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ABSTRACT

PURPOSE The clinical course of pulmonary carcinoids ranges from indolent to fatal
disease, suggesting that specific molecular alterations drive progression
toward the fully malignant state. A similar spectrum of clinical phenotypes
occurs in pediatric neuroblastoma, in which activation of telomerase reverse
transcriptase (TERT) is decisive in determining the course of disease. We
therefore investigated whether TERT expression defines the clinical fate of
patients with pulmonary carcinoid.

METHODS TERT expression was examined by RNA sequencing in a test cohort and a
validation cohort of pulmonary carcinoids (n 5 88 and n 5 105, respectively). A
natural TERT expression cutoff was determined in the test cohort on the basis of
the distribution of TERT expression, and its prognostic value was assessed by
Kaplan-Meier survival estimates and multivariable analyses. Telomerase ac-
tivity was validated by telomere repeat amplification protocol assay.

RESULTS Similar to neuroblastoma, TERT expression exhibited a bimodal distribution in
pulmonary carcinoids, separating tumors into TERT-high and TERT-low
subgroups. A natural TERT cutoff discriminated unfavorable from favorable
clinical courses with high accuracy both in the test cohort (5-year overall
survival [OS], 0.547 6 0.132 v 1.0; P < .001) and the validation cohort (5-year OS,
0.788 6 0.063 v 0.913 6 0.048; P < .001). In line with these findings, telomerase
activity was largely absent in TERT-low tumors, whereas it was readily de-
tectable in TERT-high carcinoids. In multivariable analysis considering TERT
expression, histology (typical v atypical carcinoid), and stage (≤IIA v ≥IIB), high
TERT expression was an independent prognostic marker for poor survival, with
a hazard ratio of 5.243 (95% CI, 1.943 to 14.148; P 5 .001).

CONCLUSION Our data demonstrate that high TERT expression defines clinically aggressive
pulmonary carcinoids with fatal outcome, similar to neuroblastoma, indicating
that activation of TERT may be a defining feature of lethal cancers.

INTRODUCTION

Neuroendocrine neoplasms of the lung are classified into
typical carcinoid, atypical carcinoid (AC), large-cell neu-
roendocrine carcinoma (LCNEC), and small cell lung
cancer (SCLC) on the basis of histologic criteria.1,2 Pul-
monary carcinoids account for 1%-2% of all lung tumors.
Their clinical course varies considerably, ranging from
indolent tumors with favorable prognosis to progressive
disease with fatal outcome.3-5 By contrast, LCNEC and

SCLC are invariably aggressive tumors with poor survival
rates.3,4,6 The current prognostic classification of pul-
monary carcinoids is mainly on the basis of histologic
subtyping into typical carcinoids and ACs, considering
mitotic counts and presence of necrosis,2 as well as stage
of disease,7 taking the presence or absence of lymph node
metastases into account.8 However, accurate outcome
prediction remains challenging, and molecular alterations
underlying the divergent phenotypes have not been
identified.6
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In our previous work, we discovered that the clinical
course of children with neuroblastoma depends on the
presence or absence of molecular mechanisms that acti-
vate telomere maintenance (telomere maintenance
mechanisms [TMM]).9 Neuroblastoma is a neuroendo-
crine tumor of the developing sympathetic nervous sys-
tem10 with highly variable clinical outcome, similar to
pulmonary carcinoids. In neuroblastoma, some tumors
differentiate into benign ganglioneuroma or regress
spontaneously, whereas others progress continuously
despite intensive multimodal treatment.11 High-risk
neuroblastoma is defined by the presence of TMM, con-
ferred by either induction of telomerase reverse tran-
scriptase (TERT) expression or the alternative lengthening
of telomeres (ALT) pathway, whereas low-risk tumors
lack these mechanisms.9

Here, we hypothesized that activation of TMM, which en-
ables replicative immortalization of malignant cells,12 might
be themolecular turning point that separates fullymalignant
tumors from less aggressive variants—not only in neuro-
blastoma, but also in other cancers. We therefore sought to
evaluate whether TMM may determine the clinical fate in
pulmonary carcinoids and may thus be used to accurately
predict clinical courses of these patients.

METHODS

Detailed information on the methods used in this study is
provided in the Data Supplement (online only).

