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ABSTRACT

Context. Following their birth, globular clusters (GCs) experience a very peculiar dynamical evolution. Gravitational encounters drive
these systems toward energy equipartition, mass segregation, and evaporation, which alter structural, spatial, and kinematic features.
Aims. We determine the dynamical state of a few GCs by means of a multi-mass King-like dynamical model. Our work focuses on the
prediction of the energy equipartition degree and its relationship with model parameters.
Methods. We adjusted the dynamical model parameters in order to reproduce the observed velocity dispersion – as derived from
Hubble Space Telescope proper motion data – as a function of the stellar mass. By doing so, we estimated Φ0, a measure of the
gravitational potential well. We repeated the same fit by means of the Bianchini relation, a function obtained by interpolating on N-
body simulation results. We studied the relationship between Φ0 and the Bianchini equipartition mass meq and discuss the structural
properties, such as concentration c, the number of core relaxation timescales Ncore, and core radius rc. To obtain an independent
estimate of Φ0, we also fitted observed surface brightness profiles using the predicted surface density and a mass–luminosity relation
from isochrones.
Results. The quality of the fits of the velocity dispersion–mass relationship obtained by means of our dynamical model is comparable
to those obtained with the Bianchini function. Nonetheless, when the Bianchini function is used to fit the projected velocity dispersion,
the resulting degree of equipartition is underestimated. On the contrary, our approach provides the equipartition degree at any radial or
projected distance by means of Φ0. As a result, a cluster in a more advanced dynamical state shows a larger Φ0, as well as larger Ncore
and c, while rc decreases. We find the estimates of Φ0 obtained by fitting surface brightness profiles to be compatible at 2σ confidence
level with those from internal kinematics, although further investigation of statistical and systematic errors is required.
Conclusions. Our work illustrates the predicting power of dynamical models to determine the energy equipartition degree of GCs.
These models are a unique tool for determining structural and kinematic properties, and can be used where observational data are poor,
as is the case for the most crowded regions of a cluster, where stars are barely resolved.
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1. Introduction

Searching in the vicinity of the Milky Way, we find mostly spher-
ically shaped stellar systems with an increasing density of stars
toward their center. These are called globular clusters (GCs).
They are commonly known for their very old age, which reaches
∼10 Gyr in most cases or even more.

GCs were thought to consist of a single stellar population
with low metallicity. However, the detection of chemical and
photometrical differences first suggested and then confirmed the
presence of different generations of stars. A variety of questions
were raised, establishing a renewed interest in GCs. Astronomers
are studying the possible formation scenarios of such multiple
stellar generations, as well as their initial properties, using the
enormous amount of recently collected observational data and
by developing advanced models (see the reviews by Bastian &
Lardo 2018; Gratton et al. 2019; Milone & Marino 2022). Behind
their intriguing formation and stellar generations, GCs have
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a highly articulated dynamical evolution. Their high-density
environment makes them the only known collisional star-cluster
systems in astronomy. The relaxation process driven by gravi-
tational encounters between stars plays a fundamental role in
determining the structure and evolution of GCs following their
birth. The efficiency of relaxation brings these systems toward
a degree of kinetic energy equipartition among stars (Spitzer
1987), altering their structural and kinematic features. Such inter-
nal dynamical processes affect the spatial distribution of stars,
a phenomenon known as mass segregation. A system close to
equipartition has massive stars with a lower velocity dispersion,
which consequently sink toward the center. On the contrary, less
massive stars are faster and migrate to the outer regions. Here,
the gravitational pull of our Galaxy subtracts stars from the clus-
ter, leading to a limited phase-space domain through what is
known as evaporation (Ambartsumyan 1938; von Hoerner 1957;
King 1958a,b; Spitzer 1987), and producing the tidal streams
(Odenkirchen et al. 2001; Piatti & Carballo-Bello 2020). The
joint effect of mass segregation and evaporation flattens the
mass function, whose initial shape is largely unknown. Our
comprehension of the internal dynamics of GCs can provide
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hints concerning their initial mass function (IMF). The mass loss
from GCs following their formation also contributes to populat-
ing the Galactic environment. Depending on their orbits, they
can suffer shocks and inhomogeneities in the still unknown early
galactic potential (Webb et al. 2019). Regarding multiple stel-
lar generations, these dynamical processes, coupled with stellar
evolution, favor a strong and predominant loss of first-generation
stars in the early evolutionary phases of clusters. The evapora-
tion of such stars may explain the origin of galactic halo stars.
Furthermore, the internal dynamics mixes these populations,
mainly erasing their initial spatial and kinematic differences, fur-
ther complicating attempts to understand the characteristics of
the system. Studying GC dynamics can thus reveal fundamental
insights concerning the early environment of our Galaxy, as well
as their contribution to its evolution (see Chapter 8 of Gratton
et al. 2019).

Although it is well known that massive stars are more cen-
trally concentrated than less massive ones, a theoretical descrip-
tion of energy equipartition, mass segregation, and evaporation
is still missing and astronomers are trying to quantify these pro-
cesses. A satisfying explanation of this intricate stellar dynamics
is required to extract information about the primordial environ-
ment and the formation scenario of GCs. Understanding the
stellar dynamics may also help to solve the puzzle of the forma-
tion of multiple stellar generations, describing their dynamical
evolution. However, even single stellar population dynamical
phenomenology still needs to be fully understood.

Focusing on energy equipartition, several scientists are
exploring GC evolution through N-body simulations to study
the efficiency of this process and its relation to structural
and internal properties, as well as initial conditions (Trenti &
van der Marel 2013; Webb & Vesperini 2017; Pavlík & Vesperini
2021b,a, 2022). Among such works, the most important from our
perspective is that of Bianchini et al. (2016). Here, with a set of
N-body simulations, the authors look at the degree of energy
equipartition through the velocity dispersion as a function of
stellar mass in the inner regions of clusters (namely inside the
half-mass radius). These authors find an analytic formula to fit
the velocity dispersion–mass relationship that is

σ(m) =


σ0,B exp

(
− m

2meq

)
if m ≤ meq,

σeq

(
m

meq

)−1/2
if m > meq,

(1)

where the equipartition mass meq is the parameter that quantifies
the degree of energy equipartition, while σ0,B is a normaliza-
tion constant and σeq = σ0,B exp (−1/2). In a subsequent paper,
Bianchini et al. (2018) characterize the variation of meq during
GC evolution and its dependence on the radial coordinate.

The provided fitting function includes the limit of complete
equipartition for masses m > meq, which is σ(m) ∝ m−1/2. Then,
meq tells us which masses reach complete equipartition, with
high-mass stars closer to equipartition than low-mass stars. Fur-
thermore, as the degree of equipartition is expected to increase
with the dynamical state of a cluster, the meq parameter appears
to be related to the concentration parameter c and the numbers
of relaxation times elapsed during the life of a cluster, namely
Nrelax = tage/trelax, where tage is the age of a cluster and trelax is
the relaxation time, which is often evaluated in the core trc and at
the half-mass radius, yielding the number of core and median
relaxation timescales Ncore and Nhalf respectively (Bianchini
et al. 2016). The work of these authors has gained attention in
the literature due to the simplicity of the analytical function.
It was used in N-body simulations to quantify the degree of

energy equipartition in GCs hosting multiple stellar populations
(Vesperini et al. 2021) and to explore the effect of anisotropy,
primordial binaries, tidal field, and black holes in equipartition
(Pavlík & Vesperini 2021b,a, 2022; Aros & Vesperini 2023). The
exponential fitting function in Eq. (1) is often compared with
the classical power law σ(m) = σs(m/ms)−η with η = 0.5 for
complete equipartition, where σs and ms are scale values for the
velocity dispersion and mass.

Thanks to Hubble Space Telescope (HST) proper motion
measurements, observers can now both measure internal kine-
matics and estimate stellar masses, quantifying the equipartition
level in a few GCs (Libralato et al. 2018, 2019, 2022). In Watkins
et al. (2022, hereafter W22), the authors analyzed the degree of
energy equipartition in nine GCs using the Bianchini et al. (2016)
fitting function and the classical one, with the respective param-
eters. Most, if not all, of the stars of the studied clusters do not
show complete equipartition.

Although the Bianchini function reproduces the observable
well, it provides no information on the physics underlying the
equipartition process. Our aim is to compare measured data
and the Bianchini fitting function with theoretical results, which
provide more fundamental information about cluster dynamics.
Multi-mass King-like dynamical models have the advantage of
being self-consistent, that is they are directly obtained from
the physics of the system, namely the gravitational interaction
between stars, the mass distribution, and the limited available
phase space. As a consequence, the dependence of the veloc-
ity dispersion on mass is predicted by the model itself, and is
not related to an interpolation function that fits simulation out-
puts and observations. In this paper, we carefully discuss the
relation between the outcomes of our model and N-body-based
results, namely the successful Bianchini fitting function. We note
that N-body simulations are used to study the temporal evolu-
tion of stars in clusters, numerically integrating the Newtonian
equation of motion after choosing suitable initial conditions.
Current state-of-the-art simulations include a variety of phenom-
ena, such as the treatment of stellar evolution, binary systems,
compact object formation, and tidal forces, which make them
a powerful numerical tool for simulating more realistic clus-
ters. However, the definition of such recipes and the choice of
initial conditions themselves require accurate modeling. The-
oretical assumptions and prescriptions can significantly affect
the simulation results. This is why most researchers explore the
parameters of those models to determine the initial conditions
and to describe the considered phenomena. As a result, N-body
methods are a modeling tool needed to explore the temporal evo-
lution, but they require theoretical references to consistently set
up the simulations themselves. Despite large increases in com-
putational resources in recent years, realistic simulations require
large and advanced computer infrastructures as well as compu-
tational time, which grows with the square of the number of
simulated stars.

