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Abstract. In statistical physics, one of the standard methods to study second
order phase transitions is the renormalization group that usually leads to an
expansion around the corresponding fully connected solution. Unfortunately,
often in disordered models, some important finite dimensional second-order phase
transitions are qualitatively different or absent in the corresponding fully connec-
ted model: in such cases the standard expansion fails. Recently, a new method,
the M -layer one, has been introduced that performs an expansion around a dif-
ferent soluble mean field model: the Bethe lattice one. This new method has been
already used to compute the upper critical dimension DU of different disordered
systems such as the Random Field Ising model or the Spin glass model with field.
If then one wants to go beyond and construct an expansion around DU to under-
stand how critical quantities get renormalized, the actual computation of all the
numerical factors is needed. This next step has still not been performed, being
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technically more involved. In this paper we perform this computation for the fer-
romagnetic Ising model without quenched disorder, in finite dimensions: we show
that, at one-loop order inside the M -layer approach, we recover the continuum
quartic field theory and we are able to identify the coupling constant g and the
other parameters of the theory, as a function of macroscopic and microscopic
details of the model such as the lattice spacing, the physical lattice dimension
and the temperature. This is a fundamental step that will help in applying in the
future the same techniques to more complicated systems, for which the standard
field theoretical approach is impracticable.

Keywords: cavity and replica method, classical phase transitions,
series expansions, renormalisation group
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1. Introduction

Usually, the behavior of models in finite dimensions near a second-order phase transition
can be deduced using the powerful method of renormalization group (RG) [1–3]. In
field theory the basic mean-field (MF) approximation corresponds to the assumption
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that there are no fluctuations in the order parameter: this is equivalent to starting
from the same model but defined on a fully connected topology, for which the global
MF approximation is exact. Only when going beyond the leading order, one starts to
add corrections computing the fluctuations of the order parameter in a D-dimensional
underlying space. In the context of disordered systems, the quenched randomness of the
interactions and/or fields causes physical observables to strongly depend on the local
environment. This is one of the features that makes standard field theoretical predictions
on these systems non-trivial [4]. On the other hand, in the last decades, much effort has
been devoted to the study of disordered models on finite-connectivity topologies. Among
them, the locally tree-like graphs, also known as Bethe lattice (BL), play a crucial role.
In fact, in a BL the marginal distribution for a given microscopic degree of freedom
is independent of the probability of the nearest neighbors if the direct edge between
them is cut: for this reason, a model on a BL is essentially mean-field in nature, and
often solvable with the use of the so-called cavity method [5], which coincides, at the
replica symmetric (RS) level, to the ‘Bethe-Peierls approximation’ [6]. Despite the MF
nature, local observables on a BL do not coincide with global ones: local fluctuations
and heterogeneities are possible because of the finite connectivity. The difficulties in the
analysis of finite-connectivity systems arise when one tries to include the contributions
coming from the presence of topological loops of finite length.

The M -layer construction is a recent attempt to systematically build a topological-
loop expansion around the ‘Bethe-Peierls approximation’ [7]. In this framework it is
possible to compute generic observables, starting from the value they take on a BL,
and then perturbatively adding the contributions of topological loops. To this aim, M
copies (called ‘layers’) of the original lattice in D dimensions are created. In this way,
for each edge on the original lattice, there are M couples of vertices. The second step of
the construction consists of permuting uniformly at random the set of vertices, thereby
generating inter-layer connections. Then it is possible to compute observables as if the
initial model is defined on the topology resulting from one instance of the random
rewiring of all the edges of the original lattice. It can be shown that the probability
that loops are present in the resulting graph decreases as M increases: in the M →∞
limit the resulting graph is locally tree-like. Assuming universality, for large but finite
M, it is possible to use this construction to study the critical behavior of the original
model (at M =1) without resorting to the standard field theory tool as a starting point:
the result is a perturbative expansion for each chosen observable using 1/M as a small
parameter where the leading term is obtained by computing the value that the chosen
observable takes on a Bethe lattice.

The M -layer construction has already been applied to many problems of interest,
such as the random field Ising model [8], the spin glass in a field both at finite temperat-
ure in the limit of large connectivity [9] and at zero temperature and finite-connectivity
[10], the Anderson localization [11], the k -core percolation [12] and super-cooled liquids
[13]. The majority of these problems could not be treated easily with standard field
theory, either because they do not have a defined Hamiltonian or because, like in the
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case of Anderson localization, a transition is not possible in a fully connected topo-
logy, where there is not the possibility to define a distance between sites. In most of
these non-trivial applications, the M -layer construction has been applied to understand
which is the upper critical dimension, DU, below which the MF description should be
corrected. For determining DU, it is sufficient to look at the divergences of the one-loop
corrections to the leading behavior. If then one wants to go beyond and construct a true
ϵ-expansion around DU to understand how critical quantities get renormalized below
DU, the actual computation of all the numerical factors is needed. This next step has
still not been applied, being technically more involved than the determination ofDU. We
believe that it could be really useful to perform this computation ‘down to the metal’
for a simple model in which familiar results from the standard field-theoretical expan-
sion should be recovered: the ferromagnetic Ising model without quenched disorder, in
finite dimensions. This is the aim of this paper in which we will show that, at one-loop
order, it is possible to recover the continuum gϕ4 field theory from this new perspective,
identifying the coupling constant g and the other parameters of the theory, as a function
of macroscopic quantities and microscopic details of the model: the lattice spacing, the
physical lattice dimension, the temperature. . . This is a fundamental step that will help
in applying the same techniques to more complicated systems in the future. For the
case of the ferromagnetic Ising model, we expect that an expansion around the Bethe
lattice model, or around a fully connected model will give the same results because the
ferromagnetic transitions have the same features on the two MF models. We in fact
prove this, obtaining inside the M -layer construction the same perturbative corrections
obtained inside the standard gϕ4 field theory for the 2 and 4-point correlation functions.
However, for more complex systems, such as the spin-glass with an external field, we
do not expect the two expansions to give the same results, thus it is really important
to validate the method on a test model such as the ferromagnetic Ising model, before
proceeding towards more complicated, unpredictable models.

The paper is organized as follows: In section 2 we introduce the model, we set the
notation and we present the main results of the application of the M -layer construction
to the Ising model. In section 3 we give a methodological overview of the M -layer
construction. Furthermore, we provide all the building blocks to evaluate the 2 and
4-point connected correlation functions. As a working example, we compute some of
the contributions to the 2-point connected correlation function. All the details of the
computations for the 4-point observable can be found in appendix A. Finally, we resume
all the results in section 4. Together with some comments, in appendix B we generalize
the results of the main text, focused on Ising variables, to generic soft spin variables.

2. Model and main results

In this section, we present the results of the application of the M -layer construction to
the Ising model in D dimensions. Starting from the definition of the model, we describe
in broad terms the steps to get the final result, which will be finally reported.
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2.1. The model

The model is defined on the D-dimensional cubic lattice, with D > 1, by the following
Hamiltonian:

H =−
1,...,N∑
i<j

Jij σi σj , (1)

where Jij = 1 if σi and σj are nearest neighbours, Jij = 0 otherwise. Here we consider N
spin variables, σi =±1 i = 1, . . . ,N . The sites are identified by the positions xi ∈ aZD,
where aZD denotes the D-dimensional cubic lattice with lattice spacing ‘a’, which is
the physical (dimensional) distance between nearest neighbors. We will apply the M -
layer expansion to the Ising model and we will see that the results will be completely
equivalent to a standard continuum gϕ4 field theory. In this case, the field will correspond
to the spin values in the lattice σ : aZD 7→ R, in such a way that σ(xi) stands for σi .

2.2. Results

Here we report the results of the application of the M -layer machinery to the Ising
model. We are interested in computing the critical behavior of the 2-point and 4-point
connected correlation functions. They are defined as 〈σiσj〉c = 〈σiσj〉− 〈σi〉〈σj〉 and

〈σiσjσkσl〉c = 〈σiσjσkσl〉− 〈σiσj〉〈σkσl〉− 〈σiσk〉〈σjσl〉− 〈σiσl〉〈σkσj〉 respectively, where
we denote with 〈·〉 the thermal average and with · the average over the disorder induced
by the M -layer construction. The derivation of the 2-point function is provided in
section 3.2, while the derivation of the 4-point function in appendix A.2.

Our main result is that the 2-point function, in Fourier space and in the large-length
(small momenta) limit reads:

〈σ (p)σ (q)〉c = (2π)D δD (p+ q)
1

ρp2+ τ

(
1− 1

2
g

1

ρq2+ τ

ˆ
[− π

a
, π
a ]

D

dDk

(2π)D
1

ρk2+ τ

)

+O
(

1

M 3

)
, (2)

where

ρ=M
a2−D (1+λ)

(2D)4λ(1−λ)
(3)

τ =M
λ

(2D)3 aD

(
1− λ

λc

)
(4)

g = 2M
(2D)!

(2D− 4)!

1

(2D)4 aD
(5)

λc ≡
1

2D− 1
. (6)
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The same can be done for the 4-point function:

〈σ (k1)σ (k2)σ (k3)σ (k4)〉c

= (2π)D δD

(
4∑

i=1

ki

)
4∏

i=1

G(ki)

[
−g+

1

2
g2 (I (k1+ k2)+ I (k1+ k3)+ I (k1+ k4))

]
+O

(
1

M 5

)
, (7)

where

I (q)≡
ˆ
[− π

a
, π
a ]

D

dDp

(2π)D
1

ρp2+ τ
· 1

ρ(p+ q)2+ τ
, (8)

G(q)≡ 1

ρq2+ τ

(
1− 1

2
g

1

ρq2+ τ

ˆ
[− π

a
, π
a ]

D

dDk

(2π)D
1

ρk2+ τ

)
. (9)

In standard field theory, the Ising model is described by a Lagrangian for a field σ
defined on a continuum space with a quartic coupling interaction of the type:

L=
1

2

[
ρ(∇σ)2+ τσ2

]
+

1

4!
gσ4. (10)

If one computes the 2 and 4-point connected correlation functions associated with this
Lagrangian expanding up to the first order in the coupling constant g, one obtains
exactly equations (2) and (7). However, let us underline some conceptual differences
between the standard field theory and the M -layer approach:

• while in the standard field theory the parameters ρ,τ ,g are usually introduced for
symmetry reasons in the Lagrangian equation (10), in the M -layer approach they
are related, through equations (3)–(5), to the physical quantities of the microscopic
model: the dimension D, the lattice spacing a, and the leading eigenvalue λ of the
transfer-matrix that implicitly depends on the temperature T (see appendix A.1 for
more details). This connection between macroscopic and microscopic parameters is
a simple exercise for the Ising model [2], but the M -layer construction allows it for
a generic model, even if it is defined without the Hamiltonian, as in the case of the
percolation problem;

• while in the standard field theory the cutoff on the momentum integration is inserted
manually, in the M -layer approach it naturally arises, being a function of the lattice
spacing a, as can be seen from the computations, specifically from the theory on
Non-Backtracking paths, see appendix A.3;

• in standard field theory, the expansions in equations (2) and (7) are perturbative in the
adimensional parameter associated with g, which is supposed to be small. In the M -
layer approach g,ρ,τ are not small, being O(M), but using equations (3)–(5) it is easy
to verify that the expansions for the correlation functions are actually perturbative in
the parameter 1/M forM →∞, see equation (15) below. In particular, for the 2-point
function the leading term is O (1/M) and the one-loop correction is O

(
1/M 2

)
, while
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for the 4-point function the leading term is O
(
1/M 3

)
and the one-loop correction is

O
(
1/M 4

)
.

