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ABSTRACT Recent research has found that neural networks for computer vision are vulnerable to several
types of external attacks that modify the input of the model, with the malicious intent of producing a
misclassification. With the increase in the number of feasible attacks, many defence approaches have been
proposed to mitigate the effect of these attacks and protect the models. Mainly, the research on both attack
and defence has focused on RGB images, while other domains, such as the infrared domain, are currently
underexplored. In this paper, we propose two attacks, and we evaluate them on multiple datasets and neural
network models, showing that the results outperform others established attacks, on both RGB as well as
infrared domains. In addition, we show that our proposal can be used in an adversarial training protocol to
produce more robust models, with respect to both adversarial attacks and natural perturbations that can be
applied to input images. Lastly, we study if a successful attack in a domain can be transferred to an aligned
image in another domain, without any further tuning. The code, containing all the files and the configurations
used to run the experiments, is available https://github.com/jaryP/IR-RGB-domain-attackonline.

INDEX TERMS Deep learning, infrared, adversarial attack, black-box, adversarial training, robustness.

I. INTRODUCTION
Neural networks (NNs) based systems have become state
of the art in multiple fields, and therefore have become
targets for adversarial attacks that try to break the system by
modifying the input [1]. This goal can be achieved simply
by modifying only a small portion of the NN input (usually
an image), even if it represents a real-world object [2]. This
vulnerability must be addressed if we want to build agents
that operate in real-world scenarios.

Most of the approaches used to attack NNs generate attacks
by exploiting a constrained optimization problem, in which
theNNmust be fooledwhile keeping the distance between the
original image and the adversarial one minimized, in order to
keep the adversarial image as close as possible to the original
one, while fooling the model. The constraint is applied to
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the distance between the original images and the modified
version used to fool the model, called adversarial image, and
it is calculated using the Lp norm of the distance between
these images; the choice of the norm highly influences the
overall algorithm, by changing howmany pixels, and how, are
modified by the attack. In addition to the norm used, we can
group the attacks into two sets: if the attack needs to access
the internal state of a NN in order to produce an adversarial
image, or not. In the first case, the attack is called white-box,
while in the second case it is called black-box [3].

With the increase in the number of feasible attacks, it is
crucial to study methods to defend NN-based systems, espe-
cially if they operate in a real-world scenario. An approach to
do that is by training the NN in a way that the resulting model
is robust to external attacks, by injecting attacked images
into the training dataset [4]. Usually, this approach makes the
model more robust only to certain types of attacks, which are
similar to the attack used during the training phase. Another
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FIGURE 1. Successful adversarial image from the NIR Scene Dataset using
the proposed Wixle attack. The L0 distance between the original image
and the adversarial one is just 32 pixels (corresponding to ∼ 0.02% of the
pixels in the image).

way of protecting a system is by implementing a mechanism
that can detect and discardmalicious inputs before classifying
them [5], [6].

Most of the attacks and defences focus on computer
vision systems for RGB images in the visible spectrum,
due to the high number of benchmarks and pre-trained
models available. In this paper, instead, our focus goes
beyond the standard RGB domain, and we study how the
proposed attacks and defences perform on infrared images,
which are commonly used in practice (e.g., for monitoring
applications), but severely underexplored in the advarsarial
attack literature. An infrared image differs from an RGB one
because it has a single channel instead of three, it contains
no information about the texture of the subject, and it
is grey-scaled; an example of infrared image attacked by
our method is shown in Figure 1. The infrared is part
of the electromagnetic spectrum and it is imperceptible to
the human eye, and thus can be used to extract hidden
and highly informative features. This latter aspect is used
in many applications in which working with visible light
is not enough, such as satellite monitoring [7] and image
classification and segmentation [8], [9].

In this paper, we propose two L0 attacks: Pixle, which is a
black-box attack based on random search, and a white-box
version of Pixle, called Wixle.1 We evaluate these attacks
on different combinations of benchmarks, both on RGB and
infrared domains, and architectures. The latter attack can
also be used to build more robust models, which can resist
better to black-box attacks as well as natural perturbations.
In the experimental section, we also study the transferability
of an attack from one domain (e.g., RGB) to another (e.g.,

1A preliminary version of the black-box variant appeared in [10].
Compared to [10], we significantly extend the treatment by considering
white-box variants of Pixle, adversarial defences and mitigations, and the
efficiency of these attacks in the infrared domain.

infrared), which is carried out by attacking an image from
a source domain, and then using the same attack to try to
fool also the aligned image in the other domain, called target
domain, without performing further searches for the best
adversarial image.

