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Abstract—Green-powered edge computing architectures allow
bringing computation in areas that are not reached by the power
grids. More often, in applications for Precision Agriculture and
Smart Cities, we could have a set of nodes that are coupled
with an accumulator which is, during the day, re-charged by the
energy harvested by small solar panels. With the latest advances
in technology, the edge node is generally assimilated to be a low-
power Single Board Computer (SBC), and it is able to carry out
even relatively demanding tasks. For example, it can run deep
learning models to images or video sequences captured in loco
by cameras. However, due to the differences in terms of power
consumption and weather conditions, each node experiences a
different lifespan, some nodes may even shut down prematurely,
causing the interruption of the portion of the deployed service. In
this paper, we propose three decentralized algorithms that solve
the problem by making the nodes cooperatively balance the traffic
in order to level and maximize their lifespan. By comparing the
approaches in two different experiments by using a cluster of
Raspberry Pi 4 we show that our solutions allow to increase the
lifespan of the service of 10% on average wrt the case in which
no algorithm is applied.

Index Terms—Green Edge Computing, Load Balancing, Lifes-
pan, Decentralization

I. INTRODUCTION

Single Board Computers (SBCs) that are generally small in
size and have non-negligible computational power, are often
suitable to be put in strategic positions, for example, in a Smart
City [1] thus concretizing the Edge Computing paradigm.
Moving the computation to the Edge enables the possibility
of drastically reducing processing latency since it avoids the
necessity of sending the data to process in the cloud. The
computational power available in the Edge is limited but its
peculiar characteristic is that it is efficient in terms of the
number of operations that (TOPS) can be carried out per
Watt [2]). Moreover, the energy profile is usually restrained
and they require an amount of power that can be easily
harvested by modern solar panels (Figure 1). In recent years,
renewable energies have become a prominent research topic,
and they particularly fit the context of Edge Computing [3],
thus enabling Green Edge Computing.

In our work, we consider sets of Edge nodes in which one
or more services can be deployed. We assume that the power

grid is not accessible, this can be the case of rural areas which
need to be actively monitored, or even in specific zones of
Smart Cities in which the cost of bringing the power grid can
be relevant. The solution that we envision is that by using
solar energy, nodes can exploit energy harvesting (EH) by
themselves.
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Fig. 1. Scheme of a set of Edge nodes which are coupled with a solar
panel and an accumulator (Energy Harvesting technique). The core idea for
balancing the energy is offloading a portion of the tasks which a node has to
perform to neighbors which have more energy in the batteries, in this case
nodes F, E and D.

As anticipated, Edge nodes are characterized by two es-
sential traits: (i) they require low operation power, usually
ranging from about 10W (Raspberry Pi 41) to 60W (nVidia
Jetson AGX Orin 64GB2) and (ii) they have non-neglibible
computing power which can also be used to run deep learning
inference [4], [5]. We indeed imagine, as a use case, that each
node is coupled with a camera and then it has to perform
some deep learning task on the captured images or videos.

1https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
2https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/

jetson-orin/

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/


The node can also be equipped with special processors (like
TPUs or NPUs) which can carry out ML tasks with very high
energy efficiency.

We suppose no central entity in our environment, so each
node can only interact with its neighbors and the interaction
takes the form of offloading thus enabling cooperation. Indeed,
each node is requested to perform a certain number of tasks
per second (at rate λ) which can for example supposed to be
frame processing, and if needed, it can offload a portion of
this rate to neighbors. Since each node is characterized by a
specific amount of residual battery energy, which determines
its lifespan, in order to increase the availability of the service,
nodes need to balance their energy consumption. It can be
easily shown that what dominates the energy consumption is
the rate λ, therefore the task offloading causes a decrease of
energy consumption in the node which forwards the tasks and
an increase in the one which receives them. Figure 1 shows a
simplified environment characterized by a set of Edge nodes
that are inter-connected and, for example, Nodes F, E and
D forward their traffic to a given neighbor. Then, we also
need to consider that Edge nodes are heterogeneous, they
have different rates of task execution3 (which we call µ) and
different energy consumptions, therefore there is the need to
design an algorithm which finds the correct amount of tasks
that each node needs to offload to others to maximize the
lifespan of the service in the long run and possibly avoiding a
node’s shutdown due to low battery. The contributions of this
paper can be summarized as follows:

