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Abstract
We study continuous finite element dicretizations for one dimensional hyperbolic partial
differential equations. The main contribution of the paper is to provide a fully discrete
spectral analysis, which is used to suggest optimal values of the CFL number and of the
stabilization parameters involved in different types of stabilization operators. In particular,
we analyze the streamline-upwind Petrov–Galerkin stabilization technique, the continuous
interior penalty (CIP) stabilization method and the orthogonal subscale stabilization (OSS).
Three different choices for the continuous finite element space are compared: Bernstein
polynomials, Lagrangian polynomials on equispaced nodes, and Lagrangian polynomials
on Gauss-Lobatto cubature nodes. For the last choice, we only consider inexact quadrature
based on the formulas corresponding to the degrees of freedom of the element, which allows
to obtain a fully diagonal mass matrix. We also compare different time stepping strategies,
namely Runge–Kutta (RK), strong stability preserving RK (SSPRK) and deferred correction
time integration methods. The latter allows to alleviate the computational cost as the mass
matrix inversion is replaced by the high order correction iterations. To understand the effects
of these choices, both time-continuous and fully discrete Fourier analysis are performed.
These allow to compare all the different combinations in terms of accuracy and stability,
as well as to provide suggestions for optimal values discretization parameters involved.
The results are thoroughly verified numerically both on linear and non-linear problems, and
error-CPU time curves are provided. Our final conclusions suggest that cubature elements
combined with SSPRK and CIP or OSS stabilization are the most promising combinations.
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1 Introduction

In this work we compare different numerical methods that can approximate the solution of
the one dimensional hyperbolic conservation laws

∂t u(x, t) + ∂x f (u(x, t)) = 0 x ∈ Ω ⊂ R, t ∈ R
+, (1)

where Ω ⊂ R is an interval, f : RD → R
D is the flux function and u : Ω → R

D is the
unknown of the system of equations. For the spectral analysis of the numerical methods we
will mainly focus on the particular case of a linear flux

f (u(x, t)) = au(x, t) , a = const . (2)

In this work, we compare different explicit high order accurate schemes based on the
continuous Galerkin (CG) approach. In general, the standard Finite Element Method (FEM)
derived by this approach require the inversion of a large sparse mass matrix. This procedure
can be expensive as the matrix multiplication must be iterated for all the time steps. Various
techniques have been introduced to overcome the mass matrix inversion while keeping the
high order accuracy of the scheme.

The first strategy we study is the one proposed in [1]. There, to avoid the inversion of the
mass matrix, a mass lumping is introduced, transforming the mass matrix into a diagonal one.
The deferred correction (DeC) iterative time integration method alters the right-hand side in
order to recover the original order of accuracy. Another approach consists of a careful choice
of quadrature points and basis functions in order to automatically obtain a diagonal mass
matrix. We denote such elements as cubature elements [35]. The classical use of Runge–
Kutta methods will provide the high order accuracy also for the time discretization.

The second aspect we will focus on is the stabilization technique. We emphasize that
without any special treatment on the boundaries, such as the ones in [4,5], the CG methods
are not always L2-stable at the discrete level for hyperbolic problems and there is the need
of additional stabilization terms. In particular, when periodic boundary conditions (BC) are
applied to the problem, the instability shows larger effects. That is why many different
stabilization techniques have been introduced for CG methods. These techniques can have
dissipation levels that are comparable to the ones brought by discontinuous Galerkin (DG)
with upwind numerical flux of the same order of accuracy, still remaining L2-stable [38,39].
The stabilization terms play an important role and we will compare three of them. The first
is the streamline upwind Petrov–Galerkin (SUPG) stabilization [11,17], which is strongly
consistent, but it is also introducing new terms in the mass matrix which are necessary to
retain the appropriate consistency order. This can only be alleviated when using DeC time
stepping. The second approach is the so-called continuous interior penalty (CIP) method
[13,15,18], which penalizes the jump of the derivative of the solution across cell boundaries.
This stabilization does not affect the mass matrix and, therefore, can be easily combined
with mass-matrix free methods. The last is the orthogonal subscale stabilization [19], which
penalizes the L2 projection of the gradient of the error within the elements. This technique
does not affect the mass matrix, but it requires the solution of another linear system for the
L2 projection. In this respect, the choice of the finite element space and of the quadrature
have enormous impact on the cost of the method.

The goal of this work is to analyze the different methods and their combinations, and give
suggestions concerning the most convenient choices in terms of accuracy, stability, and cost.
To achieve this objective an important role is played by a spectral analysis which we perform
both in the time-continuous and fully discrete cases. The analysis reveals the best parameters
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(stabilization and CFL coefficients) that can be stably used in practice. The stability of such
schemes will be practically computed thanks to a von Neumann analysis, which allows to
determine whether the L2-norm of the approximated solution is bounded by the initial one.
Other types of norms are sometimes more interesting as object of study, or simpler to be
bound in other contexts, for example in an analytical one. We will focus on the L2 discrete
norm stability in the majority of this work.

Numerical simulations for both linear and non-linear scalar problems, and for the shallow
water system confirm the theoretical results, and allow to further investigate the impact of
the discretization choices on the performance of the schemes and on their cost. The paper is
organized as follows. In Sect. 2 we introduce the different discretization methods, starting
from the choice of the elements, then discussing the stabilization terms and finally presenting
the different time integration methods. Sections 3 and 4 are dedicated to the Fourier stability
analysis. In Sect. 5 we provide some elements concerning the extension of the stabilization
methods discussed to nonlinear problems, and finally in Sect. 6 we show numerical results
on linear and nonlinear problems. The paper is ended by a summary and overlook on future
perspectives in Sect. 7.

2 Numerical Discretization

We are interested in the approximation of solutions of (1) on a tessellation of non overlapping
celles, which we denote by Ωh . We denote by K the generic cell of Ωh , and more precicely
Ωh = ⋃ K . We also introduce the set of internal element boundaries (cell faces in 2 and
3 dimensional domains, cell nodes in 1 dimensional one) of Ωh , which we denote by Fh .
h denotes the characteristic mesh size of Ωh . From here on, we will simplify the notation,
focusing on the scalar equation case D = 1, but the description can be easily generalized
by considering the vectorization of all solution variables and unknowns. When necessary,
we will also include some details that makes the exposition easily generalizable to systems
of PDEs. The discrete solution is sought in a continuous finite element space V p

h = {vh ∈
C0(Ωh) : � vhK ∈ Pp(K ) ∀K ∈ Ωh}.We are interested in particular nodal finite elements,
and we will denote by ϕ j the basis functions associated to the degree of freedom j , so that
V p
h = span

{
ϕ j
}
j∈Ωh

and we can write uh(x) = ∑ j∈Ωh
u jϕ j (x), where, with an abuse of

notation, with j ∈ Ωh we mean the set of degrees of freedom with support in Ωh . With a
similar meaning, we will also use the notation j ∈ K to mean the degrees of freedom with
support on the cell K .

The unstabilized approximation of (1) reads: find uh ∈ V p
h such that for any vh ∈ Wh ⊂

L2(Ωh) := {v : Ωh → R : ∫
Ωh

|v|2 < ∞}. The choice of Wh will be based on Vh , but it
might take different forms for different stabilizations. We will better define it in the following
section.

∫

Ω

vh∂t uhdx −
∫

Ω

∂xvh f (uh) dx + [vh f (uh)]∂Ω = 0. (3)

The main topic of this paper is the study of the linear stability of (3) and of several
stabilized variants using Fourier’s analysis. We will therefore assume periodic boundary
conditions. We aim at characterizing the schemes both in terms of their stability range and
their accuracy in the fully discrete case, for different choices of the stabilization strategy and
of the time stepping. The extensions of these discretization techniques to more dimensions
is well known in literature, even if sometimes not uniquely defined. We believe that the one
dimensional study can provide useful information also in that context.
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As already said, we will consider several stabilized variants of (3) which can be all written
in the generic form: find uh ∈ V p

h that satisfies

∫

Ω

vh(∂t uh + ∂x f (uh))dx + S(vh, uh) = 0, ∀vh ∈ V p
h (4)

having re-integrated by parts and used the continuity of the approximation, and the periodicity
of the boundary conditions to pass to the strong form of the PDE, and with S being a bilinear
operator defined on V p

h × V p
h . Several different choices for S exist, and are discussed in

detail in the following sections.

2.1 Stabilization Terms

2.1.1 Streamline-Upwind/Petrov–Galerkin: SUPG

This method was introduced in [29] (see also [11,30] and references therein) and is strongly
consistent in the sense that it vanishes when replacing the discrete solution with the exact
one. It can be written as a Petrov–Galerkin method replacing vh in (3) with a test function
belonging to the space

Wh := {wh : wh = vh + τK ∂u f (uh)∂xvh; vh ∈ V p
h }. (5)

Here τK denotes a positive (definite) stabilization parameter with the dimensions of a time-
step that we will assume to be constant for every element. Although other definitions are
possible, here we will evaluate this parameter as

τK = δ
hK

‖∂u f ‖K

where hK is the cell diameter and the denominator represents a reference value of the flux
Jacobian norm on the element K .