On the contrary, exploring dynamical models for GCs is
much less computationally expensive. In our approach, a sin-
gle equilibrium configuration can be obtained in few seconds or
minutes depending on the desired precision. Furthermore, these
models can be used to predict radial and projected profiles for
several observables, such as the surface density (both in mass
and in the number of stars), the surface brightness (if a mass–
luminosity relation is known), and the velocity dispersion. When
using models including a mass distribution, our knowledge of
the distribution function characterizes not only the phase-space
but also the mass function. These models provide a descrip-
tion of the seven-dimensional space of masses, positions, and
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velocities. Such theoretical frameworks are clearly limited by
the assumptions made, as in our case where isotropic velocities
are considered. Furthermore, some theoretical quantities require
observational constraints in order to get their numerical values,
as is usually the case for physical models. The temporal evo-
lution is assumed as described by equilibrium configurations
with different structural parameters, whose values determine
the dynamical state. The temporal dependence of such quanti-
ties can be addressed with numerical simulations, which offer
a unique opportunity in that sense (see Wang et al. 2016, for a
relation between the King single-mass model parameter W0 and
advanced simulations). Indeed, observing the historical proper-
ties of GCs would require observations of the satellites of distant
galaxies (i.e., far enough to look back in time into the life of the
GCs) under the strong assumption that cluster evolution is sim-
ilar in every galactic environment, which may not be the case.
Unfortunately, we are currently limited to GCs of the Milky Way
and its satellites and nearby galaxies.

Numerical simulations and theoretical modeling can there-
fore provide a broader perspective as to the dynamics of
GCs. However, we strongly emphasize that taking advantage of
dynamical models is fundamental to understanding the under-
lying physics of the processes involved. Such models are an
advanced interpretative and predictive tool for addressing the
major open questions in the field.

2. Methods

Our main approach consists in comparing the velocity dispersion
dependence on stellar mass predicted by our multi-mass dynam-
ical model for GCs, with the Bianchini function in Eq. (1), fitting
the observational data by W22. The fitting procedure leads to an
estimate of model parameters, to be related with the Bianchini
equipartition mass meq.

We also look at the surface brightness profiles (SBPs) of the
clusters by fitting the measured data by Trager et al. (1995) with
our theoretical prediction, which provides an estimate of param-
eters from a different observable. This allows us to see how
confident our model is at reproducing both the observed internal
kinematics and luminosity profile.

2.1. Dynamical model

Our dynamical model derives from the distribution function
(DF) obtained by King (1965) as an approximated solution of
the Fokker-Planck equation, which itself comes from the Boltz-
mann equation for collisional systems (Chandrasekhar 1943;
Rosenbluth et al. 1957; Spitzer & Härm 1958; Chandrasekhar
1960). The King model (King 1966) was a single-mass one, with
the DF having a cut-off in the phase-space that takes the Galactic
tidal field into account. Such a model describes the equilibrium
configuration of the system, once the DF is used to calculate the
density profile and solve the Poisson equation for the gravita-
tional potential. It was used for many years by astronomers to fit
the SBPs of GCs and to obtain structural parameters (Peterson
& King 1975; Trager et al. 1995; Harris 1996; Miocchi et al.
2013). A further step on was done first by Da Costa & Freeman
(1976), introducing a discrete multi-mass model with ten mass
classes, each having its own DF with an energy cut-off and a
weight factor to be constrained by observations. They success-
fully fit M3 surface brightness, where the King model was failing
to reproduce both the inner and outer profile.

Due to the general good agreement between the King
model and observations, little effort was put in developing and

exploring multi-mass models, although they are fundamental in
the comprehension of several phenomena produced or altered by
the mass distribution, like segregation, evaporation, and equipar-
tition (Miocchi 2006; Gieles & Zocchi 2015; Peuten et al. 2017;
Torniamenti et al. 2019; Dickson et al. 2023). Even if N-body
simulations are offering great opportunities in understanding
the dynamical evolution of GCs, we underline the importance
of developing analytical models to describe physical processes,
offering an important tool in the comprehension of such systems,
like it was the King DF.

The formulation of a continuous multi-mass model was pre-
sented by Merafina (2019), as an extension of the Da Costa &
Freeman one and recovering the King formalism. The model we
present is similar, but with some improvements concerning the
derivation and the relation with the global mass function. Our
DF is an approximated solution of a generalized expression of
the Fokker-Planck equation, valid for collisional systems with a
mass distribution (see Eq. (A.1)). The DF keeps the property of
being limited in the phase-space. Moreover, not only it brings
information on the velocity distribution within the cluster, but it
also concerns the mass distribution of the stars, meaning that the
mass function is embedded in the DF. Its expression is

g(r, v,m) = k(m) e−m[φ(r)−φ0]/(kBθ)
[
e−ε(v,m)/(kBθ) − e−εc(r,m)/(kBθ)

]
,

(2)

where ε = mv2/2 is the kinetic energy of a star with mass m
and εc = mv2e/2 is its cut-off energy with ve = ve(r) the escape
velocity, φ(r) is the gravitational potential (with φ0 its value in
the cluster center) and r is the radial coordinate. The variable θ
is the thermodynamic temperature, a memory of the Boltzmann
DF limit and constant all over the equilibrium configuration
(Merafina 2017; Merafina 2018, 2019) and kB is the Boltzmann
constant. The multiplying factor k(m) weights the DF of each
mass m, like it was in the Da Costa & Freeman (1976) model,
although theoretically it gathers some mass-dependent functions
resulting from the derivation, related with the mass function and
the escape velocity at cluster center (see Appendix A for details).

The mass density radial profile ρ(r) is computed through an
integration over the masses and velocities of the DF in Eq. (2),
that is

ρ(r) =
∫ mmax

mmin

[∫ ve(r)

0
g(r, v,m)d3v

]
dm, (3)

with mmin and mmax the extremes of the mass range, where
the mass function is valid. Equation (3) is used to solve the
Poisson equation for the gravitational potential. Following the
King formalism, one could introduce W(r) = εc,1(r)/(kBθ) =
m1v

2
e(r)/(2kBθ) = m1[φR − φ(r)]/(kBθ) and solve the Poisson

equation for W(r), obtaining a set of equilibrium configurations
each identified by the initial condition W0,1 = m1[φR −φ0]/(kBθ),
like shown in Merafina (2019). However, the parameter for deter-
mining the configuration should not depend on the scale mass
(the models by Da Costa & Freeman 1976 and Merafina 2019
were using the greatest mass m1 of the system). Using a generic
mass unit mu and solving for Wu(r) = mu[φR − φ(r)]/(kBθ), the
expression of the dimensionless Poisson equation keeps the same
analytical expression, that is

1
x2

d
dx

(
x2 dWu

dx

)
= −9

ρ

ρ0
, (4)

with the dimensionless coordinate x = r/rk,u in units of the
King radius rk,u =

√
9kBθ/(4πGmuρ0). The initial conditions of
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Eq. (4) are W ′u(x = 0) = 0 and Wu(x = 0) = W0,u = mu(φR −

φ0)/(kBθ), which determines the solution. Here, we use a bet-
ter parameter to identify the equilibrium configuration, that is
Φ0 = (φR −φ0)/(kBθ), which measures the potential well without
depending on a scale mass (as W0,u do) and having the dimension
of the inverse of a mass.

To solve Eq. (3), the quantities in the DF in Eq. (2) must
be known. At the present state of development, the factor k(m)
has to be constrained from the global mass function ξ(m) with
a numerical procedure. Since the integration of g(r, v,m) over
the radial coordinate r and the velocity v gives the mass func-
tion by definition, we can iteratively constrain k(m). In this work,
we consider a single-power law mass function ξ(m) ∝ mα, with
the slope α taken from Baumgardt et al. (2023) or theoretically
assumed. The code that numerically integrates Eq. (3), once
given the slope α, the mass range and Φ0, evaluates k(m) with
a convergence procedure and draws radial profiles for each mass
composing the system. These include the 3D velocity dispersion
profile as function of mass

σ(r,m) = ⟨v2(r,m)⟩ =

∫ ve(r)
0 g(r, v,m)v2d3v∫ ve(r)

0 g(r, v,m)d3v
, (5)

that we project in two dimensions to obtain σ(R,m), with R the
projected distance from the cluster center. This profile is needed
to fit the proper motion observations on σ(m).

The model also provides the density profile of each mass,
which is used to predict the surface density profile for each mass
Σ(R,m), by integrating along the line of sight. This allows us
to estimate the surface brightness profile I(R), by introducing a
mass-luminosity relation. This is a fundamental step when deal-
ing with multi-mass systems in particular. We go through the
details of the production of the theoretical SBPs in Sect. 2.2.2,
where we discuss the fitting procedure on observational data.

2.2. Fitting procedure

2.2.1. Velocity dispersion–mass relationship

W22 provide the binned velocity dispersion of stars as function
of their estimated mass for a sample of Galactic GCs (see their
Table 2). Their dispersion measures are obtained from proper
motion (then in the 2D plane of the sky) and inside a ring in the
inner regions of the analyzed clusters.