1) design of three decentralized algorithms which balance
the energy consumption of the nodes by relying on
cooperative tasks offloading;

2) benchmark of the algorithms in a cluster of 11 Raspberry
Pi 4 SBCs by using the FaaS as task model and the
P2PFaaS [6] framework for the implementation;

3) definition of a set of performance metrics targeting
the behavior of the algorithms with respect to service
availability, lifespan and lifespan variance;

4) comparison of the algorithm both in a standalone sce-
nario and in a solar panel assisted scenario [7] which
solar energy traces from real panels

The rest of the paper is organized as follows. In Section II
we compare our work to other similar works in literature
which address energy and load balancing in Edge Computing,
in Section III we provide the model of the system and the
performance evaluation metrics, then in Section IV we illus-
trate the proposed algorithms and in Section V we provide the
performance comparison of the algorithms in the experimental
setting. Finally, we draw the conclusions in Section VI. Table I
shows all the symbols used in the paper.

II. RELATED WORK

This paper aims to design distributed and decentralized
algorithms which exploit load balancing for adjusting the
energy consumption of nodes in Fog and Edge Computing

3The number of tasks that a node can execute in a given second

with the final objective of extending the lifespan of the nodes
and, as a consequence, of the service itself. We present in this
section a series of similar works that target energy-aware load
balancing.

We can define a first set of works that target low-level
packet routing and load balancing by taking into consideration
the energy aspect. Adil et al., for example, in [8] focus
on Wireless Sensor Networks (WSNs) which are networks
characterized by nodes that are usually powered by batteries
and therefore they must efficiently communicate over the
network to maximize the lifespan. The authors indeed propose
an energy-efficient load balancing scheme that is based on
Energy Gauge Nodes (EGNs) which advertise the residual
energy of the nodes and this information is used for performing
a uniform load balancing of packets. A similar approach is
followed by Sampayo et al. [9] which explores the usage of
wake-up radio which has ultra-low power consumption, and
Ali et al. [10] which exploits clusters energy balanced nodes.
Differently from our work, the authors of these works are not
specifically targeting Edge and Fog Computing, in which the
nodes are not only sensors but can actively execute the whole
or part of the computation, moreover, we also consider the
green energy sources.

The second set of works instead more specifically regards
Green Edge Computing [11]. In particular, Lyu et al. in [12]
propose an architecture that integrates the Cloud, the MEC
(Mobile Edge Computing) layer and the IoT for implementing
a selective offloading algorithm that is designed to minimize
the energy consumption of devices. However, the approach is
tested only in simulation and it is not considering the energy
contribution that is harvested from the solar panels. In [13]
instead, the authors focus on the Internet-of-Vehicles (IoV)
and propose an efficient scheduling framework to minimize the
energy consumption of Green Roadside Units (RSUs) under
latency constraints. Differently from our work, we hypoth-
esize that each computing node has attached an accumula-
tor, moreover, the approach that we follow is decentralized.
Wu et al. in [14] propose an algorithm called “GLOBE”
which performs a joint geographical load balancing in MEC
environments where energy-harvesting nodes are considered.
The authors show, relying on Lyapunov optimization, that
the approach achieves a close-to-optimal result compared to
an offline algorithm that knows the full information about
the system. A similar approach is studied in [15] which
proposes a hierarchical task offloading that optimizes latency,
energy consumption and cloud fees. However, in these works,
which only provide models and simulation, the decentralized
approach is not considered, which is the core of our work.
Similar approaches are then used in [16].

Other approaches focused on energy-aware task scheduling
can be seen in [17], [18] and [19].