The final stabilized variational formulation reads

∫

Ωh

vh∂t uh dx +
∫

Ωh

vh∂x f (uh) dx

+
∑

K∈Ωh

∫

K

(
∂u f (uh)∂xvh)τK (∂t uh + ∂x f (uh)) dx

︸ ︷︷ ︸
S(vh ,uh)

= 0. (6)

To characterize the accuracy of the method, we can use the consistency analysis discussed
e.g. in [6, §3.1.1 and §3.2]. In particular, of a finite element polyomial approximation of
degree p we can easily show that given a smooth exact solution ue(t, x), replacing formally
uh by ueh the projection of ue on the finite element space, we can write the residual ε(ψh)

as the absolute value of the difference of (6) for ueh and ue, where we use as a test function
ψh = ∑i∈Ωh

ψiϕi (x) ∈ V p
h ∩ C1(Ωh), i.e., the derivatives are bounded independently on

the chosen mesh. This corresponds to studying the discrete L2 norm of the residual and gives
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an estimation of the truncation error. Developing this term we obtain

ε(ψh) :=
∣
∣
∣

∫

Ωh

ψh∂t (u
e
h − ue) dx −

∫

Ωh

∂xψh( f (u
e
h) − f (ue)) dx

+
∑

K∈Ωh

∫

K

⎛

⎝∂u f (uh)
∑

i∈K
∂xϕi

⎛

⎝ψi −
∑

j∈K

ψ j

p + 1

⎞

⎠

⎞

⎠ τK
(
∂t (u

e
h − ue)

+∂x ( f (u
e
h) − f (ue))

)
dx
∣
∣
∣

=
∣
∣
∣

∫

Ωh

ψh∂t (u
e
h − ue) dx −

∫

Ωh

∂xψh( f (u
e
h) − f (ue)) dx

+
∑

K∈Ωh

∑

i, j∈K

ψi − ψ j

p + 1

∫

K
(∂u f (uh)∂xϕi ) τK

(
∂t (u

e
h − ue)

+∂x ( f (u
e
h) − f (ue))

)
dx
∣
∣
∣ ≤ Chp+1,

(7)

with C a constant independent of h. We have exploit the property that
∑

i ϕi ≡ 1 and∑
i ∂xϕi ≡ 0 in order to add a 0 term which leads to the differences ψi − ψ j which are

an O(h). A key point in this estimate is the strong consistency of the method allowing to
subtract its formal application to the exact solution (thus subtracting zero), and obtaining the
above expression featuring differences between the exact solution/flux and its evaluation on
the finite element space. Preserving this error estimate precludes the possibility of lumping
the mass matrix, and in particular the entries associated to the stabilization term. This makes
the scheme relatively inefficient when using standard explicit time stepping.

As a final note, for a linear flux (2), which is the main focus of the analysis of this paper,
and for exact integration with τK = τ , a classical result is obtained in the time continuous
case by testing with vh = uh + τ ∂t uh to obtain [11]

∫

Ωh

∂t

(
u2h
2

+ τ 2
(a∂xuh)2

2

)

+
∫

Ωh

a∂x

(
u2h
2

+ τ 2
(∂t uh)2

2

)

= −
∫

Ωh

τ(∂t uh + a∂xuh)
2. (8)

With periodic boundary conditions this easily shows that the norm |||u|||2 := ∫
Ωh

u2h
2

+

τ 2
(a∂xuh)2

2
dx is non-increasing. The interested reader can refer to [11] for the analysis of

some (implicit) fully discrete schemes.

2.1.2 Continuous Interior Penalty: CIP

An alternative, which maintains the structure of the mass matrix, is the continuous interior
penalty (CIP) stabilization used in [13,15,18]. This method has been develop by E. Burman
and P. Hansbo in [14], but it can be seen as a variation of the method originally proposed by
Douglas and Dupont [24].

This method stabilizes convection-diffusion-reaction problems by adding a least-squares
term based on the jump in the gradient of the discrete solution over element boundaries. With
this simple concept we obtain stability for convection-reaction-diffusion problems also in the
vanishing viscosity limit.

123



31 Page 6 of 41 Journal of Scientific Computing (2021) 89 :31

The method reads
∫

Ωh

vh∂t uh dx +
∫

Ωh

vh∂x f (uh) dx +
∑

f ∈Fh

∫

f
τ f [∂xvh] · [∂xuh] dΓ

︸ ︷︷ ︸
S(vh ,uh)

= 0, (9)

with [·] denoting the jump of a quantity across a face f , and where we recall that Fh is
the collection of internal boundaries (points in 1D), and f are its elements. In one space
dimension the last integral reduces to a point evaluation. Although other definitions are
possible, we evaluate the scaling parameter in the stabilization as

τ f = δ h2f ‖∂u f ‖ f (10)

with ‖∂u f ‖ f a reference value of the norm of the flux Jacobian on f and h f a characteristic
size of the mesh neighboring f .

The advantage of this method is that the formulation remains symmetric, and that the
mass matrix can be lumped for efficient time marching if the finite element space allows it.
The drawback is a slight increase in the stencil associated to the use of the gradients in all
neighboring elements. Note that for higher order approximations [16,34] suggest the use of
jumps in higher derivatives to improve the stability of the method. In this work, we only
focus on the gradient jump stabilization. For orders up to 4 this seems to be enough to get L2

stability and allows the study in more detail the impact of the coefficient δ in the stabilization.
As before, we can easily characterize the accuracy of the method following e.g. [6, §3.1.1

and §3.2], and show that for all functions ψ of class at least C1(Ω), of which ψh denotes the
finite element projection, we have the truncation error estimate

ε(ψh) :=
∣
∣
∣

∫

Ω

ψh∂t (u
e
h − ue) dx −

∫

Ω

∂xψh( f (u
e
h) − f (ue)) dx

+
∑

f ∈Fh

∫

f

τ f [∂xψh] · [∂x (ueh − ue)]
∣
∣
∣ ≤ Chp+1,

(11)

with C a constant independent of h. The estimate is again a direct consequence of standard
approximation results applied to ueh − ue and to its derivatives, noting that τ f is an O(h2),
which allows to obtain the estimation with the right order.

The symmetry of the stabilization makes is rather easy to derive a linear stability estimate.
In particular, for a linear flux with periodic boundary conditions we can easily show that

∫

Ωh

∂t
u2h
2

= −
∑

f ∈Fh

∫

f

τ f [∂xuh]2 (12)

which can be integrated in time to obtain a bound on the L2 norm of the solution.

2.1.3 Orthogonal Subscale Stabilization: OSS

Another symmetric stabilization approach is the Orthogonal Subscale Stabilization (OSS)
method. Its original formulation was presented as Pressure Gradient Projection (GPS) in
[20] for Stokes equations. Then, the GPS method was extended to the OSS method in [8,
19] for several problems with numerical instabilities, such as convection–diffusion–reaction
problems. The orthogonal subscale stabilization method also aims at providing some control
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on the fluctuations of the gradient of the discrete solution. The method can be written as
follows: find uh ∈ V p

h such that ∀vh ∈ V p
h

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫
Ωh

vh∂t uh dx + ∫
Ωh

vh∂x f (uh) dx +
∑

K∈Ωh

∫

K

τK ∂xvh(∂xuh − wh) dx

︸ ︷︷ ︸
S(vh ,uh)

= 0,

∫
Ωh

vhwh dx − ∫
Ωh

vh∂xuh dx = 0.

(13)

For this method, the stabilization parameter is evaluated as

τK = δhK ‖∂u f ‖K . (14)

Compared to the CIP approach this method has the drawback of requiring the mass matrix
inversion in the gradient L2 projection represented by the second equation in (13). So the
possibility of simplifying this operator, and, more precisely, to lump the mass matrix, appear
as essential elements for its efficient implementation.

As before we can easily characterize the accuracy of this method. The truncation error
estimate for a polynomial approximation of degree p reads in this case

ε(ψh) :=
∣
∣
∣

∫

Ωh

ψh∂t (u
e
h − ue) dx −

∫

Ωh

∂xψh( f (u
e
h) − f (ue)) dx

+
∑

K∈Ωh

τK

∫

K

∂xψh(∂xu
e
h − ∂xu

e)

+
∑

K∈Ωh

τK

∫

K

∂xψh(∂xu
e − we

h)

∣
∣
∣ ≤ Chp+1,

(15)

where the last term is readily estimated using the projection error and the boundness of ψh

as
∫

Ωh

ψh(w
e
h − ∂xu

e) dx =
∫

Ωh

ψh(∂xu
e
h − ∂xu

e) ≤ O(h p).

Finally, for a linear flux and taking τK = τ , as for the SUPG, we can test with vh = uh
in the first of (13), and vh = τwh in the second and sum up the result to get (using the
periodicity)

∫

Ωh

∂t
u2h
2

= −
∑

K

∫

K

τ(∂xuh − wh)
2, (16)

which can be integrated in time to obtain a bound on the L2 norm of the solution.

Remark 1 The truncation consistency error analysis presented above for the three stabilization
terms is completely formal and it does not comprehend an entire classical error analysis. These
estimations tell us that the stabilization terms that we introduced are of the wanted order of
accuracy and that they are usable to aim at the prescribed order of accuracy. This type of
analysis has been already done for multidimensional problems inter alia in [2].More rigorous

proof of error bounds with h p+ 1
2 estimates can be found in [12] for the CIP or in [31,32] for

SUPG.
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2.2 Finite Element Spaces and Quadrature Rules

We describe the one-dimensional finite element spaces we consider in the Fourier analysis.
References to the corresponding multi-dimensional extensions are suggested for complete-
ness where appropriate.