In this paper, we show that black-box attacks are capable
of attacking also models trained on infrared images. We show
also that, in general, models trained on such images are more
robust to attacks that create adversarial images by injecting
colored pixels into the image.We also prove that, by using our
white-box proposal in an adversarial training schema, we are
capable of creating more robust models, both in terms of
black-box attacks as well as natural corruptions of the images.
In the end, we study if an attack can be transfer from one
domain to another, without having any information about the
destination one.

The paper is organized as follows. In Section II we
discuss related researches that have been done in the attack
and defense domain, both for infrared and RGB domains.
Section III presents the definitions of adversarial attacks and
natural attacks, as well as the exposition of the proposed
attacks. In the end, Section IV contains all the results. Finally,
in Section V general conclusions are drawn.

II. RELATED WORKS
The first papers about adversarial attacks were introduced in
the context of data mining and spam filtering [11], [12], [13],
while the first machine learning model that was successfully
attacked was the Support Vector Machine [14]. Later on, the
authors of [1] and [15] showed that NNs are also prone to such
attacks. After these studies, the security of machine learning
based agents became a crucial aspect to study in order to
create more robust models.

Over the years, many methods to fool NNs and defend
them have been proposed, mostly operating in the RGB
domain. The attacks can be categorized based on how the
images are modified, by analyzing the norm of the difference
between the image and the adversarial counterpart, and also
based on which information the approach needs to correctly
attack an image. If access to the internal state of the network
is needed we have a white-box attack, otherwise, we have a
black-box attack. Regarding how the images aremodified, the
most studied approaches are based on L∞ or L2 norms, which
usually modify all the pixels in the image using a small noise,
with L0 norm being the less studied set of attacks. In this
paper, we study attacks based on the latter norm.

One of the first approaches to attack an image following
a L0 approach is OnePixel [16], which aims to find the
best pixel to overwrite using the Differential Evolution
search algorithm [17]. This approach works well on small
images but struggles to attack bigger ones because it requires
thousands of iterations, and the number of pixels to attack
must be selected before the attack and cannot be tuned
while searching for the adversarial image. Following the
same principle, in [18] the authors proposed an approach that
tries to place patches on the images using a reinforcement
learning approach; the main drawback of it is that the
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patches are clearly visible, hence easily detected. Lastly,
ScratchThat [19], also based on differential evolution search,
is an approach that aims to attack an image by literally
scratching it by applying lines and curves of different colours
on the pixels.

The attacks on images in the infrared domains are more
practical but less studied. In [20] the authors proposed an
approach to fool face recognition systems by placing an
infrared light on around the subject. In the same context,
the authors of [21] proposed an approach to fool thermal
images and near-infrared images, based on 3Dmasks. In [22],
the authors studied how attacks perform on infrared aerial
images, captured by drones, and how to build more robust
models. To the best of our knowledge, no work in the
literature has explored general black-box attacks for infrared
models, or studied the transferability of these attacks from the
visible light spectrum to the infrared domain.

For a complete review of Adversarial Attacks and robust-
ness refer to [23], [24] and [25].

III. METHODOLOGY
A. PRELIMINARIES
1) FOOLING NEURAL NETWORKS
The goal of fooling a neural network is to take an image that
the model correctly classifies and modify it so that the model
miss-classifies it. This problem can be seen as an optimization
problem with constraints, where the constraints depend on
how the images are corrupted.

Let f : x → p ∈ RY be a function that takes as input an
image and return the associated probability for each possible
class (such that

∑Y
i pi = 1). In our case, the function f is

a trained neural network, and the classification is carried out
by taking the class with the highest associated probability:
c(x) = argmaxi pi(x), where pi(x) returns the probability
associated to the class i.

