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ABSTRACT
This paper introduces a new approach to emotion classification
utilising deep learning models, specifically the Vision Transformer
(ViT) model, in the analysis of electroencephalogram (EEG) sig-
nals. A dual-feature extraction approach was implemented in our
study, utilising Power Spectral Density and Differential Entropy,
to analyse the SEED IV dataset. This methodology resulted in the
detailed classification of four distinct emotional states. The ViT
model, which was originally designed for image processing, has
been successfully applied to EEG signal analysis. It demonstrated
remarkable performance by attaining a test accuracy of 99.02% with
little variance. Notably, it outperformed conventional models like
GRUs, LSTMs, and CNNs in this context. The findings of our study
indicate that the ViT model has a high level of effectiveness in accu-
rately identifying complex patterns present in EEG data. Specifically,
the precision and recall rates achieved by the model surpass 98%,
while the F1 score is estimated to be about 98.9%. The results of this
study not only demonstrate the efficacy of transformer-based mod-
els in analysing cognitive states, but also indicate their considerable
potential in improving systems for sympathetic human-computer
interaction.
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1 INTRODUCTION
The role of emotion is crucial in all aspects of human life, includ-
ing communication, decision-making, and interactions between
humans and machines. Emotion has a significant impact on a wide
range of daily activities, such as interpersonal interactions, learn-
ing, and work. The domain of affective computing, namely the
identification of human emotions, has garnered significant atten-
tion in scholarly investigations owing to its crucial implications
in several domains such as affective brain-computer interaction,
emotion regulation, and the diagnosis of illnesses associated with
emotions. The notion aims to advance the development of sys-
tems that possess the ability to identify, comprehend, analyse, and
replicate human emotions [16][15]. In the present day, there has
been a notable shift in the field towards the use of multimodal
approaches for emotion recognition. This involves the integration
of physiological data obtained from electroencephalography (EEG)
with eye movement features, resulting in the development of more
resilient and reliable models. The utilisation of this integration
takes advantage of the inherent, automatic reactions of the cen-
tral nervous system, which are more resistant to manipulation in
comparison to deliberate manifestations like facial expressions or
vocal intonations [11][20][27] [6]. The utilisation of EEG signals
has gained popularity due to the increased dependability facilitated
by the introduction of consumer-grade, non-invasive, and cost-
effective wearable sensors. This has resulted in their preference
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over outward manifestations, which are susceptible to manipula-
tion and influenced by external factors [21]. The comprehension of
emotions is a challenge due to its intricate nature, encompassing
subjective perception, outward manifestations, and physiological
responses.[17] Attempting to capture emotions solely through sig-
nals of a single modality proves to be insufficient. The research of
multimodal data has been prompted by its ability to provide a full
viewpoint on emotional changes, therefore enabling the develop-
ment of emotion detection algorithms that are more precise and
dependable[28][20]. The incorporation of multimodal techniques,
encompassing physiological inputs that pose difficulties for users to
consciously manipulate, has demonstrated considerable potential
as a technique for emotion identification[12][19]. Previous research
has provided evidence about the effectiveness of electroencephalog-
raphy (EEG) in the classification of emotions, with attempts made
to reduce the number of electrodes used while still achieving a
high level of accuracy in emotion recognition [8][25]. In addition,
the relationship between emotions and eye movement, specifically
alterations in pupil size, highlights the possibility of integrating
behavioural modalities with physiological information to gain a
more comprehensive comprehension of emotional states[26]. The
present direction of research in affective computing is marked by a
collective endeavour to use the combined potential of multimodal
data. The objective of this endeavour is to develop emotion identi-
fication algorithms that exhibit both high accuracy and resilience
in the face of the natural diversity observed in human emotional
expression[5]. The potential of these systems is in their utilisa-
tion across several domains, encompassing the personalization of
user interactions and the progression of mental health assessments,
signifying the advent of a novel era in the realm of emotionally
intelligent computing[1].

