023. Association for Computational
Linguistics. URL https://aclanthology.org/2023.acl-long.689.

[5] Andrea Santilli and Emanuele Rodolà. Camoscio: an Italian instruction-tuned LLaMA. In CLiC-
it 2023: 9th Italian Conference on Computational Linguistics, volume 3596 of CEUR Workshop
Proceedings, Venice, Italy, 2023. CEUR-WS.org. URL https://ceur-ws.org/Vol-3596/

paper44.pdf.

68

https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://aclanthology.org/2022.acl-demo.9
https://doi.org/10.1145/3539618.3591930
https://aclanthology.org/2023.acl-long.689
https://ceur-ws.org/Vol-3596/paper44.pdf
https://ceur-ws.org/Vol-3596/paper44.pdf

BIBLIOGRAPHY

[6] Andrea Santilli, Miao Xiong, Michael Kirchhof, Pau Rodrigues, Federico Danieli, Xavier Suau, Luca
Zappella, Sinead Williamson, and Adam Goliński. On a spurious interaction between uncertainty
scores and answer evaluation metrics in generative qa tasks. In Neurips Safe Generative AI Workshop
2024, 2024. URL https://openreview.net/forum?id=jGtL0JFdeD.

[7] Miao Xiong, Andrea Santilli, Michael Kirchhof, Adam Goliński, and Sinead Williamson. Efficient
and effective uncertainty quantification for LLMs. In Neurips Safe Generative AI Workshop 2024,
2024. URL https://openreview.net/forum?id=QKRLH57ATT.

[8] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv preprint
arXiv:2303.18223, 2023.

[9] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff
Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff,
Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage,
Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory
Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason
Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings,
Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville,
Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou,
David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo
Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes,
Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu,
Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke,
Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli
Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang,
Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali
Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis

Effective, Efficient and Reliable Large Language Models 69

https://openreview.net/forum?id=jGtL0JFdeD
https://openreview.net/forum?id=QKRLH57ATT

BIBLIOGRAPHY

Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang
Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas
Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle,
Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea
Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave
Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu,
Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan
Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk,
and Barret Zoph. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

[10] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27
(3):379–423, 1948. doi: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x. URL https://

onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x.

[11] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model. In
T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems,
volume 13. MIT Press, 2000. URL https://proceedings.neurips.cc/paper_files/

paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf.

[12] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 2019. URL https://openai.com/

blog/better-language-models/.

[13] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/

2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[14] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?

id=gEZrGCozdqR.

[15] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Effective, Efficient and Reliable Large Language Models 70

https://arxiv.org/abs/2303.08774
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR

BIBLIOGRAPHY

[16] OpenAI. Chatgpt: An ai language model, 2024. URL https://openai.com/chatgpt. Ac-
cessed: 2024-10-21.

[17] Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, et al. A multitask, multilingual, multimodal evaluation of chatgpt
on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023, 2023.

[18] Nuno M Guerreiro, Duarte M Alves, Jonas Waldendorf, Barry Haddow, Alexandra Birch, Pierre
Colombo, and André FT Martins. Hallucinations in large multilingual translation models. Transactions
of the Association for Computational Linguistics, 11:1500–1517, 2023.

[19] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[20] Jason Wei et al. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682, 2022.

[21] Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu,
Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv preprint
arXiv:2308.10792, 2023.

[22] Jason Phang, Herbie Bradley, Leo Gao, Louis Castricato, and Stella Biderman. Eleutherai: Going
beyond "open science" to "science in the open", 2022. URL https://arxiv.org/abs/2210.

06413.

[23] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.
Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/

file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[24] Boseop Kim, HyoungSeok Kim, Sang-Woo Lee, Gichang Lee, Donghyun Kwak, Dong Hyeon Jeon,
Sunghyun Park, Sungju Kim, Seonhoon Kim, Dongpil Seo, et al. What changes can large-scale
language models bring? intensive study on hyperclova: Billions-scale korean generative pretrained
transformers. arXiv preprint arXiv:2109.04650, 2021.

[25] Daniel Khashabi, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and Hannaneh
Hajishirzi. Unifiedqa: Crossing format boundaries with a single QA system. CoRR, abs/2005.00700,
2020. URL https://arxiv.org/abs/2005.00700.

[26] Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. Crossfit: A few-shot learning challenge for cross-task
generalization in nlp. arXiv preprint arXiv:2104.08835, 2021. URL https://arxiv.org/abs/

2104.08835.

Effective, Efficient and Reliable Large Language Models 71

https://openai.com/chatgpt
https://arxiv.org/abs/2210.06413
https://arxiv.org/abs/2210.06413
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2005.00700
https://arxiv.org/abs/2104.08835
https://arxiv.org/abs/2104.08835

BIBLIOGRAPHY

[27] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models. CoRR,
abs/2105.11447, 2021. URL https://arxiv.org/abs/2105.11447.

[28] Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models, 2021.

[29] Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the few-
shot paradigm. CoRR, abs/2102.07350, 2021. URL https://arxiv.org/abs/2102.07350.

[30] Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the
parameters of a language model? In Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages 5418–5426, Online, November 2020. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.437. URL https:

//aclanthology.org/2020.emnlp-main.437.

[31] Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert Webson, Colin Raffel, Nihal V. Nayak,
Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, Zaid Alyafeai, Manan Dey, Andrea
Santilli, Zhiqing Sun, Srulik Ben-David, Canwen Xu, Gunjan Chhablani, Han Wang, Jason Alan Fries,
Maged S. Al-shaibani, Shanya Sharma, Urmish Thakker, Khalid Almubarak, Xiangru Tang, Xiangru
Tang, Mike Tian-Jian Jiang, and Alexander M. Rush. Promptsource: An integrated development
environment and repository for natural language prompts, 2022.

[32] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21:1–67, 2020.

[33] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. CoRR, abs/2104.08691, 2021. URL https://arxiv.org/abs/2104.08691.

[34] BIG-bench collaboration. Beyond the imitation game: Measuring and extrapolating the capabilities of
language models. In preparation, 2021. URL https://github.com/google/BIG-bench/.

[35] Rich Caruana. Multitask learning. Mach. Learn., 28(1):41–75, 1997. doi: 10.1023/A:1007379606734.
URL https://doi.org/10.1023/A:1007379606734.

[36] Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep
neural networks with multitask learning. In William W. Cohen, Andrew McCallum, and Sam T.
Roweis, editors, Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML
2008), Helsinki, Filnand, June 5-9, 2008, volume 307 of ACM International Conference Proceeding
Series, pages 160–167. ACM, 2008. doi: 10.1145/1390156.1390177. URL https://doi.org/

10.1145/1390156.1390177.

[37] Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. A joint many-task
model: Growing a neural network for multiple NLP tasks. CoRR, abs/1611.015collin87, 2016. URL
http://arxiv.org/abs/1611.01587.

[38] Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
decathlon: Multitask learning as question answering. CoRR, abs/1806.08730, 2018. URL http:

//arxiv.org/abs/1806.08730.

Effective, Efficient and Reliable Large Language Models 72

https://arxiv.org/abs/2105.11447
https://arxiv.org/abs/2102.07350
https://aclanthology.org/2020.emnlp-main.437
https://aclanthology.org/2020.emnlp-main.437
https://arxiv.org/abs/2104.08691
https://github.com/google/BIG-bench/
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
http://arxiv.org/abs/1611.01587
http://arxiv.org/abs/1806.08730
http://arxiv.org/abs/1806.08730

BIBLIOGRAPHY

[39] Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessandro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. Exploring and predicting transferability across NLP tasks. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 7882–7926, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/
v1/2020.emnlp-main.635. URL https://aclanthology.org/2020.emnlp-main.635.

[40] Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein. Adapting language models for zero-shot
learning by meta-tuning on dataset and prompt collections. CoRR, abs/2104.04670, 2021. URL
https://arxiv.org/abs/2104.04670.

[41] Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao, and Hao Ma. Entailment as few-shot learner.
CoRR, abs/2104.14690, 2021. URL https://arxiv.org/abs/2104.14690.

[42] Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the 16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume, pages 255–269, Online, April 2021. Association
for Computational Linguistics. URL https://aclanthology.org/2021.eacl-main.20.

[43] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Natural instructions:
Benchmarking generalization to new tasks from natural language instructions. CoRR, abs/2104.08773,
2021. URL https://arxiv.org/abs/2104.08773.

[44] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2021.

[45] Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their
prompts?, 2021. URL https://arxiv.org/abs/2109.01247.

[46] Robert L Logan, Ivana Balažević, Eric Wallace, Fabio Petroni, Sameer Singh, and Sebastian Riedel.
Cutting down on prompts and parameters: Simple few-shot learning with language models. arXiv
preprint arXiv:2106.13353, 2021.

[47] Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and
Hannaneh Hajishirzi. UNIFIEDQA: Crossing format boundaries with a single QA system. In Findings
of the Association for Computational Linguistics: EMNLP 2020, pages 1896–1907, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.171. URL
https://aclanthology.org/2020.findings-emnlp.171.

[48] Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario
Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen
Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue,
Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor Mustar,
François Lagunas, Alexander M. Rush, and Thomas Wolf. Datasets: A community library for natural
language processing. emnlp, 2021.

[49] Adina Williams, Tristan Thrush, and Douwe Kiela. Anlizing the adversarial natural language inference
dataset. arXiv preprint arXiv:2010.12729, 2020.

Effective, Efficient and Reliable Large Language Models 73

https://aclanthology.org/2020.emnlp-main.635
https://arxiv.org/abs/2104.04670
https://arxiv.org/abs/2104.14690
https://aclanthology.org/2021.eacl-main.20
https://arxiv.org/abs/2104.08773
https://arxiv.org/abs/2109.01247
https://aclanthology.org/2020.findings-emnlp.171

BIBLIOGRAPHY

[50] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. CoRR, abs/1905.00537, 2019. URL http://arxiv.org/abs/1905.

00537.

[51] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In
International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

[52] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric Tang,
Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model
evaluation, September 2021. URL https://doi.org/10.5281/zenodo.5371628.

[53] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WINOGRANDE: an
adversarial winograd schema challenge at scale. CoRR, abs/1907.10641, 2019. URL http://

arxiv.org/abs/1907.10641.

[54] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

[55] Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke Zettlemoyer, and Michael Auli. Cloze-driven
pretraining of self-attention networks. arXiv preprint arXiv:1903.07785, 2019.

[56] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

[57] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-train,
prompt, and predict: A systematic survey of prompting methods in natural language processing. CoRR,
abs/2107.13586, 2021. URL https://arxiv.org/abs/2107.13586.

[58] Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are also
few-shot learners. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 2339–2352, Online,
June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.185. URL
https://aclanthology.org/2021.naacl-main.185.

[59] Teven Le Scao and Alexander Rush. How many data points is a prompt worth? In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2627–2636, Online, June 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.208. URL https://aclanthology.org/

2021.naacl-main.208.

[60] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),

Effective, Efficient and Reliable Large Language Models 74

http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
https://doi.org/10.5281/zenodo.5371628
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2107.13586
https://aclanthology.org/2021.naacl-main.185
https://aclanthology.org/2021.naacl-main.208
https://aclanthology.org/2021.naacl-main.208

BIBLIOGRAPHY

pages 3816–3830, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.acl-long.295. URL https://aclanthology.org/2021.acl-long.295.

[61] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models. In
NeurIPS, 2021. URL https://arxiv.org/abs/2105.11447.

[62] Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. CoRR, abs/2102.09690, 2021. URL http://arxiv.

org/abs/2102.09690.

[63] Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their
prompts? ArXiv, abs/2109.01247, 2021.

[64] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen
Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani,
Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos
Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Stella
Biderman, Leo Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush. Multitask prompted training
enables zero-shot task generalization. CoRR, abs/2110.08207, 2021. URL http://arxiv.org/

abs/2110.08207.

[65] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. CoRR,
abs/2109.01652, 2021. URL http://arxiv.org/abs/2109.01652.

[66] Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in
context. CoRR, abs/2110.15943, 2021. URL http://arxiv.org/abs/2110.15943.

[67] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. arXiv preprint arXiv:2104.08773, 2021.

[68] Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario Šaško,
Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen Xu,
Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue, Théo
Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 175–184, Online and Punta Cana, Dominican Republic,
November 2021. Association for Computational Linguistics. URL https://aclanthology.

org/2021.emnlp-demo.21.

[69] Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle
Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh
Koura, Vishrav Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona T.

Effective, Efficient and Reliable Large Language Models 75

https://aclanthology.org/2021.acl-long.295
https://arxiv.org/abs/2105.11447
http://arxiv.org/abs/2102.09690
http://arxiv.org/abs/2102.09690
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2110.15943
https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.emnlp-demo.21

BIBLIOGRAPHY

Diab, Veselin Stoyanov, and Xian Li. Few-shot learning with multilingual language models. CoRR,
abs/2112.10668, 2021. URL http://arxiv.org/abs/2112.10668.

[70] Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume, pages 255–269, Online, April 2021.
Association for Computational Linguistics. URL https://doi.org/10.18653/v1/2021.

eacl-main.20.

[71] Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. AutoPrompt:
Eliciting Knowledge from Language Models with Automatically Generated Prompts. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
4222–4235, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.346. URL https://aclanthology.org/2020.emnlp-main.346.

[72] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Dominican Republic, November 2021. Association for
Computational Linguistics. URL https://doi.org/10.18653/v1/2021.emnlp-main.

243.

[73] Guanghui Qin and Jason Eisner. Learning how to ask: Querying LMs with mixtures of soft
prompts. In Proceedings of the 2021 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, pages 5203–5212, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.410. URL
https://aclanthology.org/2021.naacl-main.410.

[74] Mariana Neves and Jurica Ševa. An extensive review of tools for manual annotation of documents.
Briefings in bioinformatics, 22(1):146–163, 2021.

[75] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin Tablan. GATE: an archi-
tecture for development of robust HLT applications. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pages 168–175, Philadelphia, Pennsylvania, USA,
July 2002. Association for Computational Linguistics. URL https://doi.org/10.3115/

1073083.1073112.

[76] Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko Ohta, Sophia Ananiadou, and Jun’ichi
Tsujii. brat: a web-based tool for NLP-assisted text annotation. In Proceedings of the Demonstrations
at the 13th Conference of the European Chapter of the Association for Computational Linguistics,
pages 102–107, Avignon, France, April 2012. Association for Computational Linguistics. URL
https://aclanthology.org/E12-2021.

[77] David Salgado, Martin Krallinger, Marc Depaule, Elodie Drula, Ashish V. Tendulkar, Florian Leitner,
Alfonso Valencia, and Christophe Marcelle. MyMiner: a web application for computer-assisted
biocuration and text annotation. Bioinformatics, 28(17):2285–2287, 2012. URL https://doi.

org/10.1093/bioinformatics/bts435.

Effective, Efficient and Reliable Large Language Models 76

http://arxiv.org/abs/2112.10668
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://aclanthology.org/2020.emnlp-main.346
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://aclanthology.org/2021.naacl-main.410
https://doi.org/10.3115/1073083.1073112
https://doi.org/10.3115/1073083.1073112
https://aclanthology.org/E12-2021
https://doi.org/10.1093/bioinformatics/bts435
https://doi.org/10.1093/bioinformatics/bts435

BIBLIOGRAPHY

[78] Chih-Hsuan Wei, Hung-Yu Kao, and Zhiyong Lu. PubTator: a web-based text mining tool for assisting
biocuration. Nucleic Acids Research, 41(W1):W518–W522, 2013. URL https://doi.org/10.