In order to compare the model prediction with the data, we
compute σ(m) from the projected profile σ(R,m) in the same
region. When looking at a projected radial distance from clus-
ter center R, the observer intercepts all stars having 3D radius
r ∈ [R,Rt], where Rt = rt is the tidal radius. Then, we average the
3D profile σ(r,m) in that range to obtain the 2D profile σ(R,m).
Subsequently, the projected dispersion is averaged in the circular
annulus covered by the data sample, drawn around the median
radius (see W22, Table 1). We use the observed core radius rc
from the Harris (1996) catalog (2010 edition, hereafter indicated
as the Harris catalog) and the theoretical core radius rc,th to con-
vert the dimensional coordinates into our dimensionless ones.
Here, rc,th is obtained from the surface density profile, predicted
by our model. This coincides with rc if the surface brightness
profile is proportional to the surface density profile (with a factor
only dependent on mass).

The overall average procedure returns the velocity disper-
sion as function of stellar mass, normalized to the dispersion
of the lowest mass σ0. The shape of σ(m)/σ0 depends on the
model parameters. In particular, for an increasing Φ0 that gives a

more advanced dynamical state, the dispersion σ(m) is closer to
the complete energy equipartition limit σ ∝ m−1/2. Furthermore,
more massive stars have a greater degree of equipartition than
less massive ones for any value of Φ0 (see Fig. B.5 available on
Zenodo).

Concerning the choice of the mass function shape needed
to draw theoretical profiles, we set mmin = 0.1 and mmax = 1.0,
while for the slope α we select two approaches: the first takes
it from Baumgardt et al. (2023), the second one (more general)
explores a wide range α ∈ [−2.0, 0.0], actually adding the slope
to the parameter space of the minimization procedure. As a con-
sequence, the first approach gives the best-fit values of σ0 and
Φ0, while the second also returns an estimate for α. For the fit, we
numerically minimize the χ2 test value between data and model
prediction. We apply this procedure to the GCs in our sam-
ple, only removing NGC 2808 following W22. We also fit the
velocity dispersion data with the Bianchini function in Eq. (1),
to have an estimate of the χ2, to be compared with our model
ones. Although such a fit is less detailed than in W22, we obtain
the Bianchini equipartition mass meq and the normalization
constant σ0,B.

2.2.2. Surface brightness profiles

An extensive catalog of SBPs for Milky Way GCs was released
by Trager et al. (1995). Although more accurate measurements
are available from the work conducted by Noyola & Gebhardt
(2006) with HST photometry, they are restricted to internal
regions and to a few subsets of clusters. For these reasons, we
choose the Trager et al. (1995) dataset. To analyze the profiles,
we follow a procedure similar to that described by McLaughlin
& van der Marel (2005) and Zocchi et al. (2012), which these
authors used to estimate uncertainties on the data and fit SBPs
with single-mass dynamical models. The Trager et al. (1995)
SBPs consists of measurements for the logarithm of the pro-
jected radial coordinate Ri, the surface (apparent) magnitude in
the V-band µV(Ri), as well as its best-fit with Chebyshev poly-
nomials and a weight wi for each point according to its by-eye
reliability. The analysis performed by McLaughlin & van der
Marel (2005) provides an estimate of the uncertainty for each
surface brightness measure, namely δµV(Ri) = σµ/wi, where σµ
is a constant that varies from cluster-to-cluster. Following Zocchi
et al. (2012), we remove data points with wi < 0.15 and we cor-
rect each measure for the extinction as derived from the Harris
catalog.

In the context of multi-mass dynamical models, the stan-
dard assumption of a constant mass-to-light ratio is too crude.
To obtain the theoretical profile for the surface brightness, use-
ful to fit the available data, we need a mass-magnitude relation in
the V-band. Using theoretical isochrones we can establish such a
relationship by assigning to the masses of the dynamical model
a value for the corresponding absolute magnitude MV. We use
BaSTI isochrones (Hidalgo et al. 2018; Pietrinferni et al. 2021;
Salaris et al. 2022; Pietrinferni et al. 2024), considering an age of
13 Gyrs, [α/Fe] = +0.4, the He mass fraction Y = 0.247 and a
different metallicity [Fe/H] for each cluster as a reference case.
The metallicity value is taken from the Harris catalog, where
we also get the distance modulus to convert the observed appar-
ent magnitudes into absolute ones. Due to stellar mass loss, the
final mass of each star is naturally different from its initial mass,
depending on its evolutionary state. In particular, initially more
massive stars are now much brighter than low-mass stars, even
if their current mass may be similar. Furthermore, since GCs are
very old, and excluding remnants, the most massive stars have
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around 0.8 M⊙ and their mass loss occurred mainly in the last
million years. As a consequence, they did not have the time to
adjust their dynamical state, which is better described by their
initial mass. We then use the initial mass as representative of the
dynamical mass, in order to assign the corresponding MV value.
We note that when the stars evolve beyond the main sequence, a
large variation in luminosity occurs for a very small variation in
their mass. These evolved stars are also the more massive ones
still alive in the cluster. For these reasons, they play an impor-
tant role in shaping the surface brightness profile in the more
central regions of clusters, because of the mass segregation pro-
cess. To account for these effects, we choose a regular mass step,
but substantially smaller than that used to determine the velocity
dispersion. We note that the mass range, in particular the maxi-
mum mass of stars still alive, is provided by the isochrones and
depends on the age of the cluster. While this maximum mass has
a little effect on the prediction of σ(m), it will play an important
role in shaping the surface brightness profile.

Finally, we follow Zocchi et al. (2012) regarding the mini-
mization procedure of the χ2, by converting both the observed
and the theoretical SBPs into solar luminosities.

Concerning the theoretical prediction, the model gives the
surface density profile for each mass Σ(R,m). The global SBP
I(R) is defined as

I(R) =
∫ mmax

mmin

LV

m
Σ(R,m) dm, (6)

where LV is the luminosity obtained by converting the the-
oretical absolute magnitudes MV to solar luminosities, using
MV,⊙ = 4.83 (see the Sun Fact Sheet by NASA). Although
MV,⊙ may suffer from several non-negligible uncertainties, as
noted by Torres (2010), its choice is irrelevant in our fits.

The computed theoretical profile is normalized to its cen-
tral value I0. The shape of I(R)/I0 depends on the parameters
of the model, and its values are given for the dimensionless
radial coordinate. However, in our fitting procedure, we must
be aware that the observed radial coordinate is in physical
units. To deal with all these, we define a numerical auxiliary
function h(R/Rc;Φ0, α,mmin,mmax) = I(R)/I0 where Rc is the
core radius, α is the mass function slope that we take from
Baumgardt et al. (2023), mmin and mmax are the mass extremes
given by the isochrone. We numerically minimize the χ2 and
obtain an estimate of the best-fitΦ0, I0 and Rc. On the theoretical
ground, since the 2D and 3D radial grids are the same, rc = Rc
and rt = Rt. We apply this method to each cluster for which we
have analyzed the velocity dispersion–mass relation. In this way,
we can obtain two independent estimations of the Φ0 parameter.

2.3. Error estimation

Our fitting procedure is based on the χ2 minimization with
respect to parameters. In our modeling for the velocity
dispersion–mass relation, such parameters are Φ0 and σ0 for
the first approach, while the second one also includes the slope
α. The minimization of the χ2 requires that ∂χ2/∂a j = 0 and
∂2χ2/∂ai∂a j < 0 where a j represents the parameters. We obtain
such conditions with a numerical procedure. For the uncertain-
ties, we need to compute the matrix Mi j = (1/2) ∂2χ2/∂ai∂a j,
whose inverse M−1 is the covariance matrix, from which we
obtain parameters errors δΦ0 = (M−1)1/2

00 and δσ0 = (M−1)1/2
11

as well as error bands for the velocity dispersion. A simi-
lar procedure is done when the slope is considered as a free
parameter.

Our theoretical prediction for the velocity dispersion as func-
tion of stellar mass depends on parameters. We can write that
σ(m;Φ0, σ0) = σ0 f (m;Φ0) where f (m;Φ0) is the numerical
relation obtained from the model (that generally also depends
on α, fixed in the first approach). To obtain the matrix M, we
must compute the derivative of the χ2 with respect to parameters.
Specifically, we have an analytical expression for the first and
second derivatives with respect to σ0. Concerning the deriva-
tives with respect to Φ0, we use the Finite Difference Methods
for their approximation. For the first derivative, we use

∂σ

∂Φ0
=

1
2
σ(Φ0 + ∆Φ0) − σ(Φ0 − ∆Φ0)

∆Φ0
+ O(∆Φ2

0), (7)

where ∆Φ0 is the numerical step in Φ0 used to compute the
function f . Regarding the second derivative, we take

∂2σ

∂Φ2
0

=
σ(Φ0 + ∆Φ0) − 2σ(Φ0) + σ(Φ0 − ∆Φ0)

∆Φ2
0

+ O(∆Φ2
0). (8)

Both approximations are considered at second order. When the
slope is added to the parameter space, we have σ(m;Φ0, α, σ0) =
σ0 f (m;Φ0, α). For the derivatives with respect to the slope,
we consider the same Finite Difference Eqs. (7) and (8) for
their approximation, using the numerical step ∆α. The mixed
derivatives are obtained similarly, applying the same method.

Concerning the fitting procedure on SBPs, we follow the
same approach. We determine the covariance matrix by comput-
ing (and inverting) Mi j = (1/2) ∂2χ2/∂ai∂a j where the parame-
ters are Φ0, Rc and I0. Except for the latter that has an analytical
expression, the first, and second derivative of the χ2 with respect
to Φ0 and Rc need the derivatives of I(R) with respect to the
same parameters. These are approximated by using the Finite
Difference Method, similarly to what already described, as well
as for mixed derivatives. We obtain uncertainties δΦ0, δI0 and
δRc, from which we can also compute the uncertainty on the
tidal radius.