III. MODEL & METRICS

We suppose to have a set of N edge nodes. Each node
i in the set receives a constant rate of tasks per second to
be executed which is called λi, these tasks can be associated



Symbol Meaning

N Set of nodes
xi(t) Net load (in req/s) of node i at time t
λi Traffic to node i (in reqs/)
µi Service rate of node i (in reqs/s)
ρi(t) Utilization rate of node i at time t (defined as λi/µi)
mij(t) Percentage (over λi) of tasks forwarded from node i

to node j at time t
PIDLE Idle power absorption of a node i (in W)
PWORK Power absorption for unit of load ρi(t) for node i (in W)
Bi Initial battery energy of node i (in Wh)
li(t) Residual lifespan at time t for node i

pli(t) Power absorption of node i depending on the load (in W)
pti(t) Total power absorption of node i

bpi (t) Residual battery energy at time t for node i

si(t) Power harvested by the solar panel attached to node i
at time t (in W)

ei(t) Energy reference value at time t for node i which can
be bpi (t) or li(t) depending on the experiment

eai (t) Average energy reference value at time t between node i

and its neighbors at time t
τ round time in round-based algorithms

TABLE I
LIST OF SYMBOLS USED

with the processing of the data generated at the node at
the same rate, in our use case a task is an image frame
processing. The same nodes can execute tasks at rate µi which
is again supposed to be constant over time. From experimental
measures, we assessed that SBCs consume an approximately
fixed amount of power when they are idle, and we call this
contribution PIDLE, then there is another contribution that is
variable since it depends on the load at time t which we call
pl(t). We can define the total power consumption of the node
i at time t as:

pTi (t) = PIDLE + P l
WORK(t) (1)

In general, nodes’ variable energy consumption derives from
many micro-operations that beyond the CPU time can regard
data transmission over Ethernet (or WiFi), data read or written
in RAM or even access to persistent storage. Without loss
of generality, we can assume that all of these operations
are proportional to the number of tasks that the nodes have
to execute because these tasks may involve all the above-
mentioned operations. With this assumption the contribution
to the power consumption pl(t) is determined by the effective
rate of tasks that the node i is executing at time t which can
be seen as:

xi(t) = λi −
∑
j∈N

λimij(t) +
∑
j∈N

λjmji(t) (2)

where we call mij(t) the percentage of tasks generated by
node i which are forwarded to j at time t in a cooperative
manner. Since we consider small sets of edge nodes we
suppose these nodes to be arranged in a fully connected
topology and therefore the net number of tasks rate that a node

executes is given by the tasks that it generates from which we
subtract the rate of task offloaded and the rate of tasks received
from the neighbors. If we call ρi(t) the node’s load at time t

ρi(t) =
xi(t)

µi
(3)

and we define PWORK as the amount of power required by
node i for a unit of load. Then, we can rewrite Equation 1 as:

pTi (t) = PIDLE + PWORKρi(t) (4)

The value PWORK in Watts (W) can be easily extracted by
running benchmarks on real devices. We also assume that to
each node i is attached a battery of initial capacity B0

i which is
assumed to match the full capacity Bi. Moreover, the battery
can be recharged with the power harvested by a solar panel
which is described by the function si(t). We define the law
which regulates the residual battery capacity over time t as:

bi(t) = B0
i −

∫ t

0

pTi (t) +

∫ t

0

si(t) (5)

We proceed to find the solution of the problem, which are
the mij(t) functions, by proposing three different algorithms
in Section IV whose purpose is the one of making nodes that
have less energy availability to forward to nodes which have
more. Further development of the model is left as future work
since in this work we focus on the effective solution applied
to a cluster of real SBCs.