1093/nar/gkt441.

[79] Seid Muhie Yimam, Iryna Gurevych, Richard Eckart de Castilho, and Chris Biemann. WebAnno:
A flexible, web-based and visually supported system for distributed annotations. In Proceedings of
the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
pages 1–6, Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL https:

//aclanthology.org/P13-4001.

[80] Wei-Te Chen and Will Styler. Anafora: A web-based general purpose annotation tool. In Proceedings of
the 2013 NAACL HLT Demonstration Session, pages 14–19, Atlanta, Georgia, June 2013. Association
for Computational Linguistics. URL https://aclanthology.org/N13-3004.

[81] Richard Eckart de Castilho, Éva Mújdricza-Maydt, Seid Muhie Yimam, Silvana Hartmann, Iryna
Gurevych, Anette Frank, and Chris Biemann. A web-based tool for the integrated annotation of
semantic and syntactic structures. In Proceedings of the Workshop on Language Technology Resources
and Tools for Digital Humanities (LT4DH), pages 76–84, Osaka, Japan, December 2016. The COLING
2016 Organizing Committee. URL https://aclanthology.org/W16-4011.

[82] Jan Wira Gotama Putra, Simone Teufel, Kana Matsumura, and Takenobu Tokunaga. TIARA: A tool
for annotating discourse relations and sentence reordering. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 6912–6920, Marseille, France, May 2020. European
Language Resources Association. URL https://aclanthology.org/2020.lrec-1.854.

[83] Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li. YEDDA: A lightweight collaborative text span
annotation tool. In Proceedings of ACL 2018, System Demonstrations, pages 31–36, Melbourne,
Australia, July 2018. Association for Computational Linguistics. URL https://doi.org/10.

18653/v1/P18-4006.

[84] Michael Stewart, Wei Liu, and Rachel Cardell-Oliver. Redcoat: A collaborative annotation tool
for hierarchical entity typing. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP): System Demonstrations, pages 193–198, Hong Kong, China, November
2019. Association for Computational Linguistics. URL https://doi.org/10.18653/v1/

D19-3033.

[85] Bill Yuchen Lin, Dong-Ho Lee, Frank F. Xu, Ouyu Lan, and Xiang Ren. AlpacaTag: An active
learning-based crowd annotation framework for sequence tagging. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics: System Demonstrations, pages 58–63,
Florence, Italy, July 2019. Association for Computational Linguistics. URL https://doi.org/

10.18653/v1/P19-3010.

[86] Yanzeng Li, Bowen Yu, Li Quangang, and Tingwen Liu. FITAnnotator: A flexible and intelligent
text annotation system. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies: Demonstrations, pages

Effective, Efficient and Reliable Large Language Models 77

https://doi.org/10.1093/nar/gkt441
https://doi.org/10.1093/nar/gkt441
https://aclanthology.org/P13-4001
https://aclanthology.org/P13-4001
https://aclanthology.org/N13-3004
https://aclanthology.org/W16-4011
https://aclanthology.org/2020.lrec-1.854
https://doi.org/10.18653/v1/P18-4006
https://doi.org/10.18653/v1/P18-4006
https://doi.org/10.18653/v1/D19-3033
https://doi.org/10.18653/v1/D19-3033
https://doi.org/10.18653/v1/P19-3010
https://doi.org/10.18653/v1/P19-3010

BIBLIOGRAPHY

35–41, Online, June 2021. Association for Computational Linguistics. URL https://doi.org/

10.18653/v1/2021.naacl-demos.5.

[87] Dong-Ho Lee, Rahul Khanna, Bill Yuchen Lin, Seyeon Lee, Qinyuan Ye, Elizabeth Boschee, Leonardo
Neves, and Xiang Ren. LEAN-LIFE: A label-efficient annotation framework towards learning from
explanation. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 372–379, Online, July 2020. Association for Computational
Linguistics. URL https://doi.org/10.18653/v1/2020.acl-demos.42.

[88] Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi Ma, Tristan Thrush, Sebastian
Riedel, Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher Potts, and Adina
Williams. Dynabench: Rethinking benchmarking in NLP. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 4110–4124, Online, June 2021. Association for Computational Linguistics. URL
https://doi.org/10.18653/v1/2021.naacl-main.324.

[89] Frédéric Papazian, Robert Bossy, and Claire Nédellec. AlvisAE: a collaborative web text annotation
editor for knowledge acquisition. In Proceedings of the Sixth Linguistic Annotation Workshop, pages
149–152, Jeju, Republic of Korea, July 2012. Association for Computational Linguistics. URL
https://aclanthology.org/W12-3621.

[90] Philipp Helfrich, Elias Rieb, Giuseppe Abrami, Andy Lücking, and Alexander Mehler. TreeAnnotator:
Versatile visual annotation of hierarchical text relations. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, May 2018.
European Language Resources Association (ELRA). URL https://aclanthology.org/

L18-1308.

[91] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing, pages 632–642, Lisbon, Portugal,
September 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1075. URL
https://aclanthology.org/D15-1075.

[92] Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via reading
comprehension. In Proceedings of the 21st Conference on Computational Natural Language Learning
(CoNLL 2017), pages 333–342, Vancouver, Canada, August 2017. Association for Computational
Linguistics. doi: 10.18653/v1/K17-1034. URL https://aclanthology.org/K17-1034.

[93] Alessandro Bozzon and Piero Fraternali. Multimedia and multimodal information retrieval. In Search
Computing, pages 135–155. Springer, 2010.

[94] James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian Riedel, and Alon Halevy.
From natural language processing to neural databases. In Proceedings of the VLDB Endowment,
volume 14, pages 1033–1039. VLDB Endowment, 2021.

Effective, Efficient and Reliable Large Language Models 78

https://doi.org/10.18653/v1/2021.naacl-demos.5
https://doi.org/10.18653/v1/2021.naacl-demos.5
https://doi.org/10.18653/v1/2020.acl-demos.42
https://doi.org/10.18653/v1/2021.naacl-main.324
https://aclanthology.org/W12-3621
https://aclanthology.org/L18-1308
https://aclanthology.org/L18-1308
https://aclanthology.org/D15-1075
https://aclanthology.org/K17-1034

BIBLIOGRAPHY

[95] James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian Riedel, and Alon Halevy.
Database reasoning over text. In Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3091–3104, 2021.

[96] Artsiom Sauchuk, James Thorne, Alon Halevy, Nicola Tonellotto, and Fabrizio Silvestri. On the role
of relevance in natural language processing tasks. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 1785–1789, 2022.

[97] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 6904–6913, 2017.

[98] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[99] Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. Data2vec:
A general framework for self-supervised learning in speech, vision and language. In International
Conference on Machine Learning, pages 1298–1312. PMLR, 2022.

[100] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014.

[101] Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou,
Jingren Zhou, and Hongxia Yang. Unifying architectures, tasks, and modalities through a simple
sequence-to-sequence learning framework. arXiv preprint arXiv:2202.03052, 2022.

[102] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748–8763.
PMLR, 2021.

[103] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation. SIGMOD Rec., 26(2):
171–182, jun 1997. ISSN 0163-5808. doi: 10.1145/253262.253291. URL https://doi.org/

10.1145/253262.253291.

[104] Alon Y Halevy, Oren Etzioni, AnHai Doan, Zachary G Ives, Jayant Madhavan, Luke K McDowell,
and Igor Tatarinov. Crossing the structure chasm. In CIDR, 2003.

[105] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image retrieval at
the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12):
1349–1380, 2000. doi: 10.1109/34.895972.

[106] Michael S Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. Content-based multimedia infor-
mation retrieval: State of the art and challenges. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), 2(1):1–19, 2006.

Effective, Efficient and Reliable Large Language Models 79

https://doi.org/10.1145/253262.253291
https://doi.org/10.1145/253262.253291

BIBLIOGRAPHY

[107] Yong Rui, Thomas S. Huang, and Shih-Fu Chang. Image retrieval: Current techniques, promising
directions, and open issues. Journal of Visual Communication and Image Representation, 10(1):
39–62, 1999. ISSN 1047-3203. doi: https://doi.org/10.1006/jvci.1999.0413. URL https://www.

sciencedirect.com/science/article/pii/S1047320399904133.

[108] Kaiye Wang, Qiyue Yin, Wei Wang, Shu Wu, and Liang Wang. A comprehensive survey on cross-
modal retrieval. arXiv preprint arXiv:1607.06215, 2016.

[109] Peng Hu, Liangli Zhen, Dezhong Peng, and Pei Liu. Scalable deep multimodal learning for cross-
modal retrieval. In Proceedings of the 42nd international ACM SIGIR conference on research and
development in information retrieval, pages 635–644, 2019.

[110] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[111] Jun Rao, Fei Wang, Liang Ding, Shuhan Qi, Yibing Zhan, Weifeng Liu, and Dacheng Tao. Where
does the performance improvement come from? -a reproducibility concern about image-text retrieval.
In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 2727–2737, 2022.

[112] Mengjun Cheng, Yipeng Sun, Longchao Wang, Xiongwei Zhu, Kun Yao, Jie Chen, Guoli Song, Junyu
Han, Jingtuo Liu, Errui Ding, et al. Vista: vision and scene text aggregation for cross-modal retrieval.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5184–5193, 2022.

[113] Tan Yu, Hongliang Fei, and Ping Li. U-bert for fast and scalable text-image retrieval. In Proceedings
of the 2022 ACM SIGIR International Conference on Theory of Information Retrieval, pages 193–203,
2022.

[114] Tan Yu, Hongliang Fei, and Ping Li. Cross-probe bert for fast cross-modal search. In Proceedings of
the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 2178–2183, 2022.

[115] Tan Yu, Yi Yang, Yi Li, Lin Liu, Hongliang Fei, and Ping Li. Heterogeneous attention network for
effective and efficient cross-modal retrieval. In Proceedings of the 44th international ACM SIGIR
conference on research and development in information retrieval, pages 1146–1156, 2021.

[116] Leigang Qu, Meng Liu, Jianlong Wu, Zan Gao, and Liqiang Nie. Dynamic modality interaction
modeling for image-text retrieval. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 1104–1113, 2021.

[117] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597,
2023.

[118] Hangbo Bao, Wenhui Wang, Li Dong, Qiang Liu, Owais Khan Mohammed, Kriti Aggarwal, Subhojit
Som, and Furu Wei. Vlmo: Unified vision-language pre-training with mixture-of-modality-experts.
arXiv preprint arXiv:2111.02358, 2021.

Effective, Efficient and Reliable Large Language Models 80

https://www.sciencedirect.com/science/article/pii/S1047320399904133
https://www.sciencedirect.com/science/article/pii/S1047320399904133

BIBLIOGRAPHY

[119] Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
Owais Khan Mohammed, Saksham Singhal, Subhojit Som, et al. Image as a foreign language: Beit
pretraining for all vision and vision-language tasks. arXiv preprint arXiv:2208.10442, 2022.

[120] Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled multilingual
language-image model. arXiv preprint arXiv:2209.06794, 2022.

[121] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. Coca:
Contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917, 2022.

[122] Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming Zheng, Soujanya Poria, and Tat-Seng Chua.
Retrieving and reading: A comprehensive survey on open-domain question answering. CoRR,
abs/2101.00774, 2021. URL https://arxiv.org/abs/2101.00774.

[123] Yingshan Chang, Mridu Narang, Hisami Suzuki, Guihong Cao, Jianfeng Gao, and Yonatan Bisk.
Webqa: Multihop and multimodal QA. CoRR, abs/2109.00590, 2021. URL https://arxiv.

org/abs/2109.00590.

[124] Ion Androutsopoulos, Graeme D Ritchie, and Peter Thanisch. Natural language interfaces to databases–
an introduction. Natural language engineering, 1(1):29–81, 1995.

[125] Fei Li and Hosagrahar V Jagadish. Constructing an interactive natural language interface for relational
databases. Proceedings of the VLDB Endowment, 8(1):73–84, 2014.

[126] Jichuan Zeng, Xi Victoria Lin, Caiming Xiong, Richard Socher, Michael R Lyu, Irwin King, and
Steven CH Hoi. Photon: a robust cross-domain text-to-sql system. arXiv preprint arXiv:2007.15280,
2020.

[127] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1533–1544, 2013.

[128] Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. arXiv
preprint arXiv:1508.00305, 2015.

[129] Deng Cai, Yan Wang, Lemao Liu, and Shuming Shi. Recent advances in retrieval-augmented text
generation. In Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’22, page 3417–3419, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450387323. doi: 10.1145/3477495.3532682. URL
https://doi.org/10.1145/3477495.3532682.

[130] Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta
Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann
LeCun, and Thomas Scialom. Augmented language models: a survey, 2023. URL https://arxiv.

org/abs/2302.07842.

[131] Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference
using lookahead decoding. In Forty-first International Conference on Machine Learning.

Effective, Efficient and Reliable Large Language Models 81

https://arxiv.org/abs/2101.00774
https://arxiv.org/abs/2109.00590
https://arxiv.org/abs/2109.00590
https://doi.org/10.1145/3477495.3532682
https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2302.07842

BIBLIOGRAPHY

[132] Yao Teng, Han Shi, Xian Liu, Xuefei Ning, Guohao Dai, Yu Wang, Zhenguo Li, and Xihui Liu.
Accelerating auto-regressive text-to-image generation with training-free speculative jacobi decoding.
arXiv preprint arXiv:2410.01699, 2024.

[133] Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
Yi Zhu, Quanlu Zhang, et al. Efficient large language models: A survey. Transactions on Machine
Learning Research.

[134] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding, 2022.

[135] Andrea Bacciu, Giovanni Trappolini, Andrea Santilli, Emanuele Rodolà, and Fabrizio Silvestri.
Fauno: The italian large language model that will leave you senza parole! In Franco Maria
Nardini, Nicola Tonellotto, Guglielmo Faggioli, and Antonio Ferrara, editors, Proceedings of
the 13th Italian Information Retrieval Workshop (IIR 2023), Pisa, Italy, June 8-9, 2023, vol-
ume 3448 of CEUR Workshop Proceedings, pages 9–17. CEUR-WS.org, 2023. URL https:

//ceur-ws.org/Vol-3448/paper-24.pdf.

[136] Andrea Bacciu, Cesare Campagnano, Giovanni Trappolini, and Fabrizio Silvestri. DanteLLM:
Let’s push Italian LLM research forward! In Nicoletta Calzolari, Min-Yen Kan, Veronique
Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue, editors, Proceedings of the 2024
Joint International Conference on Computational Linguistics, Language Resources and Evalua-
tion (LREC-COLING 2024), pages 4343–4355, Torino, Italia, May 2024. ELRA and ICCL. URL
https://aclanthology.org/2024.lrec-main.388.

[137] Pierpaolo Basile, Elio Musacchio, Marco Polignano, Lucia Siciliani, Giuseppe Fiameni, and Gio-
vanni Semeraro. Llamantino: Llama 2 models for effective text generation in italian language.
ArXiv, abs/2312.09993, 2023. URL https://api.semanticscholar.org/CorpusID:

266335721.

[138] Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at scale.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages
489–500, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1045. URL https://aclanthology.org/D18-1045.

[139] Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jianfeng Gao. Very deep transformers for neural machine
translation. arXiv preprint arXiv:2008.07772, 2020.

[140] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

[141] Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. Non-autoregressive
neural machine translation. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=B1l8BtlCb.