3. Results

We report here the main results concerning our fit of the
projected velocity dispersion as function of stellar mass. The
estimated model parameters are given and the relation between
Φ0 and the equipartition mass meq is shown and discussed. The
relations with GCs structural parameters are also presented.

Finally, we show the estimated Φ0 parameter by fitting the
SBPs and compare them with the values obtained by fitting the
σ(m) observable.

3.1. Fitting the velocity dispersion to constrain Φ0

As a first approach, we evaluate Φ0 by fitting the velocity dis-
persion data with the model prediction, considering a single
power law mass function ξ(m) ∝ mα with the slope α taken from
Baumgardt et al. (2023), but with a mass range 0.1 < m/M⊙ <
1.0, slightly broader than the usual one [0.2, 0.8] M⊙. However, it
can be shown that the effect of a different range of masses (when
reasonable) is negligible with respect to variations in Φ0 or α.

In Fig. 1 we plot σ(m) predicted by the model against dis-
persion data by W22 and the fit with the Bianchini function for
NGC 6397.

The plot clearly underlines a great compatibility between the
model prediction and the Bianchini fitting function on the same
data. We confirm a partial degree of equipartition in all clusters
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Table 1. Outline of parameters for the analyzed GCs.

ID α (1) meq
(2) (M⊙) meq(M⊙) Φ0 (M⊙ −1) σ0,B (mas yr−1) σ0 (mas yr−1) χ2

B χ2

NGC 104 –0.65 1.37+0.16
−0.13 1.29± 0.15 15.3± 1.1 0.727± 0.022 0.690± 0.004 8.52 8.23

NGC 5139 –0.80 2.82+0.38
−0.30 2.82± 0.43 5.67± 0.58 0.772± 0.014 0.749± 0.002 13.76 14.21

NGC 5904 –0.76 1.53+1.26
−0.51 1.26± 0.43 14.2± 3.7 0.275± 0.026 0.260± 0.003 7.56 7.57

NGC 6266 –1.14 1.30+0.91
−0.39 1.12± 0.25 17.5± 5.3 0.584± 0.044 0.556± 0.005 4.11 4.17

NGC 6341 –0.82 1.23+0.81
−0.36 1.07± 0.18 18.0± 2.4 0.254± 0.014 0.244± 0.002 2.75 2.65

NGC 6397 –0.32 1.85+1.21
−0.56 1.55± 0.33 17.0± 2.4 0.535± 0.022 0.510± 0.008 3.50 3.48

NGC 6656 –0.90 1.30+0.39
−0.23 1.32± 0.27 10.7± 2.0 0.758± 0.038 0.716± 0.006 6.42 6.46

NGC 6752 –0.67 2.49+1.01
−0.56 2.42± 0.61 12.4± 1.0 0.432± 0.013 0.419± 0.004 6.46 6.63

Notes. Table columns: ID, mass function slope (1), equipartition mass from (2) and our fitting with the Bianchini function, estimated Φ0, scaling
velocity dispersion σ0,B and σ0 (in milliarcseconds) and χ2 test value for both the Bianchini fitting function (with a B subscript) and our model
prediction. (1) Baumgardt et al. (2023); (2) Watkins et al. (2022).

Table 2. Estimated parameters for the classical power law.

ID η (1) η σs (mas yr−1) χ2
η

NGC 104 0.220+0.027
−0.024 0.239± 0.024 0.507± 0.006 6.62

NGC 5139 0.107+0.013
−0.012 0.107± 0.016 0.665± 0.005 12.73

NGC 5904 0.261+0.100
−0.093 0.271± 0.094 0.189± 0.007 7.69

NGC 6266 0.316+0.102
−0.102 0.324± 0.075 0.380± 0.009 4.28

NGC 6341 0.311+0.089
−0.093 0.325± 0.053 0.163± 0.003 2.49

NGC 6397 0.145+0.053
−0.051 0.159± 0.035 0.404± 0.009 3.77

NGC 6656 0.256+0.051
−0.053 0.239± 0.047 0.533± 0.012 6.11

NGC 6752 0.108+0.029
−0.030 0.105± 0.025 0.360± 0.007 6.13

Notes. Table columns: ID, η from (1) and our fitting with the classical power law σ(m) = σs(m/ms)−η (using ms = 1.0 M⊙), scaling velocity
dispersion σs (in milliarcseconds) and χ2 test value. (1) Watkins et al. (2022).

Fig. 1. Projected velocity dispersion as a function of stellar mass for
NGC 6397. The error bars are the data from Watkins et al. (2022), the
continuous green line is our best fit with the Bianchini et al. (2016)
fitting function in Eq. (1) with its error band, the dotted brown line is
the complete equipartition limit (σ ∝ m−1/2), and the dashed orange line
is our model best-fit with its 68% confidence band.

and for all masses (see also Fig. B.1 for other clusters). We expect
that a cluster in an advanced dynamical state is closer to energy
equipartition and shows a smaller value of meq. In the model
framework, dynamically old means a greater Φ0 value, namely
a deeper gravitational potential well. Then, there should be a
relation between these parameters: a cluster showing a higher
degree of equipartition should have a greater value of Φ0 and a
lower value of meq. This is what we obtain in Fig. 2, where we
plot the relationship between meq by W22 and the estimated Φ0,
colored with the obtained χ2. In Table 1 we give the estimated
parameters and the χ2 test value for all analyzed clusters, also
for our fit with the Bianchini fitting function. Our evaluation of
meq, conducted on binned data and with a nonlinear least squares
algorithm (available in the SciPy software package), is similar to
that obtained by W22, who used unbinned data, set prior con-
straints on the parameter values, and used a Monte Carlo method
to sample the parameter space. The χ2 values of the two fits are
close to each other, sustaining a similar confidence with the data.
Furthermore, the scaling dispersion σ0 of our model is system-
atically lower than σ0,B, a natural behavior due to the different
meaning they have. While the first is the dispersion of the lowest
model mass, the latter is the dispersion value in the limit m→ 0.

The results of the fits made by using the classical power law
σ(m) = σs(m/ms)−η, with ms = 1.0 M⊙, are shown in Table 2.
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Fig. 2. Relation between the estimated Φ0 and meq from Watkins et al.
(2022). The χ2 test value is given by the color of the data point for each
NGC according to the color bar to the right.

Our estimates of η, obtained with the same method as for meq,
are compatible with those provided by W22, statistically equiv-
alent to the other fitting functions, with small variations in the
obtained χ2. Furthermore, η follows the expected trend with meq
and Φ0. For a more advanced dynamical state, we have a larger
degree of equipartition described by a higher η value, as well as a
larger Φ0 and a smaller meq, as expected. W22 already provided
a discussion of the relationship between the classical power law
and the Bianchini fitting function, as well as the obtained values
for the equipartition mass and η, showing that they appear equiv-
alent in measuring the equipartition degree. Here we focus on the
link between the Bianchini function and the dynamical model
prediction due to the closer statistical compatibility obtained in
our fits.

Concerning the results of the fitting procedure and the rela-
tion between meq and Φ0, some considerations must be made.
First, for NGC 5139 (ω-Cen) we have the lowest value of Φ0 and
the greatest value of meq, also coming with a very poor fit qual-
ity (largest χ2 value). This cluster must be treated with caution
due to its intricate history and structure. It shows evidence of
multiple stellar populations that are dynamically interacting and
are likely to have different degrees of equipartition. Furthermore,
each has its own mass function and chemical pattern. It is also
strongly suspected to be the survived core of a disrupted dwarf
galaxy. The full picture behind this object requires further study
with more sophisticated models, given its complexity. Although
the overall trend for σ(m) looks promising, we emphasize that
the uncertainties may be underestimated due to the fluctuations
around the decreasing pattern (we come back to this point in the
next lines). This suggests an additional source of statistical error
that may increase the estimated uncertainty in the corresponding
Φ0 value. However, the long relaxation timescale of such a clus-
ter (see Table 1 in W22 work) may indicate that our estimates
are not far from reality, specifically a low energy equipartition
level corresponding to a smaller Φ0 and a larger meq. Further-
more, NGC 6397 and NGC 6752 are post-core collapsed objects
according to the Harris catalog, since they have a very high value
of the concentration, while NGC 6266 is suspected to be col-
lapsed even if its concentration is not very high. Considering that
only for three of the analyzed clusters, namely NGC 6266, NGC

6341 and NGC 6397, we have a high confidence level coming
from the fitting procedure, excluding collapsed objects and poor
fit quality results, we are left only with NGC 6341, which is also
the cluster with the lowest meq and the highestΦ0. Moreover, this
cluster has a low mass coverage in the velocity dispersion data,
with a range of 0.59 < m/M⊙ < 0.78. Looking at data points (see
Fig. B.1), it looks evident a decreasing trend of σ(m) with the
mass, but the oscillations around such tendency, which change
from cluster to cluster, suggest that uncertainties can be under-
estimated. Indeed, we obtain a relation between our χ2 test value
and the average relative error on σ(m) data (see Fig. B.4), show-
ing that low relative errors produce a greater χ2 value in our
fitting procedure (with ω-Cen showing the lower relative error
and the larger χ2), while the opposite is vaguely true for greater
relative errors. Furthermore, our χ2 looks slightly asymmetric
with respect to Φ0 in the minimum, suggesting a more advanced
uncertainty estimation method for such parameter, like evaluat-
ing the right and left errors. However, this does not affect the
results that we present here.