Given an image x, with its associated label y, that is
correctly classified by the model, our goal is to produce an
adversarial image x such that c(x) ̸= y. In order to be credible,
the adversarial image can not be completely different from
the original one, otherwise, the artefacts injectedwould be too
visible and easily avoided by a defence algorithm. To this end,
the distance between the original image and the adversarial
one must be constrained:

c(x) ̸= y s.t. ||x − x||l ≤ ϵ (1)

where the choice of l determines the attack typology. In our
case we consider l = 0, i.e., the number of different pixels
between the original image x and the adversarial attack,
meaning that ϵ ∈ N+ is the number of maximum pixels
that can be modified by the algorithm. The task of finding
the perturbed image x, associated to x, can be viewed as a
minimization problem:

min
x
L(x, y) s.t. ||x − x||l ≤ ϵ , (2)

for a proper loss function L. In this paper, since we want
to minimize the confidence associated to the correct label,

we use L(x, y) = py(x). We note that the loss function L is
agnostic with respect to the state of the model, and only the
input and the output of the model are required to calculate it,
hence it is a valid loss also for black-box attacks.

2) ROBUSTNESS
Neural networks can be easily fooled, and thus having robust
models is a desirable property to have for agents operating
in a real-world scenario. Realistically, it is unlikely that an
attack method can access the internal state of a model and
use it to perturb the input image, hence in this paper we focus
mostly on robustness with respect to a set of attacks that are
considered natural, as well as black-box attacks.

Regarding adversarial attacks, we aim to make models
more robust by injecting adversarial samples, generated using
a L0 attack, into the training set. By doing so, we expect the
model to be more robust to attacks which operate on a pixel
level and that try to change pixels in the image, instead of
attacks that modify all the pixels by injecting noise.

Regarding the natural corruptions, in [26] the authors
proposed a set of corruptions that are called natural and can
be applied to the image before interacting with the model,
such as Gaussian Noise, blur, and contrast. We formalize
the robustness with respect to these attacks following the
same formulation proposed in [26]. As before, we have
a trained neural network defined as a function f , and we
also have a set of corruption functions C , in which each
function approximates the real-world frequency of the same
corruption. Using this setting, we measure the robustness of
a model on a sample (x, y) as:

Eζ∼C
[
P(x,y)∼D [c(ζ (x)) = y]

]
(3)

where D is the dataset from which the samples are
drawn. This is in contrast with the concept of adversarial
robustness introduced before, because corruption robustness
measures the classifier’s average-case performance on a set
of corruptions C , while adversarial robustness measures the
worst-case performance on a small perturbation generated for
the current image.

B. PIXLE
In this Section we propose Pixle, a black-box attack based on
random search, that does not depend on gradient information
or the internal state of the model.

Given an image x, the attack samples a patch of adjacent
pixels from it and rearranges them into the image, by copying
the values into other random positions. A generic patch is a
4-tuple p = (ox , oy,wp, hp), where 0 < ox ≤ w and 0 < oy ≤
h are the coordinates on the image used as the origin point
of the patch, and w and h are, respectively, the width and the
height of the image. The set of coordinates of the pixels in the
patch is defined as P =

[
(ox + i, oy + j)

]
∀i∈{0,...,wp},j∈{0,...,hp}

,
which has size |P| = wp · hp (if a position exceeds the
dimension of the image it is discarded).

The proposed Pixle algorithm is composed of a fixed
number of restarts R ≥ 1, and within each restart, a maximum
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Algorithm 1 Pixle Algorithm
Require: input image x with its associated label y. Maxi-
mum andminimum dimensions for source patchwp and hp.
The number of restarts R and the iterations to perform for
each restart step I . A function m(x) that returns a random
position in the image.
x ← x
l ← L(x, y)
for r = 1 to R do

xr ← none
for i = 0 to I do

Sample p = (ox , oy,wp, hp).
Calculate the set P
x i← x
for ∀(i, j) ∈ P do

(z, k)← m(x)
x iz,k ← xi,j

end for
if L(x i, y) < l then

l ← L(x i, y)
xr ← x i

end if
end for
if xr is none then
return x
end if
x ← xr

end for
return x

number of iterations I are performed. At every iteration,
it samples a source patch p and the set P is calculated, then
the pixels in the set are copied into random positions of a
proxy image which is equal to the image at the beginning
of the restart step, to avoid sub-optimal attacks. If this
rearrangement of pixels produces a loss value which is lower
than the best one obtained so far, the image is the new
adversarial candidate and the associated loss becomes the
new loss to beat. After the last iteration step, if an image
decreased the loss, then it becomes the adversarial image
and it is used in the next restart step, otherwise, the last
adversarial image is returned. When the number of restart
steps is reached, the algorithm returns the last adversarial
image found. The algorithm is summarized in Alg. 1.