The discipline of emotion recognition, which encompasses the
study of cognitive processes and psychophysiological alterations,
is making progress by using multimodal data. The intricate nature
of human emotions requires the utilisation of various modalities in
order to attain a comprehensive comprehension. Multimodal emo-
tion identification systems, which integrate several data including
EEG and eye movement, have demonstrated potential in improving
precision and dependability[3][22]. The integration of these signals
is of utmost importance, as several methods such as feature-level
concatenation and decision-level fusion have shown the synergistic
relationship between distinct modalities[28].

Within the domain of multimodal representations, the utilisation
of joint and coordinated techniques presents unique methodolo-
gies for the purpose of emotion recognition. The phenomenon
described has been seen in the research conducted by [11], who
employed EEG and eye movement data to identify emotions. This
line of inquiry has been further developed by [10] and [23], who
utilised deep learning models such as Bimodal Deep AutoEncoders.
Notwithstanding these advancements, there is still ample room for
additional investigation in the realm of coordinated representations,
wherein signals are processed separately but with an emphasis on
inter-modal similarity.

The majority of EEG-based emotion recognition research has
focused on healthy datasets like AMIGOS, DEAP, DREAMER, and
SEED-IV. Deep learning algorithms for EEG data-based emotion
mapping in Parkinson’s disease (PD) patients are understudied,

creating a substantial research opportunity. It’s difficult to collect
and label EEG data for emotion identification in PD patients. To
investigate the stability of deep learning models like CRNN and
ELM-based networks for clinical emotion recognition, our study
uses a private dataset of PD patients to trigger emotions [13]. This
revolutionary application enhances multimodal emotion identi-
fication systems and psychologically profiles cognitive problem
patients, revealing their emotional landscape.

In this paper, we advance the methodology of emotion classifi-
cation by integrating it as a feedback loop within a deep reinforce-
ment learning system. This feedback loop is pivotal for providing
insights into the human emotional state as derived from simulated
scenarios. To facilitate this, a diverse array of models was harnessed
to segregate brain signals into four discrete emotional categories:
anger, sadness, happiness, and neutrality. The suite of models uti-
lized encompasses a broad spectrum of computational techniques,
including Convolutional Neural Networks (CNN), Vision Trans-
formers (ViT), Gated Recurrent Units (GRUs), Long Short-Term
Memory networks (LSTMs), EEGNET, FBCNet, and FBCCNN. The
crux of our feature extraction process lies in the application of
Power Spectral Density (PSD) and Differential Entropy (DE) to the
EEG data. PSD is employed to analyze the power distribution over
five distinct frequency bands, while DE is leveraged to compute
the entropy differentials within each EEG segment and across the
bands. This meticulous feature extraction is a cornerstone of our
approach, enabling the nuanced classification of emotional states.

The main contributions of our research are summarized as fol-
lows:

1) We propose a novel approach that uses two different feature
modalities, Frequency-Domain and Entropy, to recognize emotions
on SEEDIV dataset.

2) Our proposed model is a novel approach to include attention
mechanisms in the context of multiple model time series data tasks.

3) We achieved a higher accuracy compared to state of the art
work.

2 DATASET
The SEED-IV dataset is an expanded version of the original SEED
series, providing a comprehensive collection of EEG and eye move-
ment signals that can be utilised for the development of sophis-
ticated affective computing models. The purpose of this study is
to accurately measure and analyse four distinct emotional states:
happy, sorrow, neutrality, and fear. This was achieved through a
meticulously planned and executed controlled experiment, which
involved the participation of 15 individuals (comprising 7 males and
8 females). These participants were actively engaged in the study
and supplied their replies throughout three separate sessions. Each
experimental session consisted of a total of 24 trials. Each trial in-
volved the presentation of one of the 72 meticulously chosen video
clips, each lasting roughly 2 minutes. A 5-second baseline period
was included before each film clip to establish a reference point.
The primary objective of these film clips was to evoke specific emo-
tions in the participants. The electroencephalogram (EEG) data was
first collected at a sampling rate of 1000 Hz using a 62-channel ESI
Neuro scan system. Subsequently, the data was downsampled to 200
Hz in order to decrease complexity while maintaining the integrity
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of the data. In order to maintain compatibility with other datasets
such as AMIGOS and PD, the data was resampled to a frequency of
128 Hz. The participants in the study engaged in self-annotation
of their emotional states by utilising the Positive and Negative
Affect Schedule (PANAS) measures. This process contributed an
additional subjective component to the dataset. The comprehensive
and multi-dimensional approach to emotion recognition in SEED-
IV, which encompasses EEG and eye movement data, facilitates
the integration of neuroscience and artificial intelligence, hence
strengthening their junction. The SEED-IV dataset is subject to eth-
ical criteria and usage agreements, as described in the foundational
publication[29]. Its applications span a wide range, including the
evaluation of emotion recognition algorithms and the enhancement
of human-computer interaction systems[7].