To make the perturbative nature of the M -layer expansion explicit, one should build
an adimensional parameter from the three dimensional parameters g,ρ,τ . The only two
dimensional initial quantities are the lattice spacing a, which has the dimension of a
length, [L ], and the spins that have dimension of the field, [σ ]. In appendix A.3 we
show how to extract the dimensions of g,ρ,τ , that turns out to be:

[τ ] = [L ]−D [σ ]−2 (11)

[ρ ] = [L ]2−D [σ ]−2 (12)

[g ] = [L ]−D [σ ]−4 , (13)

Starting from g,ρ,τ , the only adimensional combination of them (with one power of g)

is: gρ−
D
2 τ

D−4
2 . Using equations (3)–(5) is simple to verify that

gρ−
D
2 τ

D−4
2 ∝ 1

M
, (14)

which turns out to be proportional to 1/M : we have proved that the only existing
adimensional combination of parameters is indeed small in the limit M →∞, verifying
the perturbative nature of the previous expansion. In this perspective, one can compute
the shift of the critical temperature at O(1/M), redefining the constants τ ≡Mτ ′,
ρ≡Mρ ′ and g ≡Mg ′ and the 2-point correlation function:

MC (p)≡ 1

ρ ′p2+ τ ′

(
1− 1

2M
g ′ 1

ρ ′p2+ τ ′

ˆ
[− π

a
, π
a ]

D

dDk

(2π)D
1

ρ ′k2+ τ ′

)
. (15)

If we consider MC(p= 0) we see that the 1/M correction in the RHS is of order 1/τ ′

and therefore it diverges at the critical temperature of the Bethe lattice, i.e. when
τ ′ → 0. To overcome this problem we follow the standard procedure of considering the
inverse of MC(p):

(MC (p))−1 ≡ ρ ′p2+ τ ′+
1

2M
g ′
ˆ
[− π

a
, π
a ]

D

dDk

(2π)D
1

ρ ′k2+ τ ′ . (16)

The condition (MC(0))−1 = 0 determines the critical value τ ′
c that is zero at leading

order in 1/M :

τ ′
c ≡− 1

2M
g ′
ˆ
[− π

a
, π
a ]

D

dDk

(2π)D
1

ρ ′k2
. (17)

Then we can consider the following expansion of (MC(p))−1 for p and τ ′− τ ′
c both

small:

(MC (p))−1 =A(τ ′− τ ′
c )+Bp2+O

(
p4
)
+O

(
(τ ′− τ ′

c )
2
)
. (18)
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Comparing with equation (16) we obtain:

A= 1− 1

2M
g ′
ˆ
[− π

a
, π
a ]

D

dDk

(2π)D
1

(ρ ′k2)2
(19)

B = ρ ′ . (20)

The expression for τ ′
c is divergent for D ⩽ 2 and the expression for A is divergent for

D ⩽ 4, signaling that the MF expansion on equation (18) is only valid above D =4 that
is indeed the upper critical dimension of the problem.

3. The M-layer construction

In this section, we set the stage to describe, step by step, the M -layer construction. We
will start with some general features and then we will analyze the computation of some
contributions to the 2-point connected correlation function for the Ising model.

The M -layer procedure consists in creating M copies (layers) of the original lattice,
on which the system is defined. For each edge, connecting i and j in the original lattice,
there are M copies (i1,j1), (i2,j2), . . ., (iM ,jM ). To create inter-layer connections, a per-
mutation between the two sets of vertices, (i1, i2, . . . , iM ) and (j1,j2, . . . ,jM ), is chosen
uniformly at random between the M ! possible ones, rewiring the sites. Repeating this
procedure for all the M copies of all the edges belonging to the original lattice, one can
show that in the limit M →∞ the resulting graph is locally tree-like. The details of this
statement can be found in [7]. Intuitively, the probability to close a short loop is pro-
portional to 1/M , thus a tree-like graph is realized for M →∞. The average over all the
possible rewirings has to be taken at the end of the computation. With this construction
and considering the large-M limit, it is possible to compute a generic observable on the
layered lattice in a perturbative fashion, where the infinitesimal parameter is 1/M . In
the leading order the observable as computed on a tree graph, corresponding to the
Bethe-Peierls approximation. The next order corrections correspond to adding loops to
the system.

3.1. General features of the construction: the example of the Ising model

Let us consider the Ising model on the aZD lattice and apply the M -layer construction.
We want to compute a specific observable: the 2-point connected correlation function
between two spins averaged over the rewirings. To do so, a way to organize the sum
of the different contributions is needed. Then, considering a specific instance of the
construction, we can use the cavity method to compute the chosen observable. In order
to do so we will use the definition of ‘line-connected observable’ following the guidelines
of the M -layer construction [7].

Since we are considering the connected correlation, we expect it to be zero if the
graph resulting from the rewiring is such that no path connects the two spins. On the
other hand, the correlation would be non-null if the chosen rewiring connects the two
spins with a single loop-less path, a line, or with paths that include loops.

https://doi.org/10.1088/1742-5468/ad526e 8
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We notice that, given the path type, the observable depends only on the lengths of
the lines, therefore we can simply consider the projection of the lines on the original
lattice. With this remark, the whole sum can be drastically eased: we sum over the
projected paths with the corresponding weight W, that is the number of the rewirings
that share the same projection, divided by M !|E|, where |E| is the number of edges. It is
possible to classify the projections by their topologies. We distinguish different classes
by the presence of loops and internal vertices of a specific degree, that is the number
of lines entering the vertex. We will refer to these classes as ‘diagrams’, to make the
connection with the Feynman diagrams of field theory, with the important difference
that topological lines make the former, whereas the latter are a graphic way to compute
integrals. In the M -layer construction, given a diagram G projected onto the original
lattice, each line corresponds to a non-backtracking path (NBP) between a starting and
an ending point. The number of NBPs of a fixed length L, between two points, x and
y, in the cubic lattice has already been computed [14], we will denote it with NL(x,y).
At this point we recap the general steps to compute a generic observable averaged over
the rewirings, following [7]:

• Identify the possible diagrams (classes of projections on the original lattice) that
contribute to the observable;

• For each diagram G, compute its contribution as follows:

- Compute the corresponding weight W (G);
- Multiply the precedent term by a factor NL(x,y) for each line, with length L,
composing the diagram, starting at x and ending at y ;

- Multiply the precedent term by the value of the line-connected observable on a
Bethe lattice in which the identified diagram has been manually injected, computed
using the RS cavity method;

- Sum over the positions of the internal vertices and over the lengths of the lines;

• Sum the contributions coming from all diagrams;

Once the diagrams are identified, it is clear that the three building blocks are the weight,
the number of NBPs and the line-connected observable computed on the diagram. While
the first two are model-independent and well-understood, the third is strongly dependent
on the model, thus it must be computed case by case.

3.2. An example: the 2-point connected correlation function

In this paragraph, we will show the computations for the 2-point function, made by the
following steps.

• Identify the possible diagrams:
Following the general rules, the starting point is to identify the possible diagrams that
contribute to the chosen observable, that is the 2-point connected correlation function.
The simplest diagrams are obtained when we connect two points with a single loopless
line, of length L, in the layered lattice. Given that the 1/M expansion turns out to be an
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expansion in the number of topological loops, the contribution of this type of diagrams
will give the leading order in the expansion5. Now we should understand which type of
projection on the original lattice should be generated by a simple line in the layered
lattice. The simplest projection is a simple loopless line also on the original lattice: we
will call this diagram G1, and it is reported in figure 1. However it is possible that a single
line on the layered lattice will turn to be a line with loops on the original lattice: we
will call the diagram with one loop on the original lattice as G3, it is reported in figure 1
in its two versions and we will refer to them as ‘boucle’ diagrams. Another possibility
is to connect the two spins with a path with one loop already on the layered lattice,
which thus will have (at least) one loop also on its projection on the original lattice:
this is the case of G2 in figure 1. G2 has a 4-degree topological vertex; in principle, we
should consider also one-loop diagrams with 3-degree vertices. However, by introducing
the RS cavity method to compute the line-connected observable on a given diagram,
we will understand that they would give zero contribution for symmetry reasons in the
case of the Ising model without an external field.

• Compute the contribution for diagrams G1 and G3:
We start by computing the corresponding weight W (G1), that is the probability of
generating a rewiring that connects the two spins σ1 and σ2 with a unique path, without
making loops in the original (projected) lattice. Let us start from the position of the
first spin σ1. The first edge can be chosen to connect σ1 with the following spin placed
at any of the possible M layers, and each layer is chosen with probability 1/M , so that
the total contribution of the first edge to W (G1) is 1. The same is true for all the edges
up to the last one, which connects to the ending spin σ2. Since the position of σ2 is
also fixed we have only 1 possible edge to choose, while the probability of choosing that
specific edge is still 1/M , thus W (G1) = 1/M .

Let us pass now to the weight W (G3), that is the probability of generating a rewiring
that connects the two spins σ1 and σ2 with a unique linear path with no loops in the
layered lattice, while the path projected on the original lattice has one loop when the
path coils itself on a spin σ0. As for G1, the first edges give a contribution 1, until
one reaches the edge that arrives at σ0 for the second time: to avoid creating a loop
on the layered lattice, one should only pick the σ0 on layers that were not previously
visited. They will be M − 1, and each of them is chosen with probability 1/M , giving
a factor (1− 1/M). As for G1, also the choice of the last edge ending in σ2 gives an
additional factor 1/M : thus we find W (G3) = 1/M − 1/M 2. W (G3), as computed here,
is the weight of a linear path that produces only one loop on the original lattice. But
now we have understood how to generalize the previous computation: for a linear path
on the layered lattice, we should add a factor (1− 1/M) for each spin visited twice
on the original lattice. For example, a path with no loops on the layered lattice and
two loops on the projected original one will have a weight 1/M(1− 1/M)2. Thus the
leading order for the weight of all these diagrams will be O(1/M), and the presence of
loops in the original lattice will only enter as a next-to-leading order correction for W.