Cohorts and Clinical Data

We used sequencing and clinical data of 88 patients with
pulmonary carcinoid as a test cohort that has been pub-
lished previously (Table 1).13,14 Overall survival (OS) in-
formation was available from 72 patients of this cohort. For

validation, we combined data from an unpublished cohort
of patients with pulmonary carcinoid (validation cohort,
part 1; n 5 75) and from a previously published cohort
(validation cohort, part 2; n 5 30)15 to increase the size of
the validation cohort, and thus the power of the analyses.
OS data were available from 67 patients of validation co-
hort, part 1, and from 30 patients of validation cohort, part 2
(Table 1; Data Supplement, Tables S1 and S2).15 The vali-
dation cohort was slightly, but not significantly, enriched
for ACs when compared with the test cohort (Data Sup-
plement, Fig S1A). Survival of patients of the test and
validation cohorts was comparable (Data Supplement, Fig
S1B). Informed consent was obtained from each patient
before analysis. For the test cohort, the study as well as
written informed consent documents had been approved by
the Institutional Review Board (IRB) of the University of
Cologne. Additional biospecimens for this study were ob-
tained from the Victorian Cancer Biobank, Melbourne,
Australia; the Vanderbilt-Ingram Cancer Center, Nashville,
TN; and Roy Castle Lung Cancer Research Programme, The
University of Liverpool Cancer Research Center, Liverpool,
United Kingdom. The IRB of each participating institution
approved collection and use of all patient specimens in this
study.

For the validation cohort, part 1, all specimenswere collected
from surgically resected tumors, applying local regulations
and rules at the collecting site, and including patient consent
for molecular analyses as well as collection of deidentified
data. The lungNENomics project was approved by the In-
ternational Agency for Research on Cancer Ethics Committee
(project number 19-07).

For the validation cohort, part 2, all studies were conducted
in accordance with appropriate ethical guidelines (following
US Common Rule) and with IRB approval. Written informed
consent was obtained from the patients.

CONTEXT

Key Objective
Is expression of telomerase reverse transcriptase (TERT) a decisive factor for the clinical phenotypes of pulmonary
carcinoids that can be used to predict patient outcome?

Knowledge Generated
High TERT expression, corresponding to telomerase activation, accurately identified patients with an unfavorable clinical
course in both a test cohort and a validation cohort of pulmonary carcinoids. In multivariable analyses, high TERT ex-
pression predicted poor survival independent of the established risk variables stage and histology.

Relevance (A.H. Ko)
TERT expression offers valuable prognostic information for pulmonary carcinoids and may prove useful for risk stratifi-
cation purposes; however, more work is required to determine if and how it can guide therapeutic decision-making.*

*Relevance section written by JCO Associate Editor Andrew H. Ko, MD, FASCO.
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Pathology Review

Histology of all tumors was assessed by a local pathologist
and by a team of independent expert pathologists. Tumors of
the test cohort were externally reviewed by Elisabeth
Brambilla andW.D.T. Tumors of the validation cohort, part 1,
were reviewed by S.L., M.P., Jean-Michel Vignaud, L.B.,
A.M.L., and G.P., except for nine cases for which only local
pathologic assessment was available. Tumors of validation

cohort, part 2, were reviewed and confirmed by N.R., W.D.T.,
L.H.T., K.K., and M.S.R.15 For all analyses in this study, the
histologic classification of the external experts were con-
sidered, when available.

RNA Sequencing

RNA sequencing data of the test cohort (n 5 88) were ob-
tained from published studies.13,14 RNA sequencing data of

TABLE 1. Patient Characteristics of the Test Cohort, the Validation Cohort, and the Entire Cohort

Characteristic Test Cohort (n 5 88) Validation Cohort (n 5 105) Entire Cohort

Age, years

Median 56.5 62 58.5

Range 16-80 22-83 16-83

Sex, No. (%)

Female 48 (54.5) 64 (60.9) 112 (58.0)

Male 38 (43.2) 41 (39.0) 79 (40.9)

NA 2 (2.3) — 2 (1.0)

Histology, No. (%)

Typical 58 (65.9) 65 (61.9) 123 (63.7)

Atypical 26 (29.5) 39 (37.1) 65 (33.7)

Carcinoid (not classified) 4 (4.5) 1 (0.9) 5 (2.6)

Stage UICC (I-IV), No. (%)

I 59 (67.0) 57 (54.3) 116 (60.1)

II 15 (17.0) 23 (21.9) 38 (19.7)

III 6 (6.8) 13 (12.4) 19 (9.8)

IV 4 (4.5) 2 (1.9) 6 (3.1)

NA 4 (4.5) 10 (9.5) 14 (7.3)

Stage UICC (≤IIA v ≥IIB), No. (%)

≤IIA 66 (75.0) 66 (62.9) 132 (68.4)

≥IIB 18 (20.5) 31 (29.5) 49 (25.4)

NA 4 (4.5) 8 (7.6) 12 (6.2)

Stage UICC (≤IIIA v ≥IIIB), No. (%)

≤IIIA 78 (88.6) 94 (89.5) 172 (89.1)

