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Results: Our findings indicate that the analyzed miRNAs regulate pathways linked to tooth
anomalies, including the TGFB and Wnt signaling pathways, and those governing the pluripo-
tency of stem cells, known to mediate various cellular processes, and interconnected with
odontogenesis-related pathways. Furthermore, the analysis disclosed several pathways associ-
ated with tumors, including small cell lung and gastric cancer. These results were confirmed
also by diseases and phenotypes enrichment evaluation. Moreover, cell network analysis dis-
closed that miRNAs are embedded and interconnected in networks associated with dental dis-
eases and cancer development, thus confirming the functional enrichment analyses.
Conclusion: In summary, our results offer a quantitative measure of the potential involvement
of miRNAs in regulating pathways crucial for developmental processes, notably odontogenesis,
and provide results suggesting potential association with oncogenesis processes as well.

© 2024 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

Introduction

Tooth development, or odontogenesis, is a complex process
involving key stages: tooth formation, eruption, and
embedding, facilitated by interactions between the dental
epithelium and mesenchyme. It begins with the oral
epithelium thickening, forming the dental lamina. Multiple
dental placodes form within it, each initiating tooth germ
development. Then, the placodes bud into the mesen-
chyme, inducing condensation, and the epithelium con-
tinues to extend, shaping the tooth. Crown formation
follows, detaching the tooth from the oral epithelium,
followed by root formation that connects teeth to nerves,
blood vessels, and the alveolar bone. This initiates vertical
movement, facilitating eruption.

In this complex scenario, several molecular pathways
involving a large number of genes play a key role.” “Wnt/p-
catenin”, “BMP”, “FGF”, and “Sonic Hedgehog (SHH)” are
among the most evolutionary conserved pathways, which
are tightly regulated and closely intertwined in all the steps
of tooth development. In particular, the “Wnt/p-catenin”
and “SHH” pathways regulate all the tooth development
transition steps, making them crucial for the whole odon-
togenesis process.

Recently, a peculiar role in the regulation of pathways
underlying odontogenesis has been found for a class of non-
coding RNAs, microRNAs (miRNAs), small RNA molecules
that are ~20 nucleotides long and regulate gene expression
binding by complementarity to the 3'UTR of messenger
RNAs (mRNAs). miRNAs play crucial regulatory roles in
human dental tissues, contributing to the regulation of the
complex process of odontogenesis through the targeting of
key genes.??

Odontogenesis perturbation leads to dental anomalies,
with dental agenesis being one of the most common, with a
prevalence ranging between 0.15% and 16.2%,* with cases
that can be both familiar and isolated. Further anomalies
include ectopic eruption and impaction of teeth, both
responsible for malocclusion, with a prevalence of 5.4%’
and 3.9%,° respectively.

Over the past decade, research has identified several
molecular pathways associated with these conditions,
including “Wnt”, “TGF”, and "EDA/EDAR/NF-kB”.” ® These

pathways have been implicated through the occurrence of
genetic variants or perturbed gene expression.

Conversely, the biological role of miRNAs in tooth
anomalies remains less characterised. Recently, deregula-
tion of certain miRNAs has been identified in human dental
tissues participating in the odontogenesis process.? Addi-
tionally, a Single Nucleotide Variant (SNV) affecting the
processing of a specific miRNA (miR-605) has been linked to
non-syndromic tooth agenesis. '°

In this study, our attention was directed towards un-
derstanding the role of miRNAs in regulating the odonto-
genesis process, particularly in the context of dental
anomalies such as agenesis and impaction. To accomplish
this objective, we compiled and analyzed a curated list of
miRNAs, assessing their significance in odontogenesis
through functional enrichment analyses of diseases and
pathways associated with tooth development. Additionally,
we explored the recurrence of miRNA-target interactions
within cell networks involved in tooth development.

