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There is growing interest in studying human brain connectivity and in modelling the
brain functional structure as a network. Brain network creation requires parcellation
of the cerebral cortex to define nodes. Parcellation might be affected by possible
errors due to inter- and intra-subject variability as a consequence of brain structural
and physiological characteristics and shape variations related to ageing and diseases,
acquisition noise, and misregistration. These errors could induce a knock-on effect on
network measure variability. The aim of this study was to investigate spatial stability,
a measure of functional connectivity variations induced by parcellation errors. We
simulated parcellation variability with random small spatial changes and evaluated its
effects on twenty-seven graph-theoretical measures. The study included subjects from
three public online datasets. Two brain parcellations were performed using FreeSurfer
with geometric atlases. Starting from these, 100 new parcellations were created by
increasing the area of 30% of parcels, reducing the area of neighbour parcels, with a
rearrangement of vertices. fMRI data were filtered with linear regression, CompCor, and
motion correction. Adjacency matrices were constructed with 0.1, 0.2, 0.3, and 0.4
thresholds. Differences in spatial stability between datasets, atlases, and threshold were
evaluated. The higher spatial stability resulted for Characteristic-path-length, Density,
Transitivity, and Closeness-centrality, and the lower spatial stability resulted for Bonacich
and Katz. Multivariate analysis showed a significant effect of atlas, datasets, and
thresholds. Katz and Bonacich centrality, which was subject to larger variations, can be
considered an unconventional graph measure, poorly implemented in the clinical field
and not yet investigated for reliability assessment. Spatial stability (SS) is affected by
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threshold, and it decreases with increasing threshold for several measures. Moreover,
SS seems to depend on atlas choice and scanning parameters. Our study highlights
the importance of paying close attention to possible parcellation-related spatial errors,
which may affect the reliability of functional connectivity measures.

Keywords: parcellation, graph-theoretical measures, functional, fMRI, brain connectivity, stability

INTRODUCTION

In the last few years, the interest in graph theory applications
to functional connectivity (FC) data has grown exponentially.
In neuroimaging, FC can be assessed on functional magnetic
resonance imaging (fMRI) by measuring fluctuations of the blood
oxygenation level-dependent (BOLD) signal in the brain (Ogawa
et al., 1990). Brain regions with a similar function show correlated
spontaneous oscillations at rest, so that resting-state time-series
enable to infer the corresponding FC (Biswal et al., 1995; Lowe
et al., 1998; Cordes et al., 2000; De Luca et al., 2005; Fox and
Raichle, 2007). In functional networks, system elements (nodes)
represent brain regions and relationships between them (edges)
represent functional interactions. Once nodes are defined, the
network structure can be estimated as a connection matrix, which
can be computed as a correlation between the average time series
of each node (Sporns et al., 2005). Network measures can be
extracted from correlation matrices to describe the characteristics
of individual regions. Each measure characterizes many different
features providing a powerful means to classify and predict
several brain disorders. The application of graph theory to clinical
neuroscience studies shed light on the basic organization of the
brain (Supekar et al., 2008; Smith et al., 2011; Li et al., 2020, 2021).
Also, hypo- and hyper-connectivity may represent biomarkers for
different diseases (Bassett et al., 2008; Kocevar et al., 2016; Li et al.,
2019; Mazrooyisebdani et al., 2020; Xiang Y. et al., 2020; Chen
et al., 2021).

A critical step in the construction of functional networks is
node definition (Sporns, 2011; Eickhoff et al., 2015).

Most common nodal definition schemes are based on
individual voxels and brain subdivisions into a set of distinct
regions (parcellation). Voxel-level networks consider each voxel
separately as a node and compute correlations between time-
series of each voxel. Despite producing a network with a very
high resolution (>104 nodes) (van den Heuvel et al., 2008;
Zalesky et al., 2011), this approach is computationally expensive,
sensitive to noise, and difficult to interpret (Craddock et al.,
2012; Thirion et al., 2014). The process of dividing the cerebral
cortex and inner structure into structurally or functionally
distinct regions is usually referred to as parcellation. From
an initial application of graph theory to strictly voxel-based
neuroimaging, more recent studies implemented parcellation
for node definition in functional networks. Several parcellation
methods have been proposed to define regions of interest (ROIs)
for network analysis, with different resolution levels (number of
parcels). The most common parcellation approaches are based on
cytoarchitectonic or myeloarchitectonic information (Brodmann
and Garey, 2006; Zilles and Amunts, 2010). Alternatively,

“a priori” anatomical parcellation is often employed (Tzourio-
Mazoyer et al., 2002; Desikan et al., 2006). However, such
parcellation methods are usually generated on an individual
basis, and brain atlases rely on the state of our knowledge of
brain structure. Alternatively, random parcellation schemes can
be used, including a variable number of regions usually in the
order of 102 to 103 or more, but few studies demonstrated that
such parcellation may produce loss of connectivity information
(Smith et al., 2011). Recently, some studies used random
parcellation as a null model to test a fixed parcellation approach
(Arslan et al., 2018; Messé, 2020). Spherical ROIs centred on
stereotaxic coordinates (Fair et al., 2009; Dosenbach et al., 2010)
can also be used, but their application to structural models
may be difficult. Numerous connectivity-driven parcellation
methods from fMRI data have been introduced to define
network nodes (Arslan et al., 2018), often in association with
clustering techniques (Craddock et al., 2012; Thirion et al.,
2014). In these approaches, brain regions are defined by
connectivity patterns. Particularly, a voxel-wise map of BOLD
signal temporal correlations is created, then voxels are clustered
into groups to define region boundaries. These methods include
k-means clustering (Tomassini et al., 2007; Golland et al.,
2008; Mezer et al., 2009), hierarchical clustering (Bellec et al.,
2010; Mumford et al., 2010; Moreno-Dominguez et al., 2014;
Arslan and Rueckert, 2015), growing clustering (Bellec et al.,
2006; Gilbody et al., 2007; Blumensath et al., 2013), spectral
clustering (van den Heuvel et al., 2008; Craddock et al., 2012;
Shen et al., 2013; Arslan et al., 2015, 2016; Parisot et al.,
2016a), Markov random field technique (Ryali et al., 2013;
Honnorat et al., 2015; Parisot et al., 2016b), Gaussian mixture
models (Lashkari et al., 2010; Yeo et al., 2011), meta-analytic
connectivity techniques (Eickhoff et al., 2011; Power et al., 2011),
dictionary learning (Varoquaux et al., 2011), edge detection
(Cohen et al., 2008; Laumann et al., 2015; Gordon et al., 2016),
independent component analysis (ICA) (Beckmann and Smith,
2004; Smith et al., 2009), and Bayesian modelling (Baldassano
et al., 2015), often with overlap in defined brain areas (Eickhoff
et al., 2015). Other studies used a multimodal approach to
parcellate the brain, implementing both anatomical and data-
driven parcellation methods (Glasser et al., 2016) (see Arslan
et al., 2018 for a review and comparison of existing parcellation
methods) (Arslan et al., 2018). Recent studies have attempted
to incorporate information about cross-subject variability into
the atlas generation algorithms themselves (Kong et al., 2019).
Despite all this evidence, a universally accepted parcellation
method is still missing.