≥IIIB 6 (6.8) 3 (2.9) 9 (4.7)

NA 4 (4.5) 8 (7.6) 12 (6.2)

Follow-up time, months

Median 34.1 66.0 50.0

Range 1-287.7 0-301.5 0-301.5

Survival status, No. (%)

Alive 62 (70.5) 74 (70.5) 136 (70.5)

Dead 12 (13.6) 23 (21.9) 35 (18.1)

NA 14 (15.9) 8 (7.6) 22 (11.4)

Available data, No. (%)

DNA sequencing data

Available 47 (53.4) 59 (56.2) 106 (54.9)

NA 41 (46.6) 46 (43.8) 87 (45.1)

DNA methylation data

Available 48 (54.5) 18 (17.1) 66 (34.2)

NA 40 (45.5) 87 (82.9) 127 (65.8)

Abbreviations: NA, not available; UICC, Union Internationale Contre le Cancer.
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the validation cohort, part 1 (n 5 75), were generated
according to Illumina’s standard short-read sequencing
protocols (Illumina Inc, SanDiego, CA). RNA sequencing data
of validation cohort, part 2 (n 5 30), were obtained from
published studies.15 Raw data processing, read mapping, and
gene expression quantification of sequencing data of both
cohorts were performed using the Magic-AceView analysis
pipeline.16,17 The Magic analysis tool is accessible at NCBI18;
AceView served as primary transcriptome reference.19 Magic
calculates corrected Fragments Per Kilobase of transcript
per Million mapped reads (FPKM) expression values (sig-
nificant FPKM [sFPKM]) by applying several corrections to
compensate for undesirable batch effects, that is, the insert
length of the library, 3’ bias, the level of genomic contam-
ination, sequencing and mapping noise, and the eventual
presence of extremely highly expressed genes.20 TERT ex-
pression levels are given as log2(sFPKM). Immune cell
abundance was inferred from RNA sequencing data using
CIBERSORTx21 and the LM22 signature gene file. To this end,
RNA sequencing data were processed with Kallisto (version
0.44.0), and FPKM values were used as input for CIBER-
SORTx. The analysis was run in absolutemode, with B-mode
batch correction enabled, quantile normalization disabled,
and 500 permutations.

Identification of a Natural TERT Expression Cutoff

To separate tumors of the carcinoid test cohort into cases
with high and low TERT expression, we calculated a TERT
expression cutoff from a fitted mixture of two normal dis-
tributions. The model fit was performed by expectation
maximization. Tumors having a posterior probability of at
least 95% for the second component were considered TERT-
high and the remaining cases TERT-low. The lowest ex-
pression value in the TERT-high group was defined as cutoff.
An alternative TERT expression cutoff was calculated by
selecting the maximum log-rank statistic in Kaplan-Meier
survival estimates, using the function maxstat.test in the R
package maxstat (version 0.7-25).

Whole-Genome and Whole-Exome Sequencing
Data Analysis

Whole-genome sequencing and whole-exome sequencing
data of tumors of the test cohort were obtained from pub-
lished studies13,14 and reanalyzed. Whole-genome sequenc-
ing of 59 fresh-frozen tumors and matched normal tissue of
the validation cohort, part 1, was performed by the Centre
National de Recherche en Génomique Humaine, France. Data
analysis and detection of somatic mutations were performed
as described previously.9,16 In the TERT promoter region and
50 kb downstream of the TERT transcription start
site, >99.9%of the basepairs were covered, with amean read
depth of 393. Telomere content was estimated by counting
reads containing at least four times themost common t-type
repeat sequence (TTAGGG or its reverse complement) in
paired tumor and normal samples. The counts were nor-
malized by the total number of reads in the sample.9

Telomeric Repeat Amplification Protocol Assay

Telomerase activity was determined using the TeloTAGGG
Telomerase PCR ELISAPLUS Kit (Sigma Aldrich, St Louis,
MO) according to the manufacturer’s protocol.

CD45 Immunohistochemistry

Fresh-frozen tumor sections (5 mM) were dried on super-
frost slides for 30 minutes and fixed with cold acetone
(–20°C) for 5 minutes. After drying, sections were rehy-
drated in 13 phosphate buffered saline (PBS) for 10 minutes.
Slideswere incubatedwith CD45 antibody (Cellmarque, Cline
2B11/PD7/26; 1:100) diluted in blocking solution (1% bovine
serum albumine/1 3 tris buffered saline) for 45 minutes.
After washing slides with 13 PBS (5 minutes), signals were
detected using the EnVision G|2 System/AP, Rabbit/Mouse
(Permanent Red; K5355). Slides were counterstained with
hematoxylin and mounted with AquaTex (Sigma Aldrich,
1.08562). Slides were scanned using a BZ-X810 (Keyence)
microscope at a 203 magnification.