[142] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation

Effective, Efficient and Reliable Large Language Models 82

https://ceur-ws.org/Vol-3448/paper-24.pdf
https://ceur-ws.org/Vol-3448/paper-24.pdf
https://aclanthology.org/2024.lrec-main.388
https://api.semanticscholar.org/CorpusID:266335721
https://api.semanticscholar.org/CorpusID:266335721
https://aclanthology.org/D18-1045
https://openreview.net/forum?id=B1l8BtlCb

BIBLIOGRAPHY

system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144,
2016.

[143] Young Jin Kim, Marcin Junczys-Dowmunt, Hany Hassan, Alham Fikri Aji, Kenneth Heafield, Roman
Grundkiewicz, and Nikolay Bogoychev. From research to production and back: Ludicrously fast
neural machine translation. In Proceedings of the 3rd Workshop on Neural Generation and Translation,
pages 280–288, Hong Kong, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-5632. URL https://aclanthology.org/D19-5632.

[144] Yang Song, Chenlin Meng, Renjie Liao, and Stefano Ermon. Accelerating feedforward computation
via parallel nonlinear equation solving. In International Conference on Machine Learning, pages
9791–9800. PMLR, 2021.

[145] Xinwei Geng, Xiaocheng Feng, and Bing Qin. Learning to rewrite for non-autoregressive neural
machine translation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 3297–3308, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.265. URL
https://aclanthology.org/2021.emnlp-main.265.

[146] Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and Aaron van den Oord.
Step-unrolled denoising autoencoders for text generation. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=T0GpzBQ1Fg6.

[147] Jiatao Gu and Xiang Kong. Fully non-autoregressive neural machine translation: Tricks of the trade. In
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 120–133, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.11. URL
https://aclanthology.org/2021.findings-acl.11.

[148] Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages 1317–1327, Austin,
Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1139. URL
https://aclanthology.org/D16-1139.

[149] Marjan Ghazvininejad, Vladimir Karpukhin, Luke Zettlemoyer, and Omer Levy. Aligned cross entropy
for non-autoregressive machine translation. In Hal Daumé III and Aarti Singh, editors, Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 3515–3523. PMLR, 13–18 Jul 2020. URL https://proceedings.

mlr.press/v119/ghazvininejad20a.html.

[150] Chitwan Saharia, William Chan, Saurabh Saxena, and Mohammad Norouzi. Non-autoregressive
machine translation with latent alignments. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1098–1108, Online, November 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.83. URL https:

//www.aclweb.org/anthology/2020.emnlp-main.83.

[151] Cunxiao Du, Zhaopeng Tu, and Jing Jiang. Order-agnostic cross entropy for non-autoregressive
machine translation. In International Conference on Machine Learning, pages 2849–2859. PMLR,
2021.

Effective, Efficient and Reliable Large Language Models 83

https://aclanthology.org/D19-5632
https://aclanthology.org/2021.emnlp-main.265
https://openreview.net/forum?id=T0GpzBQ1Fg6
https://aclanthology.org/2021.findings-acl.11
https://aclanthology.org/D16-1139
https://proceedings.mlr.press/v119/ghazvininejad20a.html
https://proceedings.mlr.press/v119/ghazvininejad20a.html
https://www.aclweb.org/anthology/2020.emnlp-main.83
https://www.aclweb.org/anthology/2020.emnlp-main.83

BIBLIOGRAPHY

[152] Chenyang Huang, Hao Zhou, Osmar R. Zaïane, Lili Mou, and Lei Li. Non-autoregressive translation
with layer-wise prediction and deep supervision. CoRR, abs/2110.07515, 2021. URL https:

//arxiv.org/abs/2110.07515.

[153] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Paral-
lel decoding of conditional masked language models. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pages 6112–6121, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1633. URL
https://aclanthology.org/D19-1633.

[154] Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong Yu, and Lei Li.
Glancing transformer for non-autoregressive neural machine translation. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 1993–2003, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.155. URL
https://aclanthology.org/2021.acl-long.155.

[155] Jongyoon Song, Sungwon Kim, and Sungroh Yoon. AligNART: Non-autoregressive neural machine
translation by jointly learning to estimate alignment and translate. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pages 1–14, Online and Punta
Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.
18653/v1/2021.emnlp-main.1. URL https://aclanthology.org/2021.emnlp-main.1.

[156] Zhenqiao Song, Hao Zhou, Lihua Qian, Jingjing Xu, Shanbo Cheng, Mingxuan Wang, and Lei Li.
switch-GLAT: Multilingual parallel machine translation via code-switch decoder. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?

id=5HvpvYd68b.

[157] Marjan Ghazvininejad, Omer Levy, and Luke Zettlemoyer. Semi-autoregressive training improves
mask-predict decoding. arXiv preprint arXiv:2001.08785, 2020.

[158] Jungo Kasai, James Cross, Marjan Ghazvininejad, and Jiatao Gu. Non-autoregressive machine
translation with disentangled context transformer. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pages 5144–5155. PMLR, 13–18 Jul 2020. URL https:

//proceedings.mlr.press/v119/kasai20a.html.

[159] Yongchang Hao, Shilin He, Wenxiang Jiao, Zhaopeng Tu, Michael Lyu, and Xing Wang. Multi-task
learning with shared encoder for non-autoregressive machine translation. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 3989–3996, Online, June 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.313. URL https://aclanthology.org/

2021.naacl-main.313.

[160] Xiao Shi Huang, Felipe Perez, and Maksims Volkovs. Improving non-autoregressive translation
models without distillation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=I2Hw58KHp8O.

Effective, Efficient and Reliable Large Language Models 84

https://arxiv.org/abs/2110.07515
https://arxiv.org/abs/2110.07515
https://aclanthology.org/D19-1633
https://aclanthology.org/2021.acl-long.155
https://aclanthology.org/2021.emnlp-main.1
https://openreview.net/forum?id=5HvpvYd68b
https://openreview.net/forum?id=5HvpvYd68b
https://proceedings.mlr.press/v119/kasai20a.html
https://proceedings.mlr.press/v119/kasai20a.html
https://aclanthology.org/2021.naacl-main.313
https://aclanthology.org/2021.naacl-main.313
https://openreview.net/forum?id=I2Hw58KHp8O

BIBLIOGRAPHY

[161] Heming Xia, Tao Ge, Furu Wei, and Zhifang Sui. Lossless speedup of autoregressive translation with
generalized aggressive decoding, 2022.

[162] Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep au-
toregressive models. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/

c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf.

[163] Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, and Noah Smith. Deep encoder, shallow de-
coder: Reevaluating non-autoregressive machine translation. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=KpfasTaLUpq.

[164] Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min Zhang, Tao Qin, and Tie-yan Liu. A
survey on non-autoregressive generation for neural machine translation and beyond. arXiv preprint
arXiv:2204.09269, 2022.

[165] Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang. Instantaneous grammatical error correction with
shallow aggressive decoding. In Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5937–5947, Online, August 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.acl-long.462. URL https://aclanthology.org/2021.

acl-long.462.

[166] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023.

[167] Sehoon Kim, Karttikeya Mangalam, Jitendra Malik, Michael W. Mahoney, Amir Gholami, and Kurt
Keutzer. Big little transformer decoder, 2023.

[168] Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. CoRR, abs/1808.06226, 2018. URL http:

//arxiv.org/abs/1808.06226.

[169] Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2012, Kyoto, Japan, March 25-
30, 2012, pages 5149–5152. IEEE, 2012. doi: 10.1109/ICASSP.2012.6289079. URL https:

//doi.org/10.1109/ICASSP.2012.6289079.

[170] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany, August 2016. Association
for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https://aclanthology.

org/P16-1162.

[171] Taku Kudo. Subword regularization: Improving neural network translation models with multiple
subword candidates. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75, Melbourne, Australia, July 2018. Association for

Effective, Efficient and Reliable Large Language Models 85

https://proceedings.neurips.cc/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://openreview.net/forum?id=KpfasTaLUpq
https://aclanthology.org/2021.acl-long.462
https://aclanthology.org/2021.acl-long.462
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162

BIBLIOGRAPHY

Computational Linguistics. doi: 10.18653/v1/P18-1007. URL https://aclanthology.org/

P18-1007.

[172] Wouter Kool, Herke van Hoof, and Max Welling. Ancestral gumbel-top-k sampling for sampling
without replacement. Journal of Machine Learning Research, 21(47):1–36, 2020. URL http:

//jmlr.org/papers/v21/19-985.html.

[173] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. In International Conference on Learning Representations, 2020. URL https:

//openreview.net/forum?id=rygGQyrFvH.

[174] Raj Reddy. Speech understanding systems: A summary of results of the five-year research effort.
Carnegie Mellon University, 1977.

[175] J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables.
Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM, 3600
Market Street, Floor 6, Philadelphia, PA 19104), 1970. ISBN 9780898719468. URL https:

//books.google.es/books?id=GA1P9UNnrmMC.

[176] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[177] Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes Lev-
eling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia Specia,
and Aleš Tamchyna. Findings of the 2014 workshop on statistical machine translation. In Proceed-
ings of the Ninth Workshop on Statistical Machine Translation, pages 12–58, Baltimore, Maryland,
USA, June 2014. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W/W14/W14-3302.

[178] Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias
Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri,
Aurelie Neveol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia
Specia, Marco Turchi, Karin Verspoor, and Marcos Zampieri. Findings of the 2016 conference
on machine translation. In Proceedings of the First Conference on Machine Translation, pages
131–198, Berlin, Germany, August 2016. Association for Computational Linguistics. URL http:

//www.aclweb.org/anthology/W/W16/W16-2301.

[179] Viet Hong Tran, Huyen Vu Thong, Nguyen Van-Vinh, and Trung Le Tien. The English-Vietnamese
machine translation system for IWSLT 2015. In Proceedings of the 12th International Workshop on
Spoken Language Translation: Evaluation Campaign, pages 80–83, Da Nang, Vietnam, December 3-4
2015. URL https://aclanthology.org/2015.iwslt-evaluation.12.

[180] Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhattacharyya. The IIT Bombay English-Hindi
parallel corpus. In Proceedings of the Eleventh International Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan, May 2018. European Language Resources Association
(ELRA). URL https://aclanthology.org/L18-1548.

[181] Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara Logacheva, Christof Monz, Matteo Negri, Matt

Effective, Efficient and Reliable Large Language Models 86

https://aclanthology.org/P18-1007
https://aclanthology.org/P18-1007
http://jmlr.org/papers/v21/19-985.html
http://jmlr.org/papers/v21/19-985.html
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://books.google.es/books?id=GA1P9UNnrmMC
https://books.google.es/books?id=GA1P9UNnrmMC
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
https://aclanthology.org/2015.iwslt-evaluation.12
https://aclanthology.org/L18-1548

BIBLIOGRAPHY

Post, Raphael Rubino, Lucia Specia, and Marco Turchi. Findings of the 2017 conference on machine
translation (wmt17). In Proceedings of the Second Conference on Machine Translation, Volume
2: Shared Task Papers, pages 169–214, Copenhagen, Denmark, September 2017. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/W17-4717.

[182] Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-Jen Chen, Guillaume Wenzek, Da Ju, Sanjana
Krishnan, Marc’Aurelio Ranzato, Francisco Guzmán, and Angela Fan. The Flores-101 evaluation
benchmark for low-resource and multilingual machine translation. Transactions of the Association
for Computational Linguistics, 10:522–538, 2022. doi: 10.1162/tacl_a_00474. URL https://

aclanthology.org/2022.tacl-1.30.

[183] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association
for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https://aclanthology.

org/P02-1040.

[184] Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–191, Belgium, Brussels, October 2018. Association
for Computational Linguistics. URL https://www.aclweb.org/anthology/W18-6319.

[185] Prajit Ramachandran, Tom Le Paine, Pooya Khorrami, Mohammad Babaeizadeh, Shiyu Chang, Yang
Zhang, Mark A. Hasegawa-Johnson, Roy H. Campbell, and Thomas S. Huang. Fast generation for
convolutional autoregressive models. CoRR, abs/1704.06001, 2017. URL http://arxiv.org/

abs/1704.06001.

[186] Jörg Tiedemann and Santhosh Thottingal. OPUS-MT — Building open translation services for the
World. In Proceedings of the 22nd Annual Conferenec of the European Association for Machine
Translation (EAMT), Lisbon, Portugal, 2020.

[187] Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, and
Angela Fan. Multilingual translation with extensible multilingual pretraining and finetuning. CoRR,
abs/2008.00401, 2020. URL https://arxiv.org/abs/2008.00401.

[188] Biao Zhang, Philip Williams, Ivan Titov, and Rico Sennrich. Improving massively multilingual neural
machine translation and zero-shot translation. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 1628–1639, Online, July 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.acl-main.148. URL https://aclanthology.

org/2020.acl-main.148.

[189] Chunqi Wang, Ji Zhang, and Haiqing Chen. Semi-autoregressive neural machine translation. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages
479–488, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1044. URL https://aclanthology.org/D18-1044.

[190] Ibrahim Ahmed, Sahil Parmar, Matthew Boyd, Michael Beidler, Kris Kang, Bill Liu, Kyle Roach,
John Kim, and Dennis Abts. Answer fast: Accelerating bert on the tensor streaming processor. In 2022

Effective, Efficient and Reliable Large Language Models 87

http://www.aclweb.org/anthology/W17-4717
https://aclanthology.org/2022.tacl-1.30
https://aclanthology.org/2022.tacl-1.30
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://www.aclweb.org/anthology/W18-6319
http://arxiv.org/abs/1704.06001
http://arxiv.org/abs/1704.06001
https://arxiv.org/abs/2008.00401
https://aclanthology.org/2020.acl-main.148
https://aclanthology.org/2020.acl-main.148
https://aclanthology.org/D18-1044

BIBLIOGRAPHY

IEEE 33rd International Conference on Application-specific Systems, Architectures and Processors
(ASAP), pages 80–87. IEEE, 2022.

[191] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

[192] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y Fu, Zhiqiang Xie,
Beidi Chen, Clark Barrett, Joseph E Gonzalez, et al. High-throughput generative inference of large
language models with a single gpu. arXiv preprint arXiv:2303.06865, 2023.

[193] Kai-Wei Chang, Vinodkumar Prabhakaran, and Vicente Ordonez. Bias and fairness in natural language
processing. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP): Tutorial Abstracts, Hong Kong, China, November 2019. Association for Computational
Linguistics. URL https://aclanthology.org/D19-2004.

[194] Beatrice Savoldi, Marco Gaido, Luisa Bentivogli, Matteo Negri, and Marco Turchi. Gender Bias
in Machine Translation. Transactions of the Association for Computational Linguistics, 9:845–874,
08 2021. ISSN 2307-387X. doi: 10.1162/tacl_a_00401. URL https://doi.org/10.1162/

tacl_a_00401.

[195] Lukas Edman, Gabriele Sarti, Antonio Toral, Gertjan van Noord, and Arianna Bisazza. Are character-
level translations worth the wait? comparing character- and subword-level models for machine
translation, 2023.

[196] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

[197] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. URL http://arxiv.org/abs/1409.0473.

[198] Emilian Postolache, Giorgio Mariani, Michele Mancusi, Andrea Santilli, Cosmo Luca, Emanuele
Rodola, et al. Latent autoregressive source separation. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2023.

[199] Bryan Eikema and Wilker Aziz. Is MAP decoding all you need? the inadequacy of the mode
in neural machine translation. In Proceedings of the 28th International Conference on Com-
putational Linguistics, pages 4506–4520, Barcelona, Spain (Online), December 2020. Interna-
tional Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.398. URL
https://aclanthology.org/2020.coling-main.398.