In a one dimensional discretized spaceΩh an element K is a segment, i. e., K = [xi , xi+1]
for some i . We define in this section the restriction of the basis functions of V p

h on each
element K , which are polynomials of degree at most p. We denote with {ϕ1, . . . , ϕN } the
basis functions of Pp(K ), and their definitions amounts to describe the degrees of freedom,
i.e., the dual basis. In one dimension, N = p+ 1. We consider two families of polynomials:

1. Lagrange polynomials. They are uniquely defined by the interpolation points ξ j with
ξ1 = xi < . . . < ξ j < . . . < ξN = xi+1. We study two cases

– Equidistant points: ξ j = xi + j xi+1−xi
p for j = 0, . . . , p,

– Gauss–Lobatto points: the roots of Legendre polynomial of degree p + 1 mapped
onto [xi , xi+1].

2. Bernstein polynomials. Linearlymapping K onto [0, 1] they are defined for j = 0, . . . , p
by

Bj (x) =
(
p
j

)

x p− j (1 − x) j .

Bernstein polynomials verify the following properties

p∑

j=0

Bj (x) ≡ 1, Bj (x) ≥ 0 ∀x ∈ [0, 1].

Even if the degrees of freedom associated to this approximation have no physical meaning,
we identify them geometrically with the Greville points ξ j = j

p .
The use of different polynomial basis functions leads to different properties of the involved

matrices and thus to different stability properties due to the full discretization of the problem.
Let us remark that the evaluation of integrals is done by Gaussian quadrature formulae,
because of their efficiency. If Gauss points are used in the discretization of the polynomials,
the same points will be used in the quadrature formula. Thanks to this, we see that for
Lagrange polynomials defined on Gauss quadrature points
∫ xi+1

xi
ϕl(x)ϕ j (x) dx = (xi+1 − xi )ωlδ

j
l with ωl := 1

(xi+1 − xi )

∫ xi+1

xi
ϕ2
l (x) dx > 0.

This leads to a diagonal local mass matrix

M
i
l, j = (∫ xi+1

xi
ϕl(x)ϕ j (x) dx

)
.

This does not hold for Lagrange polynomials defined on equidistant points or the Bernstein
polynomials.

Another important property that we need to effectively apply the DeC method of [3]
is the positivity of the lumped mass matrix entries, i.e., Dk,k := ∑N

j=0

∫ xi+1
xi

ϕ jϕk dx =
∫ xi+1
xi

ϕk dx > 0. The positivity of these values is trivially verified for Bernstein polynomials
and for Lagrange polynomials with matching quadrature formulae. In the case of equispaced
points Lagrangian polynomials, the lowest degree (p ≤ 7 in one dimension) they also verify
the positivity of the lumped matrix. This is not true in the case of two dimensional problems
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and triangular meshes, where already for degree p = 2 we have nonpositive values in the
diagonal of the lumped matrix. This mainly motivated the choice of Bernstein polynomials,
as well as the Lagrange interpolation with the Gauss–Lobatto points.

In the following we will use the wording

– basic elements for Lagrangian polynomials on equispaced points with Gauss–Legendre
quadrature;

– cubature elements for Lagrangian polynomials on on Gauss–Lobatto points and quadra-
ture rule using the same points;

– Bernstein elements for Bernstein polynomials with Gauss–Legendre quadrature.

2.3 Time Integration

Thefinite element semi-discrete equations constitute a coupled systemof ordinary differential
equations which can be written as

M
dU

dt
= r(t) (17)

where U is the collection of all the degrees of freedom,M and r are the global mass matrix
and right-hand side term defined in the previous sections through the element definition and
stabilization terms. We must remark thatM is diagonal only in the case of the cubature ele-
ments without the SUPG stabilization, while, for all other choices, it is a sparse non-diagonal
matrix. Moreover, in the SUPG case the mass matrix becomes nonsymmetric slowing down
the solution of the linear system.

In the following, we describe two different time integration strategies: explicit Runge–
Kutta (RK) methods and their strong stability preserving (SSP) variant; Deferred Correction,
which allows to avoid the mass matrix inversion through the correction iterations.

2.3.1 Explicit Runge–Kutta and Strong Stability Preserving Runge–Kutta Schemes

Runge–Kutta time integration methods can be described by the following one step procedure

U (0) := Un,

U (s) := Un + Δt
s−1∑

j=0

αs
jM

−1r(U ( j)) s = 1, . . . , S,

Un+1 := Un + Δt
S∑

s=0

βsM
−1r(U (s)).

(18)

Here, we use the superscript n to indicate the timestep and the superscript in brackets (s) to
denote the stage of the method. In particular, we will refer to Heun’s method with RK2, to
Kutta’s method with RK3 and the original Runge–Kutta fourth order method as RK4. The
respective Butcher’s tableau can be found in Appendix A in Table 8.

A particular case is that of SSPRKmethods introduced in [43]. They are essentially convex
combinations of forward Euler steps, and can be rewritten as follows
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Fig. 1 Subtimesteps inside the time step [tn , tn+1]

U (0) := Un,

U (s) :=
s−1∑

j=0

(
γ s
j U

( j) + Δtμs
jM

−1r(U ( j))
)

s = 1, . . . , S,

Un+1 := U (S),

(19)

with γ s
j , μ

s
j ≥ 0 for all j, s = 1, . . . , S. We will consider here the second order 3 stages

SSPRK(3,2) presented by Shu and Osher in [43], the third order SSPRK(4,3) presented in
[41, Page 189], and the fourth order SSPRK(5,4) defined in [41, Table 3]. For complete
reproducibility of the results, we put all their Butcher’ tableaux in Appendix A in Table 9.

2.3.2 The Deferred Correction Scheme

Deferred correction methods were originally introduced in [25] as explicit solvers of ODEs,
but soon implicit [37] or positivity preserving [40] versions and extensions to PDE solvers
[1] were studied. In [1,3,7] the method is also used to avoid the inversion of the mass
matrix, applying a mass lumping and adding correction iterations to regain the order of
convergence. This is only achievable when the lumped matrix have only positive values on
its diagonal. Hence, the use of Bernstein polynomials is recommended in [1], but also the
cubature elements can serve the purpose.

Consider a discretization of each timestep into M subtimesteps as in Fig. 1. For each
subtimestep the goal is to find the solution of the integral form of the semidiscretized ODE
(17) as

M
(
Un,m −Un,0)−

∫ tn,m

tn,0
r(U (s))ds ≈ L2(U )m

:= M
(
Un,m −Un,0)− Δt

∑

z∈�0,M�

ρm
z r(Un,z) = 0, (20)

with U = (
Un,0, . . . ,Un,M

)
and having used high order quadrature with points

tn,0, . . . , tn,M and weights ρm
z for every different subinterval (see [1,3,7] for details). The

algebraic system L2(U∗) = 0 is in general implicit and nonlinear and may not be easy to
solve. Nevertheless, its solutionU∗ will be a high order accurate approximation of the equa-
tion (17), where the order of accuracy is dictated by the number of subtimesteps M and their
distribution. In this work we consider only equispaced subtimesteps, which lead to order of
accuracy M +1. Other combinations are possible and studied in other works, see [45]. As an
example,M = 1 subtimestep is equivalent to a second order Crank–Nicolson approximation.

The DeC procedure approximates iteratively this solution U∗ by successive corrections
relying on a a low order easy-to-invert operator L1. This operator is typically obtained using
an explicit timestepping and a lumped mass matrix, i.e.,

M
(
Un,m −Un,0)−

∫ tn,m

tn,0
r(U (s))ds ≈ L1(U )m
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:= D
(
Un,m −Un,0)− Δtβmr(Un,0) = 0. (21)

Here, D denotes a diagonal matrix obtained from the lumping of M, i.e., Di i := ∑ j Mi j ,

and βm := tn,m−tn,0

tn+1−tn
. The values of the coefficients βm and ρm

z for equispaced subtimesteps
can be found in Appendix A. Denoting with the superscript (k) index the iteration step, we
describe the DeC algorithm as

Un,m,(0) := Un m = 0, . . . , M, (22a)

Un,0,(k) := Un k = 0, . . . , K , (22b)

L1(U (k)) = L1(U (k−1)) − L2(U (k−1)) k = 1, . . . , K , (22c)

Un+1 := Un,M,(K ). (22d)

It has been proven [1] that ifL1 is coercive,L1−L2 is Lipschitz with a constant α1Δt > 0
and the solution of L2(U∗) = 0 exists and is unique. In particular, at every iteration k we
increase one order of accuracy with respect to U∗, i.e., ‖U (k) −U∗‖ ≤ CΔtk‖U (0) −U∗‖.
Hence, the method accuracy is dictated by the number of iterations K and by the accuracy of
U∗, which depends on the number of subtimesteps, i.e., the order of theDeC ismin(K , M+1).
Hence, choosing K = M+1we obtain the optimal K -th order accurate scheme. In particular,
wewill always run simulationswith spatial polynomial of degree pwithM = p subtimesteps
and K = p + 1 iterations aiming at order of accuracy p + 1 = M + 1 = K .