Materials and methods

Tooth anomalies-associated miRNAs and their
targets

We gathered miRNAs potentially associated with odonto-
genesis and with tooth anomalies through a literature search
on PubMed (https://pubmed.ncbi.nlm.nih.gov/, NCBI,
Bethesda, Maryland, USA), using the terms “miRNA,”
"dental development,” and “odontogenesis.” We analyzed
the abstracts of the resulting 414 articles, refining the
analysis using terms such as “tooth agenesis,” “tooth
impaction,” “tooth eruption,” and “tooth movement.”
Among the resulting 38 articles, we selected the 20 papers
reporting functional experimental data, such as miRNA
expression analysis in human cells and tissues related to
tooth development performed using microarrays, RT-qPCR
or in situ hybridization. This analysis resulted in a manually
curated list of miRNAs based on experimental data, making
them particularly reliable in terms of their involvement in
tooth-associated cellular mechanisms. miRNA nomenclature
was compliant with miRBase v22.
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We identified target genes of miRNAs resulting from the
literature search using miRWalk 3.0 (release_2022_01),"" a
web tool that provides predicted and experimentally vali-
dated miRNAs’ targets. We selected only miRNA-gene in-
teractions showing the highest interaction probability
(score = 1), predicted by TargetScan, '? and experimentally
validated according to miRTarBase.’® In this way, we spe-
cifically considered miRNA-targeted genes deemed more
reliable, presenting a more plausible depiction of the bio-
logical context. This addresses the challenge associated
with in silico miRNA target prediction, which usually pro-
vides a high number of potential targets, with a substantial
number that may lack complete reliability.

Tooth anomalies-associated genes

We updated a list of genes known to be associated with
isolated and syndromic phenotypes characterized by tooth
anomalies (Supplementary Table 1),'* searching in the
literature (PubMed, NCBI) and in disease databases (OMIM,
Online Mendelian Inheritance in Man, https://www.omim.
org;"> HPO, the Human Phenotype Ontology, http://
human-phenotype-ontology.github.io).'® The search terms
were: “"hypodontia,” “primary failure of tooth eruption,”
“selective tooth agenesis,” “oligodontia,” “anodontia,”
and “agenesis of permanent teeth.” As previously reported,
the list included genes associated with tooth agenesis and
impaction anomalies, both isolated and syndromic, and
validated through functional studies. To assess whether
there was a significant enrichment of genes associated with
tooth anomalies among the target genes of each miRNA, we
employed a Fisher’s exact test, considering a P < 0.05 as
indicative of significance.

Functional enrichment analysis of miRNAs

We performed a functional enrichment analysis using
WebGestaltR'” to evaluate the cellular pathways, diseases,
and phenotypes enriched for genes targeted by miRNAs
selected in this study and potentially associated with
odontogenesis (Supplementary Table 2), and also for tooth
anomalies-associated genes (Supplementary Table 1)."
Regarding the enriched pathways analysis, we used data
from the Kyoto Encyclopedia of Genes and Genomes (KEGG,
https://www.genome.jp/kegg/) database.'® For the anal-
ysis of enriched diseases and phenotypes, reference sets
were sourced from the following databases: Gene List
Automatically Derived For You (GLAD4U, http://glad4u.
zhang-lab.org)" and Human Phenotype Ontology (HPO).'®
Among approaches available in WebGestalt, we employed
the Over-Representation Analysis (ORA) method.

To control for false-positive results, we restricted the
number of enriched genes for each pathway, disease, and
phenotype to a range of 5—200.2° Moreover, we applied the
Benjamini-Hochberg procedure to correct all P in case of
multiple comparisons and set a significant threshold of 0.05
(indicated as False Discovery Rate, FDR).