Figure 1: Different visual emotional stimulations used to
collect the dataset

3 EXPERIMENTAL SETUP
3.1 Preprocessing
The first step in the preprocessing pipeline consisted of downsam-
pling the EEG data to a sampling rate of 200 Hz. In more acces-
sible language, downsampling might be likened to reducing the
frequency of capturing images of the brain’s electrical activity. The
implementation of a reduced quantity of snapshots is a pragmatic
strategy aimed at mitigating the burden of data, hence facilitating
more efficient and expedited processing, but yet retaining essential
details pertaining to the brain’s electrical patterns that are pivotal
for our analytical endeavours. After performing downsampling, we
proceeded to apply a bandpass filter to the electroencephalogram
(EEG) signals. Conceptualise the electrical activity within the brain
as a symphony characterised by a diverse array of auditory stim-
uli, wherein each distinct note corresponds to a specific frequency.
Certain auditory stimuli in our investigation exhibit frequencies
that are either excessively low or excessively high, hence lacking
relevance. For instance, the profound reverberation of thunder,
characterised by low-frequency noise, or the shrill, high-pitched
chirping emitted by a cricket, denoting high-frequency noise. A
bandpass filter might be likened to a discerning listener that exclu-
sively focuses on the specific range of sounds (frequencies) that hold

significance. By configuring our filter to permit the transmission of
frequencies ranging from 1 Hz to 75 Hz, we effectively disregarded
extraneous noises and directed our attention onto the frequencies
that hold the most significance in relation to emotional processing
within the brain.

The preprocessing stages play a critical role in the cleansing
of EEG data, hence enhancing the accuracy and fidelity of the
subsequently extracted information pertaining to the actual brain
activity.

3.2 Feature Extraction
Once the EEG data has undergone preprocessing and cleaning
procedures, the subsequent step involves feature extraction, which
can be regarded as the central aspect of our study. In this context,
meticulous selection and precise calculation of certain metrics are
conducted on EEG data to provide valuable insights into the neural
activity associated with emotional states.

One of the key elements that is extracted is referred to as Power
Spectral Density (PSD). In essence, the power spectral density (PSD)
enables us to comprehend the magnitude of power, or energy, ex-
hibited by the brain’s electrical activity across various frequencies,
or rates of brain wave oscillations. Similar to how various musical
instruments are capable of producing notes at different pitches, the
brain exhibits distinct waves that oscillate at varying frequencies.
Power spectral density (PSD) provides quantitative information
about the amplitude or strength of various brain wave frequen-
cies. As an illustration, a frequency range known as ’Delta’ (1-4
Hz) may manifest as a low-frequency resonance, signifying a state
of profound slumber or relaxation. Conversely, a frequency range
referred to as ’Beta’ (14-31 Hz) could be characterised by a higher
tempo, denoting heightened mental activity or a state of unease,
such as intense cognitive processing or anxiety.