C. WIXLE
Wixle is a white-box version of Pixle, also based on random
search, in which the gradient values of f (x) are used to sample
the pixels to attack according to the gradient value associated
with each one, which is considered directly proportional to
the importance of the pixel itself. We introduce this attack
mainly to perform faster and more impacting attacks while
training the models in an adversarial training scenario, i.e.,
we use the white-box variant Wixle as a proxy for the true
black-box attack Pixle, which is generally unfeasible for

adversarial training to the need of performing a random
search over possible pixel rearrangements. The use of the
gradients in Wixle associated with the pixels reduces the
number of necessary iterations needed to attack an image,
thus allowing for a faster and better selection of the pixels to
move, which is crucial in order to decrease the time required
to find the adversarial image.

Given an image x and the gradient value |g| for each pixel
of x, averaged over the channels, the attack randomly samples
a subset of source pixels, giving more importance to pixels
with a higher gradient value, and copies them into the location
of the destination pixels, sampled using the same approach
but using as sampling probability the inverse of the gradient
value. The gradient values are calculated using the cross
entropy classification loss, as proposed in [15]. In order to
sample the positions of the pixels, we define two different
distributions, where the probability of the position (i, j) to be
sampled is given by:

Ps(X = (i, j)) =
gi,j∑
g

(4)

Pd (X = (i, j)) =
g−1i,j∑
g−1

(5)

where Ps gives the probability for the source pixels and
Pd for the destination ones, and gi,j is the gradient value
associated to the pixel in position (i, j). The distributions used
to sample, respectively, source and destination positions, are
S(g) and D(g).
The algorithm is composed of a fixed number of restarts

R, and within each one, a maximum number of iterations
I are performed. At the beginning of each restart step, the
attack calculates the gradients associated with each pixel in
the current proxy image xr , using the cross-entropy loss,
as g = 1

ch

∑
ch|∇xrCrossEntropy(f (x), y)|, where ch is the

number of channels in the image. For every iteration step i in
the current restart, the source position (si, sj) ∼ S(g) and the
destination position (di, dj) ∼ D(g) are randomly sampled,
then, the pixel in the destination position is overwritten with
the one in the source position. This is done to a proxy image x i

associated with the current iteration step, to avoid changing
the images with sub-optimal attacks, as done also in Pixle.
The rest of the algorithm is the same used for Pixle: if the
loss associated with x i is lower than the one calculated at the
beginning of the current restart, the image is saved and the
new loss to beat is the current one, otherwise, it is discarded.
After the last iteration, if a proxy image is saved, it becomes
the new image to attack at the next restart step, otherwise,
the current image is the final adversarial image x and it is
returned.

By changing one pixel per restart the distance norm
between the adversarial image and the attacked one is
minimized, but it can be expensive in the number of times
that the function f is called. To mitigate this aspect, multiple
pixels can be changed at each iteration step, by sampling a
set of source pixels and a set of destination pixels, having
the same size, and using the same approach described above
by iterating both sets at the same time (the positions from
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Algorithm 2Wixle Algorithm
Require: input image x with its associated label y. The
number of restarts R and the iterations to perform for each
restart step I .

Ensure: y = xn

x ← x
l ← L(x, y)
for r = 0 to R do

xr ← none
g = Ec|∇xCrossEntropy(f (x), y)|
for i = 0 to I do

x i← x
Sample (si, sj) ∼ S(g).
Sample (di, dj) ∼ D(g).
x idi,dj ← xsi,sj
if L(x i, y) < l then

l ← L(x i, y)
xr ← x i

end if
end for
if xr is none then
return x
end if
x ← xr

end for
return x

each distribution must be sampled without replacement). The
complete algorithm is summarized in Alg. 2.
Adversarial Training: we introduce Wixle as a faster

version of Pixle, which is capable of attacking an image
using more precise pixel rearrangements, and thus it is more
suitable to be used in an adversarial training schema. The
procedure is the following: when a batch is collected, a subset
of it is attacked but, since the attack requires many inferences
in order to find the correct adversarial image, we relax the
problem, by using our approach as a one-shot attack. For each
image to attack, the percentage of pixels to move is randomly
sampled using p = unif(l, h), where l and h are, respectively,
the lowest and the higher percentage of pixels that can be
moved in an image. The sampled value is converted to an
integer using the actual dimension of the image, and then the
pixels’ positions are sampled as before andmoved at the same
time. The idea is to attack an image in a different way each
time it is encountered during the training process, forcing the
model to learn how to classify multiple attacked versions of
the same image. To the best of our knowledge, Wixle is the
first L0 attack to be used in an adversarial training schema.