DNA Methylation Profiling

Genome-wide DNA methylation was determined using an
Infinium HumanMethylation850 BeadChip (Illumina)
according to the manufacturer’s instructions, as described
previously.14,16 Methylation intensities were determined
using the R package RnBeads (version 2.10.0) and hg19
annotations. Probes on sex chromosomes were removed and
normalized with the Beta-Mixture Quantile method. All
other parameters were set to the default values.

Statistical Analyses

SPSS (package release 27) and R (version 4.1.2) were used for
statistical analyses. Survival was calculated as the time from
diagnosis to death or last follow-up if the patient survived.
Survival curves were estimated according to Kaplan-Meier
and compared with log-rank test. Estimates of 5-year
survival rates are reported together with their standard
errors. Association of TERT expression status with clinical
risk factors were examined using Fisher’s exact test. Com-
parison of continuous variables, such as gene expression,
was performed using two-tailed Mann-Whitney U test. P
values of .05 or less were considered significant.

Multivariable Analyses

After bivariate evaluation of associations between prog-
nostic markers using Fisher’s exact test, a test for multi-
collinearity was performed. Multivariable Cox regression
models were used to analyze the simultaneous prognostic
impact of TERT expression and established clinical markers
(histology, typical v atypical; stage, UICC stages ≤IIA v ≥IIB22

[to take into account the known prognostic effects of local
lymph nodemetastases23], ≤III v ≥III,24,25 or ≤IIIA v ≥IIIB) on
OS, including a possible interaction between TERT and

4 | © 2024 by American Society of Clinical Oncology
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histology. Statistically insignificant prognostic markers
were excluded by applying backward elimination, according
to likelihood ratio criteria (P entry <.05, P removal ≥.1).

RESULTS

To test the hypothesis that the presence of TMM may dis-
criminate between favorable and unfavorable clinical
courses in patients with pulmonary carcinoids, we compared
TERT expression levels of a test cohort of pulmonary car-
cinoids (n5 88; Table 1) to those of neuroblastoma (n5 112),
SCLC (n 5 74), and LCNEC (n 5 69) tumor samples (Fig 1A).
Neuroblastoma samples were classified according to their
TMM status into telomerase-positive, ALT-positive, and
TMM-negative by previously defined criteria.9 TERT ex-
pression was significantly higher in both SCLC and LCNEC
than in pulmonary carcinoids, which is in line with previous
reports,26 and even exceeded the levels detected in
telomerase-positive neuroblastoma (Fig 1A). We observed,
however, that TERT expression in pulmonary carcinoids was
spread over a broad range and resembled the distribution of
TERT expression in neuroblastoma, as assessed by a two-
sample Anderson-Darling test (P 5 .091; A 5 0.743; Data
Supplement, Fig S2A and Methods). In the majority of
pulmonary carcinoids, TERT expression was as low as in
TMM-negative neuroblastoma, whereas a fraction of car-
cinoids harbored TERT expression levels comparable with
those in telomerase-positive neuroblastomas (Fig 1A; Data
Supplement, Fig S2A).

The broad distribution of TERT expression levels across
pulmonary carcinoids pointed toward the existence of
telomerase-positive and telomerase-negative cases. To test
this assumption, we determined a natural TERT expression
cutoff by applying a mixture model with the two major
components of the TERT expression distribution, which
separated carcinoids into TERT-high tumors (n 5 26) and
TERT-low tumors (n 5 62; Fig 1B; Data Supplement,
Methods and Figs S2A-S2C). In our previous studies on
neuroblastoma, this approach led to robust discrimination of
tumors with and without telomerase activity.9,27 Similarly,
we found that enzymatic activity of telomerase was readily
detectable in TERT-high carcinoids, while it was largely
lacking in TERT-low cases (P 5 .004; Fig 1C). We excluded
that different grades of immune cell infiltration in the tu-
mors had accounted for the distinct TERT expression
levels28,29 in the two subgroups by computational decon-
volution of cell type proportions from expression data21

(Data Supplement, Figs S3A-S3C) and by exemplary leu-
kocyte detection using CD45 immunohistochemistry (Data
Supplement, Fig S3D).