A. Performance Metrics

The proposed algorithms have been evaluated according to
the following metrics:

• σ: the average variance between the battery capacities
over the entire experiment. The metric allows us to
measure how the algorithm is able to keep the batteries’
charge aligned over time. We divide the experiment into
n equal slots of time and we measure the average battery
capacity in every segment. In formulas, for a given node
i and the j-th segment of time which starts from tsj to tej
we define the average battery of a node as:

ba,i,j =
1

tej − tsj

∫ tej

tsj

bi(t) (6)

Then in a given slot j we compute the variance of the
average batteries capacities as

σi,j =
1

j

j∑
k=0

(ba,i,k − 1

N

|N |∑
z=0

ba,z,j)
2 (7)

and finally, we derive the metrics which best describe the
behavour of the variance during the experiment:

σ =
1

N

n∑
i=0

σi,j (8)



• df : the time in which the first node fully discharges and
dies. Since the service becomes compromised when some
nodes become unusable, this value indicates how long the
service remains at full potential. The metric is described
as, given Td the set of t∗i which is the time in which node
i dies (for which bi(t

∗
i ) = 0)

df = minTd (9)

• dg: the time gap between the first node that reaches zero
battery capacity value which declares its death and the
last one which reaches the same state. The metric is
describes as, given Td the set of t∗i which is the time
in which node i dies (for which bi(t

∗
i ) = 0):

dg = maxTd −minTd (10)

• r: the average percentage of tasks that are not served
by the nodes. Since nodes have finite queues when they
saturate or the battery runs out they start to drop requests,
given ri as the percentage of tasks rejected by a node i,
the metric in question is the average among all the nodes;

• emi (t): defines the difference between the current energy
reference value of node i and the minimum value among
all the nodes, in other words:

emi (t) = ei(t)−min
j

ej(t) (11)

The metric is mainly used in the charts for visualizing the
behavior of the balancing algorithm over time. The energy
reference value ei(t) is described in the next section.

IV. PROPOSED ALGORITHMS

We now present three distributed and decentralized load-
balancing algorithms whose purpose is to balance the energy
consumption of the nodes to extend the lifespan of the service.
In each algorithm, we assume that a node receives a task to
be executed and a scheduling decision must be taken. The
decision describes whether to execute it locally or to forward
it to a neighbor node.

The purpose of the algorithms follows the general idea that
envisions a node to forward part of its tasks to nodes which
is in a “better state”. Regarding the state we both consider the
residual battery level (in percentage) which, at time t, can be
expressed as:

bpi (t) =
bi(t)

Bi
(12)

and the lifespan which, at time t, is described as:

li(t) =
bi(t)

pti(t)
(13)

Therefore the proposed algorithms can be applied both by
considering as reference parameter Equation 12 and Equa-
tion 13. Given any two nodes i, j ∈ N s.t. i ̸= j at
time t we can encode that, for example, j is in a “better”
state with respect to i both as: (i) j has a higher residual
battery percentage and therefore bjp(t) > bpi (t) or (ii) j has

a greater lifespan than i and therefore lj(t) > li(t). In the
algorithms that we are going to present in this section, we
encode the function “GetEnergyState()” which retrieves the
battery percentage or the residual lifespan, in the text we will
refer to it as energy reference value ei(t) which can assume
the values bpi (t) or li(t) according to the specific experiment.

A. Random Choice

The first algorithm that we present is based on random
choice. The random approach in used in balancing algorithms
may seem a little bit controversial, however, there is a wide
literature that shows that the approach has a beneficial effect,
especially when the number of nodes increases [20]. In order
to appreciate the effect of randomness we do not have to for-
ward tasks blindly to random nodes but when a task arrives at
time t we probe d random one node asking their state and then
if a node is found in a “better” state, the task is forwarded [21]
to it otherwise it is executed locally. Algorithm 1 shows the
proposed algorithm based on the random choice. The flow of
the algorithm is the following, suppose that the algorithm is
executed by node i:

1) first of all, we pick d random nodes from the neighbours
of the current node i;

2) then for each of the picked nodes we explicitly ask them
the state;

3) if a node j with a better state is found, then the task is
forwarded to it;

4) in any other case, the task is executed locally.