IV. EXPERIMENTAL EVALUATION
A. SETUP
1) ADVERSARIAL EXPERIMENTAL SETUP
The evaluation of the proposed attacks is carried out on
CIFAR10 [27] and ImageNet [28]. Regarding the first we
attack, using SGD with learning rate equals to 0.01 and

0.9 as momentum, VGG11 [29] and ResNet-20 [30],
while regarding the latter we use ResNeXt-50 [31] and
ConvNeXt-Tiny [32], both using pre-trained weights without
fine-tuning.

We also use the RGB-NIR Scene dataset proposed in [33],
which is composed of 477 images in 9 categories, and each
image has both RGB and Near-infrared (NIR) versions.
We train the same models used for ImageNet on both RGB
and NIR sets of images, but we resize the images to have a
size of 420 per side. The training procedure is the same used
for CIFAR10, and the test subset is composed of 10% of the
images in the dataset.

For each experiment, we attack only correctly classified
images from the test set of the dataset. We attack 100 images
for each class present in CIFAR100, and 1 for each class in
ImageNet. In this way, we have the same number of attacked
images. Regarding RGB-NIR Scene, the number of images
per class is lower, so we attack them all.

We compare our proposals with two other L0 attacks:
ScratchThat [19], which attacks the images by drawing
lines and curves on the images, and OnePixel [16], which
overwrites a variable number of pixels with randomly
coloured pixels. Both ScratchThat and OnePixel are based on
the Differential Evolution search algorithm [17].

To compare the attacks, we use the following metrics:
• Success Rate: the percentage of images that are correctly
attacked (the ones that are miss-classified after the
attack).

• Iterations: the number of times that the model is
interrogated while attacking a given image.

• L0 norm: the distance between the original image and
the adversarial one.

Regarding the parameters of each attack, we performed a
grid search, following the results from the respective papers,
over ResNet-20 trained on CIFAR10. For OnePixel we set
to 5 the number of pixels to attack. We use a Bézier curves
approach for ScratchThat, drawing 1 curve for CIFAR10,
and 2 curves to attack the other datasets; the differential
evolution parameters are the same as in the respective papers.
Regarding Pixle, at each iteration, we randomly sample a
patch having size 3 for CIFAR10 and 1% of the attacked
image size for the others. The number of restarts is set to 100,
and for each restart step, we perform up to 20 iterations. In the
end, we attack one single pixel per restart iteration when
attacking using Wixle, and we perform up to 100 restarts
and up to 50 iterations per restart step. For each method,
a callback is used to interrupt the attack when an adversarial
image that correctly fools the model is found. Except for
Wixle, we use the attacks as implemented in TorchAttack [34]
package.

2) ADVERSARIAL TRAINING
To evaluate the efficiency of Wixle used in the context
of adversarial training we test it on CIFAR10, classified
using ResNet-20 [30], and Scene dataset, classified using
ResNeXt-50 [31]. For each experiment, we perform a
pre-training step in which the model is trained on the

11302 VOLUME 11, 2023



J. Pomponi et al.: Rearranging Pixels Is a Powerful Black-Box Attack for RGB and Infrared Deep Learning Models

TABLE 1. Results obtained when attacking multiple datasets trained on ResNeXt and ConvNeXt architectures. For each score, we show the mean and the
variance, if present, calculated over all the images on that dataset.

dataset, and then we perform the adversarial training step,
in which the pre-trained model is trained for additional
epochs using Wixle to attack the images in the dataset,
as exposed in Section III-C. We trained all the models during
the pre-training step for 50 epochs, and then we perform
20 epochs using adversarial training. For each training step,
we use SGD with a learning rate equal to 0.01 and 0.9 as
momentum, as before.

Regarding Wixle parameters, we attack each image in
a batch with a probability of 0.5%, and for each image,
a random number of pixels, that varies from 5% to 40% of
the total number of pixels in the image, is moved just once,
without searching for the best attack (we use one restart and
one iteration for each image).

To evaluate the robustness against Black-box attacks,
we test the model before the adversarial training and after,
using the same metrics exposed before.