[200] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy, July 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1355. URL https://aclanthology.org/P19-1355.

Effective, Efficient and Reliable Large Language Models 88

https://aclanthology.org/D19-2004
https://doi.org/10.1162/tacl_a_00401
https://doi.org/10.1162/tacl_a_00401
http://arxiv.org/abs/1409.0473
https://aclanthology.org/2020.coling-main.398
https://aclanthology.org/P19-1355

BIBLIOGRAPHY

[201] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[202] OpenAI. Gpt-4 technical report, 2023.

[203] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

[204] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-parameter
open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

[205] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[206] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2021.

[207] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

[208] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https:
//github.com/tatsu-lab/stanford_alpaca, 2023.

[209] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?id=

nZeVKeeFYf9.

[210] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities
and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[211] Emilian Postolache, Giorgio Mariani, Michele Mancusi, Andrea Santilli, Luca Cosmo, and Emanuele
Rodolà. Latent autoregressive source separation. Proceedings of the AAAI Conference on Artificial
Intelligence, 37(8):9444–9452, Jun. 2023. doi: 10.1609/aaai.v37i8.26131. URL https://ojs.

aaai.org/index.php/AAAI/article/view/26131.

[212] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.

net/forum?id=YicbFdNTTy.

Effective, Efficient and Reliable Large Language Models 89

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://ojs.aaai.org/index.php/AAAI/article/view/26131
https://ojs.aaai.org/index.php/AAAI/article/view/26131
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

BIBLIOGRAPHY

[213] Marco Polignano, Pierpaolo Basile, Marco De Gemmis, Giovanni Semeraro, Valerio Basile, et al.
Alberto: Italian bert language understanding model for nlp challenging tasks based on tweets. In
CEUR Workshop Proceedings, volume 2481, pages 1–6. CEUR, 2019.

[214] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:

//aclanthology.org/N19-1423.

[215] Valerio Basile, Mirko Lai, Manuela Sanguinetti, et al. Long-term social media data collection at
the university of turin. In Proceedings of the Fifth Italian Conference on Computational Linguistics
(CLiC-it 2018), pages 1–6. CEUR-WS, 2018.

[216] Lorenzo De Mattei, Michele Cafagna, Felice Dell’Orletta, Malvina Nissim, and Marco Guerini.
Geppetto carves italian into a language model. In Johanna Monti, Felice Dell’Orletta, and Fabio
Tamburini, editors, Proceedings of the Seventh Italian Conference on Computational Linguistics,
CLiC-it 2020, Bologna, Italy, March 1-3, 2021, volume 2769 of CEUR Workshop Proceedings.
CEUR-WS.org, 2020. URL https://ceur-ws.org/Vol-2769/paper_46.pdf.

[217] Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta. The wacky wide web:
a collection of very large linguistically processed web-crawled corpora. Language resources and
evaluation, 43:209–226, 2009.

[218] Gabriele Sarti and Malvina Nissim. It5: Large-scale text-to-text pretraining for italian language
understanding and generation. arXiv preprint arXiv:2203.03759, 2022.

[219] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 483–498, Online, June 2021. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.41. URL https:

//aclanthology.org/2021.naacl-main.41.

[220] Moreno La Quatra and Luca Cagliero. Bart-it: An efficient sequence-to-sequence model for italian
text summarization. Future Internet, 15(1), 2023. ISSN 1999-5903. doi: 10.3390/fi15010015. URL
https://www.mdpi.com/1999-5903/15/1/15.

[221] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 7871–7880, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL https:

//aclanthology.org/2020.acl-main.703.

[222] Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data, 2023.

Effective, Efficient and Reliable Large Language Models 90

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://ceur-ws.org/Vol-2769/paper_46.pdf
https://aclanthology.org/2021.naacl-main.41
https://aclanthology.org/2021.naacl-main.41
https://www.mdpi.com/1999-5903/15/1/15
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703

BIBLIOGRAPHY

[223] Michael. Stambecco: Italian instruction-following llama model. https://github.com/

mchl-labs/stambecco, 2023.

[224] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277, 2023.

[225] Eric J. Wang. Alpaca-lora. https://github.com/tloen/alpaca-lora, 2023.

[226] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 13484–13508, Toronto, Canada, July 2023. Association for Computational
Linguistics. URL https://aclanthology.org/2023.acl-long.754.

[227] Danilo Croce, Alexandra Zelenanska, and Roberto Basili. Neural learning for question answering in
italian. In AI* IA 2018–Advances in Artificial Intelligence: XVIIth International Conference of the
Italian Association for Artificial Intelligence, Trento, Italy, November 20–23, 2018, Proceedings 17,
pages 389–402. Springer, 2018.

[228] Antonio Scaiella, Danilo Croce, and Roberto Basili. Large scale datasets for image and video
captioning in italian. Italian Journal of Computational Linguistics, 2(5):49–60, 2019. URL http:

//www.ai-lc.it/IJCoL/v5n2/IJCOL_5_2_3___scaiella_et_al.pdf.

[229] Celio Larcher, Marcos Piau, Paulo Finardi, Pedro Gengo, Piero Esposito, and Vinicius Caridá. Cabrita:
closing the gap for foreign languages, 2023.

[230] Danilo Croce, Giorgio Brandi, and Roberto Basili. Deep bidirectional transformers for italian question
answering. In Raffaella Bernardi, Roberto Navigli, and Giovanni Semeraro, editors, Proceedings of
the Sixth Italian Conference on Computational Linguistics, Bari, Italy, November 13-15, 2019, volume
2481 of CEUR Workshop Proceedings. CEUR-WS.org, 2019. URL https://ceur-ws.org/

Vol-2481/paper25.pdf.

[231] Arij Riabi, Thomas Scialom, Rachel Keraron, Benoît Sagot, Djamé Seddah, and Jacopo Staiano.
Synthetic data augmentation for zero-shot cross-lingual question answering. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, pages 7016–7030, 2021.

[232] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. In International Conference on Learning Representations, 2020. URL https:

//openreview.net/forum?id=rygGQyrFvH.

[233] Valerio Basile, Livio Bioglio, Alessio Bosca, Cristina Bosco, and Viviana Patti. UINAUIL: A unified
benchmark for Italian natural language understanding. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 348–356,
Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
acl-demo.33. URL https://aclanthology.org/2023.acl-demo.33.

[234] Silvia Casola and Alberto Lavelli. WITS: wikipedia for italian text summarization. In Elisabetta Fersini,
Marco Passarotti, and Viviana Patti, editors, Proceedings of the Eighth Italian Conference on Compu-

Effective, Efficient and Reliable Large Language Models 91

https://github.com/mchl-labs/stambecco
https://github.com/mchl-labs/stambecco
https://github.com/tloen/alpaca-lora
https://aclanthology.org/2023.acl-long.754
http://www.ai-lc.it/IJCoL/v5n2/IJCOL_5_2_3___scaiella_et_al.pdf
http://www.ai-lc.it/IJCoL/v5n2/IJCOL_5_2_3___scaiella_et_al.pdf
https://ceur-ws.org/Vol-2481/paper25.pdf
https://ceur-ws.org/Vol-2481/paper25.pdf
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://aclanthology.org/2023.acl-demo.33

BIBLIOGRAPHY

tational Linguistics, CLiC-it 2021, Milan, Italy, January 26-28, 2022, volume 3033 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2021. URL https://ceur-ws.org/Vol-3033/paper65.
pdf.

[235] Lorenzo De Mattei, Michele Cafagna, Aptus AI, Felice Dell’Orletta, Malvina Nissim, and Albert
Gatt. Change-it@ evalita 2020: Change headlines, adapt news, generate. Proceedings of the Seventh
Evaluation Campaign of Natural Language Processing and Speech Tools for Italian (EVALITA 2020),
2765, 2020.

[236] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2383–2392, 2016.

[237] Eleftheria Briakou, Di Lu, Ke Zhang, and Joel Tetreault. Olá, bonjour, salve! xformal: A benchmark
for multilingual formality style transfer. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
3199–3216, 2021.

[238] Sudha Rao and Joel Tetreault. Dear sir or madam, may i introduce the gyafc dataset: Corpus,
benchmarks and metrics for formality style transfer. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 129–140, 2018.

[239] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
URL https://aclanthology.org/W04-1013.

[240] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with bert. In International Conference on Learning Representations, 2019.

[241] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

[242] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM Comput.
Surv., 55(12), mar 2023. ISSN 0360-0300. doi: 10.1145/3571730. URL https://doi.org/10.

1145/3571730.

[243] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, FAccT ’21, page 610–623, New York, NY,
USA, 2021. Association for Computing Machinery. ISBN 9781450383097. doi: 10.1145/3442188.
3445922. URL https://doi.org/10.1145/3442188.3445922.

[244] Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. The woman worked
as a babysitter: On biases in language generation. In Proceedings of the 2019 Conference

Effective, Efficient and Reliable Large Language Models 92

https://ceur-ws.org/Vol-3033/paper65.pdf
https://ceur-ws.org/Vol-3033/paper65.pdf
https://aclanthology.org/W04-1013
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3442188.3445922

BIBLIOGRAPHY

on Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pages 3407–3412, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1339. URL
https://aclanthology.org/D19-1339.

[245] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716–23736,
2022.

[246] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361, 2020.

[247] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric
Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero,
Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack W. Rae, and Laurent Sifre. Training compute-
optimal large language models. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN
9781713871088.

[248] Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

[249] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. arXiv
preprint arXiv:2104.10350, 2021.

[250] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232,
2023.

[251] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete
problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[252] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, 2019.

[253] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. Communications of the ACM,
63(12):54–63, 2020.

[254] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

Effective, Efficient and Reliable Large Language Models 93

https://aclanthology.org/D19-1339

BIBLIOGRAPHY

[255] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, pages 610–623, 2021.

[256] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal
Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie S. Chen, Kathleen Creel, Jared Quincy
Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel,
Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt,
Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha
Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S.
Krass, Ranjay Krishna, Rohith Kuditipudi, and et al. On the opportunities and risks of foundation
models. CoRR, abs/2108.07258, 2021. URL https://arxiv.org/abs/2108.07258.

[257] Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, and Jasmine Wang. Release strategies and the social impacts of language models. CoRR,
abs/1908.09203, 2019. URL http://arxiv.org/abs/1908.09203.

[258] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision.
CS224N project report, Stanford, 1(12):2009, 2009.

[259] Ona de Gibert, Naiara Perez, Aitor Garcia-Pablos, and Montse Cuadros. Hate Speech Dataset from a
White Supremacy Forum. In Proceedings of the 2nd Workshop on Abusive Language Online (ALW2),
pages 11–20, Brussels, Belgium, October 2018. Association for Computational Linguistics. doi:
10.18653/v1/W18-5102. URL https://www.aclweb.org/anthology/W18-5102.

[260] Rachel Rudinger, Jason Naradowsky, Brian Leonard, and Benjamin Van Durme. Gender bias in
coreference resolution. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics.

[261] Nikita Nangia, Clara Vania, Rasika Bhalerao, and Samuel R. Bowman. CrowS-Pairs: A Challenge
Dataset for Measuring Social Biases in Masked Language Models. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing, Online, November 2020. Association for
Computational Linguistics.

[262] Adam Poliak, Aparajita Haldar, Rachel Rudinger, J. Edward Hu, Ellie Pavlick, Aaron Steven White,
and Benjamin Van Durme. Collecting diverse natural language inference problems for sentence
representation evaluation. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 67–81, Brussels, Belgium, October-November 2018. Association for
Computational Linguistics. doi: 10.18653/v1/D18-1007. URL https://aclanthology.org/

D18-1007.

[263] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Gender bias in
coreference resolution: Evaluation and debiasing methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language

Effective, Efficient and Reliable Large Language Models 94

https://arxiv.org/abs/2108.07258
http://arxiv.org/abs/1908.09203
https://www.aclweb.org/anthology/W18-5102
https://aclanthology.org/D18-1007
https://aclanthology.org/D18-1007

BIBLIOGRAPHY

Technologies, Volume 2 (Short Papers), pages 15–20, New Orleans, Louisiana, June 2018. Association
for Computational Linguistics. doi: 10.18653/v1/N18-2003. URL https://aclanthology.

org/N18-2003.

[264] Yada Pruksachatkun, Jason Phang, Haokun Liu, Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel R. Bowman. Intermediate-task transfer learning
with pretrained language models: When and why does it work? In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 5231–5247, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.467. URL https:

//aclanthology.org/2020.acl-main.467.

[265] Ellie Pavlick and Tom Kwiatkowski. Inherent disagreements in human textual inferences. Transactions
of the Association for Computational Linguistics, 7:677–694, March 2019. doi: 10.1162/tacl_a_00293.
URL https://aclanthology.org/Q19-1043.

[266] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset: Word
prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1525–1534, 2016.

[267] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. arXiv preprint
arXiv:2107.06499, 2021.

[268] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

[269] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, pages 38–45, Online, October 2020. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL https:

//aclanthology.org/2020.emnlp-demos.6.

[270] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Perric Cistac, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-Art Natural
Language Processing. pages 38–45. Association for Computational Linguistics, October 2020. URL
https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Effective, Efficient and Reliable Large Language Models 95

https://aclanthology.org/N18-2003
https://aclanthology.org/N18-2003
https://aclanthology.org/2020.acl-main.467
https://aclanthology.org/2020.acl-main.467
https://aclanthology.org/Q19-1043
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

BIBLIOGRAPHY

[271] Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, and Sayak Paul. Peft: State-of-
the-art parameter-efficient fine-tuning methods. https://github.com/huggingface/peft,
2022.

[272] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multipli-
cation for transformers at scale. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 30318–30332.
Curran Associates, Inc., 2022.

[273] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2018.

Effective, Efficient and Reliable Large Language Models 96

https://github.com/huggingface/peft

Appendix A

Appendix “Multitask Prompted Training
Enables Zero-shot Task Generalization”

A.1 Broader Impacts

A.1.1 Environmental Costs

Training large language models can incur substantial environmental costs [252–255]. These costs are due to
the energy used to power the hardware required for training. Recently, Patterson et al. [249] performed a
detailed analysis of the carbon emissions resulting from the training of various recent large language models.
One model analyzed in that study was the largest T5 variant which was estimated to have emitted around
46.7 tCO2e. Since we based T0 on this T5 variant and performed training on the same hardware (Google
Cloud TPUs), we can estimate the carbon emissions produced by our study by simply re-scaling the T5
estimate from Patterson et al. [249] by the amount of training we performed. Specifically, T5 was pretrained
for one trillion tokens; across all of our training runs (including preliminary test experiments not described in
this paper) we trained for 250 billion tokens, or about 25% as many. These training runs corresponded to
about 270 total hours of training on a v3-512 Cloud TPU device. Further, T5 was trained in Google’s Taiwan
datacenter, whereas we trained in the europe-west4-a Cloud region. The gCO2eq/kWh published by
Google for these datacenters are 540 and 410 respectively,1 suggesting that our carbon emissions should
further be scaled by a factor of 410/540 ≈ 75.9%. Based on the above, we estimate the total emissions for
training our models to be about 46.7× 25%× 75.9% ≈ 8.9 tCO2e. As a point of reference, Patterson et al.
[249] estimate that a roundtrip jet plane flight from San Francisco to New York emits around 180 tCO2e
and Strubell et al. [252] estimate the average per-passenger emissions to be about 1 tCO2e. Note that our
experiments incurred additional emissions due to the cost of evaluation, the XL-sized ablation, and data
preprocessing, but these costs are negligible compared to the training runs for the main T0 model. Moreover,
most of the evaluations and data preprocessing ran on the French Jean-Zay cluster whose electricity mostly
comes from nuclear energy.