In connectivity studies, individual differences of cortical
morphometry are sometimes dismissed as “noise” – perhaps
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reflecting measurement errors or non-significant variability
(Chiarello et al., 2016). Caspers observed an interindividual
variability of brain-area topography, related to interobserver
variability of the definition of cytoarchitectonic borders based
on visual inspection of histological sections, or interindividual
variability of cytoarchitecture (Caspers et al., 2006). Some authors
investigated intersubject variability of cortical anatomy, showing
consistent hemispheric asymmetries (Kang et al., 2012), as well as
differences in sulcal and gyral anatomy (Caulo et al., 2007). Other
authors reported regional differences of cortical morphometry
across individuals, demonstrating an association between the
extent of the region’s between-subject variability and structural
asymmetry (Chiarello et al., 2016). During parcellation, true
anatomical borders are only marginally approximated because
these are often subjective (Fornito et al., 2012). Kennedy
computed the volume of 48 parcels (for each hemisphere) in
twenty subjects and assessed the variation in size of volume of
individual parcels among the twenty brains, finding a coefficient
of variation range from 11.1% (insula) to 49.0% (occipital
pole) (Kennedy et al., 1998). Recent studies showed that gyral
definitions were not identical across parcellation types, with
differences in bordering landmarks that could very likely be
misinterpreted, leading to a knock-on effect on associated
structures, ROI volumes, and corresponding morphometrics
(Mikhael et al., 2018; Mikhael and Pernet, 2019). Also, acquisition
noise and misregistration may compromise the location of
regional boundaries between subjects and different scans of the
same subject (de Reus and van den Heuvel, 2013), possibly
distorting the areas of interest and leading to poor parcellation
mapping. Crucial aspects to be considered when the brain is
parcellated include the effect of parcellation resolution (i.e., the
number of regions in a template), parcellation type (Sala-Llonch
et al., 2019), parcellation template, and granularity (Bassett et al.,
2008; Wang et al., 2010; de Reus and van den Heuvel, 2013).

Discrepancies in brain boundaries could induce connectivity
map variations. Parcellation errors and poor node definition at
the single-subject level affect the connectivity analysis, distorting
the estimation of network interactions (Smith et al., 2011;
Arslan et al., 2015). Since graph theoretic measures are affected
by the selected parcellation (Wang et al., 2010; Arslan et al.,
2018), errors in node definition for brain network analysis
could produce misleading results and erroneous interpretations
of cognitive processes in healthy subjects or patients (Stanley
et al., 2013), e.g., producing false positive (and false negative)
and significant differences in the topological organization of
brain functional networks. Caution should be exercised when
evaluating functional connectivity changes in longitudinal studies
due to result variability (Klobušiakova et al., 2019; Oldehinkel
et al., 2019).

We introduced spatial stability (SS), as a definition of
parcellation change effects on functional connectivity variations.
With SS analysis, we investigated network resilience to small
parcellation variations and the reliability of functional
connectivity results. To do this, we simulated parcellation
variability reproducing random small spatial changes and
then we evaluated the effects of these parcellations on
graph-theoretical measures.

Our aim was to evaluate SS of graph-theoretical measures
and to identify which of them are more reproducible when
brain parcellation is affected by spatial errors. In this work,
we do not investigate FC itself, but only subsequently
derived graph measures.

MATERIALS AND METHODS

Dataset
The study included healthy subjects from three public online
datasets: COBRE dataset1, Olin Neuropsychiatric Research
Center ABIDEII dataset (ONRC), and Indiana University
ABIDEII dataset (IU)2. All of these include both functional and
anatomical MR data. Few subjects were excluded due to poor
image contrast after T1w visual quality control3. Particularly,
3 subjects were excluded from the ONRC ABIDEII original
dataset, 3 subjects were excluded from the INDIANA ABIDEII
original dataset, and 9 subjects were excluded from the COBRE
original dataset due to poor image contrast. As a result,
we selected 61 subjects (COBRE) from COBRE, 32 subjects
from ONRC ABIDEII, and 17 subjects (IU) from INDIANA
UNIVERSITY ABIDEII. All the data were acquired on 3T
scanners (ONRC: Siemens Skyra; IU: Siemens TrioTim; COBRE:
Siemens TrioTim). A brief summary of the demographic data
included in the datasets is shown in Table 1. Anatomical and Rs-
fMRI acquisition parameters are given in Tables 2, 3. Datasets
were explicitly waived IBR approval due to publicly available fully
anonymized data.

1http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
2http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
3https://bitbucket.org/oriadev/qunex/wiki/UsageDocs/MultiModalQC.md

TABLE 1 | Summary of the demographic data included in the datasets.

Datasets Groups n Age Sex (M/F)

COBRE Healty subjects 61 18–65 43/18

ONRC Healty subjects 32 19–30 18/14

IU Healty subjects 17 19–37 12/5

TABLE 2 | Anatomical acquisition parameters of datasets.

MPRAGE COBRE ONRC IU

Magnetic field strength (T) 3 3 3

TR (ms) 2,530 2,200 2,400

TE (ms) 1.64 2.88 2.3

T1 (ms) 900 794 1,000

Averages 1 1 1

Pixel bandwidth (Hz/Px) 650 200 210

Acquisition matrix 256 × 256 × 192 208 × 320 × 220 320 × 320 × 256

Flip angle 7 13 8

FOV (mm) 256 × 256 256 × 256 224 × 224

Slice thickness (mm) 1 0.8 0.7

Total scan time (min) 6 3 7

Frontiers in Neuroscience | www.frontiersin.org 3 February 2022 | Volume 15 | Article 736524

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
https://bitbucket.org/oriadev/qunex/wiki/UsageDocs/MultiModalQC.md
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-736524 February 14, 2022 Time: 16:6 # 4

Bottino et al. Spatial Stability of Functional Networks

TABLE 3 | Rs-fMRI acquisition parameters of datasets.

Rs – fMRI COBRE ONRC IU

Magnetic field strength (T) 3 3 3

Scanning sequence EPI EPI EPI

TR (ms) 2,000 475 813

TE (ms) 29 30 28

Slice thickness (mm) 3.5 3 3.4

Pixel bandwidth (Hz/Px) 2170 2,604 2,604

Number of slices 33 48 42

Number of volumes 150 947 433

Acquisition matrix 64 × 64 80 × 80 64 × 64

Data Preprocessing
MPRAGE sequences were preprocessed using the FreeSurfer 5.4
pipeline (Fischl, 2012). In particular, cortical and subcortical
segmentation processing included motion correction (Reuter
et al., 2010), skull stripping (Ségonne et al., 2004), extraction
of the cortical surface (Fischl et al., 2002; Ségonne et al., 2004),
and spatial normalization onto the FreeSurfer surface template
(FsAverage). A smooth, continuous, two-dimensional brain
surface was then obtained based on high-resolution MPRAGE
images. We used the QA tools4 for the processing of the structural
data on FreeSurfer and for quality control of the segmentations.

Parcellation
Two atlases were used in this study for parcellating each subject’s
brain: standard atlasDKT40 and Destrieux atlas. These two
atlases parcellate the FsAverage template into 64 anatomical
regions of interest (64 Standard Parcels: SP) and 150 anatomical
regions of interest (150 SP), respectively. Starting from the 2
aforementioned atlases, 100 new template-based atlases were
randomly generated for each subject using the algorithm
described below. Each of the newly generated atlases contained
the same number of modified parcels (MP) as the original
reference. Each of them was obtained by randomly increasing the
area of a fixed number of SP and reducing the area of neighbour
parcels with a rearrangement of vertices. The SP and MP obtained
for each subject on the FsAverage surface were registered on
individual surfaces. Once surface parcels were generated, these
were converted in nifty volume files using FreeSurfer.