We also analyzed the lists of genes targeted by miRNAs
and genes related to tooth anomalies, using Ingenuity
Pathway Analysis (IPA;  www.giagen.com/ingenuity,
QIAGEN, Redwood City, CA, USA), in order to evaluate

pathways enrichment and compare results with that of
the WebGestalt analysis. Even in this case, we applied the
Benjamini-Hochberg procedure to correct all P and set a
significant threshold of 0.05 (indicated as False Discovery
Rate, FDR). We also evaluated the networks interconnect-
ing miRNAs and tooth anomalies-associated genes through
IPA. The IPA’s knowledgebase contains predicted tran-
scriptional regulators, functions, and pathways, together
with z-scores to infer their activating or inhibiting states. It
also contains functional networks, which are associated
with specific biological functions or diseases. Their degree
of association is quantified by a score. The higher the score
of a network, the lower the probability of finding the
observed number of molecules in a given network by
chance.?" The IPA’s knowledgebase is manually curated and
mostly fed with experimental evidence obtained from the
literature. For this reason, it can be considered orthogonal
to the other ontologies queried in this work.

Results
Genes and miRNAs associated with tooth anomalies

We compiled a list of 82 miRNAs functionally linked to the
development and eruption of teeth, drawing from litera-
ture data (Supplementary Table 2). These 82 miRNAs
exhibited altered expression in tissues engaged in odonto-
genesis and were potentially implicated in the regulation of
tooth development and tooth movement.

Employing miRWalk and following the criteria outlined in
the Methods section, we found that the 82 miRNAs overall
targeted 1846 transcripts, corresponding to 842 genes,
through 2611 interactions.

We additionally used a list of genes associated with
isolated and syndromic tooth anomalies as a reference set
of known associated genes, relying on an updated version
comprising 102 genes (Supplementary Table 1)."*

To determine whether there was a significant occur-
rence of tooth anomalies-associated genes among each
miRNA’s target genes, we conducted a statistical analysis.
Our findings revealed two tooth anomalies-associated
genes, KREMEN1 (P = 0.00659) and PIK3R1 (P = 0.02319),
which are targeted by two miRNAs, hsa-let-7a-5p and hsa-
miR-103a-3. These results suggest that these two miRNAs
may play a biological role in odontogenesis by targeting
genes with established functional significance in this
developmental process.

Functional enrichment analysis of miRNAs

We employed different approaches to unveil enriched
pathways among the selected miRNAs linked to tooth
development, using the WebGestalt approach and the IPA
orthogonal ontological knowledgebase to validate findings.
As a proof of concept, we also used both approaches to
analyze tooth anomalies-associated genes disclosing some
pathways known to play a role in odontogenesis, as the
"Hedgehog signaling pathway” (Supplementary Tables 3
and 4).

The functional enrichment analysis of pathways (KEGG)
of the 842 miRNA’s target genes through WebGestalt and
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confirmed using IPA, disclosed numerous enriched pathways
(Supplementary Tables 5 and 6), several with a well-
established role in odontogenesis, such as the “TGFf
signaling pathway” and the "Wnt signaling pathway”’
(Fig. 1, Supplementary Tables 5 and 6). We also identi-
fied, using both approaches, pathways for which a role
in odontogenesis has been suggested, such as the
“Hippo signaling pathway,” "mTOR signaling pathway,”
and “Adherens junction”® (Fig. 2, Supplementary Tables 5
and 6).

Among pathways shared with tooth anomalies-
associated genes, we found “pathways regulating pluripo-
tency of stem cells”, which are interconnected with path-
ways known to be involved in odontogenesis (Fig. 2,
Supplementary Tables 3, 4, 5 and 6). Interestingly, miRNAs
found in these pathways target different genes (Fig. 3).

These results demonstrate, for the first time to our
knowledge, that miRNAs play a significant role in odonto-
genesis by targeting several genes involved in cell networks
associated with developmental processes and whose role in
tooth development has been established.

Analyizing miRNAs target genes through both ap-
proaches, we also identified cancer related pathways such
as “Thyroid cancer” and "Melanoma” (Supplementary
Tables 5 and 6), some of them shared with tooth
anomalies-associated genes, as “Small cell lung cancer,”
and “Gastric cancer” (Fig. 2, Supplementary Tables 3, 4, 5
and 6).