Another important aspect that we consider is Differential En-
tropy (DE). The concept of power spectral density (PSD) pertains
to the magnitude of neural signals in the brain, while differen-
tial entropy (DE) focuses on the intricacy or complexity of these
signals. This provides insight into the degree of predictability or
unpredictability exhibited by the brain’s neural activity. A very
foreseeable and regular sequence would exhibit a diminished level
of differential entropy, akin to the rhythmic and unvarying sound
produced by a continuous drumming. Conversely, a highly intricate
and uncertain arrangement, such as a jazz solo, would exhibit a sub-
stantial degree of differential entropy. By examining the differential
entropy (DE) over several frequency bands, one can gain insights
on the level of organisation or randomness in the brain’s activity
during distinct emotional states.

In the present investigation, we employed the aforementioned
feature extraction techniques on the SEED IV dataset, a dataset
particularly curated for the purpose of analysing emotions through
electroencephalography (EEG). PSD and DE features were derived
using the data included within the ’eeg_feature_smooth’ directory
of the given dataset. This process facilitated the conversion of the
unprocessed EEG data into a structured format suitable for our
models to acquire knowledge about the distinctive patterns linked
to various emotional states.
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The objective of this study is to construct a model that can
effectively discern the emotional state of an individual by analysing
the brain’s electrical activity, with a particular emphasis on the
identified qualities.

3.3 Vision Transformer (ViT)
The Vision Transformer (ViT) [4] has emerged as a groundbreaking
architecture in the field of computer vision, drawing inspiration
from the transformative success of the Transformer model in natu-
ral language processing [24]. This innovative approach reimagines
image classification by treating images as sequences of discrete
elements, analogous to the parsing of text into a series of words.
In the case of ViT, an image is partitioned into a grid of fixed-size
patches, each of which is subsequently flattened and transformed
into a one-dimensional token through linear projection[24]. These
tokens are then concatenated with positional embeddings, a critical
step that embeds the spatial coordinates of each patch, thereby
preserving the two-dimensional topological information within the
one-dimensional sequence.

The ensemble of patch embeddings, now analogous to a sen-
tence composed of words, is processed through the Transformer en-
coder—a sophisticated stack of layers renowned for its self-attention
mechanism[14]. This mechanism, central to the Transformer’s ar-
chitecture, enables the model to weigh the influence of all other
patches when encoding a particular patch, thereby capturing the
global context of the image in a manner that is dynamically contin-
gent on the content of the image itself. The mathematical underpin-
ning of this process is encapsulated in the self-attention formula:

Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇√︁
𝑑𝑘

)
𝑉 (1)

where the matrices Q,K, and V correspond to queries, keys, and
values, respectively, andDk represents the dimensionality of the key
vectors. This formula reflects the computation of attention weights,
which are used to scale the value vectors, effectively allowing the
model to focus on the most salient parts of the image[4].

Further enhancing the model’s capacity to capture diverse as-
pects of the image, the multi-head attention mechanism divides
the attention process into multiple ’heads’, each of which attends
to different parts of the patch sequence. This is mathematically
represented as:

MultiHead(𝑄,𝐾,𝑉 ) = Concat(head1, . . . , headℎ)𝑊𝑂 (2)

head𝑖 = Attention(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖 ) (3)

The outputs of these heads are then concatenated and linearly
transformed, providing a rich, composite representation of the
image’s features.

Subsequent to the attention layers, the Transformer employs
MLP blocks, which consist of dense layers with non-linear acti-
vation functions, such as the Gaussian Error Linear Unit (GELU).
These blocks serve to introduce non-linearity into the model, al-
lowing for the capture of complex patterns within the data. The
operation of an MLP block is captured by the following equation:

MLP(𝑥) = GELU(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (4)

Here, x signifies the input to the MLP block, W1 and W2 are the
weight matrices of the first and second linear transformations,
respectively, and b1 and b2 are the bias vectors. The final stage
of the ViT is the classification head, which typically comprises a
simple linear layer that projects the Transformer encoder’s output
to the label space, thus yielding the final class predictions for the
image[4].

The original exposition of the Vision Transformer by [4] in their
seminal paper "An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale" not only elucidates the architecture
in meticulous detail but also validates its performance against es-
tablished benchmarks, showcasing its superiority in various image
classification tasks. The adaptability of ViT to a broad spectrum of
applications, including the classification of EEG signals, is particu-
larly noteworthy. By converting EEG data into a format amenable
to the ViT, such as time-frequency representations, researchers can
leverage the model’s ability to discern intricate patterns associated
with different cognitive and emotional states, thereby advancing
the frontiers of both neuroscience and artificial intelligence.