We next aimed to assess whether TERT expression defined
clinical phenotypes of lung carcinoids. TERT-high cases of
the test cohort were associated with the poor prognostic
factors AC and stage ≥IIB, and all four stage IV tumors had
high TERT expression (Data Supplement, Figs S4A-S4C and
Tables S3 and S4). Analysis of OS of patients in the test cohort

(n 5 72) revealed that patients with TERT-low tumors had
significantly better survival in comparison with patients
with TERT-high tumors (5-year OS, 1.0 v 0.547 6 0.132;
P < .001; Fig 2A). To validate the prognostic accuracy of the
TERT cutoff, we examined an independent cohort of pul-
monary carcinoids (validation cohort, n 5 105; TERT-high,
n 5 50; TERT-low, n 5 55; Table 1; Data Supplement, Tables
S1 and S2). In this cohort, the TERT expression cutoff per-
formed comparably to the test cohort, revealing significantly
better outcome of patients with TERT-low tumors than
patients with TERT-high tumors (n 5 97; 5-year OS, 0.9136

0.048 v 0.7886 0.063; P < .001; Fig 2B). TERT expression was
associated with atypical histology but not with stage ≥IIB in
the validation cohort, although the two stage IV in this
cohort again had high TERT expression (Data Supplement,
Figs S4D-S4F and Tables S5 and S6).

To assess the robustness of TERT expression in discrimi-
nating clinical phenotypes of pulmonary carcinoids, we next
evaluated a distinct cutoff that had been determined by
analysis of a neuroblastoma cohort (termed as NB-cutoff;
Data Supplement, Fig S5A),9,30 and examined its prognostic
value in both carcinoid cohorts. Although the NB-derived
cutoff was slightly lower (ie, TERT expression score 5 7.58)
than the carcinoid-derived cutoff (TERT expression score 5

8.17), it still separated patients of both cohorts into favorable
and unfavorable subgroups (5-year OS, 1.0 v 0.576 6 0.126;
P < .001, and 0.894 6 0.058 v 0.812 6 0.057; P 5 .004, re-
spectively; Data Supplement, Figs S5B and S5C). As an al-
ternative approach, we screened the test set for the best
survival difference on the basis of TERT expression by
maximization of the log-rank statistic, resulting in a TERT
expression cutoff of 8.84 (Data Supplement, Fig S6A). This
cutoff also discriminated patients with distinct outcome in
the validation cohort (5-year OS, 0.924 6 0.042 v 0.759 6

0.071; P < .001; Data Supplement, Fig S6B). Together, we
found that distinct analytical approaches led to similar TERT
expression cutoffs that all robustly separated patients with
distinct outcome, supporting the notion that TERT expres-
sion is a key molecular feature driving pulmonary carcinoids
to lethal malignancy.

If high TERT expression was indeed the molecular mecha-
nism underlying the switch to lethal carcinoids, we hy-
pothesized that it would be largely independent of currently
used, mostly descriptive, markers for risk stratification, that
is, histologic classification and stage. Indeed, TERT ex-
pression did significantly discriminate outcome of patients
with typical carcinoids (5-year OS, 0.971 6 0.029 v 0.834 6

0.09; P 5 .021; Fig 2C), and afforded robust differentiation
between excellent and poor outcome in the group of patients
with ACs (5-year OS, 0.8926 0.072 v 0.6876 0.076; P5 .003;
Fig 2D). TERT expression also significantly discriminated
outcome in patients with tumor stages ≤IIA (5-year OS,
0.927 6 0.041 v 0.863 6 0.064; P 5 .008; Fig 2E) and in
patients with tumor stages ≥IIB (5-year OS, 1.0 v 0.5996 0.1;
P 5 .001; Fig 2F). Similar results were obtained when other
prognostic stage groups were defined,24,25,31 such as
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stages ≤II and ≥III (Data Supplement, Fig S7). These ob-
servations support an independent role for TERT in driving
pulmonary carcinoid progression.

To formally test whether TERT expression is independent of
the established risk factors stage and histologic subtype, we

next performed backward stepwise multivariable analysis,
considering the prognostic variables histology (typical
carcinoid v AC), stage (UICC stage ≤IIA v ≥IIB), and TERT
expression (TERT-low v TERT-high). We also included the
interaction between TERT expression and histology as a
potential prognostic variable, since the prognostic impact of

A

NB:TMM−

NB:ALT

NB:TERT CA
SCLC

4

6

8

10

12

14

16

18

T
E

R
T

 E
xp

re
ss

io
n 

Sc
or

e
(lo

g2
 s

FP
KM

)

n = 39 n = 14 n = 59 n = 88 n = 74 n = 69

LCNEC

Median =

Average =

Q1 =

Q3 =

5.3

5.1

4.8

5.7

5.7

5.7

4.8

6.4

10.0

10.3

8.4

11.3

7.0

6.2

5.0

8.8

12.4

12.4

11.3

13.5

12.4

12.8

11.1

13.8

P < .001

P < .001

P < .001

P < .001

B C

0

200

400

600

800

1000

Re
la

tiv
e 

Te
lo

m
er

as
e

Ac
tiv

ity

P = .004

TERT-
Low

n = 10

TERT-
High
n = 5

0

0.1

0.2

0.3

0

5

10

15

2 4 6 8 10 12 14 16

TERT Expression Score (log2 sFPKM)

Pa
tie

nt
s 

(N
o.