Algorithm
A random modification algorithm was implemented on python
to simulate 100 new atlases starting from the original references
(standard atlasDKT40 and Destrieux atlas). Particularly, the
algorithm implemented SP on each subject included in the
pipeline. To do this, the parcellation template is resampled on
subject surfaces. Then, 100 MP were randomly generated for each
subject. Algorithm inputs are (i) the standard atlas to modify,
(ii) the percentage of total brain surface vertices to move from
the parcels (T%), (iii) the number of parcels to change (N), (iv)
the number of random modified parcellation to create for each
subject (m), and (v) subject data.

4https://surfer.nmr.mgh.harvard.edu/fswiki/QATools

Algorithm outputs are (i) SP for each subject and (ii) m MP
for each subject.

The algorithm works on FreeSurfer’s inflated brain surfaces.
Parcellation atlases on these surfaces consist of a given labelling
for each vertex referring to the parcel to which it is included.
Each vertex in the brain surface belongs to the brain’s mesh.
A mesh face consists of three non-collinear vertices. When the
brain surface is parcelled, a face where all three vertices have the
same label is considered as an “internal face” included in a parcel,
whereas a face with at least one label different from the others is
considered a “boundary face” included in two (or three) parcels.
Finally, the set of faces of a parcel does not contain holes.

Given the number of parcels N in order to modify the total
percentage of vertices T%, the following steps are performed for
each randomly selected parcel i from N:

(1) . Selection of a set of vertices G_i by taking three random
vertices that belong to boundary faces of a randomly
selected SPi in blue shown in Figure 1 (Figure 1A).

(2) . Expanding G_i by adding new vertices adjacent to a vertex
(red encircled in Figure 1A) in G_i included in the parcel
nearby to SPi (Figure 1B).

(3) . Expanding G_i by adding new vertices adjacent to each
vertex in G_i (Figure 1C).

(4) . Removing all vertices in G_i that belong to the chosen
SPi (Figure 1D).

(5) . Repetition of step 2 until the total number of vertices
in the growing set G_i is higher than the fixed value e_i
defined as

e_i =
T% V iV tot

100
∑N

j=1 V j
,

whereby Vi is the total number of vertices in the selected
SPi, Vj is the total number of each brain parcel, and Vtot is
the total number of vertices in the brain mesh.

(6) . MP generation: all vertices in G_i are labelled to
be included in the SPI (Figures 1E,F). Particularly,
considering SPi and a neighbouring parcel, the labels
of vertices in G_i are changed from the label of the
neighbouring parcel to the label of the SPi to reduce the
size of the first and increase the size of the other.

(7) . This iterative process is repeated for each
random selected SPi.

We reported an example of SP and MP obtained on an inflated
subject surface in one of its 100 random iterations, shown in
Figure 2. In short, we have chosen the number of vertices to
add to the size of a parcel so that, for example, if a randomly
selected parcel to be expanded in size was twice the size of another
randomly selected parcel to be expanded, we would add twice the
number of vertices e_i to the first parcel than to the second.

We performed spatial variations of brain parcels to reproduce
a mean coefficient of variation of individual parcel volume
equal to 10%, reflecting the minimum coefficient of between-
subject variability for a parcellation unit (Kennedy et al., 1998).
Particularly, in order to reproduce a coefficient of variation equal
to 10%, we chose N equal to 30% of SP and T% equal to 3%.
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FIGURE 1 | Modified Parcels (MP) creation: SP to modify (blue) and a vertex external to this selected SP, belonging to its boundary face, were randomly chosen, and
a growing set of vertices G that initially contains only this chosen vertex is defined (A). Vertices adjacent to each vertex in G are added to G iteratively (B,C). Vertices
belonging to the SP were removed from G (D). Resulted G was moved in SP resulting in MP (E,F).

Brain Connectivity Analysis
A BOLD visual quality control of functional MRI data was
performed (see text footnote 3). All fMRI data were filtered
with linear regression to reduce the effects of low-frequency
drift. High-frequency physiological noise was extracted with the
CompCor method (Behzadi et al., 2007), and motion correction
was applied using the mcflirt fsl command5. The first volume
of fMRI data was used to realign and register fMRI data to

5https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT

FIGURE 2 | Example of Standard Parcels (SP) and Modified Parcels (MP)
obtained on an inflated subject surface in one of its 100 random iterations,
starting from DKTatlas40 (A) and Destrieux atlas (B).

the subject’s structural image. One hundred brain networks
were developed for each analysis: the mean time series from
each parcel were extracted, and connectivity matrices were
created computing Pearson’s correlation coefficient between
parcel average time series as a measure of the functional
connectivity between pairs of regions. As a result, 100 weighted
and unweighted adjacency matrices were constructed per subject
with 0.1, 0.2, 0.3, and 0.4 thresholds.

Computation of Graph Measures
In order to assess the properties of each node and the whole
network organization, 27 indirect network measures were
computed in python using btc6 and NetworkX7 libraries,
including centrality, clustering, core, degree, distance,
modularity, physical connectivity, and similarity measure
classes. Weighted and binary measures were derived starting
from the respective adjacency matrices. Weighted measures were
computed when the algorithm required a weighted adjacency
matrix or allowed to choose from weighted or binary adjacency
matrices as input. Binary measures were employed when no
weighted counterpart was available (i.e., subgraph centrality,
flow coefficient, and k-coreness). A summary of the measures
implemented in this study is displayed in Table 4. The evaluated
metrics included global and local measures. Global measures are
Assortativity, Characteristic path length, Community Louvain,
Density, Global Efficiency, Modularity Louvain, Modularity
Finetune, and Transitivity. Details about the graph measures are
reported in Supplementary Materials.

Variation Factor
To evaluate the SS of graph metrics, we introduced the
brain connectivity variation factor (VF) over all simulated
parcel variations: a measure of reproducibility of the functional
connectivity analysis results in terms of graph measures. VF is

6https://pypi.org/project/btc
7https://networkx.github.io/documentation/stable
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TABLE 4 | Graph theoretical measures included in the study.

Weighted measures Binary measures

Centrality measures Bonacich centrality
Betweenness centrality
Eigen vector centrality
Shortcuts centrality
Pagerank centrality
Closeness centrality
Katz centrality
Communicability betweenness centrality

Centrality measures
Subgraph centrality

Flow coefficient
k-coreness centrality

Clustering measures
Get components
Clustering coefficient
Transitivity

Core measures
Assortativity
Core periphery

Degree measures
Degree
Strength

Distance measures
Global efficiency
Local efficiency
Characteristic path length

Modularity measures
Modularity finetune
Modularity louvain
Community louvain

Physical connectivity measures
Density

Similarity measures
Topological overlap
Matching index

proportional to the difference between metric values derived by
SP and metric values derived by MP parcellations. Therefore,
a graph metric with a higher VF will be less stable in terms
of SS, being more vulnerable to parcellation-related spatial
errors. Conversely, a graph measure with a lower VF value
will be more reproducible when the brain is affected by spatial
parcellation errors.