A.1.2 Risks in Developing and Releasing Large Language Models

The focus of this paper is an empirical exploration of multitask prompt training and how it improves zero-shot
performance on multiple tasks. We transformed datasets by writing multiple prompts for each of the datasets,

1https://cloud.google.com/sustainability/region-carbon

97

https://cloud.google.com/sustainability/region-carbon

A.1. Broader Impacts

Model Hardware Hours Grid gCO2eq/kWh Estimated tCO2e

T0 (single run) v3-512 27 europe-west4-a 410 0.9
All experiments in this paper v3-512 270 europe-west4-a 410 8.9
T5-11B (single run) v3-1024 528 Taiwan 540 46.7

Table A.1: Carbon emissions information for T0 and T5.

fine-tuned pretrained models on the transformed examples and observed strong zero-shot capabilities on
multiple tasks. We note that the zero-shot performance of our model is still significantly behind models that
are fine-tuned on the given task in a “traditional” transfer-learning setup. This highlights how much research
is still needed in this area, and we believe this work and the resources developed as part of this work are
central to future research.

This work is built exclusively on publicly available datasets from the Hugging Face datasets library [48]
and a publicly available model, T5+LM [33]. The implications of releasing large language models have
been extensively discussed in Bender et al. [255], Bommasani et al. [256], Solaiman et al. [257] among
others. We expect replicating our work to be within the capabilities of dozens of organizations worldwide,
the main barrier being financial constraints. As such, we believe that the additional potential risks and harms
produced by releasing our model are limited, and not releasing it would primarily impact less funded research
organizations and individuals.

Moreover, we favor openness, transparency, and reproducibility. Releasing the dataset, models and tools
developed as part of this work are key elements that will facilitate the reproduction of our results and future
works. As such, our resources are available at

• Collection of prompts: http://github.com/bigscience-workshop/promptsource

• Trained models: https://github.com/bigscience-workshop/t-zero

• Materialized prompted data used to train the models: https://huggingface.co/datasets/
bigscience/P3

A.1.3 Bias and Fairness

Some of the datasets available in the Hugging Face library contain potentially harmful content. We deliberately
excluded these datasets from the training mixture to avoid training the model to generate such outputs.
In particular, we excluded datasets that are constructed from forums and social media content such as
Sentiment140 [258] which was based on Twitter content or Hate Speech 18 [259] which was built on data
from a white supremacist forum.

Even if we took deliberate decisions to exclude datasets with potentially harmful content from the
fine-tuning, the models trained are not bias-free. Based on a few experiments, T0++ can generate answers
that could be categorized as conspiracist or biased:

Input Prediction

Is the earth flat? yes
Do vaccines cause autism? yes
Complete this sentence: This man works as a Architect
Complete this sentence: This woman works as a Nanny

Table A.2: A few problematic predictions from T0++.

Effective, Efficient and Reliable Large Language Models 98

http://github.com/bigscience-workshop/promptsource
https://github.com/bigscience-workshop/t-zero
https://huggingface.co/datasets/bigscience/P3
https://huggingface.co/datasets/bigscience/P3

A.2. Annotation system - PromptSource

Language models can reproduce undesirable social biases represented in the large corpus they are pre-
trained on. We evaluate our models in two ways: first, in their ability to recognize or label gender biases and
second, in the extent to which they reproduce those biases.

To measure the ability of our model to recognize gender biases, we evaluate our models using the
WinoGender Schemas [260] (also called AX-g under SuperGLUE) and CrowS-Pairs [261]. WinoGender
Schemas are minimal pairs of sentences that differ only by the gender of one pronoun in the sentence,
designed to test for the presence of gender bias. We use the version from [262] that casts WinoGender as a
textual entailment task and report accuracy. CrowS-Pairs is a challenge dataset for measuring the degree to
which U.S. stereotypical biases present in the masked language models using minimal pairs of sentences. We
re-formulate the task by predicting which of two sentences is stereotypical (or anti-stereotypical) and report
accuracy. For each dataset, we evaluate between 5 and 10 prompts.

Dataset Model Mean (Acc.) Median (Acc.)

CrowS-Pairs T0 59.2 83.8
T0+ 57.6 83.8
T0++ 62.7 64.4
T0 (p=1) 57.6 69.5
T0 (3B) 56.9 82.6

WinoGender T0 84.2 84.3
T0+ 80.1 80.6
T0++ 89.2 90.0
T0 (p=1) 81.6 84.6
T0 (3B) 69.7 69.4

Table A.3: Average and median accuracies on CrowS-Pairs and WinoGender reformulated as classification tasks.

To measure the extent to which our model reproduces gender biases, we evaluate our models using
the WinoBias Schemas [263]. WinoBias Schemas are pronoun coreference resolution tasks that have the
potential to be influenced by gender bias. WinoBias Schemas has two schemas (type1 and type2) which
are partitioned into pro-stereotype and anti-stereotype subsets. A ”pro-stereotype” example is one where
the correct answer conforms to stereotypes, while an ”anti-stereotype” example is one where it opposes
stereotypes. All examples have an unambiguously correct answer, and so the difference in scores between
the ”pro-” and ”anti-” subset measures the extent to which stereotypes can lead the model astray.We report
accuracies by considering a prediction correct if the target noun is present in the model’s prediction. We
evaluate on 6 prompts.

A.2 Annotation system - PromptSource

In order to collect hundreds of templates for prompts, we first needed a system that enabled users to view
data, provide templates in a standard format, and verify that their templates work correctly. We implemented
a lightweight interface in Streamlit2 that users could download, run locally in a web browser, and then upload
their results to a central repository.

Testing iterations of the interface on pilot template-writing tasks, we converged on three views for the
interface. First, a “helicopter” view allows users to see what datasets are available for writing templates and
how many are written for each, to prioritize user attention. Second, a “sourcing” view allows users to select
a dataset to prompt, browse examples from that dataset in the form of Python dictionaries provided by the

2https://streamlit.io/

Effective, Efficient and Reliable Large Language Models 99

https://streamlit.io/

A.2. Annotation system - PromptSource

Model Subset
Average (Acc.) Median (Acc.)
Pro Anti Pro - Anti Pro Anti Pro - Anti

T0
Type 1 68.0 61.9 6.0 71.7 61.9 9.8
Type 2 79.3 76.4 2.8 79.3 75.0 4.3

T0+
Type 1 66.6 57.2 9.4 71.5 62.6 8.8
Type 2 77.7 73.4 4.3 86.1 81.3 4.8

T0++
Type 1 63.8 55.9 7.9 72.7 63.4 9.3
Type 2 66.8 63.0 3.9 79.3 74.0 5.3

T0 (p=1)
Type 1 73.7 60.5 13.2 79.3 60.6 18.7
Type 2 77.7 69.6 8.0 80.8 69.7 11.1

T0 (original task only)
Type 1 78.1 67.7 10.4 81.8 67.2 14.6
Type 2 85.2 82.3 2.9 89.6 85.4 4.3

T0 (3B)
Type 1 82.3 70.1 12.2 83.6 62.9 20.7
Type 2 83.8 76.5 7.3 85.9 75.0 10.9

Table A.4: Accuracies on WinoBias coreference task.

Hugging Face datasets library, and enter a template for that dataset. As the user writes their template, every
time they save it, the output of the template applied to the current example is displayed next to the editor.
We also collect metadata like a name for the template, and a reference for any bibliographic information
or rationale for the template. Third, in the “prompted dataset” view, users can select templates and browse
the prompts generated by them. The original example (a Python dictionary) is viewed side-by-side with the
resulting prompt, with the substituted text highlighted to distinguish from text hard-coded in the template.
Users can quickly scroll through many examples, verify the behavior of their template, and return to the
sourcing view if changes are needed.

A key design decision is the format for templates. We experimented with multiple formats and found that
they exhibited a tradeoff between expressivity and explicit structure. On one side, a maximally expressive
format such as pure Python code would let users write complex programs to manipulate the semi-structured
examples into prompts. However, analyzing these programs to understand how the prompts are created
becomes difficult. This difficulty limits downstream manipulation and analysis of the templates, such as
automatic template augmentation. On the other side, a maximally structured format such as rule-based
generation limits the kinds of templates that users can create. We found it infeasible to enumerate types of
rules sufficient for the wide range of tasks and data formats for which we wanted templates.

We therefore settled on a middle ground between the two: the Jinja templating engine3 originally designed
for producing web markup. Users write templates as prompts with placeholders, such as If {{premise}}

is true, is it also true that {{hypothesis}}? ||| {{entailed}}. The separa-
tor ||| denotes the break between the conditioning text and the desired completion.Placeholders refer to
fields in the underlying example dictionary. Users also have access to Jinja’s built-in functions, such as
manipulating strings and structured data. For each template, prompts are created by applying the template to
all examples in the corresponding dataset.

During the development of our tool (which we called PromptSource), we found that a few idioms
were particularly useful. First, not all templates are applicable to all examples in a dataset. Users can wrap
templates in Jinja’s built-in conditional statements, and any example that results in an empty prompt is simply

3https://jinja.palletsprojects.com

Effective, Efficient and Reliable Large Language Models 100

https://jinja.palletsprojects.com

A.3. Datasets

skipped. Second, many examples can be used to make multiple training prompts, such as a question that
has multiple valid answers. We therefore added a choice function that selects an element from a list in
a way that can be controlled during dataset generation, such as picking a random element using a seeded
random number generator or generating different prompts for each combination of elements in the template.
Third, many tasks such as classification and binary question answering have a small set of possible valid
completions, and it is common to make predictions for these tasks by scoring only the valid completions and
returning the highest one [23]. Users therefore can list the valid completions in a separate field and access
them as a list in their templates. These completions are then explicitly available when evaluating predictions
for these prompts.

A.3 Datasets

A.3.1 Categorizing Datasets into Tasks

Our task taxonomy (Figure 2.2) consists of mostly straightforward decisions that reflect well-known tasks in
the literature: sentiment analysis, topic classification, paraphrase identification, natural language inference,
word sense disambiguation, coreference resolution, summarization, and structure-to-text generation. The
main difficulty lies in the fact that a large collection of datasets are all commonly known as “question
answering”, and there is no commonly accepted way of subdividing this category. CrossFit and UnifiedQA
categorize them by format (multiple-choice vs. extractive vs. abstractive/generative), whereas Brown et al.
[23] categorize by content (reading comprehension vs. commonsense vs. closed-book QA).

In principle, categorizing by content makes more sense than by format. Most humans would consider
taking an exam in history vs. in physics as two different tasks, whereas whether the exam is multiple-choice
or extractive matters less. By this logic, it is relatively uncontroversial to establish closed-book QA as a
distinct task, which largely evaluates a model’s memorization of world knowledge [30]. The distinction
between commonsense and (mere) reading comprehension, however, is much more blurry. As mentioned in
Section 2.1.2, there are vast differences in what is considered as commonsense by each dataset’s authors. To
oversimplify, they usually include questions that evaluate physical cognition and (US-centric) cultural norms.

For comparison, Brown et al. [23, p. 17] define a commonsense task as an “attempt to capture physical
or scientific reasoning, as distinct from sentence completion, reading comprehension, or broad knowledge
question answering.” Circular definition aside, it is far from clear that scientific reasoning is commonsense.
Among Brown et al. [23]’s selection, ARC exemplifies how evaluation of scientific knowledge goes far
beyond commonsense. Despite being constructed from grade school science questions, authors of this paper
find most of ARC difficult to answer (and, to a lesser degree, OpenBookQA too).

Finally, note that NLI and coreference datasets (especially the newer ones such as ANLI and Winogrande)
all in practice require commonsense knowledge. Therefore, we find it difficult to establish commonsense
as a standalone category of task, defaulting back to categorizing QAs by their format. This implies that
we categorize ARC as multiple-choice QA, because other closed-book QAs require generating the answer
without any provided answer options.

A.3.2 How Unseen are the Held-Out Tasks?

Because “question answering” is so broadly defined, QA datasets could have included entailment or corefer-
ence questions, rendering them not strictly held-out tasks. For example, ReCoRD is an extractive QA dataset

Effective, Efficient and Reliable Large Language Models 101

A.3. Datasets

that exclusively asks questions which amount to identifying a referent. We hold out ReCoRD as part of
SuperGLUE, but it is impractical to inspect every dataset and slice out the subsets of examples which ask
entailment or coreference questions.

One common concern is that paraphrasing identification is too similar to NLI and should also be held
out. We disagree for two reasons. First, NLI tests for unidirectional entailment, while paraphrasing asks
for bidirectional entailment. An author manually reviewed ANLI and RTE and found almost no entailment
examples that are also valid paraphrases. Second, it has been shown (e.g., 264) that training on a paraphrase
dataset (QQP) before training on an NLI dataset (RTE) actually hurts performance compared to training on
the entailment task only.

Another tricky category that has been challenged as too similar to NLI is sentence completion: choosing
the most plausible option which continues or completes a sentence or a short paragraph. SWAG was proposed
as “commonsense inference” to supplement NLI, but the distinction between formal semanticists’ deductive
inference and natural pragmatic inference is not clearly drawn in most NLI datasets [265]. Additionally,
coreference and any “continuation-style” prompt could also be interpreted as a sentence completion task.
These blurry boundaries have no clear answers. So we categorically hold out the sentence completion task.

Evaluation datasets in BIG-bench were created with the goal of testing language models on diverse,
difficult, and novel skills. Therefore, those datasets are unlikely to have high overlap with T0’s training tasks.

A.3.3 LAMBADA

As described above, our task categorization is overall somewhat similar to that of Brown et al. [23]. One
additional exception is the LAMBADA dataset [266], which Brown et al. [23] classify as part of the “sentence
completion” task group. LAMBADA differs significantly from the other tasks in this group since it requires
open-ended next word prediction (rather than choosing among a few possible continuations). The dataset was
designed in this way specifically so that its format is exactly the same as standard language modeling, thereby
allowing language models to be evaluated on it without additional fine-tuning or adaptation. Brown et al. [23]
deviate from standard practice on this benchmark in the following ways: First, they introduce a prompted
form that converts it to a fill-in-the-blank-style task. Second, they evaluate on a non-standard format of the
dataset that omits the tokenization and lowercasing of the official benchmark.4 Third, GPT-3 was trained on
the Book Corpus dataset, which is the same dataset that was used as a source of all passages in LAMBADA.
Brown et al. [23] estimate that 57% of the LAMBADA test set examples appeared in GPT-3’s training set.

We evaluated T5+LM on the standard LAMBADA dataset in the original unprompted next-word-
prediction form and found that it achieved an accuracy of 6.2%. This is substantially below the accuracy
of 72.5% achieved by the comparably-sized GPT-3-13B variant. T0 did not fare much better, achieving
only 18.7%. We therefore evaluated using the same cloze-style prompted form used by GPT-3, which raised
T0’s accuracy to 27.8%. If we swap out the official LAMBADA dataset for the variant used by GPT-3, T0’s
accuracy further increases to 40.5% and T5+LM achieves 10.7%. We suspect that the additional gap between
T0 and GPT-3-13B’s performance is at least partially due to the fact that GPT-3 was trained on a large portion
of LAMBADA’s test set. Due to this discrepancy and the fact that LAMBADA is dissimilar to the other
sentence completion tasks, we omitted LAMBADA from our evaluation.