Additionally, we conducted a functional enrichment
analysis to identify over-represented diseases (GLAD4U)
and phenotypes (HPO) among miRNAs and known genes.
Among miRNAs, several terms were associated with tumors,
including “Neoplasms, hormone-dependent,” “Uterine
neoplasms”, “Neoplasm of the large intestine”, and “Rectal
neoplasms” (Supplementary Tables 7 and 8). Among known
tooth anomalies-associated genes, we disclosed, as ex-
pected, that genes were enriched for diseases and pheno-
types involving “Tooth malformation,” “Anodontia,”
“Partial congenital absence of teeth,” “Reduced number of
teeth,” “Hypodontia,” and “Abnormality of dental
morphology” but also cancer related terms as “Giant cell
tumors,” “Teratoma” and “Squamous cell carcinoma”,
some of which were also shared with miRNAs such as
“Neoplasms, Basal Cell,” “Carcinoma, Large Cell,”
“Neoplasm of the skin” and “Fibrous tissue neoplasm”
(Supplementary Tables 7, 8, 9 and 10).

Based on the above mentioned results, to evaluate po-
tential miRNAs and tooth anomalies-associated genes cell
networks, we performed a network analysis using IPA,
which disclosed that genes and miRNAs were part of the
same cell networks associated with dental disease
(Supplementary Figure 1 and Supplementary Table 11), and
cancer development (Supplementary Figure 2 and
Supplementary Table 11).

Discussion

This study aims to explore the involvement of miRNAs, a
class of non-coding molecules, in odontogenesis through in
silico analyses. The biological role of miRNAs in odonto-
genesis is currently emerging as crucial regulators of the

intricate process of dental development.?® However, to
date, substantial evidence demonstrating the involvement
of this class of small non-coding RNAs has not been
conclusively established. Leveraging a manually curated
literature search, we identified 82 miRNAs potentially
associated with dental development and tooth anomalies,
based on miRNA expression analysis in human cells and
tissues relevant to odontogenesis.

An initial, preliminary assessment of highly reliable
genes targeted by these miRNAs provided valuable insights
into the role of miRNAs in regulating odontogenesis through
the modulation of genes known to be involved in this pro-
cess. Specifically, two miRNAs, hsa-let-7a-5p and hsa-miR-
103a-3, previously found to be deregulated in gingival tis-
sue of patients with periodontitis,” target KREMEN1 and
PIK3R1. Notably, these two genes have been identified as
mutated in cases of syndromic oligodontia and hypodontia,
respectively.?%?3

The primary analysis focused on the functional enrich-
ment of pathways that encompass miRNAs’ target genes.
The involvement of miRNAs in odontogenesis through the
targeting of genes pivotal for these developmental pro-
cesses was confirmed using a different approach, thus
substantiating the results through a quantitative assess-
ment that provided statistically significant results.

This analysis revealed that several genes were signifi-
cantly enriched in pathways with established functional
roles in dental development, such as the “TGFB” and “Wnt
signaling” pathways. These networks regulate several
cellular processes, including cell growth, differentiation,
apoptosis, and tissue homeostasis, playing a pivotal role in
both embryonic development and adult tissue mainte-
nance. Upon activation, a cascade of intracellular events
occurs, leading to the activation of downstream proteins
and the regulation of gene expression. Dysregulation of
these pathways is associated with different diseases,
including cancer, fibrosis, developmental disorders, and
degenerative diseases. Their specific role in dental devel-
opment has been established through the identification of
genetic variants in different genes within these pathways,
leading to potential disruptions in tooth formation.' For
instance, within the “Wnt signaling pathway”, missense
variants in LRP6 have been discovered in familial cases of
oligodontia,24 while mutations in WNT10A have been linked
to both familial and sporadic cases of syndromic and non-
syndromic hypodontia.”