For local measures, VF was defined as

VF(%) =
1
N

1
P

P∑
p=1

N∑
i=1

√
(xMP

ip −xSP
ip )

2√
(

xMP
ip +xSP

ip
2 )

2
100

whereby xMP
ip andxSP

ip correspond to the value of the x graph
measure under investigation in subject i, for parcel p, for modified
and standard parcellations, respectively; N and P represent the
total number of subjects and parcels, respectively.

For global measures, the brain connectivity VF was defined as

VF(%) =
1
N

N∑
i=1

√
(xMP

i −xSP
i )

2√
(

xMP
i +xSP

i
2 )

2
100

whereby xMP
i andxSP

i correspond to the value of the measure
under investigation in subject i, for modified and standard
parcellations, respectively; N is the total number of subjects.

Variation factor was computed for each of the 100 randomly
modified parcellation instance and for each analysed measure.
Differences in VF between datasets, atlases, and thresholds
were also evaluated.

The pipeline implemented in this study, as described
above, is implemented on python and is publicly available
at https://github.com/mri-group-opbg/effect-of-parcellation-
changes-analysis.

Statistical Analysis
Statistical analysis was carried out with SPSS software (PAWS
Statistics 18.0). Statistical significance was set at 0.05. To test
the effect of dataset (ONRC, IU and COBRE), atlas (DKTatlas40
and aparc2009s), and threshold (0.1, 0.2, 0.3, 0.4) on VF values
for each measure, we run a MANOVA analysis, whereby the VF
values were considered as variables and the dataset, atlas, and
threshold served as fixed factors. The analysis was performed
with Pillai’s trace statistic. To explore significant results derived
from multiple comparisons, we included a post hoc analysis with
Bonferroni correction for dataset and threshold.

RESULTS

The MANOVA analysis performed with Pillai’s trace
showed significant atlas effect (DKTatlas40 vs. aparc2009s)
(F(27,847) = 213.680; p < 0.001), dataset effect (ONRC vs. IU vs.
COBRE) F(54,1696) = 6.193; p < 0.001), and threshold effect (0.1
vs. 0.2 vs. 0.3 vs. 0.4) (F(81,2547) = 30.283; p < 0.001).

Variation factor values were lower than 1% for characteristic
path length, density, transitivity (outliers included), and closeness
centrality (outliers excluded). VF values were lower than 10%,
including outliers, for community Louvain, Modularity
Finetune and Modularity Louvain, closeness centrality,
communicability centrality, Eigen-vector, Shortcuts, Flow
coefficient, Get components, K-coreness, degree, strength,
Clustering Coefficient, core periphery, and Topological overlap
and excluding outliers for Assortativity and local Efficiency.
VF values ranged from 10 to 100% for Betweenness centrality,
global Efficiency (excluding outliers), Matching index, Pagerank
centrality (excluding outliers), and Subgraph centrality. VF
values were higher than 100% for Katz and Bonacich centrality.
Figures 3–5 summarize the above observations.

Effect of Atlas
Variation factor results were affected by the atlas choice for 20
measures. Table 5 shows mean VF values for every measure
with atlas grouping and resulting significant differences in
VF. VF was higher for Destrieux atlas than DKT atlas for
all significant metrics except for Assortativity, Characteristic
path length, Closeness centrality, Density, Flow coefficient, and
Transitivity. Figures 3, 4 show results grouped by atlas for local
and global measures.
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FIGURE 3 | Local measures variation factor grouped with atlases.

Effect of Dataset
A significant effect of the dataset on VF values was detected for
19 measures. Among significant measures, 15/19 metrics showed
lower VF for the COBRE dataset and 13/19 metrics showed
higher VF for the IU dataset. Table 6 shows dataset effects
resulting from significant multiple comparisons and post hoc
analysis. Figures 5, 6 show results grouped by dataset.

Effect of Threshold
Variation factor was affected by threshold for 24 measures.
Table 7 shows the test of between-subject effects and post hoc
results for measures with significant differences in VF at different
thresholds. VF increased with the threshold for all significant
metrics, with the exception of Assortativity, Betweenness

FIGURE 4 | Global measures variation factor grouped with atlases.

centrality, local Efficiency, Matching index, Pagerank centrality,
and Transitivity (Table 7). These results are shown in
Figures 7, 8.

DISCUSSION

Anatomical asymmetries, together with image noise and
cytoarchitectonic variability, may be responsible for the
misplacement of anatomical borders during parcellation, thus
affecting network connectivity analyses. The purpose of the
present study was to assess network SS, computing VF for several
metrics as a measure of their “inertia” to graph structural changes.
The use of metrics with a good resilience to small parcellation
variations can positively affect the reliability of a functional
connectivity analysis. Particularly, the method implemented in
this study reproduced what is happening when we try to apply
an atlas to a subject’s brain. In this case, each subject will end
up with an individual parcellation which will depend on the
individual brain structure. We assume that individual brains will
be slightly different based on anatomical variability and other
individual variables related to the specific acquisition. In this
view, each patient carries an “individual error,” depending on
his/her/their anatomy as well as on examination-related variables
such as motion and differences in acquisition protocol.

The study recreated an unwanted effect and then monitor
whether the graph metrics are actually stable enough to infer
differences due to diseases. Our analysis was designed to
reproduce the individual error and provide a proof of point
of its effects on graph metrics. For this purpose, the study
individualizes the parcellation to better capture the “individual
error burden.” The random simulation also partially and
indirectly accounts for the bad alignment between functional
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FIGURE 5 | Local measures variation factor grouped with datasets.

data and parcellation. We are in fact stretching and deforming
the parcels, and the misregistration behaves in the same way
when we think in terms of parcels. Additionally to parcellation
errors due to subject variability and to acquisition noise errors,
also errors for registration between the individual functional
data and parcels propagate with a knock-on effect on brain
connectivity analysis. In this context, the simulated variability
seen in the graph metrics accounts for a misregistration between
the individual functional data and the template space. Using
our algorithm, we performed random parcellation variations to
reproduce a mean cortical volume variation of the parcels equal
to 10%, the minimum coefficient of between-subject variability
for a parcellation unit as defined by Kennedy et al. (1998). We
also investigated the impact of different datasets (COBRE, IU and
ONRC), atlases (DKT and Destrieux), and absolute thresholds
(0.1, 0.2, 0.3, and 0.4) on measure generation.

Spatial Stability
As reported in Figures 3–8, SS results are highly variable among
different network metrics. The best SS results were obtained
for Characteristic path length, Density, and Transitivity (all
VF values below 1%), thus supporting findings reported for
these widely used metrics (Salvador et al., 2005; Tomasi and
Volkow, 2010; Wee et al., 2014; Prasad et al., 2015; Thomas
et al., 2015; Kocevar et al., 2016; Zhao et al., 2016; Zhuo et al.,
2017). Moreover, the result of good SS for these measures is
further confirmed by recent studies showing excellent test/re-test
reliability (TRT) for transitivity and characteristic path length
values (Aarabi and Huppert, 2019; Ran et al., 2020; Xiang Y.
et al., 2020). Slightly less robust SS was found for several metrics,
including modularity (community louvain, modularity finetune
and modularity louvain), centrality (closeness, communicability,
Eigen-vector, Shortcuts for weighted matrix, Flow coefficient and