Algorithm 1 Random Choice Balancer
Ensure:

neighsIPs ← list of neighbor nodes’ IP from configuration
Require:

task ← task to be executed
d ← number of neighbor nodes to probe

function SCHEDULE(task, d)
selfState ← GetEnergyState()
[1. Pick d random neighbor nodes]
randomNodes ← pickdRandomNodes(neighsIPs, d)
[2. Retrieve the state of the picked nodes]
for ip ∈ randomMachines do

randomState ← GetEnergyState(ip)
[3. Check if the probed node has a better state]
if randomState > selfState then

[3a. If yes, forward the task to it]
ForwardTask(task, ip)
return

end if
end for
[4. If no node in a better state is found, then execute the task locally]
Execute(task)

end function

The purpose of the algorithm is to avoid the probing of all
the neighbor nodes which may introduce latency and relies on
the probability of finding a node that is in a better state. The
mathematical model and the assumption behind this idea are
well-studied in the above-mentioned works.

We remark that, in this particular approach, we are not
interested to find directly the migration ratios mij(t) from



any node i, j ∈ N since we apply a random decision to each
task that arrives to the node.

B. Ratio approach

The second approach is specifically designed to find the
migration ratios mij(t) which describe, for any two nodes
i, j ∈ N the percentage of the arrival task rate to node i, λi,
that is forwarded to node j.

The proposed approach divides the time into rounds of τ
seconds. When the round time is hit the migration ratios for
a given node i ∈ N are updated. Moreover, to improve the
stability of the found ratio, due to the distribution of tasks’
arrivals (which we will assume to be Poissonian during the
experiments), we introduce a tolerance coefficient ϵ which is
used in the criterium for establishing if a node is in a better
state. In particular, given any two nodes i, j ∈ N , we consider
a node j to be in a better state of i if

ej(t) > ei(t)(1 + ϵ) (14)

The fundamental idea of the algorithm is that, at each round,
we make each node i equally forward all its incoming tasks
at rate λi to all the neighbors which are in a better state, if
they exist. Then, if performing this action will cause a certain
neighbor node to worsen its state, the node will reset the
migration ratio towards it. Even if the behavior is all or nothing
we expect the energy reference value (battery or lifespan) to
be equalized and maximized over time.

Algorithm 2 shows the complete pseudocode of the pro-
posed approach which is triggered every τ seconds. The flow
of operations is the following:

1) probe all the neighbor nodes for their state and store into
a list the nodes for which the condition in Equation 14
is true. For any node j that is found to not have a better
state, the ratio is reset;

2) update the ratios towards all nodes in the list by dis-
tributing the traffic totally and equally.

C. Ratio approach with adaptive step

The last algorithm that we present follows from Algorithm 2
and it has the same purpose of finding the migration ratios
mij(t) for a given node i, a similar approach has been applied
in case of leveling of latency [22]. Even in this approach, we
reason with rounds of duration τ seconds and at the end of the
round each node updates its migration ratios. The difference
with the previous algorithm is that, first of all, any given
node i ∈ N computes the average energy reference value
(which can be the battery percentage or the lifespan) between
itself and its neighbors, then it increases by a step size α
the migration ratio mij to the nodes whose state is above
the average and decreases it by a step size α to the nodes
whose state is lesser than the average, and this is done by
always keeping mij(t) positive. Since arrivals are in general
not exactly periodic, as in the previous approach, we define a
node that is balanced when

eai (t)(1− ϵ) ≤ ei(t) ≤ eai (t)(1 + ϵ) (15)

Algorithm 2 Ratio Balancer with Equidistribution
Ensure:

neighsIPs ← list of current node’s neighbours
ratios ← array of floats one for each neighbor in neighsIPs
τ ← round time
lastRatioUpdate ← the timestamp of last ratios update

Require:
task ← task to be executed
ε ← the better state tolerance value

function UPDATERATIOSEQUIDISTRIBUTION(neighsIPs, ε)
list ← [ ]
selfState ← GetEnergyState(self)
[1. Loop over every neighbor]
for ip ∈ neighsIPs do

neighbourState ← GetEnergyState(ip)
[2. Check if the current neighbor has a (1 + ϵ) better state]
if neighbourState > selfState · (1 + ε) then

[2a. If yes then save its IP to a list]
list.append(ip)

else
[2b. Otherwise, reset the ratio to it]
ratios[ip] ← 0

end if
end for
if len(list) > 0 then

[3. Equidistribute the λ rate to all neighbors in a better state]
value ← 1/len(list)
for ip ∈ list do

ratios[ip] ← value
end for

end if
return ratios

end function

We call this zone of size 2ϵeai (t), a tolerance zone and a
node for which Equation 15 holds at time t does not need to
alter any migration ratio. Therefore the algorithm is triggered
only if a node is outside the zone.