Incorporating the Vision Transformer into EEG signal classi-
fication endeavors holds the promise of harnessing its powerful
attention-drivenmechanism to unravel the complex spatial-temporal
dynamics inherent in brain activity data. The potential of ViT in
this domain is under active exploration, with researchers seeking
to adapt and optimize its architecture to accommodate the unique
characteristics of EEG signals, thereby opening new avenues for
the interpretation and classification of neural patterns[4].

Table 1: Hyperparameters of the used architecture

Component Value
Input Chunk Size 20
Grid Size 9 × 9
Temporal Patch Size 10
Number of Classes 4
Loss Function CrossEntropyLoss
Batch Size 128
Epochs 100
Number of Trials 3
Device GPU

The Vision Transformer (ViT) processes high-dimensional, tem-
poral EEG data well in the suggested design. Given the temporal
granularity needed to capture EEG signal changes, the model uses
input data divided into 20 chunks. The grid configuration of 9x9
accommodates the spatial interdependence of EEG data, mimick-
ing the common architecture of EEG electrodes. These chunks
contain temporal patches with 10 time points each to teach the
model about EEG signal temporal evolution. The design is ready
for a classification job with four discrete output classes, which
represent cognitive states or event-related potentials examined
in neuroscience. The standard CrossEntropyLoss function is used
for category training. In batches of 128 data over 100 epochs, the
model is trained to optimise learning and computing efficiency.
The training routine is repeated three times to test the model’s
robustness and generalizability across data subsets. The model’s
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Figure 2: The pipeline of classification using ViT Model

computational flexibility allows GPU deployment depending on
computational capabilities. This architecture is carefully designed
to use the transformer model’s ability to detect complicated pat-
terns in multidimensional EEG data for advanced brain-computer
interface classification tasks.

4 RESULTS AND DISCUSSION
In the presented results [Table 1], the performance metrics of the
models trained on the SEED IV dataset are meticulously tabulated.
Each model underwent a tripartite training regimen, with the en-
suing outcomes expressed as mean and variance of the accuracy
scores. The Vision Transformer (ViT) emerged as the most accurate
model, consistently surpassing the 90% threshold.

The ViT model demonstrated exceptional proficiency, with an
average training accuracy of 99.67% coupled with a validation accu-
racy of 98.60%. This remarkable efficacy is likely a consequence of
the model’s inherent architectural features. Originally conceived
for image classification, the ViT leverages self-attention mecha-
nisms to discern global interdependencies within the input data.
This attribute is particularly beneficial for identifying and extract-
ing salient patterns and features pertinent to the SEED IV dataset,
which is critical for emotion recognition tasks.

Table 2: Training Loss and Accuracy

Model Train Loss Train Accuracy (%)
GRU* 0.0063 ± 4 × 10−8 67.15 ± 8 × 10−8
LSTM* 0.0062 ± 2 × 10−8 68.02 ± 6 × 10−8
CNN* 0.0108 ± 5 × 10−8 65.9 ± 3 × 10−6
FBCNet* 0.0098 ± 6 × 10−8 27.54 ± 3 × 10−8
FBCCNN* 0.0001 ± 5 × 10−8 39.645 ± 6 × 10−8
ViT* 0.0003 ± 5 × 10−8 99.67 ± 5 × 10−8

Table 3: Validation and Test Accuracy

Model Validation Accuracy (%) Test Accuracy (%)
GRU* 65.05 ± 1 × 10−7 65.9 ± 3 × 10−6
LSTM* 65.33 ± 1 × 10−7 68.2 ± 2 × 10−6
CNN* 65.9 ± 3 × 10−6 65.9 ± 3 × 10−6
FBCNet* 26.87 ± 2 × 10−7 28.32 ± 3 × 10−6
FBCCNN* 38.645 ± 2 × 10−7 38.5 ± 5 × 10−6
ViT* 98.60 ± 2 × 10−7 99.02 ± 2 × 10−6
CAN [2] / 87.71 ± 9.74
SVM [18] / 75.88 ± 16.14
PR-PL [30] / 85.56 ± 4.78
DCCA [9] / 87.45 ± 9.23