Remark 2 [DeC iterations] The iterations proposed in [1] included a first step L1(U (1)) = 0
instead of a uniform definition as in (22). The two methods are actually equivalent as one can
notice that L1(U (0)) = L2(U (0)), because in the time derivative part the time differences are
equal to 0 and in the flux part all the stages have the same initialization.

Relying only on the inversion of the the low order operator, for each iteration the method
has a cost equivalent essentially to the assembly of the right hand side, whatever the com-
plexity of the mass matrix appearing in L2. The only requirement for the DeC approach
is the invertibility of the lumped mass matrix D, which limits its application to equispaced
Lagrange elements only to the degrees for which this is the case, and to other choices as the
Bernstein and cubature elements introduced earlier.

Finally, for the following analysis we note that the DeC method can be cast in a form
similar to a Runge–Kutta method by rewriting (22c) as

Un,m,(k+1) = Un,m,(k) − D
−1

M

(
Un,m,(k) −Un,0,(k)

)
+

M∑

j=0

Δtρm
j D

−1r(Un, j,(k)).

(23)

Comparing with (19), we can immediately define the SSPRK coefficients associated to DeC
as γ

m,(k+1)
m,(k) = I − D

−1
M with I the identity matrix, γm,(k+1)

0,(0) = D
−1

M, μm,(k+1)
r ,(k) = ρm

r for
m, r = 0, . . . , M and k = 0, . . . , K − 1 and instead of the mass matrix, we use the diagonal
one.
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3 Fourier Analysis

The dispersion and the stability properties of numerical methods can be shown by means of
a spectral analysis. We will focus on the linear case (2) with periodic boundary conditions:

∂t u + a∂xu = 0, x ∈ [0, 1]. (24)

The main idea is to investigate the semi and fully discrete evolution of periodic waves rep-
resented by the the ansatz

u = Aei(kx−ξ t) = Aei(kx−ωt)eεt with ξ = ω + iε, i = √−1. (25)

Here, ε denotes the damping rate, while the wavenumber is denoted by k = 2π/L with L
the wavelength. We recall that the phase velocity defined as

C = ω

k
(26)

represents the celerity with which waves propagate in space, and it is in general a function
of the wavenumber. Substituting (25) in the advection equation (24) leads to the well known
result

C = a and ε = 0. (27)

The objective of the next sections is to provide the semi and fully discrete equivalents of the
above relations for the finite elementmethods introduced earlier.Wewill consider polynomial
degrees up to 3, for all combinations of different stabilization methods and time integration.
This will also allow to investigate the parametric stability with respect to the time step (CFL
number) and stabilization parameter δ. In practice, for each choice we will evaluate the
accuracy of the discrete approximation of ω and ε, and we will provide conditions for the
non-positivity of the damping ε. For completeness, the study is performed first in the semi-
discrete time continuous case in Sect. 3.1. We the consider the fully discrete schemes in
Sect. 3.2.

3.1 Preliminaries and Time Continuous Analysis

The Fourier analysis for numerical schemes on the periodic domain is based on Parseval
theorem.

Theorem 3.1 (Parseval) Let û(k) := ∫ 10 u(x)e−i2πkxdx for k ∈ Z be the Fourier modes of
the function u. The L2 norms of the function u and of the Fourier modes coincide, i.e.,

∫ 1

0
u2(x)dx =

∑

k∈Z
|û(k)|2. (28)

Thanks to this theorem, we can study the amplification and the dispersion of the basis func-
tions of the Fourier space. The key ingredient of this study is the repetition of the stencil of
the scheme from one cell to another one. In particular, using the ansatz (25) we can write
local equations coupling degrees of freedom belonging to neighbouring cells through a mul-
tiplication by the factor of eiθ representing the shift in space along the oscillating solution.
The dimensionless coefficient

θ := kΔx (29)
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is a discrete reduced wave number which naturally appears all along the analysis. Formally
replacing the ansatz in the scheme we end up with a dense algebraic problem of dimension
p (the polynomial degree) reading in the time continuous case

(24) and (25) ⇒ −iξMU + aKxU = 0 (30)

with (M)i j =
∫

Ωh

φiφ j dx, (Kx )i j =
∫

Ωh

φi∂xφ j dx + S(φi , φ j ), (31)

with φ j the finite element basis functions and U the array of all the degrees of freedom. A
difference must be pointed out for the SUPG stabilization. In that case the time derivative
appears in the stabilization term, hence it contributes to the mass matrix with an additional
term

Mi j =
∑

K∈Ωh

∫

K
φiφ j + τK ∂xφiφ j dx

and the corresponding term must be removed in stabilization term S(φi , φ j ).
Although system (30) is in general a global eigenvalue problem,we can reduce its complex-

ity by exploiting more explicitly the ansatz (25). More exactly, we can introduce elemental
vectors of unknowns ŨK , which, for continuous finite elements, are a arrays of p degrees of
freedom including only one of the two boundary nodes. Using the periodicity of the solution
and denoting by K ± 1 the neighboring elements, we have

ŨK±1 = e±θ ŨK . (32)

This allows to show that (30) is equivalent to a compact system (we drop the subscript K as
they system is equivalent for all cells)

− iξM̃Ũ + aK̃x Ũ = 0, (33)

where the matrices M̃ and K̃ are readily obtained from the elemental discretization matrices
by using (32).

As shown in [42] some particular cases can be easily studied analytically. For example
for the semidiscretized P1 CG scheme without stabilization one easily finds that

ω

k
= a

sin(θ)

θ

3

2 + cos(θ)
and ε = 0. (34)

As the degree of the approximation increases, so does the size of the eigenvalue problem.
For the non stabilized CG P2 scheme we can still find an analytical solution associated to the
quadratic equation (cf also [42]) reading

ω1,2

k
= a

4 sin(θ) ± 2
√
40 sin2( θ

2 ) − sin2(θ)

θ(cos(θ) − 3)
. (35)

Here, two eigenvalues are the solution of the problem, the positive one is the principal one,
while the negative one is the parasite one. They are both depicted in Fig. 2. For more general
cases, the study needs to be performed numerically.

Defining with λi (θ) the eigenvalues of (33), ωi (θ) = Im(λi (θ)) and εi (θ) = −Re(λi (θ))

are the respective phase and damping coefficients of each mode of the solution. In practice,
we solve numerically the eigenvalue problem (33) for θ = kΔxp = 2π

Nx
varying in [0, π],

where Nx is the number of the nodes in each wavelength and Δxp = Δx/p is the average
distance between degrees of freedom. However, to satisfy the Nyquist stability criterion, it
is necessary to have Δxp ≤ L

2 , with L the wavelength.

123



31 Page 14 of 41 Journal of Scientific Computing (2021) 89 :31

Fig. 2 Phase ω (left) and amplification ε (right) with basic elements without stabilization for P1,P2 and P3
(Color figure online)

As an example, in Fig. 2 we plot ω and ε and we see that the CG scheme does not have
diffusive terms, or, in other words, there is no damping (ε = 0) in the CG scheme. We plot
in Fig. 2 the principal and the parasite eigenvalues for each system p = 1, 2, 3. We can
clearly identify the principal one, being the one that minimizes |ωi − ak|, when θ � π ,
while for larger values of θ the distinction is not so clear, from a numerical point of view.
As expected, with P1 elements, the scheme is more dispersive than with P2 or P3 elements,
i.e., the principal eigenvalue is more distant from the line ω = ak, while, for all of them,
there is no dissipation, since the scheme is not stabilized and there is no time discretization
providing further dissipation.

We apply the same analysis to stabilized methods. The results obtained with SUPG, CIP
and OSS stabilizations lead to almost identical results, that is why we show in Fig. 3 only
the OSS data. The interested reader can access all the other plots online [36]. From the plot
we can see that the increase in polynomial degree provides the expected large reduction in
dispersion error, while retaining a small amount of numerical dissipation, which permits the
damping of parasite modes.

3.2 Fully Discrete Analysis

3.2.1 Methodology

We analyze now the fully discrete schemes obtained using the RK, SSPRK and DeC time
marching methods presented in Sect. 2.3. Let us consider as an example the SSPRK schemes
(19). If we define as A := M

−1Kx we can write the schemes as follows

⎧
⎪⎪⎨

⎪⎪⎩

U(0) := Un

U(s) := ∑s−1
j=0

(
γs jU( j) + Δtμs j AU( j)

)
, s ∈ �1, S�,

Un+1 := U(S).

(36)
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Fig. 3 Phase ω (left) and amplification ε (right) with basic elements with OSS stabilization for P1,P2 and P3
(Color figure online)

Expanding all the stages, we can obtain the following formulation:

Un+1 = U(0) +
S∑

j=1

ν jΔt j A jU(0) =
⎛

⎝I +
S∑

j=1

ν jΔt j A j

⎞

⎠Un, (37)

where coefficients ν j in (37) are obtained as combination of coefficient γs j and μs j in (36)
and I is the identity matrix. For example, coefficients of the fourth order of accuracy scheme
RK4 are ν1 = 1, ν2 = 1/2, ν3 = 1/6 and ν4 = 1/24.