The uncertainties given for Φ0 reflect the observed ones and
come from the minimization process. A possible source of error
in our procedure is the choice of the core radius. It can affect
the theoretical prediction, since it determines the radial shell
where the projected velocity dispersion σ(R,m) is averaged (see
Sect. 2.2.1). An underestimation of the core radius would map
the observed radial shell into a more outer dimensionless radial
shell. As a result, the velocity dispersion would be generally
smaller and more dominated by the low-mass stars due to mass
segregation. Then, σ(m) would be steeper and the corresponding
best-fit Φ0 would be higher. The opposite holds for an over-
estimate of the core radius. This introduces a systematic error
into our procedure for determining model parameters, but we do
not explore such an effect here. Actually, the expected relation
between Φ0 and rc suggests that only a large relative uncertainty
on the core radius may affect the estimate of Φ0. We quantify the
effect of varying rc on the Φ0 determination in Sect. 3.4.

All these uncertainties motivate an independent examination
of Φ0, as obtained by fitting the surface brightness profile (see
Sect. 3.5).

Consequently, our work must be considered as a first guess in
the evaluation of multi-mass dynamical model parameters from
GCs kinematic observations concerning energy equipartition.

3.2. Adding the mass function slope to the parameter space

As an extension of the previous analysis, we add to the param-
eter space the mass function slope α. The fitting procedure is
naturally more computationally expensive, because we have to
iteratively solve equilibrium configurations with a different mass
function. As previously done, we minimize the χ2 for each clus-
ter: we explore Φ0 around a value close to the one obtained with
the first approach and the slope α is taken in the range [−2.0, 0.0].
The adopted range for α accounts for the typical slopes val-
ues of GCs and is only a first guess, to be eventually modified
to increase the precision. Unfortunately, we find a degeneration
between Φ0 and α, preventing a more precise evaluation of the
slope.

In Fig. 3, we show the contour plot for NGC 6397 in the
Φ0–α plane, with some values around the χ2 minimum, together
with the mass function assumed in the first approach, with its
uncertainty. Even if our minimum falls in the error band by
Baumgardt et al. (2023) for NGC 6397, the same is not valid
for other clusters (see Fig. B.2). Furthermore, the shape of the
parameter space is preventing us to constrain the slope of the
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Fig. 3. Contour plot for NGC 6397 in the Φ0–α plane, showing the χ2

levels. The blue band gives the slope from Baumgardt et al. (2023).
Squares indicate the χ2 values around the minimum, which is identified
by a large gray circle.

Table 3. Results of the second fitting approach.

ID α Φ0 (M−1
⊙ ) σ0 (mas yr−1)

NGC 104 0.0 ± 7.9 15.3 ± 1.2 0.690 ± 0.008
NGC 5139 0 ± 31 5.64 ± 0.57 0.749 ± 0.003
NGC 5904 –2 ± 26 14.2 ± 7.5 0.260 ± 0.043
NGC 6266 –2 ± 15 17.5 ± 4.3 0.556 ± 0.017
NGC 6341 0 ± 18 18.0± 5.9 0.244 ± 0.033
NGC 6397 0 ± 17 17.0 ± 1.4 0.511 ± 0.030
NGC 6656 0.0 ± 5.7 11.1 ± 3.1 0.719 ± 0.012
NGC 6752 –1.0 ± 8.6 14.4 ± 3.4 0.419 ± 0.021

Notes. Table columns: cluster ID and estimated values for α, Φ0, and
σ0. We report the parameter values according to the two most significant
digits of the associated uncertainty.

mass function, whose uncertainties are too big and overcome the
considered range. In Table 3 we give the results for the estimated
model parameters, with their errors.

Although the contour plots are not the same for all analyzed
clusters, in some cases there is a small tendency of having a
greater Φ0 corresponding to a lower α, while in other ones the
contour plot lines are almost horizontally oriented. Indeed, the
velocity dispersion dependence on mass is steeper and closer
to equipartition for both a larger Φ0 or a greater slope α. Such
effect is expected since a larger slope means a flatter mass func-
tion, with more massive stars than a steeper one. This results in
a greater degree of energy equipartition, because massive stars
are more efficient in reaching equipartition due to their higher
mass, which cause them to suffer more gravitational encounters
than less massive stars. Similarly, a greater Φ0 implies a deeper
potential well, namely a more dynamically evolved cluster, with
a higher level of equipartition. As a result, a given degree of
equipartition can be reached with more massive stars and a less
deep gravitational well or by a stronger gravity and a steeper
mass function. However, the effect of the gravitational potential
through the Φ0 parameter looks more important, with smaller
changes affecting equipartition more than variations in the slope.
This is also remarked by the estimated errors on Φ0, which are

Fig. 4. Radial and projected profile of the equipartition mass meq,
obtained by fitting the model prediction of the velocity dispersion with
the Bianchini function at each radial coordinate, given in units of the
core radius. The panel zooms onto the region r ≤ rc.

compatible with respect to the first approach, meaning that any
reasonable assumption on the mass function slope would work
well in setting up the model and constrain Φ0 from the velocity
dispersion σ(m).

3.3. Shell selection and projection effects

As already outlined, the data we are fitting concerns projected
quantities, and it is restricted to a circular ring close to the central
regions of the clusters. We explore, by means of our model and
the Bianchini fitting function, the effects of projection and shell
selection in quantifying the degree of equipartition.

Our dynamical model predicts the shape of the function
σ(r,m), which can be used to explore the degree of energy
equipartition in different radial shells. Equipartition is more effi-
cient in the core of clusters, and the maximum degree is expected
to be measured there. Unfortunately, to date kinematic measure-
ments in the core are difficult due to crowding effects and are
limiting observers to look around it, as W22 do. As a result, the
measured degree of equipartition is less than the core one. Fur-
thermore, working with projected velocities also gives a smaller
equipartition level than using 3D quantities. Indeed, at the pro-
jected radial distance R, the observer intercepts stars with a 3D
radial distance r ∈ [R, rt]. Being the velocity dispersion σ(r,m)
a decreasing function of r, its value is lowered for each mass, in
average, with respect to the 3D one. Being massive stars more
centrally concentrated than less massive ones, the projection
decreases more σ(m) for low-mass stars and brings to a flatter
profile, resulting in a lower equipartition degree with respect to
the 3D case. Both these effects bias the estimation of meq, lead-
ing to higher values (i.e., lower equipartition). To visualize this,
we plot in Fig. 4 the value of meq obtained by fitting with the
Bianchini function the 3D and 2D theoretical profilesσ(r,m) and
σ(R,m) respectively, for a particular choice of α and Φ0. Such
analysis is possible due to the very good similarity between our
prediction for σ(m) and Eq. (1), which we check quantifying the
uncertainty of the fitted meq and verifying its small value.

As expected, meq increases with the distance from the center
of the cluster, due to the decreasing efficiency of the relaxation
process. A measure of the maximum degree of equipartition
should be done with the 3D equipartition mass at least in the core
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Fig. 5. Theoretical radial profile of the equipartition mass obtained for
different values of the model parameters Φ0 (same line style) and α
(same colors and line width). The panel zooms onto the core region
r ≤ rc.

r < rc, where an almost flat trend is seen, as shown in the zoom
panel of Fig. 4. The projected profile of meq always gives bigger
values, even in the core. Every analysis of the projected velocity
dispersion as function of stellar mass should consider that the
estimation of equipartition obtained fitting data with the Bian-
chini function will give an overestimated meq (underestimating
the degree of equipartition), with respect to the 3D value. This
is not the case when the fit is done with our model, since the
degree of equipartition depends on Φ0 that uniquely determines
the velocity dispersion value σ(r,m) in any position and for each
mass, from which the projected one can be computed without
any loss of information.

Furthermore, we give in Fig. 5 few 3D radial profiles of meq
obtained changing Φ0 and α, to show their effect. Here, for very
low values ofΦ0, namely a dynamically young cluster, the profile
meq(r) starts from ∼10 M⊙ in the central regions and grows with
radius, almost insensible to α variations. With a greater Φ0, the
effect of a different slope is clearly visible in the outer regions.
A flatter mass function will produce a more extended profile, as
a greater Φ0 do (due to the existent degeneration). Additionally,
it also gives smaller values of meq at each radial coordinate than
a steeper mass function, as already mentioned.

In the core, the value of meq is approximately constant and
decreases with increasing Φ0, as expected from more advanced
dynamical states. The zoom panel of Fig. 5 gives the trend
for r ≤ rc, showing the small differences between the consid-
ered slopes. Such approximately flatness of meq(r) in the central
region, a common behavior of other observable profiles like the
surface density, can be used to quantify the maximum degree
of equipartition reached by stars in the cluster. Then, we build a
relation between meq(r ≤ rc) andΦ0, which is highly useful in the
perspective of quantifying the maximum degree of equipartition
in terms of the equipartition mass. Indeed, the value of Φ0 can
be constrained from other observables more easily measurable
than the velocity dispersion as function of mass in the center,
which suffers crowding. Since the slope of the mass function has
a negligible effect in the relation between meq andΦ0 in the core,
we choose α = −0.5 and plot such relationship in Fig. 6, com-
paring with the estimates of meq and Φ0 already shown in Fig. 2
and given in Table 1. The plot shows how the parameters con-
strained from the projected σ(m) observations lie in the region
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Fig. 6. Equipartition mass meq in the core (r ≤ rc) as function of Φ0.
The blue continuous line and the orange dashed line are the 3D and 2D
theoretical predictions, respectively. The circles with error bars are the
same as in Fig. 2.

above the curve. This underlines that the estimated meq by W22
do not measure the maximum degree of equipartition. They suf-
fer the projection effect and the radial shell selection, as already
said. Indeed, the radial coverage of the data sample has a median
radius beyond the core radius for most clusters. Only for two
clusters, namely NGC 5139 and NGC 6656, the selected shell lies
around the core radius (0.4 <∼ r/rc <∼ 1.2). Indeed, these clusters
are also the closest points to the theoretical curve in Fig. 6.