The empirical evidence suggests that the ViT model’s superior
performance is a direct result of its sophisticated architecture, which
is adept at capturing and representing the intricate EEG signal
patterns associated with emotional states. Consequently, the ViT
model has demonstrated a pronounced advantage over competing
models in terms of accuracy on the SEED IV dataset, underscor-
ing the significance of its design in understanding complex data
relationships.

The comparative analysis delineated in the accompanying table
juxtaposes the accuracy of models developed in-house (denoted
by an asterisk) against those cited from extant literature. The tab-
ulation elucidates the impact of distinct features on the resultant
accuracies, providing a basis for a detailed examination of perfor-
mance metrics and feature efficacy.

Within the cohort of models we trained, the Vision Transformer
(ViT) model was preeminent, achieving a test accuracy of 99.02%
with a minimal standard deviation of 0.000002, thereby indicating
a consistently high performance across trials. This model’s pre-
ponderance is attributed to its architectural sophistication, which
facilitated superior performance relative to its counterparts.
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Table 4: Precision and Recall

Model Precision (%) Recall (%)
GRU* 66.0 ± 2 × 10−7 66.3 ± 6 × 10−6
LSTM* 67.7 ± 1 × 10−7 68.8 ± 4 × 10−6
CNN* 28.0 ± 3 × 10−6 28.0 ± 1 × 10−6
FBCNet* 39.6 ± 2 × 10−7 40.6 ± 4 × 10−6
FBCCNN* 68.0 ± 3 × 10−6 26.0 ± 1 × 10−6
ViT* 98.5 ± 3 × 10−6 99.2 ± 2 × 10−6

Table 5: F1 Score and Time per Epoch

Model F1 Score (%) Time per Epoch (seconds)
GRU* 65.9 ± 2 × 10−6 13.303 ± 1 × 10−6
LSTM* 68.0 ± 1 × 10−6 13.370 ± 9 × 10−7
CNN* 28.1 ± 2 × 10−6 18.93 ± 1 × 10−6
FBCNet* 38.6 ± 3 × 10−6 13.8146 ± 1 × 10−6
FBCCNN* 26.8 ± 1 × 10−6 18.8471 ± 7 × 10−7
ViT* 98.9 ± 2 × 10−6 17.6572 ± 1 × 10−6

The integration of specific features, namely ’de_movingAve’,
’de_LDS’, ’psd_movingAve’, and ’psd_LDS’, across all rhythmic
wave categories, was instrumental in enhancingmodel performance.
These features, indicative of the underlying dynamics within the
EEG signals, were pivotal in the models’ ability to discern and
classify the data effectively.

It is imperative to acknowledge that the ViTmodel’s architectural
superiority was a significant factor in its outperformance of other
models we trained, such as Convolutional Neural Networks (CNNs),
Long Short-Term Memory networks (LSTMs), and Gated Recurrent
Units (GRUs). The latter models exhibited suboptimal accuracy,
which can be ascribed to the absence of a grid search approach, a
deficiency in hyperparameter optimization, and a limited training
duration of merely 100 epochs.

When contrasted with referenced models, our models demon-
strated enhanced accuracy. The CAN model recorded an accuracy
of 87.71% with a standard deviation of 9.74, the SVM model 75.88%
with a standard deviation of 16.14, the PR-PL model 85.56% with a
standard deviation of 4.78, and the DCCA model 87.45% with a stan-
dard deviation of 9.23. Notwithstanding, the ViT model, as trained
by our team, surpassed these referenced benchmarks, showcasing
significantly elevated accuracy levels. This comparative analysis un-
derscores the ViT model’s robustness and its potential as a leading
framework for EEG signal classification.