Algorithm 3 shows the pseudocode of the proposed ap-
proach. The flow of operations is the following:

1) compute the average of the energy reference value ei(t),
then the upper and the lower limits of the tolerance zone;

2) at this point we check the condition for which the
current node i’s state is below the tolerance zone and
the migration ratios are not zero, this means that the
node is forwarding an amount of traffic that is excessive
and causes it to go below the zone4. If the condition is
true then we decrease all the positive migration ratios
by the step size α.

3) after reducing the ratios, check if the current state is
above the lower limit of the tolerance zone and if this
is true we do not further step since the node cannot
increase the ratios and we assume it in balance;

4) if the node reaches this point then it is below the toler-
ance zone and the ratios must be altered, in particular
for going in balance we

a) reduce by α the ratios towards every node neighbor
j ∈ N that is below the balance zone, because for

4This because the more the traffic is forwarded the less is the energy
consumption of the node and therefore the higher is the energy reference
value (battery or lifespan).



going in balance it needs to increase their energy
reference value ej(t);

b) increase by α the ratios towards the nodes which
are above the balance zone, in this way, we increase
the energy reference value of the current node for
decreasing the one of the node to which the traffic
is offloaded.

Algorithm 3 Ratio Balancer with Adaptive Step
Ensure:

neighsIPs ← list of current node’s neighbours
ratios ← array of floats one for each neighbor in neighsIPs
τ ← round time

Require:
task ← task to be executed
ε ← the better state tolerance value
α ← the migration ratios’ step size

function UPDATERATIOSADPTSTEP(ratios, neighsIPs, ε, α)
[1. Compute the average energy value and the tolerance zone limits]
states ← GetEnergyStates(neighsIPs)
avgEnergy ← sum(states) / len(states)
avgHigh ← avgEnergy · (1 + ε)
avgLow ← avgEnergy · (1− ε)

[2. Check if the current state is above the average and ratios must be
reduced]

selfState ← GetEnergyState(self)
if selfState > avgHigh then

for ip ∈ neighsIPs do
[2a. Reduce of step α every positive ratio]
if states[ip] > 0 then

ratios[ip] ← ratios[ip] - α
end if

end for
end if
[3. Check current state is above the low limit of the tolerance zone, in

that case, the node is balanced]
if selfState > avgLow then

return ratios
end if
for ip ∈ neighsIPs do

[4. Reduce the ratio to nodes that are below the tolerance zone]
if states[ip] ≤ avgLow then

ratios[ip] ← ratios[ip] - α
end if
[5. Increase the ratio to nodes that are above the tolerance zone]
if states[ip] > avgHigh and sum(ratios) < 1.0 then

ratios[ip] ← ratios[ip] + α
end if

end for
return ratios

end function

V. EXPERIMENTAL RESULTS

The algorithms presented in Section IV have been imple-
mented in the P2PFaaS framework [6] which we envisioned
and implemented for testing distributed scheduling and load
balancing algorithms. The paradigm used as a task model is
the Function-as-a-Service (FaaS), therefore we envision that
every node i ∈ N generates a rate λi of function execution
requests per second, then the scheduling decision is made per
each request upon its generation. We suppose each node to
run at maximum K = 4 requests in parallel with no queue,
therefore if a node decides to execute a request locally and it

is executing exactly four requests, the new upcoming request
is automatically rejected, thus increasing the r metric.