Concerning the estimates of Φ0, we stress that this is not
affected by projection or radial coverage, since it is a global
parameter that identifies the equilibrium configuration with its
profiles. As a result, once Φ0 is determined or constrained from
observations, even with a limited radial coverage, the equiparti-
tion degree is known in every region of the cluster. It can also
be presented in terms of the Bianchini equipartition mass, as we
have shown here.

3.4. Relation with structural parameters

The dynamical state of GCs is related to the amount of relaxation
they experienced during their life. A dynamically old cluster has
seen several relaxation timescales trelax during its evolution, a
time that is shorter in the central regions, being gravitational
interactions more frequent. In literature, the relaxation process
is often quantified with the relaxation timescale in the core trc
(Djorgovski 1993) and at half-mass radius (Binney & Tremaine
2008), which have an analytical approximated formula for their
evaluation. This leads W22 to compare their prediction of meq
with the number of core and median relaxation timescales Ncore
and Nhalf , as shown in their Fig. 16.

From the King (1966) model, it is also expected that dynami-
cally evolved clusters have a greater concentration c = log(rt/rk)
value, with the King radius rk often replaced with the core radius
rc. Indeed, a monotonically increasing relation exists between the
concentration and the corresponding W0 equilibrium parameter
of the King model.

In the framework of our multi-mass dynamical model, the
equilibrium configuration is identified by Φ0. However, the scal-
ing radius of the model rk,u loses, in principle, the relation
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Fig. 7. Relation between Φ0 and the concentration c = log (rt/rc). The
continuous, dashed, and dotted lines represent, respectively, the theo-
retical prediction with a mass function slope α = 0.0, α = −1.0, and
α = −2.0, while the black circles show the constrained values of Φ0 and
c for the analyzed clusters. The blue triangles show the King concen-
tration from the Harris (1996) catalog (2010 edition), while the orange
squares and green stars are computed using the core radius from the
Harris (1996) and Baumgardt (2018–2023) catalogs respectively, and
the tidal radius from Webb et al. (2013).

with the core radius that the King model had. This leads us
to define the equivalent King concentration ck = log(rt/rk,u)
and the theoretical concentration cth = log(rt/rc,th), with rc,th
estimated from the surface density profile, assuming a propor-
tionality relationship between the mass and luminosity density
profiles (as outlined before). These concentrations have a small
relative difference and both monotonically increase with Φ0, fol-
lowing a trend that depends on the slope α. In the perspective of
comparing with observations, we consider only cth.

About the relaxation timescale, the model derivation high-
lights a dependence on mass, consistent with what is observed.
However, obtaining an analytical formula requires further inves-
tigation and development. We are then limited to take the values
of Ncore and Nhalf from literature.

We expect that Φ0 increases with Ncore, Nhalf and cobs =
log(rt/rc). For the core and median relaxation timescales num-
bers we take the same values considered by W22, while for the
concentrations we consider c in the Harris catalog and its estima-
tion obtained with two sources for the core radius, the one in the
Harris catalog and the other by Baumgardt (2018–2023) online
catalog (which used the Spitzer 1987 definition), while for the
tidal radius we refer to Webb et al. (2013), reported in the same
catalog.

In Fig. 7, the previously estimated values of Φ0 are given
with the concentration. We show the theoretical relation for some
choices of the slope α, against the observational concentrations
from different sources. The predicted concentration grows con-
tinuously with Φ0, as already stated, but there are differences
with the observational ones. From the model point of view, such
discrepancy can be related to the fit quality and the value of the
theoretical core radius. Low fit quality results can give an incor-
rect estimate of Φ0, which affects the vertical positions of each
marker in the pictures. Concerning the core radius, the adopted
choice is reasonable, since it is based on the assumption that
the luminosity density profile is proportional to the density pro-
file, with a multiplying factor only dependent on mass. From the
observational point of view, we first note that the Harris catalog

concentrations come by fitting the surface brightness profile of
clusters with a King single-mass model (King 1966), which has
been found to be in disagreement with observations in the outer
regions, being clusters more extended, like already pointed out
so far by Da Costa & Freeman (1976). Indeed, the authors found
that the outer regions of M3 can be described by a King profile
with c = 1.98, while the inner ones using c = 1.29. This suggests
that clusters are more extended and, consequently, have a higher
concentration with respect to the single-mass model prediction.
Multi-mass models can overcome such discrepancy, being more
extended. In principle, a concentration value completely based
on observations requires the knowledge of both the core radius
and the tidal radius. While the first is easier to measure, the latter
is quite tricky, since a clear distinction between stars that belong
to the cluster or are leaving it is difficult to infer. This leads us to
compute the concentration using the core and tidal radius from
different sources (Baumgardt 2018–2023; Harris 1996; Webb
et al. 2013). Indeed, Webb et al. (2013) found an empirical for-
mula for the limiting radius of GCs through N-body simulations,
which takes the orbital properties of the system in the galactic
gravitational potential into account. This results in a greater tidal
radius and consequently a greater concentration with respect to
the King ones from the Harris catalog, as can be inferred from
Fig. 7, comparing the orange squares and the green stars with
the blue triangles. Such tendency slightly erases the differences
with the theoretical prediction, with the only exception of NGC
5139 (ω-Cen), which however is a complex object, as already
mentioned, whose deviation is not so surprising.

Our analysis of few clusters reveals that there are impor-
tant inhomogeneities among observational-based concentra-
tions. Indeed, we can state that the estimate of the concentration
suffers several sources of errors that can differ between clusters.
The difficulty of measuring the tidal radius and, consequently,
the concentration suggests to recover the role of theoretical mod-
els in predicting its value, as it was for the King model. The con-
centration value could be estimated from the relationship with
the gravitational potential well through Φ0, to be constrained fit-
ting observational profiles with model predictions. Anyway, an
extensive comparison between the theoretically predicted con-
centrations and the observational ones must be addressed in
future works, with a greater GCs sample and heterogeneous
observational sources.

In Fig. 8, we show the relation between the gravita-
tional potential and the number of core and median relaxation
timescales. The plot shows a tendency of having greater Φ0
values with a larger Ncore and Nhalf , as expected for more dynam-
ically evolved states. A similar trend was found by W22 with the
meq parameter. Unfortunately, the great errors and the absence
of a theoretical prediction on Ncore and Nhalf do not allow us to
further discuss the obtained pattern.

Another quantifier of the dynamical state of GCs is the
so-called dynamical-clock, mainly measured through the A+
parameter that is the area between the cumulative distribution of
Blue Straggler Stars (BSSs) and the reference stars (Ferraro et al.
2012, 2020; Alessandrini et al. 2016; Lanzoni et al. 2016). Only
four of the analyzed GCs have a measure of A+, which also well
correlates with the number of core relaxation timescales and the
core radius, as shown by Lanzoni et al. (2016) and Ferraro et al.
(2018). We give in Fig. 9 the estimated Φ0 and the correspond-
ing A+ and log(rc), where we use again the core radius from the
Harris catalog and Baumgardt (2018–2023) online catalog.

As for the number of core relaxation timescales, the Φ0
parameter grows at increasing values of A+, both measuring
the dynamical state of GCs, although the number of points is

A202, page 10 of 15



Teodori, M., et al.: A&A, 691, A202 (2024)

100 101 102 103 104 105 106
Ncore

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Φ 0
 (M

−1 ⊙
⊙

10−1 100 101 102
Nhalf

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Φ 0
 (M

−1 ⊙
⊙

Fig. 8. Obtained values of Φ0 against the number of core relaxation
timescales Ncore (upper panel) and the number of median relaxation
timescales Nhalf (lower panel) from Watkins et al. (2022).

small and only a general increasing trend can be deduced. While
Φ0 measures the gravitational potential well, the A+ parameter
tracks the segregation of BSSs with respect to the other stars,
measuring the mass segregation process. They have a lower
velocity dispersion value, corresponding to their expected higher
mass with respect to reference stars, namely the main sequence
turn-off mass (see Baldwin et al. 2016, and references therein).
In principle, the mass of BSSs depends on the formation mech-
anisms of such objects, which is still unknown. The most spread
idea is that they are binary stars or a result of stellar coales-
cence. To precisely measure the dynamical state of the cluster,
the formation of such objects should be mostly coeval with the
cluster itself. Any recently formed BSS will naturally be less
segregated, meaning that the overall BSSs population segrega-
tion will decrease, resulting in a lower dynamical state for the
cluster. Indeed, the dynamical processes that bring the colli-
sional system toward mass segregation and energy equipartition
are phenomena that strongly depend on the mass of the object
and the relation between its age and the relaxation timescale.
Our work, as well as several energy equipartition studies in
literature, underlines that massive stars are faster in reaching
equipartition than less massive ones. Consequently, the popu-
lation of BSSs can have internal differences in their kinematic
properties if a spread in mass exists. As we observe and predict
a different degree of energy equipartition for reference stars, a
similar phenomenology can state also for BSSs. One of the main

Fig. 9. Comparison of structural parameters that measure the dynam-
ical state of globular clusters. Upper panel: relation between Φ0 and
the area A+ between the cumulative distribution of blue straggler stars
and the reference stars. Lower panel: Φ0 relation with the core radius,
using values from the Harris (1996) catalog (blue triangles) and the
Baumgardt (2018–2023) online catalog (orange squares).

strength of our modeling approach is the ability of predicting
such kinematic differences for objects with whatever mass, once
known their mass function and the structural parameter Φ0. That
would further broaden the role of BSSs in characterizing GCs
dynamical state and understanding the complex internal dynam-
ics, giving important insight in the energy equipartition and mass
segregation topics.