We can now compress the problem proceeding as in the time continuous case. In particular,
using (32) one easily shows that the problem can bewritten in terms of the local p× pmatrices
Ã := aM̃−1K̃x and in particular that

Ũn+1 = GŨn with G := eεΔt e−iωΔt ≈
⎛

⎝Ĩ +
S∑

j=1

ν jΔt j Ã j

⎞

⎠ ,

where G ∈ R
p×p is the amplification matrix depending on θ,Δt and Δx . Considering each

eigenvalue λi of G, we can write the following formulae for the corresponding phase ωi and
damping coefficient εi

{
eεiΔt cos(ωiΔt) = Re(λi ),

−eεiΔt sin(ωiΔt) = Im(λi ),
⇔
{

ωiΔt = arctan
(−Im(λi )

Re(λi )

)
,

(eεiΔt )2 = Re(λ)2 + Im(λ)2,

⇔
{ωi

k
= arctan

(−Im(λi )
Re(λi )

)
1

kΔt ,

εi = log (|λi |) 1
Δt .

For the DeC method we can proceed with the same analysis transforming also the other
involved matrices into their Fourier equivalent ones. Using (23) these terms would contribute
to the construction ofG not only in the Ãmatrix, but also in the coefficients ν j , which become
matrices as well. At the end we just study the final matrix G and its eigenstructure, whatever
process was needed to build it up.
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The matrix G represents the evolution in one timestep of the Fourier modes for all the
p different types of degrees of freedom. The damping coefficients εi tell if the modes are
increasing or decreasing in amplitude and the phase coefficients ωi describe the phases of
such modes.

We remark that a necessary condition for von Neumann stability of the scheme is that
|λi | ≤ 1 or, equivalently, εi ≤ 0 for all the eigenvalues. The goal of our study is to find the
largest CFL number for which the stability condition is fulfilled and such that the dispersion
error is not too large. In particular, we are looking for the largest CFL number

CFL := |a| Δt

Δx
, (38)

with constant a, that provides stability to the method [23]. Implicitly, the CFL constraint
implies a bound on the timestep Δt . We remark that this CFL constraint is comprehensive of
the whole space–time discretization and cannot hence be assumed only by the time scheme
or the spatial discretization. In particular for the DeC schemes, it is not possible to decouple
the spatial and the time discretization. Furthermore, we notice that the matrix G depends not
only on θ,Δx and Δt , but also on at the stabilization coefficients τK . Hence, the proposed
analysis should contain an optimization process also along the stabilization parameter. With
the notation of Sect. §2, we will in particular set

SUPG : τK = δΔx/|a|,
OSS : τK = δΔx |a|,
CIP : τ f = δΔx2|a|.

One of our objectives is to explore the space of parameters (CFL,δ), and to propose criteria
allowing to set these parameters to provide themost stable, least dispersive and least expensive
methods. A clear and natural criterion is to exclude all parameter values for which we obtain
a positive damping coefficient ε(θ) > 10−12 for any value of the reduced wavenumber θ

(taking into account the machine precision errors that might occur). Doing so, we obtain
what we will denote as stable area in (CFL, θ) space. For all the other points we propose
3 strategies to minimize the product between error and computational cost. In the following
we describe the 3 strategies to find the best parameters couples (CFL,δ):

1. maximize the CFL in the stable area;
2. minimize a global solution error, denoted by ηu , while maximizing the CFL in the stable

area. In particular, we start from the relative square error of u
[
u(t) − uex (t)

uex (t)

]2
=
[
eεt−i t(ω−ωex ) − 1

]2
(39)

= [eεt cos(t(ω − ωex )) − 1
]2 + [eεt sin(t(ω − ωex ))

]2 (40)

= e2εt − 2eεt cos(t(ω − ωex )) + 1. (41)

Here, we denote with ε and ω the damping and phase of the principal mode. For a small
enough dispersion error |ω−ωex | � 1, we can expand the cosine in the previous formula
in a truncated Taylor series as

[
u(t) − uex (t)

uex (t)

]2
≈ [eεt − 1

]2

︸ ︷︷ ︸
Damping error

+ eεt t2 [ω − ωex ]
2

︸ ︷︷ ︸
Dispersion error

. (42)
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We then compute an error at the final time T = 1, over the whole phase domain, using
at least 3 points per wave 0 ≤ kΔxp ≤ 2π

3 , with Δxp = Δx
p , and p the degree of the

polynomials. We obtain the following L2 error definition,

ηu(ω, ε)2 := 3

2π

[∫ 2π
3

0
(eε − 1)2dk +

∫ 2π
3

0
eε(ω − ωex )

2dk

]

. (43)

Recalling that ε = ε(kΔx,CFL, δ) and ω = ω(k,Δx,CFL, δ) and ωex = ak, we need
to further set the parameter Δxp . We choose it to be large Δxp = 1, with the hope that
for finer grids the error will be smaller. Finally, we seek the couple (CFL∗, δ∗) allowing
to solve

(CFL∗, δ∗) := argmax
CFL

{η(ω(CFL, δ)), ε(CFL, δ))

< μ min
(CFL,δ)stable

η(ω(CFL, δ), ε(CFL, δ))

}

. (44)

3. minimize the dispersion error ηω while maximizing the CFL in the stable area. In partic-
ular we set in this case

η2ω(ω) :=
∫ 2π

3

0

(
ω − ωex

ωex

)2
dk. (45)

As before we choose the optimal parameters from (44).

For the second and third strategies, the parameter μ must be chosen in order to balance the
requirements on stability and accuracy. After having tried different values, we have set μ

to 1.3 providing a sufficient flexibility to obtain results of practical usefulness, which we
verified in numerical computations as we will see later.

In the following we will compare all the methods with these error measures, in order to
suggest the best possible schemes between the proposed ones.

4 Results of the Fully Discrete Spectral Analysis

The typical results reported in Figs. 4, 5, 6, 7 and 8 show in the plane (δ,CFL) the unstable
(crossed) and stable regions, and with colored symbols the optimal points corresponding to
the three strategies introduced earlier.

In case of ambiguity, the point with maximum δ is marked in the figures. A summary of
the results for all combinations of schemes is provided in Tables 1, 2 and 3.

Before commenting these results we remark that some of the schemes are equivalent.
For example without mass lumping Bernstein and basic elements are the same up to an
orthogonal change of variable. This is not the case when using DeC due to the difference
in lumped mass matrices. Similarly, the mass matrix used for cubature elements is already
diagonal, whichmakes the DeC procedure entirely equivalent to the RK schemewith Butcher
tableau corresponding to the quadrature weights of the DeC. Only for SUPG a difference is
observed due to the contributions to the mass matrix of the stabilization.

Concerning the plots, it is interesting to remark the appearance of four different structures
which have an impact on the practical usefulness of some of the combinations.

– The first kind of structures are associated to schemes presenting V-shaped stability
regions. We can observe these on Figs. 4 and 5, for p = 1. This shape requires a
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Fig. 4 Computation of optimal parameters according to errors ηω and ηu . (CFL, δ) plot of ηu (blue scale) and
instability area (black crosses) for cubature elements SSPRK scheme with SUPG stabilization method. From
left to right P1, P2, P3. The purple circle is the optimizer of ηu , the green cross is the optimizer of ηω , the red
star is the maximum stable CFL (Color figure online)

Fig. 5 Computation of optimal parameters according to errors ηω and ηu . (CFL, δ) plot of ηu (blue scale) and
instability area (black crosses) for cubature elements SSPRK scheme with CIP stabilization method. From
left to right P1, P2, P3. The purple circle is the optimizer of ηu , the green cross is the optimizer of ηω , the red
star is the maximum stable CFL (Color figure online)

Fig. 6 Computation of optimal parameters according to errors ηω and ηu . (CFL, δ) plot of ηu (blue scale) and
instability area (black crosses) for cubature elements DeC scheme with SUPG stabilization method. From left
to right P1, P2, P3. The purple circle is the optimizer of ηu , the green cross is the optimizer of ηω , the red star
is the maximum stable CFL (Color figure online)

Fig. 7 Computation of optimal parameters according to errors ηω and ηu . (CFL, δ) plot of ηu (blue scale) and
instability area (black crosses) for Bernstein elements DeC scheme with SUPG stabilization method. From
left to right P1, P2, P3. The purple circle is the optimizer of ηu , the green cross is the optimizer of ηω , the red
star is the maximum stable CFL (Color figure online)
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Fig. 8 Computation of optimal parameters according to errors ηω and ηu . (CFL, δ) plot of ηu (blue scale) and
instability area (black crosses) for basic elements DeC scheme with OSS stabilization method. From left to
right P1, P2, P3. The purple circle is the optimizer of ηu , the green cross is the optimizer of ηω , the red star
is the maximum stable CFL (Color figure online)

very careful choice of the stability parameter as small perturbations of δ may lead, for
a given CFL, to an unstable behavior. Generally, lowering the CFL increases somewhat
the robustness allowing more flexibility in the choice of δ. We highlight that this type of
topology is common to all the second order schemes, as well as to all DeC schemes with
basic and Bernstein elements for degree p ≥ 2.

– Another structure typically observed is an L-shaped stability region as in Figs. 4 and 5 for
p = 2, 3. This shape is characterized by a CFL bound CFL ≤ C1 and a one-sided bound
on the stabilization coefficient δ ≤ C2CFLC3 , and it much more robust concerning the
choice of the stability parameter as all values below a certain maximum are stable. Most
of the schemes with p ≥ 2, besides those listed in the first group, belong to this category.