5 In general, for 2-point observables that are not connected, such for example the total correlation function, additional diagrams in
which the 2-points are disconnected should be considered, too. However, for connected observables such as the correlation functions
the contribution of these diagrams is null.
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Following the prescriptions of section 3.1, the weight of each diagram G should then be

multiplied by 〈σ1σ2〉c
∣∣∣
G,lc

, that is the 2-point connected correlation function computed

in a Bethe lattice where σ1 and σ2 are connected by a diagram whose projection is G
(and the subscript ‘lc’ stands for line-connected). However, it is easy to understand that

〈σ1σ2〉c
∣∣∣
G,lc

just depends on the form of G on the layered lattice, and not on its projection

on the original lattice. This observation implies that 〈σ1σ2〉c
∣∣∣
G1,lc

= 〈σ1σ2〉c
∣∣∣
G3,lc

and in

general it would be the same for any diagram, of the same length L, that has no loops
on the layered graph, regardless of the number of loops on the projected lattice.

The last ingredient to take into account is the number of realizations of such diagrams
on the original lattice. In principle it is possible to count the number of NBPs of length
L between two points, x and y in aZD, specifying the starting and ending directions,
that we call µ and ν respectively, denoted by NL(x,y;µ,ν). This number will include the
linear paths without loops, corresponding to diagrams G1 but also the paths with one
loop, corresponding to diagrams G3 and in general diagrams with an arbitrary number
of loops on the projected D-dimensional lattice. Remembering that the leading order
for the weight of all these diagrams is 1/M , and that the observable computed on a

diagram G, 〈σ1σ2〉c
∣∣∣
G,lc

, is the same for all the diagrams obtained as a projection of a

linear path on the layered lattice, we can write the first contribution to the 2-point
connected correlation function:

〈σ (x1)σ (x2)〉c =
1

M

∑
µ,ν

∞∑
L=1

NL (x1,x2;µ,ν) 〈σ1σ2〉c
∣∣∣
G1,lc

+O
(
1/M 2

)
' (2D)2

M

∞∑
L=1

NL (x1,x2) 〈σ1σ2〉c
∣∣∣
G1,lc

+O
(
1/M 2

)
. (21)

In the last step, we assumed that the number of NBPs does not depend on the specific
directions µ and ν, thus we simply multiplied by the number of all the possible starting
and ending directions, (2D)2. This last assumption is justified if the lengths of the lines
diverge, so it is justified in the critical region, where the most important contributions to
the correlation functions come from the large-length lines. Summing over the directions,
it is possible to over-count the possible paths; in that case, we must divide by a symmetry
factor, associated with each diagram G, which we call S(G). In the case of G1, we are
not over-counting the paths, so S(G1) = 1.

We have said that diagrams G3 have a weight 1/M − 1/M 2 and in general the
weights of all diagrams corresponding to linear paths with at least one loop in the
projected graph have a 1/M 2 correction. Thus, to compute the O(1/M 2) correction to
equation (21), we should count all the possible linear paths that have a projection with
at least one loop, the first example being G3. The 1/M 2 correction due to linear-path
diagrams is thus:

−(2D)2

M 2

(2D)!

(2D− 4)!

∑
x0∈aZD

∞∑
L0,L1,L2=1

NL1 (x1,x0)NL0 (x0,x0)NL2 (x0,x2) 〈σ1σ2〉c
∣∣∣
G3,lc

, (22)
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Figure 1. Topological diagram contributions to the 2-point connected correlation
function. Top left: the order O(1/M), that is the simple line without loops in the
layered lattice nor in the original one. Top right: the diagram with one loop is
of the order O(1/M 2). Bottom: the so-called ‘boucle’ diagram, whose weight is
(1/M − 1/M 2) where the line does not close in a loop on the layered lattice but
realizes it in the projection.

where the − sign comes from the sign of 1/M 2 into W. We have multiplied the number
of NBPs for each line and we have an additional factor due to the presence of (at
least) one internal 4-degree vertex, where the sum over the four directions accounts for

the number of ordered 4-uples out of the 2D possible directions:
(
2D
4

)
4!, exploiting the

assumption of independence of NL on the directions of the lines entering the vertices. In
general, for a k -degree vertex, the factor will be

(
2D
k

)
k!. The symmetry factor is 1 also

in this case, S(G3) = 1. This can be understood since we are counting all the possible
paths that coil to realize a projection with (at least) one loop, thus exchanging the
two directions of the lines of the loop entering the internal vertex gives two different
possibilities we should take into account, as shown in figure 1. As already mentioned,

〈σ1σ2〉c
∣∣∣
G3,lc

has to be equal to 〈σ1σ2〉c
∣∣∣
G1,lc

changing L into L1+L0+L2 . We want to

stress once more that equation (22) contains the contribution coming from all the linear
paths resulting in a projection with at least one loop. The diagrams with at least 2 loops
in the projection will then bring an additional O(1/M 3) correction, that we will not
compute in this paper.

• Compute the contribution for diagram G2:
At this point we should add the contributions of the one-loop diagram G2 in figure 1,
where the observable is computed in a graph where σ1 and σ2 are connected by a line
with such a loop on the layered lattice:

W (G2)
(2D)2

S (G2)

(2D)!

(2D− 4)!

∑
x0∈aZD

∞∑
L0,L1,L2=1

NL1 (x1,x0)NL0 (x0,x0)NL2 (x0,x2) 〈σ1σ2〉c
∣∣∣
G2,lc

,

(23)

where W (G2) = 1/M 2. In fact, to create a loop on the layered lattice, the second edge
that visits σ0 should only pick the exact layer that was previously visited, which is
chosen with probability 1/M , giving another factor 1/M to the weight. As for G1, also
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the choice of the last edge ending in σ2 gives an additional factor 1/M : thus we find
W (G2) = 1/M 2.

In this case S(G2) = 2, since, when summing over the directions of the internal
vertices, all the terms where the two directions of the line of the loop are exchanged give
the same diagram, so we should divide by a factor 2. Exactly as for G1, equation (23)
for the contribution of one-loop diagrams should be corrected at order 1/M 3 for the
presence of one-loop diagrams with lines that create (at least) one more loop on the
projected lattice.

• Sum the contributions for the three analyzed diagrams:
Now we sum up the contributions, leaving as a last step the explicit computation of the
line-connected observable using the RS cavity method.

Up to order 1/M 2 these are all the possible contributions:

〈σ (x1)σ (x2)〉c =
(2D)2

S (G1)M

∞∑
L=1

NL (x1,x2) 〈σ1σ2〉c
∣∣∣
G1,lc

+
(2D)2

S (G2)M 2

(2D)!

(2D− 4)!

∑
x0∈aZD

∞∑
L0,L1,L2=1

NL1 (x1,x0)NL0 (x0,x0)

×NL2 (x0,x2) 〈σ1σ2〉c
∣∣∣
G2,lc

− (2D)2

S (G3)M 2

(2D)!

(2D− 4)!

∑
x0∈aZD

∞∑
L0,L1,L2=1

NL1 (x1,x0)NL0 (x0,x0)

×NL2 (x0,x2) 〈σ1σ2〉c
∣∣∣
G3,lc

+O
(

1

M 3

)
. (24)

We have seen that the term of order 1/M includes diagrams with one loop, whose
contribution we have corrected by computing the boucle diagram that gives a contribu-
tion at order 1/M 2; exactly in the same way, the term of order 1/M 2 includes diagrams
with two or more loops in the layered lattice, which should therefore be subtracted.
However, these latter contributions will be of order 1/M 3, so we can neglect them in
the calculation of the 2-point connected correlation function at one loop level. Another
important remark is that the boucle diagrams are not present for vertices of degree
three. This can be easily verified from a simple geometrical point of view: it is not
possible to coil a line on a point to create a 3-degree vertex on the projection, without
overlapping an entire internal line, hence obtaining a correction of larger 1/M order.
The boucle diagrams were already considered in [7], arguing that they are generally
negligible. We show here that in the case of the Ising model they are not negligible.
However, all the subsequent works that used the M -layer expansion introduced in [7],
such as [8–13], looked to diagrams with cubic vertices for which boucle-diagrams are
indeed negligible.

• Compute the line-connected observables through the RS cavity method:
The next step is to evaluate the observable on a diagram, merged in an infinite tree. At
the end of the M -layer construction the graph is, in the large M limit, locally tree-like,
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thus we want to make use of the RS Cavity Method [5, 15]. On a BL, two nearest
neighboring spins are independent once the link that connects them is cut. For this
reason, in the case of the Ising model on a random regular graph, one can implicitly
define the ‘cavity marginal distribution’, Q(σ), as the solution of the following equation:

Q(σ) =
1

ZQ

∑
τ=±1

eβστQc−1 (τ) (25)

ZQ =
∑

τ ,σ=±1

eβστQc−1 (τ) , (26)

where β is the inverse temperature, c is the fixed connectivity, Q(σ) is the cavity distri-
bution on spin σ where only the contribution coming from one interaction is considered
and ZQ ensures the normalization of Q. For symmetry reasons, it is easy to understand
that the solution to the previous implicit equation is Q(±1) = 1

2 .
Now we consider an open chain of length L, merged in a tree-like graph where the

two variables at the boundaries, which we denote with σ and τ , have connectivity 1.
As shown in appendix A, the (unnormalized) joint probability distribution of σ and τ ,
which we define ZL(σ,τ), can be written as

ZL (σ,τ) = PB (σ)PB (τ)+λL gλ (σ) gλ (τ) , (27)

where PB(±1) = 2
c−3
2 and gλ(±1) =±2

c−3
2 are eigenvectors of a properly defined 2× 2

transfer matrix (see appendix A.1), with eigenvalues 1 and λ respectively. λ is
temperature-dependent and assumes the critical value, λc = 1/(c− 1), at the critical
temperature Tc, causing the divergence of the ferromagnetic susceptibility. Notice that
PB(σ) and gλ(σ) are even and odd functions of σ =±1, which is a consequence of the
Z2 symmetry of the Ising model.

Once ZL(σ,τ) is computed we can evaluate a generic observable on a generic diagram,
taking also into account the presence of loops. Given a diagram, we identify a spin on
each internal and external vertex and we multiply a factor ZL(σ,τ) for each line of
length L, starting at spin σ and ending at spin τ . Next, remembering that each spin
has fixed connectivity c, we multiply a factor Q(σI)

c−r for each internal vertex of degree
r on spin σI, and a factor Q(σE)

c−1 for each external vertex with spin σE. We recall
that Q(σ), defined self-consistently in equation (25), is the cavity marginal where only
the contribution coming from one interaction is considered. At this point, to compute
the 2-point correlation function we multiply by the two external spin variables and
we integrate over all the spins with the corresponding measure. We must also divide
by the partition function and subtract all the factorized contributions to compute the
connected correlation. In the end, we should compute the ‘line-connected observable’,
following the prescriptions of the M -layer construction [7].