K-coreness for binary matrix), degree (degree and strength),
clustering (Get components and Clustering Coefficient), core
(core periphery, assortativity), distance (local Efficiency) and
similarity (Topological overlap) measures, as demonstrated by
VF values below 10%. Similar results were also obtained in TRT
studies, where global graph measures like Clustering coefficient,
local Efficiency, and Assortativity revealed fair to good reliability
in terms of TRT and intraclass correlation coefficient (ICC)
(Ran et al., 2020; Xiang J. et al., 2020). Lower SS resulted for
centrality measures, i.e., Katz and Bonacich centrality, which
always exhibited VF values higher than 100%. Although Katz
centrality measure was firstly introduced for sociometric analysis
(Katz, 1953), it has been recently used for different applications in
brain connectivity studies, including behaviour characterization
of epileptogenic foci (Adkinson et al., 2019) and neuronal
activity prediction (Fletcher and Wennekers, 2018). Nevertheless,
both Katz and Bonacich centrality metrics can be considered
unconventional graph measures, poorly implemented in the
clinical field and not yet investigated for reliability assessment.
To the best of our knowledge, this is the first study attempting
to provide an estimate of the effect of parcellation onto graph
theoretical metrics’ values. We evaluated such effect on a
wide range of graph metrics (i.e., 24 weighted and 3 binary
graph measures). Given the higher reliability of weighted graph
metrics compared to their binary counterparts (Xiang J. et al.,
2020), this study mainly focused on weighted metrics, excluding
binary measures, with the exception of those having a binary
definition only (i.e., Subgraph centrality, K-coreness centrality,
and Flow coefficient).

Effect of Atlas
Since reproducibility and reliability investigations are essential
for clinical applications of commonly used graph measurements,
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TABLE 5 | VF values for measure with atlas grouping and significant differences in VF.

Measure Group Mean (dev) F (pval)

Assortativity DKT 7.11 (0.57) F (1,873) = 32.31 (10−8)

a2009s 2.83 (0.57)

Betweenness centrality DKT 21.36 (5.52) F (1,873) = 62.11 (10−15)

a2009s 24.44 (5.52)

Bonacich centrality DKT 92.62 (2.28) F (1,873) = 233.92 (10−47)

a2009s 138.68 (2.28)

Characteristic path length DKT 0.27 (0.004) F (1,873) = 26.56 (10−7)

a2009s 0.25 (0.004)

Closeness DKT 0.43 (0.006) F (1,873) = 32.59 (10−8)

centrality a2009s 0.38 (0.006)

Clustering coefficient DKT 0.81 (0.01) F (1,873) = 5.74 (10−2)

a2009s 0.85 (0.01)

Communicability betweenness centrality DKT 1.32 (0.03) NS

a2009s 1.36 (0.03)

Community louvain DKT 3.81 (0.08) F (1,873) = 23.81 (10−6)

a2009s 4.32 (0.08)

Core periphery DKT 2.68 (0.06) NS

a2009s 2.83 (0.06)

Degree DKT 0.83 (0.01) F (1,873) = 78.72 (10−16)

a2009s 0.97 (0.01)

Density DKT 0.24 (0.003) F (1,1873) = 100.41 (10−22)

a2009s 0.20 (0.003)

Efficiency_global DKT 25.68 (2.35) NS

a2009s 23.05 (2.35)

Efficiency_local DKT 7.13 (0.94) NS

a2009s 6.06 (0.94)

Eigenvector centrality DKT 1.40 (0.04) NS

a2009s 1.84 (0.04)

Shortcuts averagerange DKT 0.81 (0.01) F (1,873) = 87.60 (10−20)

a2009s 0.96 (0.01)

Flow coefficient DKT 2.22 (0.03) F (1,873) = 236.09 (10−47)

a2009s 1.63 (0.03)

Get components DKT 0.60 (0.06) F (1,873) = 15.759 (10−5)

a2009s 0.90 (0.06)

Topological overlap DKT 0.65 (0.01) F (1,873) = 53.19 (10−13)

a2009s 0.75 (0.01)

Katz centrality DKT 200.45 (2.81) F (1,873) = 217.62 (10−44)

a2009s 255.09 (2.81)

k-coreness centrality DKT 0.69 (0.01) NS

a2009s 0.68 (0.01)

Matching index DKT 12.83 (1.16) F (1,873) = 59.29 (10−14)

a2009s 24.62 (1.16)

Modularity finetune DKT 4.05 (0.07) F (1,873) = 17.62 (10−5)

a2009s 4.46 (0.07)

Modularity Louvain DKT 3.59 (0.08) NS

a2009s 3.61 (0.08)

Pagerank centrality DKT 5.76 (0.61) F (1,873) = 31.09 (10−8)

a2009s 10.27 (0.61)

Strength DKT 1.25 (0.05) F (1,873) = 166.83 (10−35)

a2009s 2.12 (0.05)

Subgraph centrality DKT 7.45 (0.12) F (1,873) = 569.19 (10−97)

a2009s 11.27 (0.12)

Transitivity DKT 0.18 (0.002) F (1,873) = 69.87 (10−16)

a2009s 0.15 (0.002)
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TABLE 6 | VF values for measure with datasets grouping and significant differences in VF.

Measure Group Mean (dev) F (pval) Post hoc analysis significant results (pval)

Assortativity COBRE 5.10 (0.51) NS

ONRC 5.50 (0.70)

IU 4.29 (0.96)

Betweenness centrality COBRE 23.30 (0.26) NS

ONRC 23.31 (0.36)

IU 22.09 (0.50)

Bonacich centrality COBRE 118.94 (2.02) F (2,873) = 36.73 (10−3) ONRC < COBRE (10−3)

ONRC 107.25 (2.80) ONRC < IU (10−2)

IU 120.75 (2.02)

Characteristic path length COBRE 0.24 (0.003) F (2,873) = 11.16 (10−5) COBRE < ONRC (10−3)

ONRC 0.26 (0.005) COBRE < IU (10−4)

IU 0.27 (0.006)

Closeness centrality COBRE 0.38 (0.005) F (2,1029) = 11.13 (10−5) COBRE < ONRC (10−2)

ONRC 0.40 (0.007) COBRE < IU (10−5)

IU 0.43 (0.01) ONRC < IU (10−2)

Clustering coefficient COBRE 0.78 (0.01) F (2,1029) = 20.00 (10−9) COBRE < IU (10−8)

ONRC 0.77 (0.01) ONRC < IU (10−8)

IU 0.94 (0.02)

Communicability betweenness centrality COBRE 1.39 (0.02) NS

ONRC 1.31 (0.04)

IU 1.32 (0.05)

Community louvain COBRE 3.81 (0.07) F (2,1029) = 7.70 (10−4) COBRE < ONRC (10−4)

ONRC 4.27 (0.09)

IU 4.11 (0.13)

Core periphery COBRE 2.60 (0.053) F (2,1029) = 4.29 (10−2) COBRE < ONRC (10−2)

ONRC 2.84 (0.07)

IU 2.82 (0.10)

Degree COBRE 0.86 (0.01) F (2,873) = 9.37 (10−5) COBRE < IU (10−5)

ONRC 0.86 (0.02) ONRC < IU (10−4)

IU 0.97 (0.02)

Density COBRE 0.20 (0.003) F (2,873) = 16.40 (10–7) COBRE < ONRC (10−4)

ONRC 0.22 (0.004) COBRE < IU (10−7)

IU 0.23 (0.005)

Efficiency global COBRE 25.95 (2.076) NS

ONRC 26.32 (2.87)

IU 20.83 (3.93)

Efficiency local COBRE 7.93 (0.83) NS

ONRC 5.93 (1.15)