We also test if this approach is suitable to improve the
robustness with respect to natural corruptions. To this end,
we test the model trained on CIFAR10 using the Corrupted
CIFAR10 (C-CIFAR10) [35] dataset, which is the test split

of CIFAR10, but 15 different corruptions are applied to each
image, and each corruption has 5 levels of severity.

To evaluate the performances on a specific corruption c,
we use the Corruption Error (CE) metric (proposed in [35]),
computed using the formula:

CE(x)fc =

∑5
s=1 E

f
c,s(x)∑5

s=1 E
b
c,s(x)

(6)

where f is the neural network trained using the adversarial
training as proposed before, g is a neural network pre-trained
on CIFAR10 (in our case it is the same network as f but
before the adversarial training), and E ic,s(x) is the top-1 error
achieved by the model i on images corrupted using corruption
c, having severity s. The metric tells us how much a model is
fooled by corruption, and thus lower is better: if the score
is lower that 1, then the model robustness is improved with
respect to the one achieved using the pre-trained model,
otherwise it is worse or the same (if it is precisely 1).
In addition to this metric, we also study how the accuracy
metric evolves during the adversarial approach.
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3) TRANSFERABILITY
To perform the transferability experiments we train two
ResNeXt-50 [31] on RGB and NIR images of Scene
Dataset [33]. Each model is randomly initialized, and the
training procedure is the same as exposed before, but the
training epochs are 100.

The approach is the following: we have a source domain
and a target domain, each one with its trained model; once
the models are trained, we attack the image from the source
domain using Wixle, then, if the attack is successful and
the model is fooled, we use the same sequence of pixels
movements also in the image from the target domain. To study
the feasibility of the approach, we simply use the Success rate
metric.

B. ATTACKS RESULTS
The main results are presented in Table 1, which shows
that our proposals achieve a higher success rate across all
the combinations of datasets and networks. In particular,
Wixle achieves a perfect success rate by modifying a
contained number of pixels. It is interesting to be noted that
ConvNeXt-T is a much more robust model when it comes to
black-box attacks. In fact, OnePixel fails each time this model
is used, and ScratchThat achieves a lower score if compared
to the one obtained on the ResNeXt trained on the same
dataset. By analyzing the number of iterations we observe
that our approaches require a lower number of iterations if
compared to other attacks that rely on the DE algorithm. Also,
Wixle results suggest that there are images that are easily
classified by moving a single pixel, and images which require
more iterations, as shown by the standard deviation of the
results. In the end, the L0 norm tells us that our proposals are
competitive since a small percentage of the attacked images
is corrupted. Also here, we have a high standard deviation,
telling us that some images are more difficult to attack than
others.

We conclude our analysis by hypothesizing that our
approaches are capable of finding a suitable adversarial image
because the research space is not constrained or bounded in
the research of the best pixels to attack, because of the double
iteration performed by the random search, which allows the
attacks to explore a wider attack space.

1) RANDOM SEARCH PARAMETERS
Table 2 contains the results obtained when changing the
parameters of Pixle and Wixle. The results, obtained by
attacking ResNet-20 trained on CIFAR10, with a fixed
number of restarts equal to 100, gives us some interesting
insight into the two approaches. First of all, Pixle is capable
of achieving a success rate equal to 100% using each
combination of parameters, while Wixle fails when the
number of moved pixels grows. This probably happens
because gradient values are computed after each restart step,
and by moving a large number of pixels some movements
can nullify past changes. in support of this claim, we have
that also the L0 values and iterations required are much
higher than the ones achieved using the same parameters in
Pixle. Furthermore, Wixle is capable of achieving complete

TABLE 2. The results obtained while varying the parameters of Pixle and
Wixle attacks. The attacked model is ResNet-20, trained on CIFAR10. For
each experiment, we use a number of restarts equal to 100. The pixel
percentage is the percentage of pixels with respect to the image size
(32 × 32) that are moved at each iteration step.

success when it moves just one pixel in each restart step. Also,
by moving just one pixel, the number of required iterations is
lower than the corresponding number achieved by Pixle when
the same amount of pixels are moved.

We can conclude that, if we want an attack which is very
precise, we can use Wixle with a number of pixels set to 1,
while if we want an attack which moves more pixels at the
same time, and thus with a higher L0 score, we can use Pixle
with a patch dimension which contains 1% of the total pixels
in the image or more.

C. ADVERSARIAL TRAINING RESULTS
In this section, we analyze both the robustness results
obtained on black-box attacks as well as natural corruptions.