)

De
ns

ity

Test cohort
(n = 88)

FIG 1. TERT expression and telomerase activity in pulmonary carcinoids. (A) Expression of TERT in
neuroblastoma lacking TMM (NB:TMM–), ALT-positive neuroblastoma (NB:ALT), telomerase-positive
neuroblastoma (NB:TERT), pulmonary carcinoids (CA), SCLC, and LCNEC sample. Expression levels are
given as TERT expression score derived from RNA-seq data. Boxplots show themedian, and first and third
quartiles (boxes), with whiskers indicating the minimum and maximum of the data within 1.53 the IQR.
(B) To determine a natural cutoff that discriminates TERT-high and TERT-low expression in pulmonary
carcinoids, a mixture model with two components was applied. The distribution of TERT expression
values in the test cohort is shown by the histogram (left axis), while curves indicate normal distributions
fitted to tumors with low and high TERT expression using a mixture model (right axis). The threshold at a
TERT expression score of 8.17 was defined as the lowest expression value having a posterior
probability ≥95% to fall within the distribution on the right (ie, TERT-high cases), thereby separating TERT-
high (>8.17) and TERT-low (≤8.17) cases. (C) Telomerase enzymatic activity was determined in TERT-high
and TERT-low pulmonary carcinoid samples by TRAP enzyme-linked immunosorbent assay. ALT,
alternative lengthening of telomeres; CA, pulmonary carcinoid; LCNEC, large-cell neuroendocrine carci-
noma; NB, neuroblastoma; SCLC, small cell lung cancer; sFPKM, significant Fragments Per Kilobase of
transcript perMillionmapped reads; TERT, telomerase reverse transcriptase; TMM, telomeremaintenance
mechanisms; TRAP, telomeric repeat amplification protocol.
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TERT expression appeared dominant in ACs over typical
carcinoids. The established risk factors stage and histol-
ogy were significant in univariate analyses, as expected
and in line with previous studies32,33 (Data Supplement,

Table S7). In multivariable analysis, TERT expression was an
independent prognostic marker with a high hazard ratio
(HR) for poor survival (HR, 5.243 [95% CI, 1.943 to 14.148];
P 5 .001), together with histology (HR, 2.639 [95% CI, 1.048
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FIG 2. Kaplan-Meier plots of OS in patients with pulmonary carcinoids according to TERT ex-
pression. OS of patients was assessed in subgroups defined by TERT-high (TERT expression
score >8.17) and TERT-low (TERT expression score ≤8.17) expression in (A) the test cohort, (B) the
validation cohort, (C) the cohort of patients with typical carcinoids, (D) the cohort of patients with
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stage ≥IIB. Censored data are indicated by tick marks. OS, overall survival; TERT, telomerase
reverse transcriptase.
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to 6.644]; P 5 .039), whereas stage and interaction of TERT
expression and histology were excluded during backward
selection (Table 2). The same result in the last step of the Cox
model was obtained when other stage groups were con-
sidered in multivariable analyses (Data Supplement, Tables
S8 and S9). We also performed analogous multivariable
analyses using the NB cutoff, which again revealed that TERT
expression was an independent prognostic marker (Data
Supplement, Tables S10-S12). Thus, similar to neuroblas-
toma, high TERT expression is a defining molecular feature
separating lethal carcinoids from those with a mostly in-
dolent clinical course.

We next performed an in-depth search for genomic alter-
ations that might underly TERT dysregulation in pulmonary
carcinoids. Analyses of whole-genome and whole-exome
sequencing data of the test cohort (n 5 34 and n 5 16, re-
spectively; Data Supplement, Fig S8) did not reveal recurrent
genomic alterations associated with TERT expression. In
particular, we did not detect any TERT rearrangements or
promotormutations, despite both automated computational
analyses of genomic breakpoints and in-depth manual in-
spection of sequencing reads. We also did not find any TERT
promoter mutations in tumors of the validation cohort (n 5