The Vision Transformer (ViT) model, as depicted in Figure 4.16,
underwent a rigorous training regimen spanning 100 epochs, yield-
ing the following outcomes:

In the nascent stages of training, the model exhibited a gradual
enhancement in performance metrics. Commencing with a training
accuracy of 29.37% and a validation accuracy of 28.45% at epoch
one, the model’s initial test accuracy was recorded at 29.06%. This
incremental improvement was indicative of the model’s capacity
to learn and adapt to the training data.

As the epochs advanced, a notable ascent in accuracy was ob-
served. By the midpoint of the training epoch spectrum, specifically

epoch 50, the model’s training accuracy had ascended to 69.12%,
with the validation and test accuracies closely trailing at 67.21%
and 66.76%, respectively.

The trajectory of accuracy continued its upward trend in the
subsequent epochs. A marked milestone was achieved by the 86th
epoch, where the training accuracy soared to 99.97%. Concurrently,
the validation and test accuracies mirrored this upward trajectory,
reaching an impressive 98.88% each. This consistent augmentation
in accuracy is demonstrative of the model’s robust learning capa-
bilities and its adeptness at generalizing from the training data to
the validation and test datasets.

Figure 3: Train and Validation Accuracies of the ViT Model

Concomitantwith the accuracy improvements, therewas a steady
decrement in loss values throughout the training duration. This de-
cline is emblematic of the model’s increasing precision in aligning
its predictions with the actual labels, thereby affirming its enhanced
predictive fidelity.

In summation, the ViT model’s training journey was character-
ized by a steadfast amelioration in accuracy, culminating in exem-
plary performance on both validation and test datasets. The model’s
adeptness at deciphering complex patterns from the image data
and rendering accurate predictions is a testament to the efficacy of
the Vision Transformer architecture, underscoring its potential as
a robust tool for image-based data analysis.

The loss trajectory for the Vision Transformer (ViT) model delin-
eates a consistent pattern of diminution, indicative of the model’s
efficacious learning and its adeptness at adapting to the training
corpus. Over the course of 100 epochs, the ViT model manifests a
decrement in loss, culminating in a negligible final loss value in the
vicinity of 0.0001. This metric corroborates the model’s proficiency
in converging towards predictions of high veracity.

A noteworthy aspect of the ViT’s performance is the minimal
variance in loss values observed across multiple training iterations.
This uniformity is emblematic of the model’s reliable convergence
to local optima, underscoring the stability and dependability of the
solutions it renders.

In encapsulation, the loss curve analysis for the ViT model eluci-
dates its exceptional capability to minimize the divergence between
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Figure 4: Train Loss of the ViT Model

its predictive outputs and the actual labels, thereby achieving a
high degree of accuracy. The model’s robust learning trajectory
and its convergence to dependable solutions underscore its utility
as an instrumental asset across a diverse array of applications.

Figure 5: Confusion Matrix of the ViT Model

The confusion matrices provide valuable insights into the per-
formance of classification models. Let’s analyze the results for ViT
model based on the given confusion matrice[Fig. 4].

– Class 0 (Happiness): The model performs exceptionally well
in classifying happiness, with a high accuracy of 0.99. Only a small
percentage (0.01) of the samples in this class are misclassified as
other emotions.

– Class 1 (Sadness): Similarly, the ViTmodel achieves a high accu-
racy of 0.98 in identifying sadness. It misclassifies only a negligible
percentage (0.02) of the samples in this class.

– Class 2 (Fear): The ViTmodel demonstrates strong performance
in detecting fear, with an accuracy of 0.97. However, it misclassi-
fies a small portion (0.01) of the samples in this category as other
emotions.

– Class 3 (Neutral): The ViT model shows excellent accuracy in
recognizing neutral emotions, with a value of 0.98. Only a small
percentage (0.01) of the samples in this class are misclassified.

Overall, the ViT model exhibits impressive classification results,
with high accura- cies across all emotion classes. It displays a strong
ability to differentiate between different emotions, particularly in
identifying happiness and neutral emotions.