We start evaluating the 2-point connected correlation function for the system on a
diagram G1 inserted in a Bethe lattice, as depicted in figure 2.
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Figure 2. A diagram made of a simple line of length L, which we defined G1,
embedded into a Bethe lattice is represented. On each of the L− 1 internal spins,
c− 2 cavity fields are coming from an infinite tree graph, represented by the arrows,
while the two spins at the boundaries are connected with c− 1 of them. In this way,
the diagram is merged into an infinite tree graph. More complicated diagrams are
composed of such lines, but for simplicity we did not include the arrows for figures 1,
3 and 4.

Remembering that PB(σ) and Q(σ) are even functions while gλ(σ) is an odd one,
we easily obtain:

〈σ1σ2〉c
∣∣∣
G1,lc

=

∑
σ1,σ2=±1

Q(σ1)
c−1 σ1ZL (σ1,σ2) σ2Q(σ2)

c−1

∑
σ1,σ2=±1

Q(σ1)
c−1 ZL (σ1,σ2)Q(σ2)

c−1

= λL

( ∑
σ=±1

σgλ (σ)Q(σ)c−1

)2

( ∑
σ=±1

PB (σ)Q(σ)c−1

)2 = λL . (28)

Next, we move to the one-loop diagram G2. In this case we have:

〈σ1σ2〉c
∣∣∣
G2

=

∑
σ1,σ0,σ2=±1

Q(σ1)
c−1 σ1ZL1 (σ1,σ0)Q(σ0)

c−4 ZL0 (σ0,σ0) ZL2 (σ0,σ2) σ2Q(σ2)
c−1

∑
σ1,σ0,σ2=±1

Q(σ1)
c−1 ZL1 (σ1,σ0)Q(σ0)

c−4 ZL0 (σ0,σ0) ZL2 (σ0,σ2)Q(σ2)
c−1

= λL1+L2

( ∑
σ=±1

σgλ (σ)Q(σ)c−1

)2

( ∑
σ=±1

PB (σ)Q(σ)c−1

)2

×


∑

σ0=±1
gλ (σ0)

2 PB (σ0)
2 Q(σ0)

c−4+λL0
∑

σ0=±1
gλ (σ0)

4 Q(σ0)
c−4

∑
σ0=±1

PB (σ0)
4 Q(σ0)c−4+λL0

∑
σ0=±1

gλ(σ0)2PB(σ0)2Q(σ0)c−4


= λL1+L2 . (29)
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At this point, we can compute the ‘line-connected’ 2-point connected correlation
function. Let us try to make evident the need for such a ‘connectification’ (the rigorous
derivation can be found in [7]). Take the diagram G2 as an example: In computing
the 2-point correlation function, two terms will appear due to ZL(σ0,σ0), one with
PB(σ0)PB(σ0) and the second with gλ(σ0)gλ(σ0). Since PB(σ) is proportional to Q(σ),
as explained in detail in appendix A.1, the former is the same contribution as the
one that is obtained from G1. Computing the line-connected observable will avoid this
over-counting; the line-connected observable is thus defined as:

〈σ1σ2〉c
∣∣∣
G2,lc

= 〈σ1σ2〉c
∣∣∣
G2

−〈σ1σ2〉c
∣∣∣
G1

= λL1+L2

( ∑
σ=±1

σgλ (σ)Q(σ)c−1

)2

( ∑
σ=±1

PB (σ)Q(σ)c−1

)2

×


∑

σ=±1
gλ (σ)

2 PB (σ)2 Q(σ)c−4+λL0
∑

σ=±1
gλ (σ)

4 Q(σ)c−4

∑
σ=±1

PB (σ)4 Q(σ)c−4+λL0
∑

σ=±1
gλ (σ)

2 PB (σ)2 Q(σ)c−4 − 1

= 0,

(30)

where we used equation (28) with L= L1+L2.

The fact that 〈σ1σ2〉c
∣∣∣
G2,lc

is trivially zero suggests that some more corrections must

be added to the 2-point correlation function at O
(
1/M 2

)
. As explained before, these

corrections are due to the boucle diagrams. 〈σ1σ2〉c
∣∣∣
G3,lc

is the same as the one computed

on G1 but with the length of the path indicated as L1+L0+L2:

〈σ1σ2〉c
∣∣∣
G3,lc

= λL1+L0+L2 . (31)

At this point, we plug equations (28), (30) and (31) into equation (24), and remem-
bering that

W (G1) =
1

M
S (G1) = 1 〈σ1σ2〉c

∣∣∣
G1, lc

= λL;

W (G2) =
1

M 2
S (G2) = 2 〈σ1σ2〉c

∣∣∣
G2, lc

= 0

W (G3) =
1

M

(
1− 1

M

)
S (G3) = 1 〈σ1σ2〉c

∣∣∣
G3, lc

= λL0+L1+L2 . (32)
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we obtain

〈σ (x1)σ (x2)〉c =
(2D)

2

M

1,...,∞∑
L

NL (x1x2)〈σ1σ2〉c
∣∣∣
G1, lc

+
(2D)

2

2M 2

(2D)!

(2D− 4)!

1,...,∞∑
L0,L1,L2

∑
x0∈aZD

NL1 (x1x0)NL0 (x0x0)NL2 (x0x2)〈σ1σ2〉c
∣∣∣
G2, lc

+

− (2D)
2

M 2

(2D)!

(2D− 4)!

1,...,∞∑
L0,L1,L2

∑
x0∈aZD

NL1 (x1x0)NL0 (x0x0)NL2 (x0x2)〈σ1σ2〉c
∣∣∣
G3, lc

+O
(

1

M 3

)
=

(2D)
2

M

∞∑
L=1

NL (x1,x2) λ
L+

− (2D)
2

M 2

(2D)!

(2D− 4)!

∑
x0∈aZD

∞∑
L1=1

NL1 (x1,x0)λ
L1

∞∑
L0=1

NL0 (x0,x0)λ
L0

∞∑
L2=1

NL2(x0,x2)λ
L2

+O
(

1

M 3

)
, (33)

Introducing the generating function of the number of NBPs defined as [14]:

Bλ (xf ,xi) =
∞∑
L=1

NL (xf ,xi)λ
L , (34)

Equation (33) becomes:

〈σ (x1)σ (x2)〉c =
(2D)2

M
Bλ (x1,x2)−

(2D)2

M 2

(2D)!

(2D− 4)!

∑
x0∈aZD

Bλ (x1,x0)Bλ (x0,x0)Bλ (x0,x2)

+O
(

1

M 3

)
. (35)

The next step is to Fourier transform the last expression. The convention used to define
the Fourier transform of a generic function f (x ) is:

f̂ (k) = aD
∑

x∈aZD

f (x)eikx , f (x) =

ˆ
[− π

a
, π
a ]

dDk

(2π)D
f̂ (k)e−ikx ; (36)

obtaining:

〈σ (p)σ (q)〉c = (2π)D δD (p+ q)
(2D)2

M
B̂λ (p)

×

(
1− 1

M

(2D)!

(2D− 4)!

1

aD
B̂λ (q)

ˆ
[− π

a
, π
a ]

D

dDk

(2π)D
B̂λ (k)

)
+O

(
1

M 3

)
. (37)
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Using the fact that the small momentum limit of the reciprocal of the generating func-
tion, in Fourier space, is

B̂−1
λ

(
k � 1

a

)
=

1

aD
1−λ(2D− 1)

2Dλ
+

1

aD
λ+1

4D2λ(1−λ)
(ka)2+O

(
(ka)4

)
, (38)

where the parameter a is the lattice spacing, and using the definitions of ρ, τ , g and λc

from equations (3)–(6), one finally recovers the critical behavior of the connected 2-point
correlation function, as displayed in equation (2). An analogous, more detailed compu-
tation can be found for the connected 4-point correlation function in appendix A.2.

4. Conclusions

In the present paper, we applied the M -layer construction to the Ising model. Besides
giving a methodological explanation on how to use this construction, we computed the
2 and 4-point correlation functions at leading order, including the one-loop corrections
and we found the same results as the ones coming from field theory.

In this work, we have paved the way for the application of the M -layer construction
to systems less understood than the Ising model. Some previous works [8, 10–13] have
already obtained results from the use of M -layer, however, in these cases, the results did
not need to take into account all constants in a systematic way as was done in this work.
An example is the calculation of the upper critical dimension exploiting the Ginzburg
criterion [10]: for this calculation, it is sufficient to look at the dimension at which the
one-loop correction to the 2-point correlation function diverges, thus the constants due
to the vertices and the combinatorial factors are irrelevant. On the other hand, to obtain
more accurate predictions on critical behavior, such as critical exponents, it is necessary
to check all the various factors mentioned above before adding the contributions of the
various diagrams, in order to identify the right coupling constant or the mass. In this
paper, we did it for the case of the ferromagnetic Ising model, for which we expect that
an expansion around the Bethe lattice model, or around a fully connected model will
give the same results because the ferromagnetic transitions have the same features on
the two MF models. We in fact verified this, validating the M -layer method. This is
instructive and really important before proceeding to apply the same method to more
complex systems, such as the spin-glass with an external field, for which we do not
expect the two expansions to give the same results.

Moreover, in equations (3)–(6) we can relate the ‘field-theoretical’ constants of the
model in the M -layer construction to some physical observables such as the lattice
spacing a, the physical dimension D, and the eigenvalues and eigenvectors of the transfer
matrix T (σ,τ), as defined in appendix A.1. We thus can numerically control the present
constants: this could be of crucial importance to understanding the finite-dimensional
behavior of systems if the renormalization flux has more than one fixed point (FP) with
a finite basin of attraction. Take as an example the case of spin-glass transition in a
field: from standard field theory one finds that a Gaussian FP for the RG equations
exists and is locally stable above DU = 6 [16]. However, its basin of attraction shrinks
to zero approaching DU from above [17]. Due to the finite basin of attraction of this FP,
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an additional, non-Gaussian FP could exist also above the upper critical dimension, as
proposed by different authors [10, 18, 19]. The FP governing the spin-glass behavior
in finite dimensions in the presence of more than one stable FP depends on the initial
values for g. In the M -layer approach, once RG equations are written, one can run them
for g, knowing exactly the initial value and thus understanding which will be the final
reached FP. One could also think to manually change the microscopic details of the
model, changing gλ(σ), Q(σ) and PB(σ), trying in this way to enter different basins of
attraction in the parameters space.