59). In addition, genomic copy numbers of TERT were not
correlated with TERT expression levels (Data Supplement,
Fig S9 and Tables S13 and S14). By contrast, we noted that
DNA methylation of the CpG site cg11625005 at the TERT
locus was significantly increased in TERT-high tumors
(n 5 20) in comparison with TERT-low cases (n 5 46;
P < .001; Fig 3A; Data Supplement, Table S15), and that TERT
expression levels correlatedwithmethylation at this CpG site
(Fig 3B). Methylation of this CpG site, which is in close
proximity to the core promoter of TERT, has been associated
with a disabled repressive element and elevated TERT ex-
pression in both neuroblastoma and pediatric brain
tumors.16,34 We also examined expression patterns of genes
that are located in proximity to the TERT locus, since genes
located downstream of genomic TERT rearrangements, such
as SLC6A18 and SLC6A19, are strongly upregulated in case of
enhancer hijacking events, but not in case of transcriptional

induction.16 We found that only TERT mRNA was strongly
increased in TERT-high carcinoids in comparison with
TERT-low tumors, whereas the expression of adjacent genes
differed considerably less (Fig 3C; Data Supplement, Fig S10),
thus supporting the notion that TERT is transcriptionally
induced in these tumors.

To finally evaluate whether telomere maintenance may be
conferred by ALT in TERT-low pulmonary carcinoids, we
examined ALT-associated promyelocytic leukemia nuclear
bodies (APB).35 However, APB were not detected in both
TERT-low and TERT-high cases (n 5 11 and n 5 4, respec-
tively; Data Supplement, Figs S11A-S11C). In line with this
finding, calculation of telomere length ratios from whole-
genome and whole-exome sequencing data9 revealed that
telomere repeat sequences occurred at comparable levels in
both TERT-low carcinoids (n 5 30) and neuroblastomas
lacking TMM (n 5 19), as well as in TERT-high carcinoids
(n 5 10) and telomerase-positive neuroblastomas (n 5 35),
whereas they were significantly more abundant in ALT-
positive neuroblastomas (n 5 15; both P < .001; Data
Supplement, Fig S11D). Together, these data indicate that
pulmonary carcinoids of patients with favorable outcome
lack TMM, while carcinoids of patients with an unfavorable
clinical course have acquired TMM by induction of
telomerase.

DISCUSSION

Here, we show that TERT expression discriminates a fa-
vorable from an unfavorable clinical course in patients with
pulmonary carcinoids. Beyond the implications for clinical
management of patients, these findings support the notion
that telomerase dysregulation is a decisive molecular
mechanism driving human tumors to the fully established
malignant—lethal—state.

Risk assessment and prognostic stratification of patients
with carcinoids of the lung has remained challenging, and it
is therefore still unclear which patients may need systemic
treatment in addition to tumor resection and extensive

TABLE 2. Univariable and Multivariable Cox Regression Analyses of Risk Factors for Overall Survival in Patients of the Entire Cohort (n 5 160
patients with complete information, backward selection)

Variable Patients Analyzed HR Univariate P HR Multivariablea P

TERT expression (high >8.17 v low £8.17) Low n 5 96 6.884 (95% CI, 2.622 to 18.071) <.001 5.243 (95% CI, 1.943 to 14.148) .001

High n 5 64

Stage (≥IIB v £IIA) ≤IIA n 5 115 2.599 (95% CI, 1.264 to 5.343) .009

≥IIB n 5 45

Histology (AC v TC) TC n 5 102 4.207 (95% CI, 1.711 to 10.346) .002 2.639 (95% CI, 1.048 to 6.644) .039

AC n 5 58

NOTE. Bold refers to the reference group.
Abbreviations: AC, atypical carcinoid; HR, hazard ratio; TERT, telomerase reverse transcriptase; TC, typical carcinoid.
aHRs derived bymultivariable backward selection; interaction of TERT expression and histology was included inmultivariable analysis but excluded
during backward selection.
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follow-up monitoring.36-38 Current risk estimation is mainly
on the basis of descriptive features, such as histologic ex-
amination6 or tumor stage according to the TNMsystem.7,8,38

However, discriminating typical carcinoids from ACs is
difficult with high interobserver variability.39 Furthermore,
the prognostic value of this classification is limited, which
may be due to inherent inaccuracies of the classification
system or due to misclassification at initial diagnosis.36 Our
study demonstrates that TERT expression outperforms both
histologic classification and stage as prognostic variables,
providing a robust and reliable marker that can be deter-
mined even in small biopsies. These findings suggest that
implementing TERT expression as a biomarker of poor
outcome may be a promising approach to identify patients
who may need systemic treatment in addition to tumor
resection, and to guide physicians in defining risk-adapted

follow-up strategies. Although our study indicates that
various cutoffs over a range of TERT expression levels may
serve as accurate prognostic markers, clinical imple-
mentation of this risk variable will require consensus on the
diagnostic cutoff as well as validation of its prognostic value
in prospective clinical studies.

