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Table S1. Detailed LipidSearch parameters for polar lipids data processing.

Instrument HCD
Peak Detection
Recalc isotope on
R.T. interval (min) 0.01
Search Options
ExpType LC-MS
Parent tol. 0.1 Da
NL/Prec tol. 0.5 Da
Precursor tol. 5.0 ppm
Product tol. 8.0 ppm
Merge Range (min.) 2.0
Min Peak Width (min.) 0.0

Intensity threshold 0.01 parent ion, threshold type: relative 1.0 
product ion

m-Score threshold 2.0
Compound Rt Correction
m/z tolerance 0.005 amu + 0.00 ppm
Warping based RT correction Activated
Within batch Rt tolerance 0.1 min
Between batch Rt tolerance 0.2 min
Rt window 1 min
Target class

Phospholipids

Lysophosphatidic acid, phosphatidic acid, 
lysophosphatidylcholine, phosphatidylcholine, 
lysophosphatidylethanolamine, 
phosphatidylethanolamine, 
lysophopshatidylglycerol, phosphatidylglycerol, 
lysophosphatidylinositol, phosphatidylinositol, 
lysophosphatidylserine, phosphatidylserine

Sphingolipids Ceramides, glucosylsphingosine, 
lysosphingomyelin, sphingomyelin

Adducts
negative -H, +HCOO, +CH3COO, -2H, -CH3
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Figure S1. Dispersion graphs for FA 18:1 Δ9 (a) and FA 18:1 Δ11 (b) showing the total peak 

areas of m/z 394.2696 (6-AU derivative) and m/z 297.2429 (oxidized FA 18:1).
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Figure S2. MS/MS scan associated to the aPB derivative PA of FA 18:1 Δ9 (a) and FA 18:1 Δ11 (b). Other than the main FA ion (base 

peak), the complementary ion is visible in the spectrum (m/z 170.1181 for 18:1 Δ9 and m/z 198.1489 for 18:1 Δ11)



S8

Figure S3. Comparison of the fragmentation pathways that lead to the diagnostic product ions 

between aPB reaction with 6-AU (a) and PB reaction with acetone (b).
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Figure S4. ESI(–)-HCD MS/MS spectrum (40 NCE) of deprotonated FA 18:2 Δ9,12 after photochemical reaction with 6-AU.
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Figure S5. ESI(–)-HCD MS/MS spectrum (40 NCE) of deprotonated FA 18:3 Δ9,12,15 after photochemical reaction with 6-AU.
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Figure S6. ESI(–)-HCD MS/MS spectrum (40 NCE) of deprotonated FA 18:3 Δ6,9,12 after photochemical reaction with 6-AU.
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Figure S7. Linear relationship between the molar ratios of FA 18:1 Δ9 and Δ11 and: (a) the 

intensities of the diagnostic ion pairs (I9AB/I11AB), (b) the intensities of the diagnostic FA ions 

(I9A/I11A).
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Figure S8. ESI(–)-HCD MS/MS spectrum (40 NCE) of FA 18:1 Δ9 and Δ11 at equal molar ratio 

after aPB derivatization.

Figure S9. Linear relationship between the molar ratios of FA 18:3 Δ9,12,15 and Δ6,9,12 and the 

intensities of the diagnostic FA ions (I9,12,15A/I6,9,12A).



S14

Figure S10. ESI(–)-HCD MS/MS spectrum (40 NCE) of (a) deprotonated FA 18:1 Δ9 and (b) 

deprotonated FA 18:1 Δ11 after PB derivatization with acetone. The reported nomenclature of the 

product ions is that of Ma (https://doi.org/10.1073/pnas.1523356113), with the two ions deriving 

from each of the two main PB products.
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Figure S11. ESI(–)-HCD MS/MS spectrum (30 NCE) of a) underivatized PI (18:1/18:1); b) aPB derivative of PI (18:1/18:1); c) PB 

derivative of PI (18:1/18:1).
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Figure S12. Total ion current of a) deprotonated underivatized PI (18:1/18:1); b) deprotonated 

aPB derivative of PI (18:1/18:1); c) deprotonated PB derivative of PI (18:1/18:1) obtained by the 

competitive aPB/PB reaction.
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Figure S13. ESI(–)-HCD MS/MS spectrum (30 NCE) in negative ion mode of a) underivatized 

deprotonated PE (18:1/18:1); b) underivatized acetate adduct of PC (18:1/18:1).
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Figure S14. Total ion current of the m/z corresponding to a) the deprotonated PB derivative of PC 

(16:0/18:1); b) the demethylated PB derivative of PC (16:0/18:1); c) acetate adduct of the PB 

derivative of PC (16:0/18:1); d) the protonated PB derivative of PC (16:0/18:1); e) the 

deprotonated aPB derivative of PC (16:0/18:1).
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Figure S15. ESI(+)-HCD MS/MS spectrum (30 NCE) of (a) protonated underivatized PC 

(16:0/18:1) and (b) protonated PB-derivatized PC (16:0/18:1). 
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Figure S16. ESI(+)-HCD MS/MS spectrum (30 NCE) of protonated PB-derivatized PC 

(16:1/16:1) from the yeast extract. A zoom on the high m/z range shows a low abundance of the 

typical diagnostic peaks for pinpointing carbon-carbon double bonds.
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Figure S17. ESI(–)-HCD MS/MS spectrum (30 NCE) in negative ion mode of a) underivatized acetate adduct of standard PC 

(16:0/18:1); b) deprotonated aPB derivative of standard PC (16:0/18:1).
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Figure S18. Total ion current of the m/z corresponding to a) the protonated in-source fragment of 

the aPB derivative of FA 18:1 Δ9; b) the protonated in-source fragment of the aPB derivative of 

FA 18:1 Δ11; c) the deprotonated aPB derivative of FA 18:1 Δ9; d) the deprotonated aPB 

derivative of FA 18:1 Δ11.
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Figure S19. ESI(+)-HCD MS/MS spectrum (30 NCE) of a) the protonated aPB derivative of FA 

18:1 Δ9; b) the protonated aPB derivative of FA 18:1 Δ11. The diagnostic ions are marked with a 

red circle. The relatively high HCD energy employed could explain the obtention of several ions 

from secondary processes in the low m/z range.
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Figure S20. ESI(+)-HCD MS/MS spectrum (30 NCE) of a) the protonated aPB derivative of 

standard PI (18:1 Δ9/18:1 Δ9); b) the protonated aPB derivative of PE (18:1/18:1); c) the 

protonated aPB derivative of PC (18:1/18:1). The diagnostic ions are marked with a red circle. The 
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relatively high HCD energy employed could explain the obtention of several ions from secondary 

processes in the low m/z range.