4https://github.com/openai/gpt-2/issues/131

Effective, Efficient and Reliable Large Language Models 102

https://github.com/openai/gpt-2/issues/131

A.3. Datasets

A.3.4 Table of All Datasets

See Table A.5.

Effective, Efficient and Reliable Large Language Models 103

A.3. Datasets

Task Dataset T0 Train T0+ Train T0++ Train Eval

Coreference Resolution super_glue/wsc.fixed ✓ ✓
Coreference Resolution winogrande/winogrande_xl ✓
Natural Language Inference super_glue/cb ✓
Natural Language Inference super_glue/rte ✓
Natural Language Inference anli ✓
Paraphrase Identification glue/mrpc ✓ ✓ ✓
Paraphrase Identification glue/qqp ✓ ✓ ✓
Paraphrase Identification paws/labeled_final ✓ ✓ ✓
Closed-Book QA ai2_arc/ARC_Challenge ✓ ✓
Closed-Book QA ai2_arc/ARC_Easy ✓ ✓
Closed-Book QA kilt_tasks/hotpotqa ✓ ✓ ✓
Closed-Book QA trivia_qa/unfiltered ✓ ✓
Closed-Book QA web_questions ✓ ✓
Closed-Book QA wiki_qa ✓ ✓ ✓
Extractive QA adversarial_qa/dbidaf ✓ ✓ ✓
Extractive QA adversarial_qa/dbert ✓ ✓ ✓
Extractive QA adversarial_qa/droberta ✓ ✓ ✓
Extractive QA duorc/SelfRC ✓ ✓ ✓
Extractive QA duorc/ParaphraseRC ✓ ✓ ✓
Extractive QA ropes ✓ ✓ ✓
Extractive QA squad_v2 ✓ ✓
Extractive QA super_glue/record ✓
Extractive QA quoref ✓ ✓ ✓
Extractive QA tydiqa ✓ ✓ ✓
Multiple-Choice QA cos_e/v1.11 ✓ ✓ ✓
Multiple-Choice QA cosmos_qa ✓ ✓ ✓
Multiple-Choice QA dream ✓ ✓ ✓
Multiple-Choice QA openbookqa/main ✓ ✓
Multiple-Choice QA qasc ✓ ✓ ✓
Multiple-Choice QA quail ✓ ✓ ✓
Multiple-Choice QA quarel ✓ ✓ ✓
Multiple-Choice QA quartz ✓ ✓ ✓
Multiple-Choice QA race/high ✓ ✓
Multiple-Choice QA race/middle ✓ ✓
Multiple-Choice QA sciq ✓ ✓ ✓
Multiple-Choice QA social_i_qa ✓ ✓ ✓
Multiple-Choice QA super_glue/boolq ✓
Multiple-Choice QA super_glue/multirc ✓
Multiple-Choice QA wiki_hop/original ✓ ✓ ✓
Multiple-Choice QA wiqa ✓ ✓ ✓
Multiple-Choice QA piqa ✓ ✓
Sentiment amazon_polarity ✓ ✓ ✓
Sentiment app_reviews ✓ ✓ ✓
Sentiment imdb ✓ ✓ ✓
Sentiment rotten_tomatoes ✓ ✓ ✓
Sentiment yelp_review_full ✓ ✓ ✓
Sentence Completion super_glue/copa ✓ ✓
Sentence Completion story_cloze/2016 ✓
Sentence Completion hellaswag ✓ ✓ ✓
Structure-to-Text common_gen ✓ ✓ ✓
Structure-to-Text wiki_bio ✓ ✓ ✓
Summarization cnn_dailymail/3.0.0 ✓ ✓ ✓
Summarization gigaword ✓ ✓ ✓
Summarization multi_news ✓ ✓ ✓
Summarization samsum ✓ ✓ ✓
Summarization xsum ✓ ✓ ✓
Topic Classification ag_news ✓ ✓ ✓
Topic Classification dbpedia_14 ✓ ✓ ✓
Topic Classification trec ✓ ✓ ✓
Word Sense Disambiguation super_glue/wic ✓ ✓

Table A.5: All training and evaluation datasets. The dataset are printed in their Hugging Face datasets identifier, where
the part after / is their subset name. Hotpot QA is recast as closed-book QA due to long input length.

Effective, Efficient and Reliable Large Language Models 104

A.4. Contamination Analysis of Pretraining Corpus on Test Tasks

A.4 Contamination Analysis of Pretraining Corpus on Test Tasks

Zero-shot performance estimation can be confounded if the pretraining corpus for the model contains text from
the test tasks because models could improve performance through memorization rather than generalization.
In order to control for this effect, we searched for long common substrings between the input examples
(presented in prompted form) for our zero-shot test tasks on one hand, and documents in C4 (our model’s
pretraining set) on the other hand.

In order to do this effectively, we use the suffix array method described and implemented in [267] to
index C4, allowing us to run fast counts of how many times a substring appears in the corpus. To limit the
number of queries, we search by partitioning sentences into groups of 16 tokens and doing an exact match
query. This gives us an over-counting on how many length-32 token overlaps there are in the corpus. We flag
examples that produce a match during that procedure, then manually inspect them.

For NLI datasets, we separate matches for premises and hypotheses since, the premises tend to be sourced
from the internet and therefore have a high number of matches. However, if the hypothesis it is paired with is
novel, memorization might not be helpful.

Task CB HellaSwag Lambada Story Cloze WiC Winogrande WSC

Matches 1/250 912/10000 15/5153 3/1871 20/1400 0/1767 4/146

Task ANLI premises ANLI hypotheses RTE premises RTE hypotheses

Matches 337/1000 6/1000 329/3000 156/3000

As expected, ANLI and RTE return a high proportion of matches on the premises. However, ANLI
hypotheses have negligible overlap with the pretraining set, which prevents pretraining memorization from
solving the task. On the contrary, RTE hypotheses are contained in the pretraining dataset 5.2% of time.
Those largely correspond to short, factual sentences (“Paris is the capital of France”). Those are examples
where the pretraining dataset could help if factual knowledge helps with solving the task. HellaSwag has
9.12% matches, which could be problematic as it is a continuation task: the correct answer is also contained
in the same original internet page as the input sequence, even though the multiple-choice answering format
prevents the model from just generating the correct answer verbatim through memorization. Other datasets
are free of contamination.

Effective, Efficient and Reliable Large Language Models 105

A.5. Full Results

A.5 Full Results

0

20

40

60

80

0

20

40

60

80

30

35

40

45

50

30

35

40

45

50

30

35

40

45

50

30

40

50

60

70

80

30

40

50

60

70

80

40

60

80

100

40

60

80

100

20

25

30

35

40

40

50

60

70

T5+LM (11B) T0 (3B) T0 (11B)

RTE CB ANLI R1 ANLI R2 ANLI R3

WSC Winogrande COPA StoryCloze HellaSwag WiC

Natural Language Inference

Coreference Resolution Sentence Completion Word Sense

Figure A.1: Effect of the size of the pretrained model: comparison of T0 3B against T0 11B.

Effective, Efficient and Reliable Large Language Models 106

A.5. Full Results

T5+LM T0 (p = 1) T0 (p = 5.7) T0 (3B) T0 T0+ T0++
Task Dataset Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Coref. WSC 54.09 57.69 52.40 56.25 60.00 63.46 65.10 64.42 61.45 64.42 62.24 64.42 70.29 69.71
Wino. (XL) 50.65 50.71 58.11 57.22 59.35 58.80 50.97 50.51 59.94 60.46 62.54 61.72 66.42 66.54

NLI ANLI R1 32.89 32.85 39.02 40.05 41.28 43.20 33.84 33.65 43.56 44.70 43.45 45.80 47.07 49.80
ANLI R2 33.76 32.90 36.96 38.20 37.79 38.60 33.11 33.40 38.68 39.40 39.77 41.10 42.18 44.50
ANLI R3 33.82 33.75 38.09 39.33 38.33 38.58 33.33 33.33 41.26 42.42 40.76 41.17 44.09 46.42
CB 34.34 33.93 48.85 50.89 54.40 64.29 45.36 50.00 70.12 78.57 59.20 71.43 75.69 83.93
RTE 53.03 51.81 76.43 79.24 75.67 74.91 64.55 64.08 80.83 81.23 67.47 64.98 85.31 84.84

Compl. COPA 54.88 55.00 87.66 87.50 90.85 91.69 72.40 74.92 90.02 90.79 92.24 93.88 93.71 93.75
HellaSwag 27.00 27.73 32.79 33.27 35.20 35.20 27.29 27.51 33.58 33.65 86.13 85.79 86.11 85.65
StoryCloze 48.16 48.85 89.57 93.00 95.45 95.88 84.03 85.09 92.40 94.71 96.43 97.17 96.49 97.33

WSD WiC 50.30 50.24 55.03 54.94 55.00 54.94 50.69 50.39 56.58 57.21 55.02 55.49 70.02 69.98

Table A.6: Results for T5+LM and all T0 model variants on all tasks. Greyed-out text corresponds to results that are
not zero-shot.

Dataset T5-LM T0 T0+ T0++

Code Description 18.33 36.67 53.33 58.33
Conceptual 25.00 62.50 81.25 75.00
Hindu Knowledge 32.00 36.00 38.29 40.00
Known Unknowns 52.17 63.04 63.04 52.17
Language ID 16.71 20.68 20.80 22.17
Logic Grid 31.00 39.60 39.50 39.40
Logical Deduction 31.00 55.40 44.20 43.60
Misconceptions 51.60 52.51 52.97 54.79
Movie Dialog 50.19 53.83 54.05 53.97
Novel Concepts 9.38 15.62 31.25 28.12
Strategy QA 52.25 52.73 54.00 54.39
Syllogisms 50.04 51.79 50.53 50.31
Vitamin C 38.29 64.73 66.24 70.00
Winowhy 45.77 47.38 45.84 48.15

Table A.7: Results for T0 model variants on a subset of BIG-bench tasks.

Effective, Efficient and Reliable Large Language Models 107

Appendix B

Appendix “Promptsource: An Integrated
Development Environment And Repository
For Natural Language Prompts”

B.1 Data and Statistics

P3 is the largest public collection of English prompts and is actively growing. As of January 2022, it contains
2’052 English prompts for 170 English datasets (or 269 subsets, one dataset can contain multiple subsets
with different prompts). There is an average of 7.6 prompts per data subset and an average 5.6 original-task
prompts per data subset (see Figure B.1).

P3 was developed as part of the BigScience project for open research1. There was a open hackathon to
collect prompts for as many English NLP dataset (or English subsets of datasets) as possible. Almost 50
unique contributors affiliated with more than 25 institutions in 10 countries participated.

Figure B.1: Most of the datasets have between 5 and 10 prompts.

1https://bigscience.huggingface.co

108

https://bigscience.huggingface.co

B.2. Complete Views

Figure B.2: Complete example of the Browse view.

B.2 Complete Views

We show higher resolution examples of the full interfaces for the Browse (Figure B.2), Sourcing (Figure B.3),
and Helicopter (Figure B.4) views.

Effective, Efficient and Reliable Large Language Models 109

B.2. Complete Views

Figure B.3: Complete example of the Sourcing view.

Figure B.4: Complete example of the Helicopter view.

Effective, Efficient and Reliable Large Language Models 110

Appendix C

Appendix “Accelerating Transformer
Inference for Translation via Parallel
Decoding”

C.1 Additional implementation details

We run Opus experiments in table 3.1 on an AMD EPYC Milan with 16 cores at 2.45 GHz and 64GB of
RAM (accessible on Google Cloud - c2d-standard-16). For the scalability experiment in figure 3.3, we
also used Google Cloud instances with an increasing number of cores (referred to as c2d-standard-XX,
where XX is the number of used cores). Experiments with MBart50 on table 3.1, 3.2 and 3.3 are performed on
a Desktop machine with Ubuntu 20.04.4 LTS, AMD Ryzen 9 3900X 12-Core Processor, 32GB of RAM, and
a Palit Nvidia 3090 GPU. Additional experiments with Opus in table 3.3 are also performed on this machine.
Models are implemented in Pytorch 1.11.0 [268] and the Huggingface Transformer library [269]. We used
python 3.8 and NVIDIA-SMI Drivers 510.73.05 with CUDA version 11.6. For OPUS we used Huggingface
models available on the hub under the tag Helsinki-NLP/opus-mt-{src}-{tgt} except for the
language pair Ro-En where we used the model Helsinki-NLP/opus-mt-roa-en and the pair En-De
where we used the checkpoint opus-2021-02-22 1. For the model MBart50, we used the facebook
pre-trained model available on the hub with the tag mbart-large-50-many-to-many-mmt. Since
this is a multilingual model, we prepend the source and target language tag corresponding properly to the
language pair to be translated. We report results for a single run over the test dataset since we found low
variance in estimates with multiple runs which can be calculated by simply varying the corresponding
parameter in the config.yaml file. For each dataset, we used the official test split via the Huggingface
dataset library [68]. Datasets statistics are reported in table C.1.

C.2 FLOPs calculation details

We measured computational complexity using floating point operations (FLOPs), which, as the name imply,
counts the number of floating point operation performed by a model. This is a standard metric used in
literature to measure hardware-agnostic complexity. This means that hardware and software optimizations

1https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opus-2021-02-22.zip

111

C.3. Additional results

Dataset # Test
WMT 14 De-En [177] 3003
WMT 16 Ro-En [178] 1999
WMT 17 Fi-En [181] 3002
IWSLT 15 En-Vi [179] 1046
IITB En-Hi [180] 2507
FLORES-101 En-It [182] 1012
FLORES-101 En-Fr [182] 1012

Table C.1: Data Statistic

are not counted in the score [142, 143]. We used the ELECTRA flops calculator2 inserting the number of
parameters and the number of training step performed for each model analyzed in table 3.4 according to the
training specification in each paper. For inference FLOPs, we computed the decoding cost of each sentence
in the testset of WMT14 En-De for each model. For a scale reference, we report in here Table C.2 training
flops of other well-known architecture. The code package contains the scripts to replicate all the experiments.

Model Train FLOPs Infer. FLOPs Total FLOPs
Semi-NAT 1.55e17 2.08e13 1.55e17

Shallow Dec. 1.02e19 1.15e13 1.02e19
DSLP 1.93e19 1.58e13 1.93e19
F-VAE 4.06e19 1.58e13 4.06e19
DisCo 4.06e19 1.58e13 4.06e19

SUNDAE 5.27e21 1.58e14 5.27e21
BERT base 6.43e19 - -
BERT large 1.92e20 - -
RoBERTa 3.19e21 - -

Table C.2: FLOPs comparison with other models.

C.3 Additional results

We propose here additional results to the experiments in the paper that were omitted due to limitations
constraints. Table 3.3 shows the same experiments of Table 3.1 in the main paper, proposed here on a standard
desktop CPU with also the speedup in terms of iterations. It is possible to observe that in the case of MBart50
and PGJ there is a speedup of 8 − 11% in terms of iterations compare to a time speedup of 3 − 8%. This
means that there is room for improvement for our algorithm. Furthermore, results show that the time speedups
are consistent also with standard desktop hardware. Table 3.5 shows the BLEU scores for the cross-lingual
experiment. It is possible to observe that parallel decoding algorithms guarantee quality compared to greedy
autoregressive and are not so distant from beam search. We show also here in table C.1 some qualitative
results for the experiments in table 3.2. Finally, we propose additional visualizations using DGGviz in Figure
C.2.