The framework has been installed on 11 Raspberry Pi
4, however, since the devices had a not real solar panel
and battery attached we simulated them. We introduced a
new module in the framework which simulates the energy
discharge by periodically reading the actual CPU usage of
the board and reducing the capacity of a virtual battery.
The CPU time gives an accurate estimation of the device’s
current load and therefore it has been used as ρi(t) in the
Equation 4. The energy module implements instead Equation 5
with ticks that update the battery triggered every second.
From real measures we assumed, in every experiment and
without loss of generality, that the idle power of a board as
PIDLE = 2.5W ∀i ∈ N and the power consumption for a unit
of load as PWORK = 0.025W ∀i ∈ N , in this way, the boards
in full load have a total power absorption of 5W . The capacity
of the batteries and the initial energy as been instead set to
Bi = 10Wh ∀i ∈ N . Finally, the arrival rates match the node
index, starting from i = 1 to i = 11, λi = i.

A. Discharge
The first experiment that we carried out assumes that the

contribution of the solar panels is absent, i.e. si(t) = 0 ∀i ∈
N ,∀t ≥ 0 in Equation 5. Table II shows the results of the
experiment in the case in which no algorithm is applied to
the system and then for every proposed algorithm applied
both to the battery capacity (ei(t) = bi(t)) and to lifespan
(ei(t) = li(t)). What we can observe is that the approach that
equally distributes the traffic among all the neighbors which
are in a better state (Algorithm 2) when applied to lifespans is
the one which makes the ei(t) more stable (since the variance
σ = 0.04 is minimized) and which minimizes the gap between
the first and the last nodes that run out of battery (dg = 3s) and
also maximizes the lifespan of the first node which goes offline
(with 2 hours, 27 minutes and 22 seconds). This is because the
random approach generates an excessive variance and since it
is random it is less precise in selecting the node for which
the migration ratio must be increased, then the approach with
the adaptive step is instead too slow in adjusting the migration
ratios and therefore forwarding all the traffic all at once is the
approach which performs better. Then we need to highlight
two aspects of these results. First of all, the approaches which
use the lifespan are as expected the ones which maximize the
df metric because they have the advantage of exactly working
with the metric. The second aspect regards the probability
of a task being rejected which is r. In general, none of our
approaches focused directly on that particular metric, because
the objective of all the algorithms was to extend the minimum
lifespan, however, an approach cannot extend the lifespan by
rejecting the tasks and thus reducing the energy consumption.
This kind of reasoning opens for a multi-objective study which
is left as future work, however, the approach which is resulted
to be the better still gives a fair r = 16.5% with respect to
13.2% which is the case in which no load balancing is applied.
This happens because it can be seen as a partial side-effect of



balancing the load for increasing the lifespan, indeed, a node
offload parts of its traffic to nodes that have a greater energy
availability, probably because they have carried out less work
with respect to nodes that forwards the traffic. This particularly
holds when the energy consumption per unit of load (PWORK)
is the same for every node, which is our specific case.

Balancers Based on σ ↓ dg ↓ r ↓ df ↑

No Balancing - 140 00:30:40 13.2% 02:14:17
Random (Alg. 1) battery 1.47 00:02:02 15.7% 02:20:22
Random (Alg. 1) lifespan 0.16 00:00:29 19.5% 02:20:44
Ratio E. (Alg. 2) battery 0.25 00:00:44 34% 02:14:52
Ratio E. (Alg. 2) lifespan 0.04 00:00:03 16.5% 02:27:22
Ratio A. (Alg. 3) battery 2.75 00:01:55 16.5% 02:10:10
Ratio A. (Alg. 3) lifespan 4.81 00:00:19 15.3% 02:10:53

TABLE II
COMPARISON OF THE PROPOSED ENERGY BALANCING ALGORITHMS

DURING DISCHARGE UNTIL THE SHUTDOWN OF ALL THE NODES WITH NO
RECHARGE DURING THE EXPERIMENT. VALUES OF σ ARE INTENDED TO

BE MULTIPLIED BY 10−3 .

B. Discharge and Solar Recharge

The purpose of this second experiment is to measure how
the proposed algorithms behave when, as it could happen in
a real environment, the batteries are recharged during the day
according to the solar activity. The amount of energy harvested
by the solar panels used in the experiment has been taken from
real home-designed solar panels5 over 3 days of activity, the
data were re-scaled to match 3 hours under the conditions
of the experiment in which we suppose that each node is
attached to its own polycrystalline solar panel with a rated
maximum power of 14W6. In this process, we suppose that the
differences in the traces are due to the different geographical
positions of the nodes.