Table 3 shows the results obtained on CIFAR10 and NIR
Scene, both before and after the adversarial training. We can
see that most of the approaches are capable of attacking
the pre-trained model on CIFAR10, but after the adversarial
training, the success rate decreases for both OnePixel and
ScratchThat. More importantly, the number of iterations
required to attack an image and the final L0 norm are both
worse with respect to the results associated with the pre-
trained model: even if the success rate is unchanged, Pixle
requires, on average, five times the number of iterations and
more than the triple of pixels are modified, while ScratchThat
requires three times the number of iterations to find the
adversarial image, with a standard deviation that is also
double. This means that the model is more robust and can
resist better to various black-box attacks which are different
from the one used in the adversarial procedure. Regarding
NIR Scene, the attacks struggle to successfully attack the
model (as exposed before), and after the adversarial training,
all metrics are worse: Pixel is not able to reach the same
success rate, it requires more iterations, and the norm is
higher, while OnePixel loses the ability to attack any image,
and also the success rate of ScratchThat decreases.

The results associated with the natural corruptions robust-
ness are shown in Figure 2, which shows the results associated
with the metric in Eq. 6, and Figure 3, which shows the
accuracy results obtained on each severity level. By analyzing
the first one we can see that adversarial training improves
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TABLE 3. The results obtained using Wixle attack to perform adversarial
training. For CIFAR10 we use ResNet-20, while for NIR scene we use
ResNeXt-50.

FIGURE 2. Visualization of the corruption errors (CEc ) for each
combination of corruption and severity, obtained when training
ResNet-20 on CIFAR10 using an adversarial approach based on Wixle. The
last column of each corruption contains the average score obtained
across all the severity. Lower is better.

the accuracy obtained on almost all the corruptions and
severity combinations, with the exception of fog-5, which
is the only result which is worse (having an error ratio of
1.1). Looking at the CE column, which contains corruption
averaged values, we can split the corruptions into two sets
by setting a threshold value of 0.7: the corruptions that have
a lower CE are the ones that operate on a pixel level (e.g.
Gaussian noise, pixelated), while in the second one we have
corruptions that modify a pixel by taking into consideration
also its neighbour pixels (e.g. blur corruptions, fog). In the
end, the averaged results are better for each corruption.
By looking at the second figure, we see that the accuracy
results increase for each severity while using the adversarial
training, and the best results are achieved after 3 training
epochs.

D. TRANSFERABILITY RESULTS
Here we study the viability of transferring an attack from one
domain to another. The results are shown in Table 4, which
tells us that the more the attack is general (a higher number
of pixels are moved), the more it is probable that it can also
fool the target model. In fact, when a single pixel is attacked
at each iteration, the attack achieves a higher success rate
because it attacks only pixels that are highly important in the
current image, but the same attack has no effect in the second
domain. On the other hand, when we attack 10 percent of the
pixels, the same attack is also capable of achieving a higher
success rate in the target domain. This happens not because
the approach is able to detect weak image spots also in the
target domain, but because by moving a higher number of

FIGURE 3. Visualization of accuracy score for each corruption, averaged
over the severities, obtained when training ResNet-20 on CIFAR10 using
an adversarial approach based on Wixle. The first value is the accuracy
score obtained at the end of the pre-training phase.

TABLE 4. The transferability results obtained on ResNeXt-50 trained on
both RGB and infrared (IR) domains the of Scene dataset. Both models
are trained separately, and then a successful attack using Wixle from a
domain is used also in the corresponding aligned image in the other.
SR stands for Success rate.

pixels it is more probable to move sensitive pixels also in the
target domain, thus fooling the associated model.

V. CONCLUSION
In this paper, we proposed the first comprehensive study
of L0 attacks in the infrared space. We proposed two novel
approaches, one which needs the internal state of the model,
and another one which does not. Regarding the first one,
we used it to also create more robust models, by following
an adversarial attack schema. The resulting model is more
robust against both L0 attacks and natural perturbations of the
input images. In the end, we also studied if a successful attack
in a domain can be transferred into another one without any
further tuning.

As future work, we aim to understand better the correlation
between adversarial training and the robustness against
natural perturbations. We also want to expand the proposed
attack, in order to create a more reliable approach which is
capable of attacking the models using a lower number of
iterations. In the end, we want to expand our research about
multi-domain robustness also to other kinds of perturbation
schemes, such as L∞.
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