An important ingredient in this paper is the presence of the so-called boucle dia-
grams. As explained in the main text, these contributions are corrections, needed to
properly compute the average over the rewirings in the context of the M -layer con-
struction. In future applications of this construction, it is important to include these
contributions if even-degree vertices are computed, as in the case of the Ising model. In
all previous applications of the M -layer method, odd-degree vertices were considered,
for which boucle-corrections to the vertices are not present. In odd-degree vertices the-
ories there could still be boucle-corrections to the single line, e.g. diagram G3, but they
should give a term that is subdominant with respect to one-loop cubic diagrams for the
2-points propagator in the large length limit.

Finally, let us discuss the role of the disorder in the M -layer approach. The rewirings
are extracted at random and thus one could expect that this randomness should reflect
in an additional parameter, w.r.t. the ones (ρ, τ and g) that are present in the standard
non-random field theory. However, we showed that at one-loop order, this is not the
case: no additional parameter associated with the disorder is generated. This is, however,
reasonable already thinking to the random regular graphs: we have seen that in the large
M limit, the M -layered graph tends to a Bethe lattice with fixed connectivity, that has
a disordered topology. However, even if the Bethe lattice is disordered, for an Ising
model the local cavity marginals, and the consequent ‘local critical temperature’, are
the same for all the spins. We thus expect that the effect of the disorder will appear
only at the next orders in the 1/M expansion, leading to a disordered local critical
temperature and a different universality class for the critical exponents. If instead the
original Hamiltonian already contains disorder on the Bethe lattice (such as the Ising
model with disordered couplings), the disorder associated with the rewirings should not
change the universality class of the model.

Appendix A. M-layer construction

In this appendix, we present a detailed derivation of the results of the main text. In
section A.1 we derive the expression of the joint probability distribution of two spins
on a chain, equation (27). To be precise we present the explicit derivation for the case
of Ising-type variables, to generalize, in appendix B.2, to the case of soft spins, with a
generic measure dµ(σ). In section A.2 we show how to compute the contributions of the
other observable of interest, the 4-point connected correlation function on the diagrams
of figure 3. Then we complete the evaluation plugging all the contributions together.
Finally, in section A.3 we perform the dimensional analysis, identifying the relevant

https://doi.org/10.1088/1742-5468/ad526e 19

https://doi.org/10.1088/1742-5468/ad526e


Bethe M-layer construction on the Ising model

J.S
tat.

M
ech.(2024)

063301

constants to map the results of the M -layer construction to the standard results of the
field theory associated with the Ising model.

A.1. Transfer matrix

Here we want to derive the expression for the (unnormalized) joint probability distri-
bution of two spin variables for the Ising model, in the absence of an external field on
a Bethe lattice. We consider N Ising variables σ =±1, so the measure on each spin is

dµ(σ) = δ
(
σ2− 1

)
dσ ; (A1)

the Hamiltonian is given by equation (1). For definiteness, we consider a random regular
graph (RRG) of connectivity c> 2. The cavity equation reads:

Q(σ) =
1

ZQ

∑
σk=±1

eβJσσkQc−1 (σk) (A2)

ZQ =
∑

σ,σk=±1

eβJσσkQc−1 (σk) , (A3)

the function Q(σ) is the cavity distribution on spin σ where only one interaction is
considered, such that the full marginal, which we call PBethe(σ), is, up to a normalization
constant:

PBethe (σ)∝Q(σ)c . (A4)

Since Q(σ) is connected with the probability of the configuration of the spin σ, we
expect it to be an even function for the zero external field case (in the paramagnetic
phase), we can easily compute it:

Q(σ) =
eβJσQ(1)c−1+ e−βJσQ(−1)c−1∑

σ=±1

(
eβJσQ(1)c−1+ e−βJσQ(−1)c−1

) =
cosh(βJσ)

2cosh(βJ)
=

{
1
2 if σ = 1
1
2 if σ =−1

,

(A5)

where the second equality is justified using the fact that Q(+1) =Q(−1).
We define the transfer matrix as

T (σ,τ) =

√
Q(σ)c−2eβJστ

√
Q(τ)c−2 =

1

2c−2

(
eβJ e−βJ

e−βJ eβJ

)
(A6)

with eigenvalues and corresponding normalized eigenvectors:

λmax =
cosh(βJ)

2c−3
−→ e⃗λmax =

1√
2

(
1
1

)
; (A7)

λ− =
sinh(βJ)

2c−3
−→ e⃗λ− =

1√
2

(
1
−1

)
. (A8)
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Using the decomposition of symmetric matrices we write the Lth power of T (σ,τ),
scaled by λL

max:

TL (σ,τ)

λL
max

= e⃗λmax (σ) e⃗λmax (τ)+λL e⃗λ− (σ) e⃗λ− (τ) , (A9)

where we defined λ≡ λ−/λmax = tanh(βJ) .

From (A2) and (A6) we can conclude that e⃗λmax(σ)∝
√
Q(σ)c:

Q(σ)∝ 1√
Q(σ)c−2

∑
σk=±1

T (σ,σk)
1√

Q(σk)
c−2

Q(σk)
c−1 , (A10)

that is: √
Q(σ)c ∝

∑
σk=±1

T (σ,σk)
√

Q(σk)
c . (A11)

Moreover, since e⃗λmax has norm 1:

e⃗λmax =

√
Q(σ)c√∑
σ ′ Q(σ ′)c

. (A12)

Next, we can compute the (scaled) partition function ZL(σ,τ) for an open chain
with fixed boundary spins σ and τ (without entering cavity fields on σ and τ , except
for the ones coming from the considered chain, this means that the connectivity of the
central spins is c, while the one of σ and τ is 1):

ZL (σ,τ)≡
TL (σ,τ)/λL

max√
Qc−2 (σ)

√
Qc−2 (τ)

=
e⃗λmax (σ) e⃗λmax (τ)√
Qc−2 (σ)

√
Qc−2 (τ)

+λL e⃗λ− (σ) e⃗λ− (τ)√
Qc−2 (σ)

√
Qc−2 (τ)

,

(A13)

that is

ZL (σ,τ) =
Q(σ)√∑
σ ′ Q(σ ′)c

Q(τ)√∑
σ ′ Q(σ ′)c

+λL e⃗λ− (σ) e⃗λ− (τ)√
Qc−2 (σ)

√
Qc−2 (τ)

. (A14)

Notice that for L→∞ the marginal probability between the two spins is factorized
because the second term of the RHS tends to zero, being λ< 1. In this case, Q(σ) must
be the marginal probability distribution of the spin σ. This is indeed the case (in the
analyzed chain the connectivity of the boundary spins is 1).

We compactly rewrite the previous quantity for the case of the Ising model (without
external field) :

ZL (σ,τ) = PB (σ)PB (τ)+λL gλ (σ) gλ (τ) , (A15)

where we defined (similarly to [7]) PB(σ) and gλ(σ):

PB (σ)≡ Q(σ)√∑
σ ′ Q(σ ′)c

and gλ (σ)≡
e⃗λ− (σ)√
Qc−2 (σ)

, (A16)
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From equation (A5), we have:

PB (σ) = 2
c−3
2

(
1

1

)
and gλ (σ) = 2

c−3
2

(
1

−1

)
. (A17)

As a remark we notice that, while PB(σ) is even with respect its argument, gλ(σ) is
odd. This is an important consequence of the Z2 symmetry of the Ising model. This
symmetry reveals to be of fundamental importance in the computation of the observable,
on a specific topology, using the cavity method.

The first important thing to check is the self-consistency of ZL(σ,τ), namely if two
chains of length L1 and L2 are joined together, once summed over the internal spin σ0,
the scaled partition function of the total chain of length L1+L2 should have the same
form: ∑

σ0=±1

ZL1 (σ1,σ0)Q(σ0)
c−2ZL2 (σ0,σ2)

!
= ZL1+L2 (σ1,σ2) . (A18)

This can be done plugging in ZL1(σ1,σ0) and ZL2(σ0,σ2) their definitions from
equation (A13) and summing over σ0, to check that the definitions of PB(σ) and gλ(σ)
are consistent:∑

σ0=±1

ZL1 (σ1,σ0)Q(σ0)
c−2ZL2 (σ0,σ2)

=
∑
σ0=±1

(
PB (σ1)PB (σ0)+λL1 gλ (σ1)gλ (σ0)

)
Q(σ0)

c−2 (PB (σ0)PB (σ2)

+λL2 gλ (σ0)gλ (σ2)
)

=

( ∑
σ0=±1

PB (σ0)
2Q(σ0)

c−2

)
PB (σ1)PB (σ2)

+

( ∑
σ0=±1

gλ (σ0)
2Q(σ0)

c−2

)
λL1+L2gλ (σ1)gλ (σ2) , (A19)

where the last equality is justified by the fact the function gλ(σ) is odd with respect to
the argument. This implies two identities:∑

σ=±1

PB (σ)2Q(σ)c−2 = 1 and
∑
σ=±1

gλ (σ)
2Q(σ)c−2 = 1, (A20)

both can be easily verified using the definitions equation (A16), remembering that∑
σQ(σ) = 1 and

∑
σ e

2
λ−
(σ) = 1.

Notice that the expression for the joint probability distribution, given in
equation (A15), can be generalized for the case of variables with a generic measure
dµ(σ), taking into account the fact that the transfer matrix would have an infinite set
of eigenvalues and eigenfunctions, so that

ZL (σ,τ) = PB (σ)PB (τ)+
∑
i=2,...

|λi+1|<|λi|<1

λL
i gλi

(σ) gλi
(τ) , (A21)
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Figure 3. Topological diagram contributions to the 4-point connected correlation
function. The order O(1/M 3) is the simple cross without loops connecting the four
spins. At order O(1/M 4), that is at one loop, for each topology there are two
distinct contributions: G5 and G7. As in the case of the 2-point correlation, one
should also consider the so-called ‘boucle’ diagrams, G6 and G8, where the line does
not close in a loop on the layered lattice but realizes it in the projection. A similar
contribution for G6 is the one where the superimposition happens in the left internal
vertex and it is not represented in the figure. Thus we should include a factor 2 for
the G6 boucle contribution of the 4-point function. The weight for boucle diagrams
is W (G6) =W (G8) = 1/M 3− 1/M 4.

where λ2 corresponds to λ and it is the one that assumes the critical value λc =
1

2D−1
at the critical temperature Tc. In appendix B.2 we explore the case of the soft spin
variables, getting the same result as the Ising case.

A.2. 4-point connected correlation function

Following the method introduced in section 3, we compute the 4-points connected cor-
relation function. In this case the leading term is O

(
1/M 3

)
and we should include

all contributions up to O
(
1/M 4

)
in order to consider the diagrams up to one loop

level. The result is reported in figure 3, the corresponding weights are: W (G4) = 1/M 3,
W (G5) =W (G7) = 1/M 4, W (G6) =W (G8) = 1/M 3− 1/M 4.