Figure 2 shows the energy harvested by three solar panels.
The traces have been applied to the 11 nodes by using the
following fashion: nodes 1, 4, 7 and 10 follow the trace no.
1 in Figure 2a; nodes 2, 5, 8 and 11 follow the trace no. 2 in
Figure 2b; nodes 3, 6 and 9 follow the trace no. 3 in Figure 2c.
The configuration of the node batteries remains the same as the
ones in the previous test (initial capacity Bi = 10Wh, PIDLE =
2.5W and PWORK = 0.025). The arrival rate to the node is also
the same as the previous experiment (Section V-A).

Table III shows the final results of the experiment which has
been conducted on all the algorithms as the previous one. The
purpose of the experiment is to show how the algorithms react
when the energy in the battery can also unpredictably increase.
In this case, the random approach based on lifespan is the one
that maximizes the minimum lifespan df (3 hours, 46 minutes
and 38 seconds) and the variance σ = 1.02, this is because
when energy is more dynamic the random guess is able to

5These panels, Jinko Solar JKM410M-72H, have an efficiency of 20%
in standard test conditions (STC) and in our tests, 20 panels harvested at
maximum 7kW of power.

6A low-cost polycrystalline panel has an efficiency of 12% (in STC) this
means that we can suppose that each node is attached to a panel of 45×30cm.

better capture the overall behavior of the system. Instead, the
algorithm based on equidistribution of traffic (Algorithm 2
based on lifespan) minimizes the time gap dg but shows an
unacceptable task rejection probability r. This is because the
all-or-none approach is not able to follow a dynamic energy
behavior.

Balancers Based on σ ↓ dg ↓ r ↓ df ↑

NoScheduler - 1.57 01:29:44 11.6 % 03:21:50
Random (Alg. 1) battery 1.03 00:42:14 14.7 % 03:46:01
Random (Alg. 1) lifespan 1.02 00:39:49 16.2 % 03:46:38
Ratio E. (Alg. 2) battery 1.08 00:38:00 38.6 % 03:22:46
Ratio E. (Alg. 2) lifespan 1.15 00:43:14 18.2 % 03:25:36
Ratio A. (Alg. 3) battery 1.17 00:51:51 26.3 % 03:18:02
Ratio A. (Alg. 3) lifespan 1.06 00:47:12 23.2 % 03:20:23

TABLE III
COMPARISON OF THE PROPOSED ENERGY BALANCING ALGORITHMS

DURING DISCHARGE UNTIL THE SHUTDOWN OF ALL THE NODES WITH
SIMULATED RECHARGE DURING THE EXPERIMENT FOLLOWING THE SAME

CURVES. VALUES OF σ ARE INTENDED TO BE MULTIPLIED BY 10−3 .

Figure 3 shows the trace of emi (t) regarding the battery ca-
pacity over time (ei(t) = bi(t)) when no balancing algorithm
is used, while Figure 4 shows the same trace when the best
approach is used, which is Algorithm 2 with energy reference
value the lifespan of nodes (ei(t) = li(t) ∀i ∈ N ). This
illustrates how the proposed algorithm can reduce over time
the variance between the batteries thus extending the lifespan
of 25 minutes with respect to the case in which no balancing
is used.

VI. CONCLUSIONS

In this paper, we presented three decentralized load bal-
ancing algorithms that level the energy consumption of the
nodes thus extending the lifespan of the nodes and therefore
of the service in Green Edge Computing environments. Indeed,
we show a brief mathematical model of the system, the
pseudocode of the approaches and the experimental results
carried out in a cluster of 11 Raspberry Pis with simulated
batteries and solar panels. However, further investigations are
needed, especially regarding the mathematical model which
can be further developed with the communication impact on
energy for finding if and under which conditions a solution
exists, even when considering particular topologies that do not
match a fully connected graph.
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