5 COMPARATIVE STUDY
The Vision Transformer (ViT) model has exhibited significant supe-
riority over several referenced models, including both conventional
and contemporary techniques, in the field of EEG-based emotion
identification. In [2], the performance of ViT surpasses that of
the Correlation-Aware Network (CAN) in terms of accuracy. CAN
achieves an accuracy of 87.71% ± 9.74, whereas ViT achieves a much
higher accuracy of 99.02%with a notably smaller standard deviation.
The improved precision and decreased variability observed in the
performance of Vision Transformer (ViT) highlight its advanced
capacity to effectively process the complex patterns inherent in
electroencephalogram (EEG) signals, which is a critical aspect for
achieving accurate emotion recognition.

The gains gained by ViT are further illustrated by comparing
it with the classic Support Vector Machine (SVM) technique, as
indicated in [18] . The support vector machine (SVM) achieves
an accuracy of 75.88% ± 16.14. However, the performance of the
Vision Transformer (ViT) surpasses that of SVM, as seen by its
better accuracy and significantly reduced variance. This observa-
tion demonstrates the improved capacity of ViT to generalise and
maintain performance across various data circumstances, which is
a crucial characteristic for applications utilising EEG data.

The ViT model consistently outperforms the Probabilistic Repre-
sentation and Pairwise Learning (PR-PL) model, as mentioned in
[30]. The PR-PL model attains an accuracy of 85.56% ± 4.78. How-
ever, the ViT model exhibits near-perfect accuracy and minimum
variance, indicating its advanced methodology in capturing both
local and global dependencies within the EEG data. This aspect
holds special significance in tasks related to emotion perception,
as comprehending the intricate interaction among different signal
components is crucial.

Moreover, when compared to Deep Canonical Correlation Anal-
ysis (DCCA) as stated in [9], ViT once again demonstrates its effec-
tiveness. The performance of DCCA, as measured by its accuracy
of 87.45% ± 9.23, does not meet the rigorous standard established
by ViT. While DCCA demonstrates efficacy in examining intricate
correlations within multimodal data, it seems to possess inferior
capabilities compared to ViT in terms of both accuracy and consis-
tency when applied to EEG-based emotion detection tasks.

In general, the aforementioned comparative observations posi-
tion the Vision Transformer model as a leading contender in the
field of emotion recognition utilising EEG data. The utilisation of
sophisticated self-attention mechanisms enhances the ability to
effectively acquire and analyse the intricate nature of EEG data,
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resulting in improved accuracy and reliability in the classification
of emotions. The present comparative investigation not only un-
derscores the potential of Vision Transformer (ViT) as a prominent
approach in the discipline, but also symbolises a substantial pro-
gression over both conventional and contemporary approaches in
the intricate domain of emotion recognition utilising electroen-
cephalogram (EEG) inputs.

6 CONCLUSION
Our study represents a notable progression in the domain of emo-
tion classification by the use of EEG signals. Through the utilisation
of a varied array of deep learning models, with a specific focus on
the Vision Transformer (ViT), we have successfully showcased the
feasibility of attaining elevated levels of precision in the classifica-
tion of emotional states. The ViT model has demonstrated remark-
able performance, mostly because to its advanced self-attention
processes, which have resulted in significant improvements over
conventional models.

The efficacy of our methodology, which integrates Frequency-
Domain characteristics and Entropy within deep learning architec-
tures, has been demonstrated. The findings derived from the SEED
IV dataset provide empirical support for the effectiveness of our
models, particularly the ViT. This model not only demonstrated
superior accuracy but also demonstrated consistent performance
and dependability throughout numerous experimental iterations.

The achievement of the ViT model highlights the capacity of
transformer-based systems in comprehending intricate, high-dimensional
data, such as EEG signals. This study presents novel opportunities
for further investigation and practical implementation, particularly
in domains where comprehensive comprehension of human emo-
tions has significant importance, such as the evaluation of mental
well-being, neuro-marketing strategies, and the enhancement of
human-computer interaction.
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