– The third kind of structures involve “broom"- or “box”-shaped stability domains. In
the first case we observe two clear bounds δ ≥ C1CFLC2 and δ < C3 plus a small
stable stripe with higher CFL > (C3/C1)

1/C2 and δ > C3. This is for example visible
in Fig. 7. In the second case, see for example Fig. 6, we also have two bounds of the
type CFL ≥ C1 and δ < C2, with an additional stable stripe outside these bounds. The
problem with this type of methods is that the optimal parameters, viz. those involving
the highest CFL, are within a stripe which means that instability may be introduced by
lowering the CFL.1 For applications involving multiscale problems, or variable mesh
sizes this is clearly unacceptable in practice. Schemes showing this sort of behaviors are
all the SUPG schemes with DeC time stepping, and with p ≥ 2, for which we indicate
good values (CFL, δ) in Table 4.

– Finally, the DeC scheme with basic elements and p = 3 shows essentially everywhere
instability for CIP and OSS stabilization. The study finds some very thin oblique stripes
of stability, but they are not wide enough to find stable regions. See Fig. 8 for an example.

4.1 Dispersion and Damping

In Figs. 9 and 10 are represented the phase and the damping of the principal eigenvalue
depending on θ = kΔx = 2π

Nx
for few schemes (cubature DeC OSS and Bernstein SSPRK

CIP), using the best parameters (CFL, δ) found in the previous analysis with the optimization
of ηu . As before, we notice that the mode for p = 1 is particularly dispersive. Nevertheless,
the frequencies on which the scheme is dispersive are also much damped as we see in the

1 These values do not allow to decrease the CFL.
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Table 4 Optimized CFL and
penalty coefficient δ in
parenthesis, stable for all smaller
CFLs

DeC SUPG

Element p = 2 p = 3

Basic 0.08 (0.025) 0.059 (0.035)

Cubature 0.346 (0.025) 0.242 (2.22 e-03)

Bernstein 0.03 (0.025) 0.1 (0.1)

Fig. 9 Comparison of dispersion in the fully discrete case, using coefficients from Table 2, cubature elements,
DeC scheme and OSS stabilization method. P1 elements in red, P2 elements in blue and P3 elements in green.
The phase ω of the principal eigenvalues is on the left and the damping εi on the right (Color figure online)

right plots. For higher order methods, the phase ω of the principal mode is closer to the
exact phase ωex = ak in the left figures. We observe that the principal mode of higher order
methods is much more precise in terms of dispersion than the first order one, but also less
damped in the low frequency area θ ≥ 2π

3 .
For completeness, a comparison of damping and phase coefficients for DeC and SSPRK

for all the stabilization techniques and elements can be found in Appendix B. There we used
the (CFL,δ) coefficients found by minimizing ηu in Table 2, and we try also to compare the
obtained results. Nevertheless, we must remark that the different CFLs used for different
schemes do not allow a direct comparison.

The different strategies lead to different values of best CFL and δ. In general, the most
reliable is the one that optimizes ηu . Looking at Table 2, we can compare the different
elements, stabilization terms and time integration techniques and obtain some conclusions.

– All the first order unstabilized p = 1 schemes are unconditionally unstable, i.e., for all
CFL.

– In general SSPRK time integration methods allow to use higher CFL with respect to both
classical RK methods and DeC. In particular, for some of these tests CFL> 1, meaning
that the combination of spatial discretization and the time discretization allow to set
the ratio Δt/Δx larger than usual. This should not surprise as the SSPRK schemes are
taylored to maximize the CFL number.

– With cubature elements we can use larger CFL conditions than with basic and Bernstein
elements.
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Fig. 10 Comparison of dispersion in the fully discrete case, using coefficients from 2, Bernstein elements,
SSPRK scheme and CIP stabilization method. B1 elements in red, B2 elements in blue and B3 elements in
green. The phase ω of the principal eigenvalues is on the left and the damping εi on the right (Color figure
online)

– Concerning efficiency, we do not observe any impact of the choice of the stabilization
approach on the magnitude of the allowed CFL. Other factors are much more relevant in
this respect. For example, for SUPG we need to stress the advantage of using DeC w.r.t.
the possibility of avoiding the inversion of the non-diagonal mass matrix required by the
full consistency of the method. For CIP the larger stencil and non-local data structure
gives a small overhead, and, for OSS, the gradient projection favors clearly cubature
elements for which this phase requires no matrix inversion.

– Some combinations produce very unstable schemes. As remarked also before, DeC with
high order basic elements may have problems in the mass lumping, and we can see an
example with the OSS and CIP stabilization.

– DeC with SUPG stabilization leads to stability regions that are not comprehending all
the CFLs smaller than the one inside the region, for a fixed δ. This is very dangerous, for
instance when doing mesh adaptation algorithms, hence, we marked with an asterisk in
Tables 1 and 2 such schemes and we put in Table 4 reliable values of (CFL,δ).

5 A Note on Nonlinear Stability

The stability analysis performed before holds only for linear problems. For nonlinear ones the
original ansatz of supposing that the solutions can be decomposed orthogonally into waves
that propagate at constant speed does not hold anymore. Nevertheless, the stabilization meth-
ods presented also introduces some nonlinear stabilization. To show it wewill briefly consider
their potential for dissipating entropy. In order to test so, we neglect the time discretization,
the used elements and the quadrature and the discrete differentiation formulae.

Consider any convex smooth entropy ρ(u), i.e., ρuu(u) > 0, the respective entropy vari-
ables ν := ρu(u) and the entropy flux g(u) such that ρu fu = gu . In the following discussion,
we consider the entropy variable νh = ρu(u)h to be in the finite element space, while uh will
be defined as the projection onto the finite element space of the uniquely defined function
ν → u = u(ν), as proposed in [2].
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When substituting vh = νh , the Galerkin discretization of the conservation law becomes

∑

K

∫

K
νh (∂t uh + ∂x f (uh)) dx =

∑

K

∫

K
∂tρh + ∂x ghdx =

∫

Ω

∂tρh + [gh]∂K , (46)

which, according to the boundary conditions, gives us a measure of the variation of the
entropy.

The CIP stabilization must be slightly modified for nonlinear equations with nontrivial
entropies, so that it reads

s(v, u) :=
∑

K , f ∈K

∫

f
[∂xvT ]ρuu(u)−1[∂xν(u)]dΓ , (47)

where the inverse of the hessian of the entropy must be added for unit of measure reasons and
it is positive definite and invertible. So that when we substitute v = νh in the stabilization
term, we obtain

s(ν, uh) =
∑

K , f ∈K

∫

f
[∂xνTh ]ρuu(uh)−1[∂xνh]
︸ ︷︷ ︸

>0

dΓ . (48)

Itwould guarantee a decrease in the discrete total entropy.Moreover, this formulation coincide
with (9) when we are dealing with the energy as entropy.

For the OSS we modify, similarly the formulation (13) into
{
s(v, u) :=∑K τK

∫
K ∂xv

T ρuu(u)−1(∂xν(u) − w)dx, with
∫
K zT (w − ∂xν(u)), ∀z ∈ Vh

(49)

As in the linear case, we can take τK = τ , and test with vh = νh in the stabilization term and
we substitute z = τρuu(u)−1,Tw in the previous equation and we sum this 0 contribution to
the stabilization term, we obtain

s(νh, uh) =
∑

K

τ

∫

K
∂xν

T
h ρuu(uh)

−1(∂xνh − wh) + ρuu(uh)w
T
h ρuu(uh)

−1(wh − ∂xνh)dx

=
∑

K

τ

∫

K
(∂xνh − wh)

T ρuu(uh)
−1(∂xνh − wh)dx ≥ 0.

(50)

As for the CIP we can say that the OSS stabilization reduces entropy. Anyway, this analy-
sis does not guarantee that the fully discrete method will be entropy stable, as all the other
discretizations (time, quadrature, differentiation and interpolation) are not taken into consid-
eration.

For the SUPG stabilization, as the linear analysis of Sect. 2.1.1 shows, the spatial and
temporal derivatives need to be properly combined. This can be done easily for space-time
discretizations (see e.g. in [9]), context in which SUPG and least squares stabilization coin-
cide. In simple cases with constant convexity entropy, namely the energy, one can bound
other types of energy norm in time, but not the entropy itself. For explicit methods, and
general convex entropies, the non-symmetric nature of the method requires ad-hoc analysis
which we leave out of this paper. More elaborated analysis are possible with other types of
stabilization, as the ones proposed in [2,27,33], and they will be the object of future research.

In the next sections, we perform also some nonlinear tests, where we use the coefficients
we found in the stability analysis for the linear case, in order to understand if this information
is also relevant for nonlinear problems.
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6 Numerical Simulations

We perform numerical tests to check the validity of our theoretical findings. We will use
elements of degree p, with p up to 3, with time integration schemes of the corresponding
order to ensure an overall error ofO(Δx p+1), under the CFL conditions presented earlier in
Table 2. The integral formulae are performed with high order quadrature rules, for cubature
elements they are associated with the definition points of the elements themselves, for basic
and Bernstein we use Gauss–Legendre quadrature formulae with p + 1 points per cell.