IU 5.93 (1.58)

Eigenvector centrality COBRE 1.45 (0.032) F (2,873) = 18.22 (10−8) COBRE < IU (10−9)

ONRC 1.53 (0.044) ONRC < IU (10−5)

IU 1.86 (0.060)

Shortcuts averagerange COBRE 0.84 (0.01) F (2,873) = 10.51 (10−5) COBRE < IU (10−5)

ONRC 0.86 (0.02) ONRC < IU (10−3)

IU 0.95 (0.02)

Flow coefficient COBRE 1.89 (0.03) F (2,873) = 13.70 (10−6) COBRE < ONRC (10−5)

ONRC 2.08 (0.03) IU < ONRC (10−6)

IU 1.80 (0.05)

Get components COBRE 0.39 (0.05) F (2,873) = 22.02 (10−10) COBRE < ONRC (10−7)

ONRC 0.85 (0.07) COBRE < IU (10−7)

IU 0.98 (0.09)

Topological overlap COBRE 0.66 (0.01) F (2,873) = 11.27 (10−5) COBRE < IU (10−6)

ONRC 0.68 (0.01) IU < ONRC (10−4)

(Continued)
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TABLE 6 | (Continued)

Measure Group Mean (dev) F (pval) Post hoc analysis significant results (pval)

IU 0.76 (0.02)

Katz centrality COBRE 228.77 (2.49) NS

ONRC 223.68 (3.43)

IU 230.84 (4.71)

k-coreness centrality COBRE 0.67 (0.01) NS

ONRC 0.67 (0.01)

IU 0.72 (0.02)

Matching index COBRE 21.40 (1.03) F (2,873) = 16.22 (10−7) COBRE > ONRC (10−7)

ONRC 12.12 (1.42) ONRC < IU (10−5)

IU 22.66 (1.95)

Modularity finetune COBRE 4.14 (0.07) F (2,873) = 3.44 (0.03) COBRE < ONRC (10−2)

ONRC 4.43 (0.09)

IU 4.20 (0.13)

Modularity louvain COBRE 3.33 (0.07) F (2,873) = 7.50 (10−4) COBRE < ONRC (10−2)

ONRC 3.62 (0.095) COBRE < IU (10−3)

IU 3.85 (0.13)

Pagerank centrality COBRE 8.06 (0.54) F (2,873) = 12.67 (10−6) ONRC < COBRE (10−3)

ONRC 4.89 (0.75) COBRE < IU (10−2)

IU 11.09 (1.03) ONRC < IU (10−6)

Strength COBRE 1.66 (0.04) F (2,873) = 6.81 (10−3) COBRE < IU (10−2)

ONRC 1.50 (0.06) ONRC < IU (10−4)

IU 1.89 (0.086)

Subgraph centrality COBRE 9.46 (0.11) NS

ONRC 9.35 (0.15)

IU 9.28 (0.20)

Transitivity COBRE 0.16 (0.002) F (2,873) = 12.78 (10−6) COBRE < IU (10−6)

ONRC 0.16 (0.002) ONRC < IU (10−5)

IU 0.18 (0.003)

several efforts were recently made to evaluate how possible
changes in acquisition and processing parameters could affect
functional connectivity robustness. In this context, the impact
of different parcellation atlases (Cao et al., 2014; Arslan
et al., 2018; Lacy and Robinson, 2020; Ran et al., 2020),
strategies for correlation matrix production (Liang et al., 2012;

FIGURE 6 | Global measures variation factor grouped with datasets.

Telesford et al., 2013), scan length (Birn et al., 2013; Zuo
et al., 2013), number of subjects (Termenon et al., 2016),
network choice (Braun et al., 2012; Ran et al., 2020),
and threshold selection for the adjacency matrix (Lacy and
Robinson, 2020; Ran et al., 2020) have been investigated
in the literature. Among several methods used to generate
parcellation, data-driven approaches showed lower reliability
compared to morphology/geometric atlas-based methods, as
the subject specificity of the BOLD signal might influence the
process of parcellation (Zeng et al., 2019). In order to reduce
confounding effects on SS from data-driven approaches, we
chose to exploit geometric-based parcellation (standard atlases)
for our simulations. Particularly, we used geometric atlases
with 2 different numbers of brain parcels (64 and 150 parcels,
respectively, for DKT and Destrieux) to assess the effect of
graph measures on SS. Significant effects resulted for 74% of
the overall network metrics, with centrality-weighted measures
(except for closeness centrality), subgraph centrality, degree
measures, modularity measures, similarity measures, clustering
coefficient, and Get components, showing better SS results
for lower granularity, while the opposite trend was found for
Assortativity, Characteristic path length, Closeness centrality,
Density, Flow coefficient, and Transitivity. The remaining 26%
of metrics did not show any significant effect for the atlas choice.
Although previous studies investigated an atlas granularity effect
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TABLE 7 | VF values for measure with thresholds grouping and significant differences in VF.

Measure Group Mean (dev) F (pval) Post hoc analysis significant results (pval)

Assortativity 0.1 7.94 (0.78) F (3,873) = 7.74 (10−5) 0.1 > 0.2 (10−2)

0.2 4.71 (0.78) 0.1 > 0.3 (10−3)

0.3 4.13 (0.79) 0.1 > 0.4 (10−5)

0.4 3.07 (0.79)

Betweenness centrality 0.1 21.92 (0.40) F (3,873) = 40.98 (10−25) 0.1 < 0.2 (10−9)

0.2 25.37 (0.40) 0.1 < 0.3 (10−5)

0.3 24.42 (0.40) 0.1 > 0.4 (10−3)

0.4 19.88 (0.40) 0.2 > 0.4 (10−21); 0.3 > 0.4 (10−15)

Bonacich centrality 0.1 90.90 (3.12) F (3,873) = 35.23 (10−21) 0.1 < 0.2 (10−14)

0.2 124.80 (3.12) 0.1 < 0.3 (10−7)

0.3 115.04 (3.12) 0.1 < 0.4 (10−20)

0.4 131.84 (3.12) 0.3 < 0.4 (10−4)

Characteristic path length 0.1 0.21 (0.005) F (3,873) = 105.64 (10−58) 0.1 < 0.2 (10−2); 0.1 < 0.3 (10–13);

0.2 0.23 (0.005) 0.1 < 0.4 (10–52); 0.2 < 0.3 (10−6);

0.3 0.27 (0.005) 0.2 < 0.4 (10–39); 0.3 < 0.4 (10−17)

0.4 0.33 (0.005)

Closeness centrality 0.1 0.28 (0.008) F (3,873) = 321.21 (10−140) 0.1 < 0.2 (10−3)

0.2 0.32 (0.01) 0.1 < 0.3 (10−40)

0.3 0.44 (0.01) 0.1 < 0.4 (10−124); 0.2 < 0.3 (10−23)

0.4 0.59 (0.01) 0.2 < 0.4 (19−101) 0.3 < 0.4 (10−40)

Clustering coefficient 0.1 0.74 (0.02) F (3,873) = 81.05 (10–46) 0.1 < 0.3 (10−4)

0.2 0.70 (0.02) 0.1 < 0.4 (10−33);

0.3 0.84 (0.02) 0.2 < 0.3 (10−7)

0.4 1.06 (0.02) 0.2 < 0.4 (10−40); 0.3 < 0.4 (10−17)