Let us look now at the 4-point function, starting from diagram G4 in figure 3.
We have:

〈σ1σ2σ3σ4〉
∣∣∣
G4

=

λ
∑4

i=1Li

( ∑
σ=±1

σgλ (σ)Q(σ)c−1

)4 ( ∑
σ0=±1

gλ (σ0)
4 Q(σ0)

c−4

)
( ∑

σ=±1
PB (σ)Q(σ)c−1

)4 ( ∑
σ0=±1

PB (σ0)
4 Q(σ0)

c−4

) = λ
∑4

i=1Li ,

(A22)
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where we used the definitions of PB(σ), gλ(σ) and Q(σ), respectively equations (A17)
and (A5). Now we compute the connected 4-point correlation function:

〈σ1σ2σ3σ4〉c = 〈σ1σ2σ3σ4〉− 〈σ1σ2〉〈σ3σ4〉− 〈σ1σ3〉〈σ2σ4〉− 〈σ1σ4〉〈σ2σ3〉 , (A23)

where the 3-point and 1-point connected correlation functions are zero for symmetry
reasons, hence they are not included in the definition of the 4-point one. We compute
the 2-point function between σ1 and σ2, the others are similar:

〈σ1σ2〉
∣∣∣
G4

= λL1+L2

( ∑
σ=±1

σgλ (σ)Q(σ)
c−1

)2( ∑
σ=±1

PB (σ)Q(σ)
c−1

)2( ∑
σ0=±1

gλ (σ0)
2
PB (σ0)

2
Q(σ0)

c−4

)
( ∑

σ=±1
PB (σ)Q(σ)

c−1

)4 ( ∑
σ0=±1

PB (σ0)
4
Q(σ0)

c−4

)
= λL1+L2 . (A24)

We thus have:

〈σ1σ2σ3σ4〉c
∣∣∣
G4,lc

= 〈σ1σ2σ3σ4〉c
∣∣∣
G4

= λ
∑4

i=1Li

( ∑
σ=±1

σgλ (σ)Q(σ)c−1

)4

( ∑
σ=±1

PB (σ)Q(σ)c−1

)4

×


∑

σ0=±1
gλ (σ0)

4 Q(σ0)
c−4

∑
σ0=±1

PB (σ0)
4 Q(σ0)

c−4 − 3


=−2λ

∑4
i=1Li , (A25)

〈σ1σ2σ3σ4〉c
∣∣∣
G4

coincides with the corresponding definition of line-connected observable,

since removing any of the lines of G4 the graph becomes disconnected, giving zero
contribution.

At one loop level we compute the 4-point correlation defined on a graph with the
topology, G5, depicted in figure 3. At this level we have to keep track of the definition of
line-connected correlation and the definition of connected correlation, as explained for
the 2-point correlation function. The former implies the subtraction of the connected
4-point correlation function computed on a graph with the two diagrams of figure 4.
We can compute the total 4-point correlation function on G5 obtaining:

⟨σ1σ2σ3σ4⟩
∣∣∣
G5

=

λ
∑4

i=1 Li

( ∑
σ=±1

σgλ (σ)Q(σ)c−1

)4
[( ∑

σ=±1
gλ (σ)

2 PB (σ)2 Q(σ)c−4

)2

+λLA+LB

( ∑
σ=±1

gλ (σ)
4 Q(σ)c−4

)2
]

( ∑
σ=±1

PB (σ)Q(σ)c−1

)4
[( ∑

σ=±1
PB (σ)4 Q(σ)c−4

)2

+λLA+LB

( ∑
σ=±1

gλ (σ)
2 PB (σ)2 Q(σ)c−4

)2
]

= λ
∑4

i=1 Li ; (A26)
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Figure 4. G5a (left), G5b (right) .

while the 2-point functions can be of two different kinds:

⟨σ1σ2⟩
∣∣∣
G5

=

λ
∑2

i=1 Li

( ∑
σ=±1

σgλ (σ) Q (σ)c−1

)2 ( ∑
σ=±1

PB (σ) Q (σ)c−1

)2 ( ∑
σ=±1

gλ (σ)
2 PB (σ)2 Q (σ)c−4

)2 (
λLA + λLB

)
( ∑

σ=±1
PB (σ) Q (σ)c−1

)4
[( ∑

σ=±1
PB (σ)4 Q (σ)c−4

)2

+ λLA+LB

( ∑
σ=±1

gλ (σ)
2 PB (σ)2 Q (σ)c−4

)2
]

= λ
∑2

i=1 Li
λLA + λLB

1+ λLA+LB
, (A27)

and

⟨σ1σ3⟩
∣∣∣
G5

= λL1+L3

( ∑
σ=±1

σgλ (σ)Q(σ)c−1

)2 ( ∑
σ=±1

gλ (σ)
2 PB (σ)2 Q(σ)c−4

)[ ∑
σ=±1

PB (σ)4 Q(σ)c−4 +λLA+LB
∑

σ=±1

gλ (σ)
4 Q(σ)c−4

]
( ∑

σ=±1

PB (σ)Q(σ)c−1

)4
[( ∑

σ=±1

PB (σ)4 Q(σ)c−4

)2

+λLA+LB

( ∑
σ=±1

gλ (σ)
2 PB (σ)2 Q(σ)c−4

)2
]

= λL1+L3 , (A28)

All in all:

〈σ1σ2σ3σ4〉c
∣∣∣
G5

= 〈σ1σ2σ3σ4〉
∣∣∣
G5

−〈σ1σ2〉〈σ3σ4〉
∣∣∣
G5

−〈σ1σ3〉〈σ2σ4〉
∣∣∣
G5

−〈σ1σ4〉〈σ2σ3〉
∣∣∣
G5

=−2

(
λLA +λLB

)2
(1+λLA+LB)

2 λ
∑4

i=1Li . (A29)

Following the prescriptions of the M -layer construction we compute the line-
connected 4-point connected correlation function subtracting the contributions of

〈σ1σ2σ3σ4〉c
∣∣∣
G5a

and 〈σ1σ2σ3σ4〉c
∣∣∣
G5b

, as depicted in figure 4, to 〈σ1σ2σ3σ4〉c
∣∣∣
G5

. For G5a

we find
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⟨σ1σ2σ3σ4⟩c
∣∣∣
G5a

=

λ
∑4

i=1 Li

( ∑
σ=±1

σgλ (σ)Q(σ)c−1

)4 ( ∑
σ=±1

gλ (σ)
2 PB (σ)Q(σ)c−3

)2

( ∑
σ=±1

PB (σ)Q(σ)c−1

)4 ( ∑
σ=±1

PB (σ)3 Q(σ)c−3

)2

− 2

λ2LB+
∑4

i=1 Li

( ∑
σ=±1

σgλ (σ)Q(σ)c−1

)4 ( ∑
σ=±1

PB (σ)Q(σ)c−1

)4 ( ∑
σ=±1

gλ (σ)
2 PB (σ)Q(σ)c−3

)4

( ∑
σ=±1

PB(σ

)
Q(σ)c−1

)8( ∑
σ=±1

PB(σ)3Q(σ)c−3
)4 +

−
λ
∑4

i=1 Li

( ∑
σ=±1

PB(σ)Q(σ)c−1
)4( ∑

σ=±1

gλ(σ)2PB(σ)Q(σ)c−3
)2( ∑

σ=±1

PB(σ)3Q(σ)c−3
)2

( ∑
σ=±1

PB(σ)Q(σ)c−1
)4( ∑

σ=±1

PB(σ)3Q(σ)c−3
)4

=−2λ2LB+
∑4

i=1 Li , (A30)

analogously for G5b:

〈σ1σ2σ3σ4〉c
∣∣∣
G5b

=−2λ2LA+
∑4

i=1Li . (A31)

At this point we have all the ingredients to compute the corresponding line-connected
observable:

〈σ1σ2σ3σ4〉c
∣∣∣
G5, lc

= 〈σ1σ2σ3σ4〉c
∣∣∣
G5

−〈σ1σ2σ3σ4〉c
∣∣∣
G5a

−〈σ1σ2σ3σ4〉c
∣∣∣
G5b

= λ
∑4

i=1Li

[
−2

(
λLA +λLB

)2
(1+λLA+LB)

2 +2λ2LA +2λ2LB

]
, (A32)

which can be Taylor-expanded up to O(λ6L), in the limit of LA ∼ LB ∼ Li ∼ L→∞:

〈σ1σ2σ3σ4〉c
∣∣∣
G5, lc

=−4λLA+LB+
∑4

i=1Li +O
(
λ8L
)
. (A33)

Before computing the contributions of the boucle diagrams for the 4-point function
let us notice that two more diagrams, with the same topology of G5 as explicitly shown in
figure 3, contribute. One is obtained by exchanging x 1 and x 2 and, similarly, the second
is obtained by exchanging x 1 and x 4. These two additional cases are not included in
the symmetry factor due to the different entrance directions of the lines in the internal
vertices, thus they must be added by hand. Notice that these contributions are present in
the continuum field theory associated with the Ising model due to Wick’s theorem. The
same symmetry reasoning is true for the next contributions, the boucle diagrams G6. By
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writing G5 and G6 we include, in the following, also their external vertices permutations.
The boucle diagrams for the 4-point function, reported in figure 3, contribute with:

〈σ1σ2σ3σ4〉c
∣∣∣
G6,lc

=

λLA+LB+
∑4

i=1Li

( ∑
σ=±1

σgλ (σ)Q(σ)c−1

)4

( ∑
σ=±1

PB (σ)Q(σ)c−1

)4

×


∑

σ=±1
gλ (σ)

4 Q(σ)c−4

∑
σ=±1

PB (σ)4 Q(σ)c−4 − 3

( ∑
σ=±1

gλ (σ)
2 PB (σ)2 Q(σ)c−4

)2

( ∑
σ=±1

PB (σ)4 Q(σ)c−4

)2


=−2λLA+LB+

∑4
i=1Li . (A34)

Similarly, there is also the contribution due to the diagram where the overlap of
the lines is in σ0. Since in this case the value of the observable is exactly the same as
defined on diagram G6 we will simply add a factor 2 in front of the contribution of G6

(see equation (A38)).
Now we compute the line-connected 4-point connected correlation function on the

four possible diagrams of the kind of G7, that is where one of the external lines includes
a loop of the same kind of G2, as depicted in figure 3.