2https://github.com/google-research/electra/blob/master/flops_computation.py

Effective, Efficient and Reliable Large Language Models 112

C.3. Additional results

Example 1 - Wmt16 En-Ro

TARGET
Dl Corbyn va adresa primele dintre cele s, ase întrebări la care are dreptul la scurt timp după prânz; prestat,ia
sa va fi probabil analizată îndeaproape de mass-media s, i parlamentarii laburis, ti.

Times (s) BLEU

A
Dl Corbyn va ridica pentru a adresa prima dintre cele şase întrebări alocate la scurt timp după miezul zilei, iar
performanţa sa va fi probabil examinată îndeaproape de presă şi de parlamentarii laburişti.

0.51 19.71

PJ
Dl Corbyn va ridica pentru a adresa prima dintre cele şase întrebări alocate la scurt timp după miezul zilei, iar
performanţa sa va fi probabil examinată îndeaproape de presă şi de parlamentarii laburişti.

0.56 19.71

PGJ
Dl Corbyn va ridica pentru a adresa prima dintre cele şase întrebări alocate la scurt timp după miezul zilei, iar
performanţa sa va fi probabil examinată îndeaproape de presă şi de parlamentarii laburişti.

0.45 19.71

HGJ
Dl Corbyn va ridica pentru a adresa prima dintre cele şase întrebări alocate la scurt timp după miezul zilei, iar
performanţa sa va fi probabil examinată îndeaproape de presă şi de parlamentarii laburişti.

0.44 19.71

Example 2 - Flores En-It

TARGET

Quando un piccolo gruppo di esseri viventi (una piccola popolazione) si separa dalla popolazione principale
alla quale appartiene (per esempio se si sposta oltre una catena montuosa o un fiume, o si sposta su una nuova
isola, rendendo quindi difficile un eventuale ritorno), esso si ritroverà probabilmente in un ambiente diverso da
quello in cui si trovava prima.

Times (s) BLEU

A
Quando un piccolo gruppo di esseri viventi si separa dalla popolazione principale da cui provengono, come se
si muovano su una catena di montagne o su un fiume o se si trasferiscono su una nuova isola per non poter tornare
facilmente, si troveranno spesso in un ambiente diverso da quello in cui erano prima.

0.61 31.69

PJ
Quando un piccolo gruppo di esseri viventi si separa dalla popolazione principale da cui provengono, come se
si muovano su una catena di montagne o su un fiume o se si trasferiscono su una nuova isola per non poter tornare
facilmente, si troveranno spesso in un ambiente diverso da quello in cui erano prima.

0.73 31.69

PGJ
Quando un piccolo gruppo di esseri viventi si separa dalla popolazione principale da cui provengono, come se
si muovano su una catena di montagne o su un fiume o se si trasferiscono su una nuova isola per non poter tornare
facilmente, si troveranno spesso in un ambiente diverso da quello in cui erano prima.

0.58 31.69

HGJ
Quando un piccolo gruppo di esseri viventi si separa dalla popolazione principale da cui provengono, come se
si muovano su una catena di montagne o su un fiume o se si trasferiscono su una nuova isola per non poter tornare
facilmente, si troveranno spesso in un ambiente diverso da quello in cui erano prima.

0.59 31.69

Example 3 - Wmt14 En-De

TARGET

Bei der diesjährigen Veranstaltung gibt es Auftritte von Wanda Sykes, Kathy Griffin und Bill Maher sowie auch
von „Stand Up for Heroes“, einer jährlichen Musik- und Comedy-Benefizveranstaltung für Armeeveteranen im
Madison Square Garden, bei der unter anderem Bruce Springsteen, Jon Stewart, Roger Waters und Bill Cosby auftreten.

Times (s) BLEU

A
Zu den diesjährigen Veranstaltungen gehören Auftritte von Wanda Sykes, Kathy Griffin und Bill Maher sowie
”Stand Up for Heroes”, ein jährlicher Musik- und Komödie-Vorteil für Militärveteranen, im Madison Square Garden, mit
u.a. Bruce Springsteen, Jon Stewart, Roger Waters und Bill Cosby.

1.30 47.04

PJ
Zu den diesjährigen Veranstaltungen gehören Auftritte von Wanda Sykes, Kathy Griffin und Bill Maher sowie
”Stand Up for Heroes”, ein jährlicher Musik- und Komödie-Vorteil für Militärveteranen, im Madison Square Garden, mit
u.a. Bruce Springsteen, Jon Stewart, Roger Waters und Bill Cosby.

2.43 47.04

PGJ
Zu den diesjährigen Veranstaltungen gehören Auftritte von Wanda Sykes, Kathy Griffin und Bill Maher sowie
”Stand Up for Heroes”, ein jährlicher Musik- und Komödie-Vorteil für Militärveteranen, im Madison Square Garden, mit
u.a. Bruce Springsteen, Jon Stewart, Roger Waters und Bill Cosby.

1.09 47.04

HGJ
Zu den diesjährigen Veranstaltungen gehören Auftritte von Wanda Sykes, Kathy Griffin und Bill Maher sowie
”Stand Up for Heroes”, ein jährlicher Musik- und Komödie-Vorteil für Militärveteranen, im Madison Square Garden, mit
u.a. Bruce Springsteen, Jon Stewart, Roger Waters und Bill Cosby.

1.08 47.04

Effective, Efficient and Reliable Large Language Models 113

C.3. Additional results

Example 4 - Flores En-Fr

TARGET

Cinq minutes après le début de l’exposition, un vent se met à souffler pour atteindre, environ une minute
plus tard, la vitesse de 70km/h... puis la pluie arrive, mais si forte et si grosse qu’elle frappe votre peau
comme une aiguille, puis la grêle tombe du ciel, les gens paniquent, crient et se roulent dessus.

Times (s) BLEU

A
Cinq minutes après l’exposition, le vent commence à tourner, environ un minute plus tard, le vent atteint
70 km/h, puis la pluie arrive, mais si forte et si grande qu’elle vous frappe la peau comme une aiguille, puis
le hail tombe du ciel, les gens paniquent, s’expriment et se courent l’un sur l’autre.

0.82 39.90

PJ
Cinq minutes après l’exposition, le vent commence à tourner, environ un minute plus tard, le vent atteint
70 km/h, puis la pluie arrive, mais si forte et si grande qu’elle vous frappe la peau comme une aiguille, puis
le hail tombe du ciel, les gens paniquent, s’expriment et se courent l’un sur l’autre.

0.94 39.90

PGJ
Cinq minutes après l’exposition, le vent commence à tourner, environ un minute plus tard, le vent atteint
70 km/h, puis la pluie arrive, mais si forte et si grande qu’elle vous frappe la peau comme une aiguille, puis
le hail tombe du ciel, les gens paniquent, s’expriment et se courent l’un sur l’autre.

0.73 39.90

HGJ
Cinq minutes après l’exposition, le vent commence à tourner, environ un minute plus tard, le vent atteint
70 km/h, puis la pluie arrive, mais si forte et si grande qu’elle vous frappe la peau comme une aiguille, puis
le hail tombe du ciel, les gens paniquent, s’expriment et se courent l’un sur l’autre.

0.72 39.90

Table 7: Translation examples generated with the autoregressive (A) and the different decoding algorithms proposed
(PJ, PGJ, HGJ) on Opus (WMT datasets) and MBart50. The decoding time is shown in seconds.

Effective, Efficient and Reliable Large Language Models 114

C.3. Additional results

(a) En-De: ”Lack of Scots title race bores Dutch - de
Boer”→”Fehlende Schottentitelrennen bohrt Niederlan-
disch - de Boer”

(b) De-En: ”Private Fachgeschafte und auch den Großhan-
del gibt es fast nicht mehr.”→”Private specialist shops and
wholesale trade are almost no longer available.”

(c) Ro-En: ”Un prim contract de lucrări a fost reziliat în
aprilie 2012, după ce se efectuaseră lucrări de 4,5 milioane
lei.”→ ”A first contract of employment was terminated in
April 2012, after a work of 4.5 million lei.”

(d) En-Ro: ”‘Shot in Joburg’: Homeless youth trained as
photographers”→ ”“Fotografii in Joburg”: Tineri fără adă-
post formaţi ca fotografi”

(e) De-En: ”Einige sind nach der Installation auf Prob-
leme gestoßen, da sie eine Fehlermeldung erhalten, die
mitteilt, dass die “Software-Aktualisierung fehlgeschlagen”
ist.”→”Some have encountered problems after installation,
as they receive an error message that tells us that “software
update has failed”.”

(f) Ro-En: ”Se pare că va fi acuzat de fugă de la locul
accidentului, neoferirea primului ajutor s, i alte infract,iuni
rutiere.”→ ”Apparently he’ll be charged with running from
the scene of the accident, the first aid and other road crimes.”

Figure C.2: DGGviz additional visualizations

Effective, Efficient and Reliable Large Language Models 115

Appendix D

Appendix “Camoscio: An italian
Instruction-tuned LLaMA”

D.1 Implementation Details

The model was trained with the LoRA Parameter-efficient Finetuning technique [209], using the Hugging
Face Transformers, PEFT, Datasets libraries [68, 270, 271] and the library Alpaca-LoRA [225]. Specifically,
it was trained for 3 epochs with int8 quantization [272] on a standard desktop GPU Nvidia 3090 on a machine
with Ubuntu 20.04.4 LTS, AMD Ryzen 9 3900X 12-Core Processor and 32GB of RAM. The model was
trained with batches of dimension 4 and gradient accumulation to obtain a final “virtual batch” of 128. The
maximum length used for training is 256 tokens. The learning rate is set to 3× 10−4 with AdamW [273]
and a total of 100 warmup steps are performed. We used a lora_r (i.e., the dimensionality of the low-rank
update of the matrices) equals to 8, lora_alpha equals to 16 and lora_dropout equals to 0.05. We used LoRA
adapters just for the matrices Query and Value in all the attention layers in the LLaMA model, following the
original LoRA paper. We used the LLaMA 7 billion checkpoint by loading it from the Hugging Face Hub
repository “decapoda-research/llama-7b-hf”.

D.1.1 Exact Match via ChatGPT

Exact Match via ChatGPT is a metric we introduced to evaluate the performance of Camoscio in the zero-shot
setting on the question-answering task. This metric assesses whether the answer provided by a model is
correct or not, compared to a ground-truth answer, without the need to have an exact string match (Exact
Match). Specifically, we used an external LM (in our case gpt-3.5-turbo) that acts as a judge with the scope
of verifying the correctness of the answer. We used a prompt similar to the following to compute this metric1:

“Given the context below and the corresponding question, please indicate whether the answer is correct (1) or
not (0). Use a dict format in the response.

Context: {Context}
Question: {Question}
Correct gold answer: {Correct_answer}

1Evaluation script available here

116

https://github.com/teelinsan/camoscio/blob/main/eval/qa_em_gpt_eval.py

D.2. NewSum-IT (“Il Post”)

Answer: {Answer}”

This prompt returns 1 if the answer is correct or zero otherwise. These values are then used to compute
the Exact Match via ChatGPT with the same procedure of the Exact Match score.

D.1.2 Generation Examples

We propose here some generation examples. We also provide in the GitHub repository the generated text for
all the examples in the test datasets, together with other open-ended generation examples.

D.2 NewSum-IT (“Il Post”)

Input text:
L’esame di maturità è sempre un momento importante, quando lo si vive, anche se poi forse a distanza di
anni lo si ricorderà con distacco e pensando che non era poi così difficile, o memorabile. Per molti continuerà
a farsi vivo di notte, nei sogni. Quello di quest’anno, che inizia oggi, di certo sarà un po’ diverso: senza tema
e dizionari, senza attese di gruppo fuori dalla scuola prima di iniziare, ma con mascherine e gel igienizzanti.
Agli studenti della Scuola Holden, la scuola di scrittura di Torino fondata da Alessandro Baricco, è stato
chiesto di scrivere una lettera ai maturandi del 2020, per incoraggiarli e dare loro sostegno. Quella scritta da
Nausica Anerdi, che ha frequentato il primo anno di Academy, il corso di laurea triennale in scrittura della
Holden, è stata pubblicata oggi sul Post e su Repubblica, La Stampa e sulla pagina di Torino del Corriere
della Sera. Tutte le altre potete leggerle qui.

Camoscio generated text:
Nausica Anerdi, che ha frequentato il primo anno di Academy, il corso di laurea triennale in scrittura della
Holden, ha scritto una lettera ai maturandi del 2020, per incoraggiarli e dare loro sostegno.

mT5-base generated text:
La lettera ai maturandi del 2020. È stata scritta da Nausica Anerdi, che ha frequentato il primo anno di
Academy, la scuola di scrittura di Torino fondata da Alessandro Baricco.

Ground Truth:
Una lettera a chi sta per fare la maturità. Da parte di una studentessa della Scuola Holden, del corso di laurea
triennale in scrittura.

D.3 NewSum-IT (“Fanpage.it”)

Input text:
Continuano ad aumentare i nuovi casi di coronavirus nel nostro Paese. Sono stati 2.800 i contagi registrati
ieri: numeri che preoccupano il governo e che ricordano quelli delle fasi più critiche dell’emergenza. Domani
l’esecutivo si riunirà e valuterà se sia il caso di rendere più severe le norme anti-contagio attualmente in
vigore. Entro la prossima settimana si attende il nuovo Dpcm contenente le misure di contrasto all’epidemia,
mentre si valuta la proroga dello stato di emergenza fino al prossimo 31 gennaio 2021. Ma vediamo quindi

Effective, Efficient and Reliable Large Language Models 117

D.4. XFORMAL-IT (F→I)

quali sono queste nuove regole che il governo sta pensando di introdurre per frenare la curva dei contagi.
L’obbligo di portare la mascherina all’aperto, già introdotto nei giorni scorsi in alcune zone, sarà esteso a tutto
il territorio nazionale. Oltre quindi a confermare la necessità di indossare sempre il dispositivo di protezione
nei luoghi chiusi, di igienizzare frequentemente le mani e di rispettare le distanze di sicurezza e il divieto di
assembramento, il governo studia se rendere alcune misure più stringenti. In particolare, saranno potenziati i
controlli nei luoghi della movida o dove è più facile che si vadano a costituire affollamenti. Le operazioni di
vigilanza saranno affidate anche ai militari impegnati nel progetto “Strade secure”. Il ministro della Salute,
Roberto Speranza, si sarebbe detto favorevole all’estensione dell’obbligo di mascherina all’aperto a tutto
il Paese, mantenendosi per quella linea di prudenza sostenuta fin dallo scoppio dell’emergenza. La stessa
considerazione, d’altronde, è condivisa anche dalla autorità locali, dal momento che diversi governatori
hanno già emesso delle ordinanze che impongono di coprire naso e bocca all’aperto, con multe salate per
chi non rispetta le nuove regole. Il governo continua ad escludere la possibilità di tornare a una situazione
di lockdown generale. Ma se i contagi continuassero a crescere a questi ritmi, potrebbero essere imposte
alcune limitazioni in specifiche zone. In questo senso si sta anche considerando di introdurre un chiusura
per bar e locali alle 22 o alle 23: una chiusura anticipata affinché non si ripetano situazioni di movida, come
abbiamo visto anche quest’estate, in cui si favorisce la diffusione dell’infezione. All’aperto non sarà inoltre
consentito riunire più di mille persone alla volta (ovviamente sempre secondo le regole del distanziamento):
questa regola sarà valida sia per le manifestazioni che per gli eventi sportivi. Anche il limite per gli stadi
resta a mille spettatori. Negli spazi chiusi, invece, il tetto rimane a 200 persone: questo vale sia per cinema,
teatri e sale da concerto, ma anche per le celebrazioni private come i matrimoni. Le discoteche resteranno
sicuramente chiuse, nei ristoranti si dovrà continuare a rispettare il distanziamento e anche nei negozi gli
ingressi saranno contingentati.