In addition to histology and stage, various other prognostic
markers have been proposed for risk assessment in pul-
monary carcinoids. Immunohistochemical analysis of the
proliferation marker Ki-67 is recommended in the current
WHO classification of thoracic tumors, albeit not required,
and a novel diagnostic category of highly proliferative
pulmonary carcinoids (LCNECwithmorphologic features of
carcinoid tumor) has recently been proposed.2,6 The
prognostic utility of Ki-67 is limited, however, as it has
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FIG 3. DNA methylation at CpG site cg116250005 and gene expression patterns at the TERT locus in
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been difficult to establish accurate thresholds that dis-
criminate clinical phenotypes,2 and because results of
studies evaluating the prognostic value of Ki-67 were not
consistent.2,6,33,40,41 Although immunohistochemical data
on Ki-67 were not available in our study, we observed that
expression of MKI67, the gene encoding for Ki-67, was
elevated in TERT-high carcinoids, and that expression
levels ofMKI67 correlated with those of TERT (both P < .001;
Data Supplement, Fig S12). The immunohistochemical
markers orthopedia homeobox protein and CD44 have also
been suggested for risk estimation in pulmonary
carcinoids.6,42 The added value of these two biomarkers in
the context of established prognostic features (such as
histologic subgroup or stage), however, has remained
unclear.43 Similarly, distinct molecular subtypes of carci-
noids have been proposed, including a prognostically un-
favorable subgroup of tumors with MEN1 mutations.14 The
prognostic significance of this molecular classification has
yet to be validated in independent cohorts and is therefore
currently not considered for patient risk stratification.6,38

In addition to the prognostic significance of TERT expres-
sion, we also demonstrate that not only telomerase activity
but TMM in general is absent in prognostically favorable
pulmonary carcinoids, providing a mechanistic rationale for
the benign clinical behavior of many of these tumors. Sta-
bilization of the chromosomal ends by telomerase or ALT
enables infinite replicative capacity and is thus a hallmark of
cancer cells,12 whereas replicative senescence or pro-
grammed cell death occurs in cells lacking TMM.44,45 We
previously discovered that absence of TMM in low-risk
neuroblastoma is associated with spontaneous regression
and differentiation into benign ganglioneuroblastoma.9

Pulmonary carcinoids resemble neuroblastoma in their
highly variable clinical course, with favorable outcome oc-
curring in many patients without systemic treatment, and
recurrence, metastasis, and death in others.5,14,46 Further-
more, regression of pulmonary carcinoids without therapy
has occasionally been reported, although this phenomenon
has not systematically been studied in this disease.47-49

The genetic etiology and pathogenesis of pulmonary
carcinoids has largely remained unclear,28 and molecular

alterations suitable for risk estimation and targeted therapy
have not been identified yet.13,14,36 Mutations of MEN1
occur recurrently in this malignancy3 and have also been
found in some of the cases of this study; however, these
alterations were not clearly associated with outcome or
TERT expression subgroup (Data Supplement, Fig S8). In
addition, TERT copy-number gain has been reported as a
risk factor for poor prognosis3,50; however, copy-number
alterations did neither correlate with TERT expression nor
with outcome of patients in both of our study cohorts (Data
Supplement, Figs S9B and S13). Tumors with elevated TERT
expression levels harbored methylation of a specific CpG
site located in close proximity to the TERT core promoter
that has been reported previously in brain tumors and
neuroblastoma.16,34 In addition, genes in close proximity to
the TERT locus were not differentially expressed between
TERT-high and TERT-low carcinoids. These data support
the notion that epigenetic remodeling and transcriptional
induction of TERTmay account for elevated TERT expression
levels in unfavorable pulmonary carcinoids. The mecha-
nisms underlying methylation of the TERT promoter and
transcriptional upregulation of TERT in this malignancy,
however, remain to be determined.

Potential limitations of our study are missing data on event-
free survival, limited data on treatment, and lack of the
immunohistochemical Ki-67 status of the tumors. Strengths
of the study are the large number of patients with this rare
malignancy collected from three different sources and the
detailed pathologic and molecular information on their
tumors.

In conclusion, our study indicates that telomerase is highly
expressed in pulmonary carcinoids of patients with unfa-
vorable outcome, but lacking in those of patients with in-
dolent clinical courses, suggesting that telomere
maintenance drives the clinical phenotype of this malig-
nancy. Our results provide a starting point for more accurate
risk estimation and improved clinical management of pa-
tients with lung carcinoids. Furthermore, they provide
support for the notion that—across human cancers—TERT
dysregulation is a key molecular switch required to drive
tumor cells to the fully malignant state.
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