〈σ1σ2σ3σ4〉c
∣∣∣
G7, lc

= λ
∑4

i=1Li

( ∑
σ=±1

σgλ (σ)Q(σ)c−1

)4

( ∑
σ=±1

PB (σ)Q(σ)c−1

)4


∑

σ=±1
gλ (σ)

4 Q(σ)c−4

∑
σ=±1

PB (σ)4 Q(σ)c−4 − 3



×λL0


∑

σ=±1
gλ (σ)

4 Q(σ)c−4

∑
σ=±1

PB (σ)4 Q(σ)c−4 − 1

= 0. (A35)

The line connected 4-point connected correlation function on the four possible dia-
grams of the kind G8, that is where one of the external lines includes a boucle, is:

〈σ1σ2σ3σ4〉c
∣∣∣
G8, lc

= λL0+
∑4

i=1Li

( ∑
σ=±1

σgλ (σ)Q(σ)c−1

)4

( ∑
σ=±1

PB (σ)Q(σ)c−1

)4


∑

σ=±1
gλ (σ)

4 Q(σ)c−4

∑
σ=±1

PB (σ)4 Q(σ)c−4 − 3


=−2λL0+

∑4
i=1Li . (A36)

For G7 and G8 all four possible permutations of the external vertices should be included,
considering, in this way, the four possible positions of the loop on the external lines.
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Before going on, we want to comment on the role of G5a and G5b. We computed
the contribution of the 4-point correlation on them because it was needed for the com-
putation of the line-connected observable on G5, see equation (A32), but the attentive
reader could ask why we did not consider them giving a contribution also in the 0-loop
order for the 4-point observable. In fact, such a diagram would contribute with the same
weight as G4, that is 1/M

3, as can be checked with the same arguments given for com-
puting the weight of the other diagrams in the main text. The difference, with respect to

〈σ1σ2σ3σ4〉c
∣∣∣
G4,lc

is that the potential contribution of 〈σ1σ2σ3σ4〉c
∣∣∣
G5a,lc

= 〈σ1σ2σ3σ4〉c
∣∣∣
G5a

in equation (A30), would go as O(λ6L), in the limit of LA ∼ LB ∼ Li ∼ L→∞, while

〈σ1σ2σ3σ4〉c
∣∣∣
G4,lc

=O(λ4L). G5a can thus be neglected in the large-lengths limit w.r.t. G4.

Let us underline that G5a is a diagram with cubic vertices: the fact that it is subdom-
inant with respect to the diagram G4 is in agreement with the fact that we expect the
M -layer construction to give the same results as a standard field theoretical approach,
for which cubic diagrams are absent.

At this point, we can put all the contributions together, including the weights, in
terms of inverse power of M, W (G), of each diagram G and the corresponding symmetry
factor S(G). Remembering that

W (G4) =
1

M 3
S (G4) = 1 〈σ1σ2σ3σ4〉c

∣∣∣
G4, lc

=−2λ
∑4

i=1Li ;

W (G5) =
1

M 4
S (G5) = 2 〈σ1σ2σ3σ4〉c

∣∣∣
G5, lc

'−4λLA+LB+
∑4

i=1Li ;

W (G6) =
1

M 3

(
1− 1

M

)
S (G6) = 1 〈σ1σ2σ3σ4〉c

∣∣∣
G6, lc

=−2λLA+LB+
∑4

i=1Li ;

W (G7) =
1

M 4
S (G7) = 2 〈σ1σ2σ3σ4〉c

∣∣∣
G7, lc

= 0;

W (G8) =
1

M 3

(
1− 1

M

)
S (G8) = 1 〈σ1σ2σ3σ4〉c

∣∣∣
G8, lc

=−2λL0+
∑4

i=1Li , (A37)

the 4-point function is:

〈σ (x1)σ (x2)σ (x3)σ (x4)〉c

=
(2D)4

M 3

(2D)!

(2D− 4)!

1,...,∞∑
L1,L2,L3,L4

∑
x0∈aZD

4∏
i=1

NLi
(xix0)〈σ1σ2σ3σ4〉c

∣∣∣
G4, lc

+
(2D)4

2M 4

(
(2D)!

(2D− 4)!

)2∑
L⃗

∑
x0,x ′

0∈aZD

∏
i=1,3

NLi
(xix0)

∏
i=2,4

NLi
(xix

′
0)

×NLA
(x0x

′
0)NLB

(x0x
′
0)〈σ1σ2σ3σ4〉c

∣∣∣
G5, lc

+

− 2
(2D)4

M 4

(
(2D)!

(2D− 4)!

)2∑
L⃗

∑
x0,x ′

0∈aZD

∏
i=1,3

NLi
(xix0)

∏
i=2,4

NLi
(xix

′
0)
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×NLA
(x0x

′
0)NLB

(x0x
′
0)〈σ1σ2σ3σ4〉c

∣∣∣
G6, lc

+
(2D)4

2M 4

(
(2D)!

(2D− 4)!

)2∑
L⃗ ′

∑
x0,x ′

0∈aZD

∏
i=1,3,4

NLi
(xix0)NL2A

(x ′
0x0)

×NL0(x
′
0x

′
0)NL2B

(x2x
′
0)〈σ1σ2σ3σ4〉c

∣∣∣
G7, lc

+

− (2D)4

M 4

(
(2D)!

(2D− 4)!

)2∑
L⃗ ′

∑
x0,x ′

0∈aZD

∏
i=1,3,4

NLi
(xix0)NL2A

(x ′
0x0)

×NL0(x
′
0x

′
0)NL2B

(x2x
′
0)〈σ1σ2σ3σ4〉c

∣∣∣
G8, lc

+permutations of G5,G6,G7 and G8+O
(

1

M 5

)
, (A38)

where L⃗= {L1,L2,L3,L4,LA,LB}, L⃗ ′ = {L1,L2A,L2B ,L3,L4,L0}. We can also write the
4-point function in Fourier space. The convention used here for the Fourier transform
is the following:

f̂ (k) = aD
∑

x∈aZD

f (x)eikx , f (x) =

ˆ
[− π

a
, π
a ]

dDk

(2π)D
f̂ (k)e−ikx ; (A39)

which implies(
2π

a

)D

δD (k) =
∑

x∈aZD

eikx . (A40)

Moreover, we can use the definition of the generating function of the NBP [7, 14]:

Bλ (xf ,xi) =
∞∑
L=1

NL (xf ,xi)λ
L . (A41)

Going into Fourier space, the 4-point function reads:

〈σ (k1)σ (k2)σ (k3)σ (k4)〉c

=−2(2D)4

M 3

(2D)!

(2D− 4)!

(
2π

a

)D

δD

(
4∑

i=1

ki

)
4∏

i=1

B̂λ (ki)

1− 1

2

2

M

(2D)!

(2D− 4)!

1

aD

4∑
j=2

×
ˆ

dDq

(2π)D
B̂λ (q)B̂λ (q+ k1+ kj)

)

+
4∑

j=1

2(2D)4

M 4

(
(2D)!

(2D− 4)!

)2
(2π)D

(aD)
2 δ

D

(
4∑

i=1

ki

)
4∏

i=1

B̂ (ki)B̂(kj)

×
ˆ

dDq

(2π)D
B̂(q)+O

(
1

M 5

)
, (A42)
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Notice that with the sum over j we include all the permutations of the external
vertices on G5, G6, G7 and G8. Defining

g̃ ≡ 2

M

(2D)!

(2D− 4)!
(A43)

we get:

〈σ (k1)σ (k2)σ (k3)σ (k4)〉c

=
(2D)

4

M 2

(
2π

a

)D

δD

(
4∑

i=1

ki

)
4∏

i=1

B̂λ (ki)

−g̃+
1

2
g̃2

1

aD

4∑
j=2

ˆ
dDq

(2π)
D
B̂λ (q)B̂λ (q+ k1 + kj)


+

4∑
j=1

1

2

(2D)
4

M 2
g̃2

(2π)
D

(aD)
2 δ

D

(
4∑

i=1

ki

)
4∏

i=1

B̂ (ki)B̂ (kj)

ˆ
dDq

(2π)
D
B̂ (q)+O

(
1

M 5

)
. (A44)

This is the result for the computation of the 4-point connected correlation function
for the D dimensional Ising model due to theM -layer construction, up to orderO(1/M 5)
forM →∞. To be precise we also made use of the fact that, since we are interested in the
critical behavior, we can perform the large-lengths limit. In the next section, exploiting
the critical behavior, we consider the small momentum limit of the generating functions
of the NBP and we perform the dimensional analysis to complete the mapping to the
continuum field theory.

A.3. Dimensional analysis

The Fourier transform of the generating function of the number of NBPs can be
computed [7, 14]:

B̂λ (k) = aD
∑

x∈aZD

1,...,∞∑
L

NL (x,0)λ
L eikx = aD

2Dλ(F (k)−λ)

1+λ2 (2D− 1)− 2DλF (k)
, (A45)

where:

F (k) =
1

D

D∑
µ=1

cos(kµa) , (A46)

given a, the lattice spacing. At this point one can argue that the interesting limit for
the critical behavior is the one for k → 0, for which, using (A45):

B̂−1
λ

(
k � 1

a

)
=

1

aD
1−λ(2D− 1)

2Dλ
+

1

aD
λ+1

4D2λ(1−λ)
(ka)2+O

(
(ka)4

)
, (A47)

to reproduce the Gaussian propagator we can define:

τ̃ ≡ 1

aD
1−λ(2D− 1)

2Dλ
and ρ̃≡ 1

aD−2

λ+1

4D2λ(1−λ)
, (A48)

https://doi.org/10.1088/1742-5468/ad526e 30

https://doi.org/10.1088/1742-5468/ad526e


Bethe M-layer construction on the Ising model

J.S
tat.