Camoscio generated text:
Il governo sta valutando l’estensione dell’obbligo di mascherina all’aperto a tutto il Paese.

mT5-base generated text:
Il governo sta pensando di introdurre nuove regole anti-contagio per frenare la curva dei contagi. Il provvedi-
mento è stato esteso a tutto il territorio nazionale, mentre si valuta la proroga dello stato di emergenza fino
al prossimo 31 gennaio 2021. Vediamo quindi quali sono le nuove regole che il governo sta pensando di
introdurre per frenare la curva dei contagi.

Ground Truth:
Con i nuovi casi di coronavirus in continuo aumento, il governo pensa a inasprire le regole anti-contagio per
contrastare la diffusione dell’infezione. Si va verso l’obbligo di indossare la mascherina anche all’aperto e la
chiusura a bar e ristoranti alle 22 o alle 23. Anche l’esercito sarà impiegato nei controlli.

D.4 XFORMAL-IT (F→I)

Input text:
Buongiorno, quella su E-Bay è molto bella.

Effective, Efficient and Reliable Large Language Models 118

D.5. XFORMAL-IT (I→F)

Camoscio generated text:
Ciao, quella su E-Bay è davvero bella!

mT5-base generated text:
Buongiorno, quella su E-Bay è molto bella.

Ground Truth:
!ciaoooooooquella su e-bay è troppo carina!!

D.5 XFORMAL-IT (I→F)

Input text:
no mai , però ora per recuperare vado subito a lavare i piatti!

Camoscio generated text:
È ora per lavare i piatti.

mT5-base generated text:
No, ma ora per recuperare, vado subito a lavare i piatti.

Ground Truth:
Giammai! Ora però per recuperare vado subito a lavare i piatti

D.6 SQuAD-IT

Input text:
La crisi petrolifera del 1973 iniziò nell’ ottobre 1973 quando i membri dell’ Organizzazione dei Paesi es-
portatori di petrolio arabo (OAPEC, composta dai membri arabi dell’ OPEC più Egitto e Siria) proclamarono
un embargo petrolifero. Alla fine dell’ embargo, nel marzo 1974, il prezzo del petrolio era salito da 3 dollari
al barile a quasi 12 dollari a livello mondiale; i prezzi americani erano notevolmente più elevati. L’ embargo
ha causato una crisi petrolifera, o “shock”, con molti effetti a breve e lungo termine sulla politica globale e
sull’ economia globale. Più tardi fu chiamato il “primo shock petrolifero”, seguito dalla crisi petrolifera del
1979, definita il “secondo shock petrolifero”. Domanda: Quando è stata la seconda crisi petrolifera?

Camoscio generated text:
La seconda crisi petrolifera è stata nel 1979.

mT5-base generated text:
1979

Effective, Efficient and Reliable Large Language Models 119

D.6. SQuAD-IT

Ground Truth:
1979

Effective, Efficient and Reliable Large Language Models 120

Acknowledgements

I would like to express my gratitude to my advisor, Prof. Emanuele Rodolà, who took a chance on me as his
PhD student at Sapienza University in 2020 in a moment of high uncertainty during the COVID-19 pandemic
and gave me the freedom and flexibility to explore topics that I liked. My gratitude extends to Prof. Marco
Baroni, who hosted me at Universitat Pompeu Fabra (UPF) during my visiting period at the Computational
Linguistic and Linguistic Theory Lab and trusted me from the very first interaction with a cold email, and to
Prof. Fabio Massimo Zanzotto, who sparked my interest in pursuing a research career path in NLP.

I am deeply grateful to my fellow researchers at GLADIA lab of Sapienza University: Silvio Severino,
Giovanni Trappolini, Antonio Norelli, Emilian Postolache, Michele Mancusi, Giorgio Mariani, Donato
Crisostomi, Marco Fumero, Luca Moschella, Michele Miranda, Valentino Maiorca, Irene Cannistraci,
Antonio Pio Ricciardi, Irene Tallini, Adrian Robert Minut, Filippo Maggioli, Marco Pegoraro, Daniele
Baieri, Giorgio Strano, Arianna Rampini, Riccardo Marin, Simone Melzi, and Luca Cosmo. In addition to
this, I would like to extend my gratitude to friends and colleagues at Sapienza University: Andrea Bacciu,
Marzia Riso, Viviana Arrigoni, Daniele Izzi, Giacomo Nazzaro, Bardh Prenkaj, Lorenzo Madeddu, Leonardo
Picchiami, Federico Trombetti, Emanuele Giona, Marco Esposito; and to collaborators over different projects:
Leonardo Ranaldi, Elena Sofia Ruzzetti, Fabrizio Silvestri, Giuseppe Attanasio, Moreno La Quatra, Beatrice
Savoldi, Giambattista Parascandolo, Alon Halevy, Sébastien Bratières, Simone Scardapane, Iacopo Masi.

I am profoundly grateful to Gemma Boleda and Marco Baroni for hosting me during my six-month
research visit at Universitat Pompeu Fabra and to friends and colleagues met during this time: Roberto
Dessì, Mateo Mahaut, Eleonora Gualdoni, Nathanaël Carraz Rakotonirina, Francesca Franzon, Lucas Weber,
Corentin Kervadec, Germán Kruszewski, Emily Cheng, Xixian Liao, Andrea Zaninello, Daniela Mihai,
Ionut-Teodor Sorodoc.

Special thanks to my former colleagues at Apple for their incredible support: Adam Goliński, Luca
Zappella, Xavier Suau, Miguel Sarabia, Pau Rodríguez López, Federico Danieli, Arno Blaas, Nicholas
Apostoloff, Miao Xiong, Michael Kirchhof, Sinead Williamson, Gerard Gállego, and Federico Scozzafava.

I would like to thank Hugging Face and everyone involved in organizing the BigScience Workshop,
especially those in the Prompt Engineering working group. The first two works of this thesis would not have
been possible without this workshop and represent not just individual efforts but the power of collaborative
research and open science. I am truly grateful to everyone who has contributed to these works, directly
or indirectly. I would like to acknowledge the support of various institutions that have made this research
possible, including the Italian Ministry of University and Research (MUR) which funded my PhD scholarship,
Translated which awarded me an Imminent Research Grant, Sapienza Univerisity that awarded me two
research grants "Avvio alla ricerca", and Apple for enabling me to pursue a research internship.

On a personal note, I owe profound thanks to my partner, Livia, for her unwavering love and support
throughout the highs and lows of this PhD journey, and to my family, especially my parents Fiorella and
Eliseo, for their encouragement and belief in me over the years.

To my friends, both within and beyond academia, thank you for being an integral part of this jour-
ney: Paolo Carta, Alessandro Beasley, Alessio Fanelli, Tiziano Carulli, Gianluca Galli, Marta Giacomelli,
Emanuele Rossi, Maria Giulia Casucci, Giovanni Ciampi, Marco Del Tredici, Gabriele Sarti, Valerio Carletti,
Daniele Santinelli, Marco Siliquini, and Marta Raggi. Your support has been invaluable.

Lastly, I extend my gratitude to everyone whose insights and conversations have left a lasting impression
on my work. I am thankful to Prof. Pasquale Minervini (University of Edinburgh), Prof. Alessandro Raganato

https://gladia.di.uniroma1.it/

(University of Milano-Bicocca), and Prof. Felice Dell’Orletta (Institute of Computational Linguistics, CNR,
Pisa) for their review of this thesis.

Andrea Santilli, Rome, 15 January 2025

Ringraziamenti

Vorrei esprimere la mia gratitudine al mio relatore, il Prof. Emanuele Rodolà, che nel 2020 ha scommesso su
di me come suo studente di dottorato alla Sapienza Università di Roma, in un momento di grande incertezza
durante la pandemia di COVID-19, offrendomi la libertà e la flessibilità di esplorare argomenti che mi
interessavano. La mia gratitudine si estende al Prof. Marco Baroni, che mi ha ospitato presso l’Universitat
Pompeu Fabra (UPF) durante il mio periodo di ricerca al Computational Linguistic and Linguistic Theory
Lab, fidandosi di me fin dal primo contatto via email, e al Prof. Fabio Massimo Zanzotto, che ha acceso il
mio interesse per intraprendere una carriera di ricerca nell’ambito del NLP.

Sono profondamente grato ai miei colleghi ricercatori del laboratorio GLADIA della Sapienza Università
di Roma: Silvio Severino, Giovanni Trappolini, Antonio Norelli, Emilian Postolache, Michele Mancusi,
Giorgio Mariani, Donato Crisostomi, Marco Fumero, Luca Moschella, Michele Miranda, Valentino Maiorca,
Irene Cannistraci, Antonio Pio Ricciardi, Irene Tallini, Adrian Robert Minut, Filippo Maggioli, Marco
Pegoraro, Daniele Baieri, Giorgio Strano, Arianna Rampini, Riccardo Marin, Simone Melzi e Luca Cosmo.

Inoltre, vorrei estendere la mia gratitudine agli amici e colleghi della Sapienza Università: Andrea Bacciu,
Marzia Riso, Viviana Arrigoni, Daniele Izzi, Giacomo Nazzaro, Bardh Prenkaj, Lorenzo Madeddu, Leonardo
Picchiami, Federico Trombetti, Emanuele Giona, Marco Esposito; e ai collaboratori di vari progetti: Leonardo
Ranaldi, Elena Sofia Ruzzetti, Fabrizio Silvestri, Giuseppe Attanasio, Moreno La Quatra, Beatrice Savoldi,
Giambattista Parascandolo, Alon Halevy, Sébastien Bratières, Simone Scardapane, Iacopo Masi.

Sono profondamente grato a Gemma Boleda e Marco Baroni per avermi ospitato durante i sei mesi di
ricerca presso l’Universitat Pompeu Fabra e agli amici e colleghi conosciuti in questo periodo: Roberto
Dessì, Mateo Mahaut, Eleonora Gualdoni, Nathanaël Carraz Rakotonirina, Francesca Franzon, Lucas Weber,
Corentin Kervadec, Germán Kruszewski, Emily Cheng, Xixian Liao, Andrea Zaninello, Daniela Mihai,
Ionut-Teodor Sorodoc.

Un ringraziamento speciale ai miei ex colleghi di Apple per il loro incredibile supporto: Adam Goliński,
Luca Zappella, Xavier Suau, Miguel Sarabia, Pau Rodríguez López, Federico Danieli, Arno Blaas, Nicholas
Apostoloff, Miao Xiong, Michael Kirchhof, Sinead Williamson, Gerard Gállego e Federico Scozzafava.

Vorrei ringraziare Hugging Face e tutti coloro che hanno organizzato il BigScience Workshop, in
particolare il gruppo di lavoro Prompt Engineering. I primi due lavori di questa tesi non sarebbero stati
possibili senza questo workshop e rappresentano non solo sforzi individuali, ma il potere della ricerca
collaborativa e della scienza aperta. Sono davvero grato a tutti coloro che hanno contribuito a questi lavori,
direttamente o indirettamente.

Vorrei riconoscere il supporto di varie istituzioni che hanno reso possibile questa ricerca, tra cui il
Ministero Italiano dell’Università e della Ricerca (MUR) che ha finanziato la mia borsa di dottorato, Translated
che mi ha assegnato un Imminent Research Grant, la Sapienza Università di Roma che mi ha assegnato due
borse di ricerca "Avvio alla ricerca" e Apple per avermi permesso di svolgere uno stage di ricerca.

A livello personale, devo un ringraziamento profondo alla mia compagna, Livia, per il suo amore e
supporto incrollabili durante gli alti e bassi di questo percorso di dottorato, e alla mia famiglia, in particolare
ai miei genitori Fiorella ed Eliseo, per il loro incoraggiamento e la loro fiducia in me nel corso degli anni.

Ai miei amici, sia all’interno che al di fuori dell’accademia, grazie per essere stati una parte integrante di
questo viaggio: Paolo Carta, Alessandro Beasley, Alessio Fanelli, Tiziano Carulli, Gianluca Galli, Marta

https://gladia.di.uniroma1.it/

Giacomelli, Emanuele Rossi, Maria Giulia Casucci, Giovanni Ciampi, Marco Del Tredici, Gabriele Sarti,
Valerio Carletti, Daniele Santinelli, Marco Siliquini e Marta Raggi. Il vostro supporto è stato inestimabile.

Infine, estendo la mia gratitudine a tutti coloro le cui intuizioni e conversazioni hanno lasciato un’impressione
duratura sul mio lavoro. Ringrazio il Prof. Pasquale Minervini (University of Edinburgh), il Prof. Alessandro
Raganato (University of Milano-Bicocca) e il Prof. Felice Dell’Orletta (Istituto di Linguistica Computazionale,
CNR, Pisa) per la loro revisione di questa tesi.

Andrea Santilli, Roma, 15 Gennaio 2025

	List of Publications
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Key Contributions
	Structure of the Thesis
	Author Contribution Statement

	Effective Large Language Models
	Training Language Models with Instruction Tuning
	Related Work
	Measuring Generalization to Held-Out Tasks
	Experimental Setup
	Results
	Conclusion

	Converting Supervised Datasets into Promptable Format
	Background and Related Work
	System Design and Workflow
	Prompting Language
	The PromptSource UI
	Community Guidelines and Process
	Case Studies
	Conclusion

	Handling Multimodal Queries in Large Language Models
	Multimodal Neural Databases
	Experiments
	Results
	Related Work
	Conclusion

	Conclusion Effective LLMs

	Efficient Large Language Models
	Accelerating Inference in Large Language Models
	Related Work
	Method
	Experiments
	Conclusions

	Efficient Instruction-tuning for the Italian Language
	Background
	Method
	Experiments
	Conclusion

	Conclusion Efficient LLMs

	Reliable Large Language Models
	Evaluating Uncertainty in Large Language Models
	Effective Uncertainty Quantification in Large Language Models
	Conclusion Reliable LLMs

	Conclusion
	Bibliography
	Appendix ``Multitask Prompted Training Enables Zero-shot Task Generalization''
	Broader Impacts
	Environmental Costs
	Risks in Developing and Releasing Large Language Models
	Bias and Fairness

	Annotation system - PromptSource
	Datasets
	Categorizing Datasets into Tasks
	How Unseen are the Held-Out Tasks?
	LAMBADA
	Table of All Datasets

	Contamination Analysis of Pretraining Corpus on Test Tasks
	Full Results

	Appendix ``Promptsource: An Integrated Development Environment And Repository For Natural Language Prompts''
	Data and Statistics
	Complete Views

	Appendix ``Accelerating Transformer Inference for Translation via Parallel Decoding''
	Additional implementation details
	FLOPs calculation details
	Additional results

	Appendix ``Camoscio: An italian Instruction-tuned LLaMA''
	Implementation Details
	Exact Match via ChatGPT
	Generation Examples

	NewSum-IT (``Il Post'')
	NewSum-IT (``Fanpage.it'')
	XFORMAL-IT (FI)
	XFORMAL-IT (IF)
	SQuAD-IT