Communicability betweenness centrality 0.1 0.62 (0.04) F (3,873) = 200.11 (10–99) 0.1 < 0.2 (10−20)

0.2 1.17 (0.04) 0.1 < 0.3 (10−67)

0.3 1.70 (0.04) 0.1 < 0.4 (10−86); 0.2 < 0.3 (10−19)

0.4 1.88 (0.04) 0.2 < 0.4 (10−32); 0.3 < 0.4 (10−3)

Community louvain 0.1 3.70 (0.11) F (3,873) = 7.06 (10–4) 0.1 < 0.3 (10−3)

0.2 4.03 (0.11) 0.1 < 0.4 (10−5)

0.3 4.19 (0.11) 0.3 < 0.4 (10−5)

0.4 4.34 (0.11)

Core periphery 0.1 2.33 (0.08) F (3,873) = 25.52 (10–16) 0.1 < 0.3 (10−7)

0.2 2.53 (0.08) 0.1 < 0.4 (10−14)

0.3 2.96 (0.08) 0.2 < 0.3 (10−3)

0.4 3.22 (0.08) 0.2 < 0.4 (10−9)

Degree 0.1 0.48 (0.02) F (3,873) = 409.83 (10–166) 0.1 < 0.3 (10−7)

0.2 0.76 (0.02) 0.1 < 0.4 (10−14)

0.3 1.05 (0.02) 0.2 < 0.3 (10−3)

0.4 1.30 (0.02) 0.2 < 0.4 (10−9)

Density 0.1 0.12 (0.004) F (3,873) = 23.40 (10–14) 0.1 < 0.2 (10−28)

0.2 0.19 (0.004) 0.1 < 0.3 (10−75)

0.3 0.25 (0.004) 0.1 < 0.4 (10−135); 0.2 < 0.3 (10−17)

0.4 0.30 (0.004) 0.2 < 0.4 (10−63); 0.3 < 0.4 (10–19)

Efficiency global 0.1 6.21 (3.21) F (3,873) = 7.94 (10–5) 0.1 < 0.2 (10−2)

0.2 18.13 (3.21) 0.1 < 0.3 (10−12)

0.3 38.19 (3.21) 0.1 < 0.4 (10−10);

0.4 34.94 (3.21) 0.2 < 0.3 (10–5); 0.2 < 0.4 (10−4)

Efficiency local 0.1 9.55 (1.28) F (3,873) = 215.07 (10–104) 0.1 > 0.3 (10−3)

0.2 9.70 (1.28) 0.1 > 0.4 (10−4)

0.3 3.68 (1.28) 0.2 > 0.3 (10−3)

0.4 3.47 (1.28) 0.2 > 0.4 (10−3)

Eigenvector centrality 0.1 0.98 (0.05) F (3,873) = 382.18 (10–158) 0.1 < 0.2 (10−3)

0.2 1.22 (0.05) 0.1 < 0.3 (10−24)

0.3 1.70 (0.05) 0.1 < 0.4 (10−94); 0.2 < 0.3 (10−11)

0.4 2.52 (0.05) 0.2 < 0.4 (10−72); 0.3 < 0.4 (10−34)

(Continued)
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TABLE 7 | (Continued)

Measure Group Mean (dev) F (pval) Post hoc analysis significant results (pval)

Shortcuts averagerange 0.1 0.48 (0.02) F (3,873) = 123.18 (10–66) 0.1 < 0.2 (10−25 )

0.2 0.75 (0.02) 0.1 < 0.3 (10−84 )

0.3 1.02 (0.02) 0.1 < 0.4 (10−148 ); 0.2 < 0.3 (10−25 )

0.4 1.27 (0.02) 0.2 < 0.4 (10−80 ); 0.3 < 0.4 (10−22 )

Flow coefficient 0.1 1.49 (0.04) F (3,873) = 115.07 (10–63) 0.1 < 0.2 (10−3 )

0.2 1.68 (0.04) 0.1 < 0.3 (10−23 )

0.3 2.06 (0.04) 0.1 < 0.4 (10−59 ); 0.2 < 0.3 (10−11 )

0.4 2.45 (0.04) 0.2 < 0.4 (10−41 ); 0.3 < 0.4 (10−12 )

Get components 0.1 0.12 (0.08) F (3,873) = 25.489 (10−16 ) 0.1 < 0.3 (10−10 )

0.2 0.15 (0.08) 0.1 < 0.4 (10−51 )

0.3 0.82 (0.08) 0.2 < 0.3 (10−9 )

0.4 1.87 (0.08) 0.2 < 0.4 (104−9 ); 0.3 < 0.4 (10−20 )

Topological overlap 0.1 0.34 (0.01) F (3,873) = 501.41 (10–189) 0.1 < 0.2 (10−34 )

0.2 0.58 (0.01) 0.1 < 0.3 (10−110 )

0.3 0.84 (0.01) 0.1 < 0.4 (10−177 ); 0.2 < 0.3 (10−35 );

0.4 1.034 (0.01) 0.2 < 0.4 (10−94 ); 0.3 < 0.4 (10−23 )

Katz centrality 0.1 219.44 (3.84) F (3,873) = 3.46 (10–2) 0.1 < 0.4 (10−3 )

0.2 226.43 (3.84)

0.3 229.09 (3.84)

0.4 236.10 (3.84)

k-coreness centrality 0.1 0.35 (0.01) F (3,873) = 409.80 (10–166) 0.1 < 0.2 (10−21 )

0.2 0.55 (0.01) 0.1 < S 0.3 (10−94 )

0.3 0.83 (0.01) 0.1 < 0.4 (10−151 ); 0.2 < 0.3 (10−37 )

0.4 1.01 (0.01) 0.2 < 0.4 (10−87 ); 0.3 < 0.4 (10−17 )

Matching index 0.1 36.23 (1.59) F (3,873) = 73.80 (10–42) 0.1 < 0.2 (10−11 )

0.2 21.02 (1.59) 0.1 < 0.3 (10−28 )

0.3 11.26 (1.59) 0.1 < 0.4 (10−38 )

0.4 6.40 (1.59) 0.2 < 0.3 (10−5 ); 0.2 > 0.4 (10−10 )

Modularity finetune 0.1 4.11 (0.10) NS

0.2 4.28 (0.10)

0.3 4.37 (0.10)

0.4 4.27 (0.10)

Modularity louvain 0.1 3.53 (0.11) NS

0.2 3.62 (0.11)

0.3 3.56 (0.11)

0.4 3.68 (0.11)

Pagerank centrality 0.1 10.05 (0.84) F (3,873) = 8.41 (10–05) 0.1 > 0.3 (10−3 )

0.2 10.03 (0.84) 0.1 > 0.4 (10−3 )

0.3 6.15 (0.84) 0.2 > 0.3 (10−3 )

0.4 5.82 (0.84) 0.2 > 0.4 (10−3 )

Strength 0.1 1.75 (0.07) NS

0.2 1.60 (0.07)

0.3 1.70 (0.07)

0.4 1.68 (0.07)

Subgraph centrality 0.1 7.94 (0.17) F (3,873) = 37.31 (10–22) 0.1 < 0.2 (10−11 )

0.2 9.52 (0.17) 0.1 < 0.3 (10−17 )

0.3 9.92 (0.17) 0.1 < 0.4 (10−19 )

0.4 10.07 (0.17)