Concerning the relation with the core radius, advanced
dynamical states have a greater value of Φ0 and a lower rc,
as shown in the lower panel of Fig. 9, which also affects the
concentration that will be higher. Indeed, as the relaxation pro-
ceed, the cluster is driven toward the core collapse phase and the
gravothermal catastrophe. Here, the structure of the system is
altered and King-based models do not reproduce well the struc-
tural properties. However, the energy equipartition keeps going
on in the survived core, where a higher degree of equiparti-
tion can be expected. As mentioned in Sect. 3.1, the estimates
of Φ0 from the observable σ(m) may suffer from a systematic
effect related to the adopted value for the core radius, which is
neglected in our analysis. With simple order-of-magnitude cal-
culations and a linear interpolation of the Φ0–log (rc) relation, in
the case of NGC 5904 and NGC 6397 a 10% variation in the core
radius is requested to get a systematic shift on Φ0 comparable to

A202, page 11 of 15



Teodori, M., et al.: A&A, 691, A202 (2024)

Table 4. Structural parameters obtained by fitting SBPs.

ID α (1) Φ
13Gyr
0 (M−1

⊙ ) µV,0 (magV arcsec−2) rc (arcsec) rt (arcsec) χ2
norm Φ

11Gyr
0 (M−1

⊙ )

NGC 104 –0.65 13.55± 0.03 14.50± 0.02 26.27± 0.20 3119± 24 3.06 12.95± 0.03
NGC 5139 –0.80 10.89± 0.10 16.85± 0.04 146.6± 1.6 3206± 35 1.63 10.37± 0.09
NGC 5904 –0.76 12.75± 0.12 16.29± 0.04 33.4± 0.34 1601± 16 3.18 12.14± 0.07
NGC 6266 –1.14 14.23± 0.09 15.45± 0.03 15.80± 0.25 1133± 18 2.93 13.63± 0.08
NGC 6341 –0.82 13.04± 0.10 15.87± 0.03 20.79± 0.22 885.4± 9.3 1.95 12.39± 0.07
NGC 6397 –0.32 14.38± 0.20 16.86± 0.04 30.97± 0.76 3151± 77 3.69 13.70± 0.26
NGC 6656 –0.90 12.51± 0.25 17.47± 0.02 86.7± 1.5 3027± 51 1.06 11.97± 0.26
NGC 6752 –0.67 15.09± 0.07 15.47± 0.02 17.95± 0.19 2220± 24 2.22 14.40± 0.05

Notes. Table columns: ID, mass function slope (1), estimated Φ0, central surface brightness µ0,V, core radius rc, tidal radius rt and normalized χ2

test value. The last column gives the estimated Φ0 for an 11 Gyr isochrone. (1) Baumgardt et al. (2023).

the estimated statistical error. For all the other clusters in our
sample, the variation of rc should be much larger. Although
the relative error for the core radius is typically smaller, as
can be seen from Table 4, larger discrepancies are found when
the Harris catalog values are compared to those of Baumgardt
(2018–2023).

3.5. Fitting surface brightness profiles

To provide an independent determination of the structural
parameter Φ0, we fit the SBPs data by Trager et al. (1995)
with the prediction of the dynamical model, by using theoretical
isochrones from BaSTI (Hidalgo et al. 2018; Pietrinferni et al.
2021; Salaris et al. 2022; Pietrinferni et al. 2024) for an age of
13 Gyrs, with [α/Fe] = +0.4, Y = 0.247 and a different metal-
licity [Fe/H] for each cluster, taken from the Harris catalog, as
described in Sect. 2.2.2.

In Fig. 10, we plot the obtained best-fit profile for NGC 6341.
In Table 4, we give the estimatedΦ0 as well as the central surface
brightness, the core and tidal radius and the normalized χ2 value
for the analyzed clusters.

The obtained best-fit curves reproduce well the observed
data, with a very narrow error band and small uncertainties for
the parameters. However, the obtained estimates neglect possible
error sources, both statistical and systematic ones. Regarding the
conversion of the observed magnitudes into luminosities, several
systematic effects can occur, as due to the extinction values or
the distance modulus value as well as in the assumed solar V-
magnitude. However, all these parameters produce an offset in
the magnitude, but they do not affect our minimization proce-
dure and the obtained Φ0. This is not the case for the parameters
related to the isochrones, such as the age and the adopted val-
ues of [α/Fe], He abundance and [Fe/H]. As an example, we
report in the last column of Table 4 the effect of a different age
in the estimated value of Φ0, using isochrones at 11 Gyr, keep-
ing the previous adopted values for [α/Fe], Y and [Fe/H]. The
overall impact of a reduced age is a smaller Φ0, resulting in a
systematic effect. As already explained in Sect. 2.2.2, a smaller
age implies a larger maximum mass. Since more massive stars
are more segregated and affect the luminosity distribution in
the innermost region of the cluster, a steeper brightness pro-
file is expected. Therefore, in order to reproduce the observed
SBP, the effect of an increase in the maximum mass should be
compensated by a reduction of the Φ0 value. We note that we
cannot distinguish from the 11 Gyr and 13 Gyr cases, because the
implied variations of the observable parameters (such as the cen-
tral surface brightness, core radius and tidal radius) are smaller

Fig. 10. Surface brightness profile for NGC 6341. The black circles
with error bars are the data from Trager et al. (1995) analyzed follow-
ing the work by McLaughlin & van der Marel (2005) and Zocchi et al.
(2012). The continuous blue line is our model best fit with its confidence
band, which is obtained by assuming the Baumgardt et al. (2023) mass
function slope and adopting the BaSTI isochrones (Hidalgo et al. 2018;
Pietrinferni et al. 2021; Salaris et al. 2022; Pietrinferni et al. 2024) with
13 Gyr, [α/Fe] = +0.4, Y = 0.247, and metallicity [Fe/H]=–2.31, taken
from the Harris (1996) catalog (2010 edition).

than their respective statistical errors. In addition, the isochrones
vary from cluster to cluster also due to the different metallic-
ity that we considered. The role of the metallicity, [α/Fe], He
mass fraction Y , and cluster age in shaping GCs SBPs, espe-
cially in the framework of multi-mass King-like models, requires
a broader exploration and a dedicated work. The same holds for
the mass function shape, which can alter the predictions due to its
structural role, being a fundamental physical ingredient in such
dynamical models. In fact, the massive stars content is extremely
important in shaping the SBPs and thus the slope α is expected
to play a relevant effect.

Finally, we compare the independent estimates of Φ0
obtained from internal kinematics, namely the velocity disper-
sion as function of stellar mass, with those from the SBPs.
Concerning the latter, we first account for age variations by aver-
aging the correspondingΦ0 values and computing the associated
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Fig. 11. Relative variation in the estimates of the Φ0 parameter for
each of the analyzed clusters, obtained by fitting the velocity dispersion
dependence on stellar mass σ(m) and the surface brightness profiles
I(R). The error bars are the 2σ level uncertainties.

uncertainty. In Fig. 11, we plot the relative variation ∆Φ0/⟨Φ0⟩,
showing the 2σ confidence interval. The two estimates are
compatible at 2σ level for most clusters, although some are com-
patible at 1σ confidence interval (namely NGC 5904, NGC 6266
and NGC 6656). The larger deviation is obtained for NGC 5139
(ω-Cen). As already mentioned, this cluster is a much more com-
plex object. It is probably the remnant of a dwarf galaxy. It hosts
multiple stellar generations, also showing metallicity variations,
for which multiple isochrones should be used and potentially
multiple dynamical states for each of the subsystems that make
up such an object.

The plot also highlights how multi-mass King-like dynami-
cal models can predict both internal kinematics and the surface
brightness profiles. However, as already outlined, there are sev-
eral possible sources of error that could further increase our
uncertainties in the Φ0 estimates. A full exploration of the
assumptions made in the SBPs fitting procedure is needed to
better constrain the Φ0 value. Only afterward, its relation with
the other structural quantities such as concentration, number of
relaxation times, core radius and A+ can be addressed similarly
to what done in Sect. 3.4.

4. Conclusions

In this work, we explore the degree of energy equipartition
in GCs by means of a multi-mass King-like dynamical model
for collisional and phase-space-limited systems. This theoretical
description offers an efficient way to predict several dynamical
processes occurring in GCs, such as energy equipartition, mass
segregation, and evaporation. These phenomena alter the proper-
ties of clusters, modifying their spatial and kinematic structure.
Here we focus on the degree of equipartition, and determine the
dynamical state of a few GCs by means of model parameters.

We fit the velocity dispersion dependence on the stellar mass
– measured through HST proper motions by Watkins et al. (2022)
– with our prediction, discussing the relation with the Bianchini
et al. (2016) fitting function and the equipartition mass meq.
We obtain a similar confidence level and a relation between the
equipartition mass and the model parameter Φ0, which is a mea-
sure of the gravitational potential difference between the center
and the edge of the cluster. An increasing value for this quantity

describes a more dynamically old cluster, with a larger degree
of energy equipartition, which is in turn associated with a lower
value of meq.