M
ech.(2024)

063301

so that:

B̂−1
λ

(
k � 1

a

)
= ρ̃k2+ τ̃ +O

(
(ka)4

)
. (A49)

Let us consider the 2-point function for simplicity. Plugging B̂−1
λ

(
k � 1

a

)
, neglecting

O
(
(ka)4

)
, inside equation (37) we get:

〈σ (p)σ (q)〉c = (2π)D δD (p+ q)
(2D)2

M

1

ρ̃p2+ τ̃

(
1− 1

2
g̃
1

aD
1

ρ̃q2+ τ̃

ˆ
[− π

a
, π
a ]

D

dDk

(2π)D
1

ρ̃k2+ τ̃

)

+O
(

1

M 3

)
, (A50)

from which we see how to redefine τ̃ , ρ̃ and g̃ in order to reproduce the continuum field
theory result, displayed in equation (2):

τ ≡ M

(2D)2
τ̃ , ρ≡ M

(2D)2
ρ̃ and g ≡ 1

aD
M 2

(2D)4
g̃ . (A51)

Now we want to express the dimensions of these three parameters in terms of length
unit, [L], and field unit, [σ]. To this aim, we should remember that, when computing the
observables using the RS cavity method, we simplified all the terms containing sums
over σ of powers of PB(σ), gλ(σ) and Q(σ), making use of their definitions. One of
these terms is

∑
σ=±1σgλ(σ)Q(σ)c−1, which had dimensions [σ]. Notice that this term,

appearing with power 2 at the numerator of 〈σ1σ2〉c (as can be checked by looking at
equation (28), or equation (29) and so on), is the one that gives the 2-point function
the right dimensions, that is [σ]2. Keeping track of these dimensional terms, inside the
redefined parameter, we can understand that:

[τ ] = [L ]−D [σ ]−2 (A52)

[ρ ] = [L ]2−D [σ ]−2 (A53)

[g ] = [L ]−D [σ ]−4 . (A54)

The presence of these terms with the same dimensions as the field, [σ ], is more explicit
for soft spin variables, see equations (B16) and (B17) in appendix B.2. The same can
be done for the 4-point function, repeating the same steps, starting from (A38) and
performing the k → 0 limit, with the same definitions of τ , ρ and g :

⟨σ (k1)σ (k2)σ (k3)σ (k4)⟩c =
1

M 2
(2π)D δD

(
4∑

i=1

ki

)
4∏

i=1

G(ki)

[
−g+

1

2
g2 (I (k1 + k2)+ I (k1 + k3)+ I (k1 + k4))

]
+O

(
1

M 5

)
, (A55)

where

I (q)≡
ˆ
[− π

a
, π
a ]

D

dDp

(2π)D
1

ρp2+ τ
· 1

ρ(p+ q)2+ τ
, (A56)
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G(q)≡ 1

ρq2+ τ

(
1− 1

2
g

1

ρq2+ τ

ˆ
[− π

a
, π
a ]

D

dDk

(2π)D
1

ρk2+ τ

)
. (A57)

To complete the mapping to the standard theory we recall some ideas. Let us consider
the gϕ4 action:

L=

ˆ
dDx

(
1

2
γ∇ϕ(x) ·∇ϕ(x)+

1

2
m2ϕ2 (x)+

1

4!
g0ϕ

4 (x)

)
, (A58)

from which the Gaussian propagator reads:

Ĝ0 (k) =
1

γ k2+m2
, (A59)

where γ, m2 and g0 depend on the temperature of the system, while ϕ(x) is the value of
the field at the point x of the D-dimensional space where it is defined. Their dimensions
can be easily expressed in terms of length unit [L], using that L is adimensional:

1
!
=

[ˆ
dDxγ (∇ϕ)2

]
= [L ]D−2 [γ ] [ϕ ]2 → [γ ] = [L ]2−D [ϕ ]−2 (A60)

1
!
=

[ˆ
dDxm2ϕ2

]
= [L ]D

[
m2
]
[ϕ ]2 →

[
m2
]
= [L ]−D [ϕ ]−2 (A61)

1
!
=

[ˆ
dDxg0ϕ

4

]
= [L ]D [ϕ ]4 → [g0 ] = [L ]−D [ϕ ]−4 . (A62)

One can notice that the constant ρ, defined in the M -layer framework, corresponds
to the temperature-dependent parameter γ of the continuum g0ϕ

4 field theory, as well
as τ corresponds to m2 and g to g0, once the spin field σ is identified with the field
ϕ. This last remark completes the mapping between the M -layer framework and the
continuum field theory.

Appendix B. Caveats

This section is devoted to underline two subtleties about the whole approach. The first
is a non-trivial caveat about the geometry of the M -layer construction; the second is
a relevant generalization of the previous arguments to soft spin variables, introducing
features that are absent for the Ising model.

B.1. Degree of the interaction in the M-layer framework

A simple question could come to mind: using the M -layer approach on the aZD lattice
how can one reproduce interactions with degree larger than the connectivity of the
lattice, 2D? Naively thinking, it seems impossible to map the M -layer construction
results in every possible field theory, since the latter can always include all possible
kinds of interactions that respect the symmetry of the problem. Nevertheless in the
M -layer construction, it is possible to find vertices with interaction degrees larger than
2D. This can be realized by connecting, for instance in D =2, two vertices of degree
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Figure 5. Left: In a 2-dimensional lattice, two vertices of degree 4 are connected
by a line of length L0. When exploiting the large-length limit for all the lines, but
keeping L0 finite, the resulting contribution from this diagram is numerically the
same as the one of a 6-degree vertex. Right: 4 vertex of degree 4 are connected by
lines of length L0. In the large-length limit for all the lines, but keeping L0 finite,
the resulting contribution from this diagram is numerically the same as the one of
a 8-degree vertex.

4 by a line of length L0, as shown in figure 5. When exploiting the large-length limit
for all the lines, but keeping L0 finite, the resulting contribution from this diagram is
numerically the same as the one of a 6-degree vertex. Analogously a similar procedure
can be applied to realize an 8-degree vertex as depicted in figure 5. A similar feature has
already been found in some computations regarding the M -layer construction applied
to the Random Field Ising model [8].

It is easy to generalize this argument to generate a vertex with generic degree from
the M -layer construction.

B.2. Soft spin variables

In this section we want to generalize the results, given for the Ising model with dicho-
tomous variables, for generic soft spin variables σ, with measure dµ(σ). The case of
dichotomous variables is recovered simply with:

dµ(σ) = δ
(
1−σ2

)
dσ . (B1)

In this more general case, we should repeat the steps made in the appendix A.1 to
compute the joint probability of two spins on an open chain, ZL(σ,τ). We can introduce
the cavity distribution, Q(σ), analogously:

Q(σ) =
1

ZQ

ˆ
dµ(σk)e

βJσσkQc−1 (σk) (B2)

ZQ =

ˆ
dµ(σk)dµ(σ)e

βJσσkQc−1 (σk) , (B3)

where c is the connectivity of the associated RRG graph. Here we only note that the
transfer matrix

T (σ,τ) =

√
Q(σ)c−2eβJστ

√
Q(τ)c−2 (B4)
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is no more a 2× 2 matrix, but an infinite dimensional operator, which has an infinite
set of eigenvalues and eigenvectors:

T (σ,τ)

λmax
= e⃗λmax (σ) e⃗λmax (τ)+

∑
i=2,...

|λi+1|<|λi|<1

λi e⃗λi(σ)e⃗λi
(τ) , (B5)

where λ2 corresponds to λ, of the Ising variables case, and it is the one that assumes
the critical value λc =

1
2D−1 at the critical temperature Tc. The orthonormal eigenvector

of T (σ,τ), e⃗λmax(σ), can be checked to be:

e⃗λmax (σ) =

√
Q(σ)c√´

dµ(σ)Q(σ)c
, (B6)

where λmax = ZQ. On the other hand:

ˆ
dµ(τ)T (σ,τ) e⃗λi

(τ) = λi e⃗λi
(σ) and

ˆ
dµ(σ) e⃗λi

(σ)2 = 1. (B7)

Given this general form of T (σ,τ) we compute, repeating the same steps, the joint
probability:

ZL (σ,τ) = PB (σ)PB (τ)+
∑
i=2,...

|λi+1|<|λi|<1

λL
i gλi

(σ) gλi
(τ) , (B8)

where

PB (σ)≡ e⃗λmax (σ)√
Q(σ)c−2

and gλi
(σ)≡ e⃗λi

(σ)√
Q(σ)c−2

. (B9)

Given that |λi+1|< |λi|< 1 ∀ i⩾ 2 and the fact that we want to describe the critical
limit, in the regime of large lengths L, we neglect all the terms with i⩾ 3, obtaining,
for ZL(σ,τ), the same form as for the Ising variables case: ZL(σ,τ)' PB(σ)PB(τ)+
λL gλ(σ)gλ(τ), where we denoted λ2 with λ. All the computations of the observables on
a specific diagram go along the same way as for the Ising case. A difference with respect
to the Ising variables case is that now we do not have an explicit expression for Q(σ)
and e⃗λ(σ). This means that in computing observables we should keep track of all the
constants involving the three functions PB(σ), gλ(σ) and Q(σ). To this aim, we define
a function:

f (x,y,z,w)≡
ˆ

dµ(σ)σxgλ (σ)
yP z

B (σ)Q(σ)c−w . (B10)
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The relevant points, useful in the following, over which f is computed are:

f (0,2,2,4) =

ˆ
dµ(σ)gλ (σ)

2P 2
B (σ)Q(σ)c−4 =

(ˆ
dµ(σ)Q(σ)c

)−1

=

ˆ
dµ(σ)P 4

B (σ)Q(σ)c−4 = f (0,0,4,4) ; (B11)

f (0,2,1,3) =

ˆ
dµ(σ)gλ (σ)

2PB (σ)Q(σ)c−3 =

(ˆ
dµ(σ)Q(σ)c

)− 1
2

=

ˆ
dµ(σ)P 3

B (σ)Q(σ)c−3 = f (0,0,3,3) ; (B12)

f (0,0,1,1) =

ˆ
dµ(σ)PB (σ)Q(σ)c−1 =

(ˆ
dµ(σ)Q(σ)c

) 1
2

; (B13)

f (1,1,0,1) =

ˆ
dµ(σ) σgλ (σ)Q(σ)c−1 =

ˆ
dµ(σ) σ e⃗λ (σ)Q(σ)

c
2 ; (B14)

f (0,4,0,4) =

ˆ
dµ(σ)gλ (σ)

4Q(σ)c−4 =

ˆ
dµ(σ)

e⃗λ (σ)

Q(σ)c
, (B15)

where equations (B11) and (B12) can be verified by making use of the definitions of
PB(σ) and gλ(σ) in equations (B9) and the normalization of e⃗λi

(σ) in equation (B7).
Now we have all the ingredients to write the results of the 2-point and 4-point connected
correlation function for the Ising model with generic soft spin variables. We remark that
these results are valid in the critical regime, where the lengths of the lines composing
the diagrams are large. The final expressions are the same as equations (2) and (7),
what change are the definitions of the parameters:

g ≡−
(
f (0,4,0,4)

f (0,0,4,4)
− 3

)
M

aD (2D)4
(2D)!

(2D− 4)!
, (B16)

τ ≡ M

(2D)2
1

aD
1−λ(2D− 1)

2Dλ

f (0,0,1,1)2

f (1,1,0,1)2
and

ρ≡ M

(2D)2
1

aD−2

1+λ

4D2λ(1−λ)

f (0,0,1,1)2

f (1,1,0,1)2
. (B17)

We note that, using the definition of the function f, equation (B10), and then the
definitions of PB(σ), gλ(σ) and Q(σ) for the case of Ising variables, we simply recover the
results shown in the main text. On the other hand we want to stress that the definitions
of the parameters, equations (B16) and (B17), are only valid at the critical point. This
is due to the fact that we neglected all the terms with λi for i⩾ 3 in equation (B8),
causing the definitions of the functions f(x,y,z,w) to be valid only for large L. On the
other hand these additional neglected terms do not change universal quantities, such as
critical exponents.

We also notice the explicit presence of the dimensional constant f(1,1,0,1) at the
denominator of τ and ρ, as noticed in appendix A.3 with the dimensional analysis.
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