Transitivity 0.1 0.19 (0.003) F (3,873) = 44.96 (10–27) 0.1 > 0.2 (10−20 )

0.2 0.15 (0.003) 0.1 > 0.3 (10−19 )

0.3 0.15 (0.003) 0.1 > 0.4 (10−1 )

0.4 0.18 (0.003) 0.2 < 0.4 (10−10 ); 0.3 < 0.4 (10−9 )

on metrics reliability (Cao et al., 2014; Termenon et al., 2016;
Zeng et al., 2019; Ran et al., 2020), a definite conclusion cannot
be drawn from their results due to heterogeneity. In fact, the
mentioned studies relied on very different parameters for metrics
estimation (ICC or TRT). For example, Termenon et al. (2016)
found high reliability values (in terms of ICC) of local efficiency

and clustering for an increasing number of parcels, with global
efficiency providing reliable results for coarser parcellations.
Among atlas-sensitive metrics, we demonstrated prevalent (70%)
SS improvement for a smaller number of parcels, suggesting that
higher-granularity parcellations are more prone to misplacing
issues. Among the remaining 30% exhibiting the opposite trend,
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FIGURE 7 | Local measures variation factor grouped with thresholds.

67% of measures were defined at a global level (i.e., Assortativity,
Characteristic path length, Density, and Transitivity). Recently,
Ran et al. obtained a trend of better reproducibility (in terms
of TRT) of global graph measures (Global efficiency, Clustering
coefficient and Betweenness centrality) for finer parcellation (Ran
et al., 2020). Conversely, in accordance with our results, a recent
study found ICC values related to the functional connectivity
correlation matrix to be higher for lower granularity parcellations
(Zeng et al., 2019). As far as we observed, SS strongly depends on
the network analysis level (i.e., local or global) and this finding
is also in line with previous studies on standard reliability. High
local fluctuations found in most metrics in the case of finer
parcellation might depend on the smaller brain area used to
define a node as compared to the percentage of area variation
applied in the simulation. Signal-to-noise ratio (SNR) reduction
in smaller parcels when compared to larger ones might also be
a reason for SS loss, as observed in local metrics. This effect
is mitigated for global metrics, since their value reflects a less
“node-specific” behaviour of the network. To test the effect of
dataset selection, we evaluated datasets with different numbers
of subjects and different acquisition parameters.

Effect of Dataset
Thirty percent of all the metrics did not show any significant
effect of dataset on SS. Among the remaining metrics, 79%
showed better SS for the larger dataset (COBRE), and 68%
displayed worse SS for the smaller dataset (IU). Most of previous
studies were performed on a limited number of subjects (Button
et al., 2013; Ioannidis, 2014), thus raising the issue that small
sample size could be responsible for poorly reliable results.

Recent studies demonstrated increasing significance of ICC when
a bigger sample size was considered, thus illustrating the role
of sample size in reaching statistical significance for reliability
assessment (Termenon et al., 2016). Moreover, as scan length is
broadly influenced by the number of acquired volumes and the
TR of the sequence, both parameters could play a role in reliability
improvement for longer scanning times (Andellini et al., 2015).

Effect of Threshold
Despite the use of binary graphs being attractive as
they simplify most of network metrics computation

FIGURE 8 | Global measures variation factor grouped with thresholds.
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(Garrison et al., 2015, 2016), we decided to focus our analysis on
weighted graphs because they demonstrated higher reliability
when compared to binary ones (Xiang J. et al., 2020). Absolute
thresholds set a minimum value for the correlation coefficient
between pairs of nodes, which are considered connected (or
not connected) if above (or below) the defined threshold, thus
producing a more sparse adjacency matrix for higher thresholds.
Despite correlation matrix thresholding being a crucial step for
the definition of a network, the optimal method for eliminating
non-significant node interactions is still under debate (Simpson
et al., 2013). To assess the threshold effect on SS, we computed
weighted and binary adjacency matrices by thresholding each
correlation matrix over a range of absolute values (0.1, 0.2, 0.3,
and 0.4) (Bassett and Bullmore, 2006; Buckner et al., 2009; van
den Heuvel and Hulshoff Pol, 2010; Garrison et al., 2015). No
significant difference among threshold values (see Table 7) was
demonstrated for 11% of the metrics, i.e., Strength, Modularity
Finetune, and Louvain. Since few relevant studies have been
published on the topic so far, contextualizing these results in
the extant literature is difficult. 75% of the metrics significantly
affected by threshold variation showed reduced SS at increasing
threshold absolute values. This result could be explained
considering that increasing threshold values produce highly
sparse adjacency matrices, where each change in connection
may have a dramatic impact on SS of graph measures. Such
finding seems to be in line with previous studies reporting better
network reproducibility when adjacency matrices are less sparse
(Ran et al., 2020). We can hypothesize this effect being related
to the presence of low-correlation values, which are extensively
removed when absolute threshold values are increased. Small
parcel variations would affect both lower correlations and higher
correlations. A similar effect on SS occurs when low correlation
values are cut out, since reduction in connections has a strong
impact on metrics reliability (Ran et al., 2020). Among the
remaining 25%, half of the metrics (Betweenness centrality,
Matching index, and Transitivity) did not show a univocal
significant trend of SS with increasing threshold absolute
values, while the other half (Assortativity, Local Efficiency,
and Pagerank) showed increased SS with increasing threshold
absolute values. It is not clear why these metrics present such
opposite trends, but we can hypothesize that it may be related
to the metrics definition; in this context, Pagerank centrality is
inversely related to degree (reduced SS at increasing threshold
absolute values).

Limitations
There are some limitations that should be considered for this
study. First of all, the number of subjects and datasets included
in the analysis and the number of trials were affected by high
computational costs, even after the optimization of our algorithm
in python. Also, randomly created parcel variations may not
exactly reflect parcellation errors as they may occur in real life.
To minimize this shortcoming, we performed several random
trials. The study also lacks further testing on the effects of
acquisition parameters (e.g., sample size, volume number and
TR, magnetic field strength, and number of coil channels) on
SS. In fact, each included dataset was acquired under different

conditions (see Tables 2, 3), limiting possible comparisons. The
presented analysis may be considered different from regular
pipelines for connectivity analyses. Our study was designed to
reproduce individual errors and provide a proof of point of its
effects on graph metrics. For this purpose, we individualized the
parcellation to every subject to better capture the “individual
error burden.” We assumed that individual brains will be slightly
different based on anatomical variability and other variables
related to the specific exam. Nevertheless, the use of individual
parcellations may limit the generalizability of our results to other
analyses using the same parcellation for all subjects.

CONCLUSION

In conclusion, the proposed method reproduces intersubject
parcellation variability to assess the impact of small parcellation
changes on global and local connectivity measures. Particularly,
the current study identified determinants of network measure
variation induced by small parcellation changes. The present
study shows that some measures are more prone to larger
variations than others. Specifically, Bonacich centrality and Katz
centrality have a higher variation factor. Our results showed
that SS in terms of VF is affected by threshold choice, since
it decreases with increasing threshold for several measures.
Moreover, SS seems to depend on atlas choice. Our results
suggest to pay close attention to the method the graph
structure is built with, as brain parcellation may depend on the
implemented method, acquisition noise, registration difficulties,
anatomic and physiological characteristics, diseases, age range,
and other variables. This variability may produce spatial errors in
cerebral cortex parcellation, compromising the reliability of brain
connectivity analyses.
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