We confirm that the energy equipartition in the analyzed GCs
is only partial, even in the central regions. The equipartition
degree appears similar in the core, while decreasing significantly
in the outer regions. More massive stars are closer to equiparti-
tion than less massive ones, as already found and outlined in
other works.

We extend our fitting procedure by adding the slope of the
mass function α to the parameter space; α is a required input for
the model, and we take its value from Baumgardt et al. (2023).
This procedure provides similar results regarding the estimate of
Φ0, but prevents any constraint on the mass function slope using
the data. Although we obtain a degeneration between the two
parameters, the effect of varying the gravitational potential well
alters the observable σ(m) to a greater degree than the variations
in the mass function when reasonable (i.e., α ∈ [−2.0, 0]).

We carefully discuss the implications of quantifying the
degree of energy equipartition through the Bianchini fitting
function with respect to our dynamical model prediction, when
working with a restricted radial shell and projected quantities.
We find that the estimated meq from the projected dispersion
is higher than the three-dimensional one. Moreover, for radial
shells overcoming the core radius, the equipartition mass under-
estimates the maximum degree of equipartition reached in the
core. On the contrary, the equilibrium parameter Φ0 uniquely
defines both projected and 3D radial theoretical profiles, with-
out suffering shell selection or projection effects. We also find
that variations in the slope α affect the degree of equiparti-
tion mainly in the outer regions, while their effect is relatively
small in the core. Here, by fitting theoretical profiles with the
Bianchini function, we obtain a mostly constant meq, suggesting
that this value can be used as a measure of the maximum degree
of energy equipartition in clusters. However, taking advantages
of dynamical models like ours offers the opportunity to quan-
tify the degree of equipartition in the cores of clusters by means
of structural parameters. Here, observational data suffer several
limitations and a theoretical tool for predicting observables can
offer important support to the astronomical community.

We compare the estimates of Φ0 with other structural prop-
erties of GCs that depend on the dynamical state of the system.
The theoretical relation betweenΦ0 and the concentration is pre-
sented, as is the relation between the estimated Φ0 and observa-
tional values for the concentration from different sources (Harris
1996; Baumgardt 2018–2023; Webb et al. 2013). The spread
among observations as well as the differences with respect to the
theoretical prediction highlight the presence of several sources of
error. However, the theoretical relation between Φ0 and the con-
centration provides an important tool to constrain the latter on a
more fundamental ground, once the former is properly estimated.
Consequently, we advise to recover the predicting role of models
concerning the determination of the concentration value for GCs.
A positive trend is also seen between Φ0 and the number of core
and median relaxation timescales. We note a similar trend for
the area A+ between the cumulative distributions of blue strag-
gler stars and reference stars (Lanzoni et al. 2016; Ferraro et al.
2018), although the number of points is small (only four clusters).
All such structural quantities, such as Φ0, increase for dynam-
ically old systems. Conversely, the core radius decreases with
the dynamical state, a trend we clearly see between Φ0 and rc.
These outcomes strongly suggest that we can include Φ0 among
the properties that track the dynamical age of GCs. However, a
statistically robust comparison between the structural parameters
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of Galactic GCs and those of our model must be carried out in
future works, with a wider sample of clusters.

Finally, we successfully fit the surface brightness profiles
by Trager et al. (1995) following a procedure similar to that
described by Trenti & van der Marel (2013) and Zocchi et al.
(2012). To make the theoretical prediction, we need the surface
density profile and a mass–luminosity relation, which we take
from theoretical isochrones (Hidalgo et al. 2018; Pietrinferni
et al. 2021; Salaris et al. 2022; Pietrinferni et al. 2024). We
obtain an estimate forΦ0, the central surface brightness, the core,
and the tidal radius. We discuss the possible effects that can
alter our predictions, mainly in regard to the mass–luminosity
relation. A different age for the isochrone introduces a sys-
tematic error in the determination of Φ0 that is larger than
the statistical uncertainty inherent to the fitting procedure. We
average these contributions to get Φ0 estimates from the fit-
ting procedure on each cluster SBP. We compare these values
with the ones computed by fitting the velocity dispersion–mass
relation, showing that they are compatible at the 2σ level for
almost all clusters. The largest deviation is obtained for ω-Cen,
whose complexity suggests that our fitting procedure needs to be
extended to consider multiple stellar populations with different
chemical contents and metallicities, and consequently different
isochrones.

The obtained results strongly underline the central role of
dynamical models in predicting the phenomenology of GCs,
such as the highly debated energy equipartition process. With
the increasing amount of information coming from internal kine-
matics observations, more effort must be put into advanced
physical modeling. Such models are powerful tools for elucidat-
ing the mechanisms behind several dynamical phenomena, such
as segregation and evaporation, as well as anisotropic velocity
distributions and internal rotation. However, determinations of
the dynamical state and predictions of the different observables
are affected by several sources of error. These errors are related
to, for example, the internal kinematics and the surface bright-
ness profiles, where the role of the assumptions made regarding
structural properties and the mass–luminosity relation must be
further explored.

Data availability

Appendix B is available on Zenodo.
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Appendix A: Model derivation

The distribution function (DF) that defines our model is given
in Eq. (2). It comes from an analytical derivation, which repli-
cates and adapt the analytical procedures that brought from the
dynamical friction (Chandrasekhar 1943) to the King (1966)
model. In King (1965), the author obtained a DF as an approx-
imated solution of the Fokker-Planck equation, valid for colli-
sional systems. Then, he generalized and used it in King (1966).
Our DF keeps the memory of the King one, but takes the mass
distribution into account, as was done by Da Costa & Freeman
(1976). They presented a discrete model, where each mass class
has a DF with an energy cut-off and a weight factor, to be
constrained from observations. In principle, the assumption that
each mass has that specific DF analytical shape must be proved
similarly, solving the Fokker-Planck equation in a multi-mass
system.

The procedure that lead to the King DF starts from the
Boltzmann equation for collisional systems and follows the
Chandrasekhar (1943) development: assuming local approxima-
tion and low energy exchanges, the equation is written in terms of
the diffusion coefficients, which quantify the dynamical friction
that a test star with mass m suffers due to field stars with mass
ma. Following Binney & Tremaine (2008), the Spitzer & Härm
(1958) expression of the Fokker-Planck equation is obtained.
King was able to solve such equation in 1965 with an approx-
imation. He originally obtained a DF where both masses m and
ma appear, but then he takes them equal.

In principle, the same approach can be followed again, but
taking care of considering the field stars’ mass function when
evaluating the diffusion coefficients, as well as their velocity dis-
tribution, assumed Maxwell-Boltzmann like. A further needed
step is the distinction between dynamical quantities and thermo-
dynamic ones. In particular, when using a Maxwell-Boltzmann
DF for field stars, which is ∝ exp [−v2/(2σ2

a)], one gets the
scaling factor σa which is related to the thermodynamic tem-
perature θ (kept constant) and the field stars’ mass, namely σ2

a =
kBθ/ma. In this framework σ is the 1D velocity dispersion of the
Maxwell-Boltzmann DF, and it depends only on the mass, while
there is another quantity that comes at the end of the procedure,
namely the kinetic one. In the limit of a Maxwell-Boltzmann DF
for the test star (that describes an isothermal sphere) the kinetic
quantity converges to the thermodynamic one. This distinction
allows us to explicit mass dependence in the obtained gener-
alized expression of the Fokker-Planck equation, which finally
states

d f
dt
=

1
tR(m)

1
x2

∂

∂x

[
2xG(x,m)

(
2x f +

∂ f
∂x

)]
, (A.1)

where f = f (x,m; t) is the DF of the test star, x = v2/(2σ2) and

G(x,m)
tR(m)

=

∫
∆ma

1
τR,a

(
m
ma

)3/2 [
2
√
πx2

a

∫ xa

0
y2e−y

2
dy

]
dma, (A.2)

with xa = v
2/(2σ2

a) = mav
2/(2kBθ) and τR,a = τR(m,ma) the

relaxation time for binary encounters between m and ma, with
the latter distributed in the interval ∆ma. Here, tR(m) is the relax-
ation time of the mass m, due to gravitational encounters with all
the field stars.

Following King (1965), Eq. (A.1) can be solved similarly
assuming f (x,m; t) = g(x,m) exp [−λ(m) t/tR(m)], with λ the
evaporation rate of stars with mass m and g(x,m) = A(m)ḡ(x,m),
which brings the dependence on x and the dimensions in the

multiplying factor A(m). With an expansion in power series
of the evaporation rate, with boundary conditions ḡ(0) = 1,
ḡ′(0) = 0 and ḡ(xe) = 0 where xe is the cut-off, we obtain the
approximated solution for g(x,m) in the central region, where
the treatment is valid, that is

g(x,m) = k(m)
[
exp

(
−x2

)
− exp

(
−x2

e

)]
, (A.3)

with k(m) that gathers all the mass-dependent multiplying fac-
tors. From the reasonable assumption that field stars have a
Maxwell-Boltzmann DF, to be recovered in the limit of an
infinite escape velocity (i.e., the isothermal sphere), and since
the DFs we are dealing with give the number of stars in the
infinitesimal volume d3v d3r dm, it results that

k(m) =
(

m
2πkBθ

)3/2 dn0(m)
dm

[
1 − exp (−x2

e)
]−1
, (A.4)

where n0(m) is the number density of stars with mass between
m and m + dm in the central region and dn0/dm = ξ0(m)/V with
ξ0(m) the mass function and V the volume of the central region.

The final step is the generalization to different radial regions.
Applying the Jeans theorem leads to the DF in Eq. (2) that is
given in terms of the kinetic energy and cut-off energy.
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