Moreover, among other enriched pathways that were
significantly enriched for miRNAs’ target genes there are
"Hippo”, “mTOR”, and “Adherens junction” pathways. The
“Hippo” and “mTOR signaling” pathways, both evolution-
arily conserved, govern organ size (Hippo) and control lipid
metabolism, autophagy, and the actin cytoskeleton
(mTOR).%?> Adherens junction pathway serves as crucial
regulator of tissue architecture, cell polarity and prolifer-
ation and has recently been suggested to play a role in
tooth development and oral pathologies.?® For instance,
missense variants in genes involved in these pathways, such
as BMP4 and FGFR1, have been associated with isolated and
syndromic tooth eruption anomalies.?’?® Additionally,
other genes like AXIN2 have been linked to oligodontia-
colorectal cancer syndrome.?’ Notably, upon comparing
the enriched pathways of miRNAs’ target genes with those
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Figure 1  Functional enrichment analysis of miRNAs’ target genes for pathways according to WebGestalt (A) and IPA database (B).
For both analyses, the top 30 most significantly enriched pathways are reported. FDR (False Discovery Rate) indicates P adjusted by
applying Benjamini-Hochberg procedure.
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associated genes identified through WebGestalt and IPA. The pathways reported in the center are shared between miRNAs’
target genes and tooth anomalies-associated genes. The KEGG identifier for each pathway is reported in brackets.
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reported tooth anomalies-associated genes, in orange miRNA’s target genes and in purple the genes belonging to both sets of genes.

of odontogenesis-related genes, we observed shared path-
ways, as “pathways regulating pluripotency of stem cells”,
which can mediate multiple cellular processes and exhibit
interconnections with the “Wnt” and “TGFpB signaling
pathways”." We noted that the enrichment was due to
different genes. This observation suggests that miRNAs may
contribute biologically to developmental pathways gov-
erning tooth development and eruption, primarily by tar-
geting the expression of different pivotal genes involved in
these mechanisms. This can occur through a multi-layered
system of regulation of the same cellular pathways
through an integrated mechanism due to genes and miRNAs
fine-tuning the regulation of these processes.

Further studies are necessary, through gene expression
analyses, sequencing, or genotyping screening, along with
functional in vitro and in vivo approaches, to evaluate the
potential role of miRNAs in tooth development and to assess
how their perturbation, in terms of expression, biogenesis,
and targeting, could contribute to tooth anomalies such as
agenesis and impaction.

Another notable finding is the identification of several
cancer-related pathways using both approaches among the
miRNAs’ enriched pathways, some of them shared with
known genes, such as "Small cell lung cancer,"” and “Gastric
cancer”.

This result aligns with a recent hypothesis suggesting a
close connection between odontogenesis and cancer.3%*
Indeed, according to literature data, there is evidence,
although sometimes discordant,**3® supporting an associ-
ation between tooth agenesis and cancer.**>° For instance,
genes involved in odontogenesis are expressed in tumor
cells,***” some variants in genes related to tooth devel-
opment are associated with cancer,?’ and altered methyl-
ation of those genes is observed in some tumors.>®
Additionally, both tooth development and cancer are
characterized by rapid cell growth. These observations
have led to the proposal that tooth anomalies could serve
as early indicators of cancer risk, and variants identified in
genes associated with tooth anomalies may be suggested as
predictive markers of cancer.

In conclusion, our study provides initial insights into the
role of miRNAs in tooth development through an in silico
approach. The assessment of enriched pathways supports
preliminary and fragmentary evidence that this class of
non-coding molecules is intricately involved in the same
cellular networks known to underlie tooth development.
Moreover, it provides which genes can play a role in this
developmental process, as targets of specific miRNAs,
whose perturbation can potentially lead to tooth anoma-
lies, such as agenesis and impaction. These findings shed
light on the molecular determinants of tooth development,
with potential implications for the clinical management of
patients with tooth anomalies.
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