6.1 Linear Advection Equation

We start with the one dimensional initial value problem for the linear advection equation (24)
on the domain Ω = [0, 2] using periodic boundary conditions:

⎧
⎪⎨

⎪⎩

∂t u(x, t) + a∂xu(x, t) = 0 (x, t) ∈ Ω × [0, 5], a ∈ R,

u(x, 0) = u0(x),

u(0, t) = u(2, t), t ∈ [0, 5],
(51)

where u0(x) = 0.1 sin(πx). Clearly the exact solution is uex (x, t) = u0(x − at) for all
x ∈ Ω . We discretize the mesh with uniform intervals of lengthΔx . In particular, we will use
different discretization scales to test the convergence:Δx1 = {0.05, 0.025, 0.0125, 0.00625}
forP1 elements,Δx2 = 2Δx1 forP2 elements andΔx3 = 3Δx1 forP3 elements. This allows
to guarantee the use ot the same number of degrees of freedom for different p.

We will compare the errors obtained with SSPRK and DeC time integration method, with
all the stabilization methods (SUPG, OSS and CIP) and with basic, cubature and Bernstein
elements.

A representative result is provided as an example in Figs. 11 and 12: it shows a comparison
between cubature and basic elements with OSS stabilization and SSPRK time integration.
As we can see, the two schemes have very similar error behavior, but the basic elements
require stricter CFL conditions, see Table 2, and have larger computational costs because of
the inversion of the mass matrix. A summary table with the order of accuracy reached by
each simulations in Table 5. The plots and all the errors are available at the repository [36].

Looking at the table we can make the following observations. First of all, we remark
that despite the weak stability obtained for unstabilized methods in the spectral analysis, in
practice the absence of damping makes it difficult to obtain converging results with a fixed
CFL and for all p. For this reason, in the following we will only focus on stabilized methods.

We observe otherwise that almost all the stabilized scheme provide the expected order of
accuracy.When theorder is correct there areminor differences in the errors. There are however
few cases that fail in doing so and deserve some comments. In particular, we notice the failure
of DeC for basic P3 and Bernstein B3 polynomials and the SSPRK with basic and Bernstein
P2 elements. While disappointing, this negative result is not completely new. Indeed, in [3]
obtaining correct convergencewith DeC for some orders required both increasing the number
of substebs, thus making the method more expensive than the corresponding RK scheme, as
well as including penalty terms on the jumps of higher order derivatives. Finally, note that
this is in line with these methods falling in the family of “broom”, “box”, and thin striped
shaped stability regions which we expect to be difficult to use in practice. Concerning the
stabilization of high order derivatives this is also something a few authors advocate, for
instance using time relaxation methods [10,22], or using the jumps of high-order derivatives
of variables [28]. While this mayor explains the behavior observed, since we did not observe
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Fig. 11 Error decay for linear
advection with basic elements,
OSS stabilization and SSPRK.
P1, P2 and P3 elements are,
respectively, in blue green and
red (Color figure online)

Fig. 12 Error decay for linear
advection with cubature
elements, OSS stabilization and
SSPRK. P1, P2 and P3 elements
are, respectively, in blue green
and red (Color figure online)

the need of including these terms for other cases than the DeC, we decided to focus on the
simplest and most efficient approaches.

An interesting comparison is the one in Fig. 13 where we plot the error of each method
against computational time. Note that the simulations are all obtained using the CFL and the
penalty coefficient δ reported in Table 2, except in particular cases∗∗ where the minimization
process with ηu found values that do not dissipate enough the most dispersive waves, hence
for these schemes we use the parameters reported in Table 3. In general, we can state that
the cubature elements obtain the best computational time as they are mass matrix free. On
the other side, Bernstein elements are slightly more expensive than basic elements for DeC,
because of the CFL restrictions that Table 2 requires.

Comparing time discretizations, we see that despite the inversion of the mass matrix,
SSPRK converges more rapidly than DeC. We think this is related to several reasons. First
of all, the DeC CFL conditions are stricter, and also DeC requires more stages. Even though
not explicitly inverted, the mass matrix still needs to be assembled and multiplied to the
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Cubature elements

Basic elements

Bernstein elements

Fig. 13 Error for linear advection problem (51) with respect to computational time for all elements and
stabilization techniques: DeC on the left, SSPRK on the right (Color figure online)

solutions in the correction terms. Note however that the situation might radically change in
the multidimensional case in which the mass matrix inversion in the SSPRK will provide a
much larger overhead.

On the stabilization side, OSS and CIP behave very similarly (also their CFLs do), but
overall, the CIP is a little faster as it does not require the inversion of the mass matrix, for
example, in DeC. As expected, the SUPG stabilization requires more computational time,
even if it often has larger CFL conditions. This is even clearer when using cubature elements,
where SUPG is the only case in which we still need to invert the mass matrix with RK time
stepping.

Such a care in avoiding the inversion of mass matrices is meaningful when talking about
mass matrices coming, for example, from multi-dimensional problems or, at least, high
order methods. In simple cases where the mass matrix is tridiagonal (P1 elements in one
dimensional problems), the linear systems given by the mass matrix can be solved with an
O(N ) of arithmetical computations, hence, not changing the computational cost order of
these types of methods.
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Cubature elements and SSPRK schemes

Fig. 14 Solution of linear advection equation with discontinuous initial condition using Cubature elements
and SSPRK schemes: P1 at left, P2 at the center and P3 at right (Color figure online)

To see the benefit of stabilization techniques when the initial solution is not continuous,
we consider now the step initial data

u(x, 0) =
{
1, if x < 1.1,

0, else.
(52)

For this study, with consider t f = 0.35s and 201 nodes, i.e. Δx1 = 0.01, Δx2 = 0.02 and
Δx3 = 0.03.

As expected, all stabilization terms reduce numerical instabilities which appear without
any stabilization (in cyan in Fig. 14). The SUPG, OSS and CIP techinques behave similarly,
moreover the first order unstabilized method shows wild oscillations that scale differently
from all the other solutions. All the stabilized solutions have comparable accuracy for all
orders.

6.2 Burgers’ Equation

We consider here application to a simple nonlinear problem to verify the applicability of the
conditions obtained in the linear case. We test the numerical schemes on the solution of the
Burgers’ equation

⎧
⎪⎨

⎪⎩

∂t u(x, t) + ∂x
u2(x,t)

2 = 0 (x, t) ∈ Ω × [0, t f ],
u(x, 0) = u0(x), x ∈ Ω

u(xD, t) = g(xD, t), xD ∈ ∂Ω,

(53)

where Ω = [0, 2] and u0(x) = − tanh(4(x − 1)) and g(x, t) = uex (x, t) is the bound-
ary condition. The exact solution is obtained using the method of characteristics and reads
uex (x, t) = u0(χ) where

χ = x − u0(χ)t (54)

for all (x, t) ∈ Ω × [0, t f ], solving the nonlinear equation (54) for χ at every point (x, t).
To obtain the exact solution we employed the Broyden method implemented in SciPy library
[46]. Note that the analytical solution shows a shock at time

ts = − 1

min
x∈Ω

u′
0(x)

= 1

4
. (55)

This knowledge allows to set for this study t f = 0.5ts = 0.125, at which the solution is
still smooth and the convergence of the higher order approximations can be investigated. As
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Table 6 Summary table of convergence order, using coefficients obtained in Table 2

Element and No stabilization OSS CIP
time scheme P1 P2 P3 P1 P2 P3 P1 P2 P3

Cub. SSPRK / 1.99 3.71 2.05 2.85 3.67 2.05 2.85 3.68

DeC / 1.99 3.71 2.06 2.85 3.57 2.06 2.85 3.69

Basic SSPRK / 1.99 3.82 2.07 2.56 3.66 2.06 2.48 3.66

DeC / / / 2.7 2.92 / 2.59 2.85 /

Bern. SSPRK / 1.99 3.82 2.07 2.56 3.66 2.06 2.48 3.66

DeC / / / 2.7 2.9 1.41 2.59 2.87 1.37

The sign / means unstable

before, in doing this we perform conformal refinement of the 1D grid, while paying attention
to guarantee to use the same number of degrees of freedom for different p, and in particular
taking: Δx2 = 2Δx1 for P2 elements and Δx3 = 3Δx1 for P3 elements.

Using the CFL and δ obtained in Table 2 we obtain the experimental order of convergence
in Table 6.

The results are very similar to the ones obtained for the linear advection case. There is a
small improvement in basic and Bernstein P2 SSPRK cases, while the DeC basic and Bern-
stein P3 cases are even worse than the linear advection ones. The DeC P1 basic and Bernstein
cases show a super-convergent behavior. The interested reader will find the convergence plots
for all the combinations on the repository [36]. Here we focus on the comparison between
error and computational time, reported in Fig. 15.

Again for cubature elements it is clear the advantage in using high order methods, in
particular for SSPRKmethods, which has less stages thanDeC. For this test, we only compare
CIP and OSS and they systematically out-perform SUPG. For these two, the difference
in computational time is very minimal for all element choices. This may change in the
multidimensional case where the OSS may be penalized on elements requiring the inversion
of the mass matrix.

For DeC basic and Bernstein P1 elements, the superconvergence of the second order
schemes makes them the best in their category, see Table 6. For SSPRK the expected order of
convergence of fourth order scheme shows how the high order accurate methods can provide
the fastest and most precise solutions.

To see the benefit of stabilization techniques when a shock occurs, we consider now
t f = 0.3 > ts in Fig. 16. The simulation is done using 201 nodes, i.e. Δx1 = 0.01,
Δx2 = 0.02 and Δx3 = 0.03.

As expected, all the solutions introduce some numerical dispersion around the shock,
even if, the L2 norm of the solutions is dissipated. As we can see, stabilization terms slightly
reduce the numerical instability which appears in the simulations without any stabilization
(in cyan in Fig. 16). Once again, OSS and CIP behave similarly with a shock, and first order
accurate schemes behave slightly better than high order schemes when a shock occurs.

6.3 ShallowWater Equations

As a final application we consider the non linear shallow water equations:

{
∂t h + ∂x (hu) = 0,

∂t (hu) + ∂x (hu2 + g h2
2 ) + Φ = 0,

x ∈ Ω, t ∈ [0, 5]. (56)
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Cubature elements

Basic elements

Bernstein elements

Fig. 15 Error for Burgers’ equation (53) with respect to computational time for all elements and stabilization
techniques: DeC on the left, SSPRK on the right (Color figure online)

Cubature elements and SSPRK schemes

Fig. 16 Non linear instabilities for Burgers’ equation (53) when t f > ts using Cubature elements and SSPRK
schemes: P1 at left, P2 at the center and P3 at right (Color figure online)

Here, h is the water elevation, u the velocity field, g the gravitational acceleration. We will
solve the system on the domain Ω = [0, 200], and add the source term Φ = Φ(x, t) in order
to impose the solution to be equal to
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Table 7 Summary tab of convergence order, using coefficients obtained by minimizing ηu

Element and No stabilization OSS CIP
time scheme P1 P2 P3 P1 P2 P3 P1 P2 P3

Cub. SSPRK / 1.96 5.17 2.26 2.69 5.02 2.39 2.68 5.05

DeC / 1.97 5.17 2.28 2.65 4.79 2.7 2.66 5.07

Basic SSPRK / 1.98 5.54 1.94 2.31 4.93 1.95 2.29 4.98

DeC / / / 2.23 2.74 / 2.01 2.58 /

Bern. SSPRK / 1.97 2.44 1.94 2.07 2.19 1.95 2.09 2.21

DeC / / / 2.23 2.0 2.0 2.01 2.0 1.98

The sign / means unstable.

⎧
⎪⎪⎨

⎪⎪⎩

hex (x, t) = h0 + εh0sech2(κ(x − ct)),

uex (x, t) = c
(
1 − h0

hex (x,t)

)
,

κ =
√

3ε
4h20(1+ε)

, c = √
gh0(1 + ε).

(57)

Following the classical manufactured solution method, we set

Φ(x, t) = −
[

∂t (hex (x, t)uex (x, t)) + ∂x

(

hex (x, t)u
2
ex (x, t) + g

h2ex (x, t)

2

)]

= − [hex (∂t uex + uex∂xuex + g∂xhex )] .

For our study, we set ε = 1.2, h0 = 1 and the initial and Dirichlet boundary condition given
by the exact solution at time 0 and at the borders of the domain.

We discretize the mesh with uniform intervals of length Δx , and as before we perform a
grid convergence by respecting the constraintΔx2 = 2Δx1 forP2 elements andΔx3 = 3Δx1
for P3 elements. In Table 7 we show the convergence orders for this shallow water problem
with the CFL and δ coefficients found in Table 2.

The results obtained are similar to those of the other cases. The convergence rates are at
least the expected ones with cubature elements while we still see problems with DeC and
basic elements in the fourth order case, as well as with Bernstein polynomials for both P2

and P3. On the other hand, some superconvergence is measured in the P3 case with both
cubature and basic elements. This creates an even larger bias in the error-cpu time plots,
Fig. 17, in favor of these higher polynomial degrees.

7 Conclusion

In summary, we propose a comparison of high order continuous Galerkin methods with stabi-
lization techniques for hyperbolic problems. On the linear advection equation, we perform a
Fourier analysis on the spatial discretization, then a von Neumann analysis on the space–time
discretization given by each combination of stabilization, time discretization and finite ele-
ments. This provides reliable parameters and CFL conditions for all the mentioned methods
that can be used both in the linear advection case and in nonlinear problems, as the Burgers’
and shallow water simulations showed.

The Fourier analysis is limited to one dimensional problems (or structured multidimen-
sional meshes), so the main ongoing development is the verification of the properties of the
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Cubature elements

Basic elements

Bernstein elements

Fig. 17 Error for Shallow Water equations (56) with respect to computational time for all elements and
stabilization techniques: DeC on the left, SSPRK on the right (Color figure online)

methods studied in a multidimensional setting based on the approximation choices suggested
e.g. in [21,26,44] and references therein. Note that the parameters found in the present study
may not provide stable results in all cases when passing to multiple space dimensions, espe-
cially when considering non-tensorial representations as e.g. on simplex elements. However,
our preliminary investigations suggest that similar constraints can be formulated also in these
cases.
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A Time Schemes

In this appendix we introduce the time integration coefficients used in this work, to make
the study fully reproducible. In Table 8 there are the RK coefficients, in Table 9 the SSPRK
coefficients and in Table 10 the DeC coefficients.
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Table 10 DeC coefficients for
equispaced subtimesteps

Order 2

m βm ρmz

1 1 1
2

1
2

Order 3

m βm ρmz

1 1
2

5
24

1
3 − 1

24

2 1 1
6

2
3

1
3

Order 4

m βm ρmz

1 1
3

1
8

19
72 − 5

72
1
72

2 2
3

1
9

4
9

1
9 0

3 1 1
8

3
8

3
8

1
8

Without any stabilization method

Using the SUPG stabilization method

Using the OSS stabilization method

Using the CIP stabilization method

Fig. 18 Dispersion and damping coefficients for basic elements, with DeC and SSPRK methods and all
stabilization techniques (Color figure online)
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Without any stabilization method

Using the SUPG stabilization method

Using the OSS stabilization method

Using the CIP stabilization method

Fig. 19 Dispersion and damping coefficients for cubature elements, with DeC and SSPRK methods and all
stabilization techniques (Color figure online)

B Fourier Analysis, Spatial and Temporal Eigenanalysis

In this appendix we present a summary of the fully discrete Fourier analysis of Sect. 3.2,
comparing different time schemes (SSPRK and DeC), discretizations (basic, cubature, Bern-
stein), and stabilization methods (OSS, CIP, SUPG). We show the phase ω and the damping
ε coefficients using the best parameters obtained by minimizing the relative error of the
solution ηu for each scheme in Table 2. When the scheme was unstable we did not plot
the mode. In Fig. 18 one finds the phase and the damping for basic elements, in Fig. 19
for cubature elements and in Fig. 20 for Bernstein elements. We remark that for cubature
elements in Fig. 19, Δx3 is scaled differently with respect to the other orders because the
point distribution is not equispaced.

In general, we can observe that the phase error increases passing from full matrix SSPRK
methods to diagonal one DeC. This is noticeable evenmore for Bernstein elements.Cubature
elements, which are not affected by the mass lumping, do not show this behavior, and have a
dispersion error which is greater than the other lumped methods, but smaller than the other
non-diagonal mass matrix methods. This step is also associated to a greater damping in the
higher frequencies.
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Without any stabilization method

Using the SUPG stabilization method

Using the OSS stabilization method

Using the CIP stabilization method

Fig. 20 Dispersion and damping coefficients for Bernstein elements, with DeC and SSPRK methods and all
stabilization techniques (Color figure online)
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J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M.,
Ribeiro, A.H., Pedregosa, F., vanMulbregt, P.: SciPy 1.0 contributors: SciPy 1.0: fundamental algorithms
for scientific computing in python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-
019-0686-2

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.jcp.2017.01.069
https://doi.org/10.1016/j.jcp.2017.01.069
https://gitlab.inria.fr/dtorlo1/stability-analysis-of-several-fem-methods-results-and-code.git
https://doi.org/10.4310/CMS.2003.v1.n3.a6
https://doi.org/10.13140/RG.2.2.32887.85924
https://doi.org/10.1016/j.jcp.2019.109112
https://doi.org/10.1016/j.apnum.2020.01.025
https://doi.org/10.1016/j.apnum.2020.01.025
https://doi.org/10.1007/978-3-642-59721-3_43
https://doi.org/10.1137/S0036142998337247
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

	Spectral Analysis of Continuous FEM for Hyperbolic PDEs: Influence of Approximation, Stabilization, and Time-Stepping
	Abstract
	1 Introduction
	2 Numerical Discretization
	2.1 Stabilization Terms
	2.1.1 Streamline-Upwind/Petrov–Galerkin: SUPG
	2.1.2 Continuous Interior Penalty: CIP
	2.1.3 Orthogonal Subscale Stabilization: OSS

	2.2 Finite Element Spaces and Quadrature Rules
	2.3 Time Integration
	2.3.1 Explicit Runge–Kutta and Strong Stability Preserving Runge–Kutta Schemes
	2.3.2 The Deferred Correction Scheme


	3 Fourier Analysis
	3.1 Preliminaries and Time Continuous Analysis
	3.2 Fully Discrete Analysis
	3.2.1 Methodology


	4 Results of the Fully Discrete Spectral Analysis
	4.1 Dispersion and Damping

	5 A Note on Nonlinear Stability
	6 Numerical Simulations
	6.1 Linear Advection Equation
	6.2 Burgers' Equation
	6.3 Shallow Water Equations

	7 Conclusion
	Acknowledgements
	A Time Schemes
	B Fourier Analysis, Spatial and Temporal Eigenanalysis
	References





