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7 Abstract

8 Quantifying the potential effects of Climate Change (CC) on hydrological scales is a topic with a more and 
9 more increasing interest for the scientific community, given the CC impact on agriculture, industry, economy, 

10 human health, ecosystems, among the others. In this context, the paper focuses on the sub-daily Annual 
11 Maxima (AM) of rainfall height time series, and specifically on the crucial role played by initial skewness, i.e. 
12 the skewness of the observed rainfall series used to evaluate potential parametric trends. Here a quick and 
13 user-friendly methodology is proposed, that is aimed at quantifying plausible future changes in terms of 
14 probability distributions assumed at rain gauge scale, from projections of any climatic model. In detail, the 
15 Generalized Extreme Value (GEV) and the Two-Component Extreme Value (TCEV) distributions are adopted 
16 as probability functions suitable for modelling observed rainfall AM series, which could increase their 
17 frequency and magnitude into future horizons under CC. EURO-CORDEX projections for Europe are 
18 considered, under the hypothesis that the values of the change factor, i.e. the ratio between the values of a 
19 specific quantile at two specific time horizons, are invariant when moving from an areally-averaged scale 
20 (typical for any climate model) to a point rain gauge scale, which induces that future changes are provided 
21 (in terms of frequency and magnitude of extreme events) without the need of any spatial downscaling from 
22 the assumed projections. The proposed methodology can contribute to hazard quantification associated to 
23 potential climate changes, and thus it can play a crucial role in the assessment of hydraulic structures 
24 resilience; the obtained results, specific for the study area of Italy, but easily extendable on a global scale, 
25 showed that larger increases in frequency of future heavy events are expected for time series with “EV1 
26 alike” values of initial skewness.

27

28 Keywords: rainfall annual maxima; TCEV distributions; skewness, climate change, extreme value distributions

29

30 1. Introduction

31 Evaluation of Climate Change (CC) effects on a wide variety of contexts (e.g. agriculture, industry, economy, 
32 human health, and ecosystems) and, consequently, Climate Change Adaptation (CCA) and Disaster Risk 
33 Reduction (DRR) strategies clearly constitute key topics for the scientific community, in order to build more 
34 resilient societies in terms of structures, infrastructures, and people awareness, among the others. As regards 
35 hydraulic and geological risks, heavy rainfall events are the main precursor for floods and landslides, and then 
36 their potential increase in frequency and/or in magnitude can induce a higher occurrence of these disastrous 
37 phenomena, thus making necessary an adequate mitigation design, which may involve structural and/or non-
38 structural measures. 
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39 In this context, focusing on the daily scale, Papalexiou and Montanari (2019) performed a world-wide analysis 
40 of 8730 precipitation time series recorded in the 1964-2013 period; they found global and zonal increasing 
41 trends in the frequency of extremes, while changes in magnitude are not so evident. 

42 Nowadays, a similar world-wide analysis is difficult to carry out for sub-daily rainfall scales, which are of main 
43 interest for the analysis of flash floods and shallow landslides, due to a scarce availability of long time series 
44 in many parts of the globe (see, for example, Fig. 1 in Fowler et al., 2021). However, even if the sample size 
45 of high-resolution rainfall series is long enough, the obtained trends from observed data could not be suitable 
46 for projection into the future, for two main reasons (Blöschl et al., 2019): first, the trends could be related to 
47 climate variability and not to persistent changes in time; second, the trend of a series depends on the 
48 observation period, so the outcome could be different if the observation period is extended.

49 To overcome these issues, climate projections from General Circulation Models (GCMs,Butcher and Zi, 2019; 
50 Chandra et al., 2015; Khazaei, 2021; Lima et al., 2016; Ragno et al. 2018), Regional Climate Models (RCMs, 
51 Fadhel et al., 2017; Fluixá-Sanmartín et al., 2019; Forestieri et al., 2018a; Ganguli and Coulibaly, 2019) and 
52 Convention Permitting Models (CPMs) are usually adopted (Kendon et al., 2021; Vergara-Temprado et al., 
53 2021).

54 However, it should be highlighted that outputs from all these three classes of models are affected by relevant 
55 uncertainties or high computational costs for applications at hydrological scales (Kourtis and Tsihrintzis, 2021, 
56 2022). In fact, the spatiotemporal resolutions of GCMs are too coarse, thus requiring dynamic or statistical 
57 downscaling (Themeßl et al., 2012; Kourtis and Tsihrintzis, 2021). With a dynamic downscaling, RCMs are 
58 forced by GCMs under different climate scenarios (i.e., Representative Concentration Pathways – RCPs or 
59 Special Report on Emissions Scenarios-SRES). RCMs are however unsuitable to accurately represent 
60 convective storms (Berg et al., 2013, 2019) affecting sub-daily scales, and then further spatial and temporal 
61 downscaling should be necessary. Nevertheless, statistical downscaling techniques should be adopted with 
62 caution (Kourtis and Tsihrintzis, 2021), as they represent a further source of uncertainty, and they are 
63 sensitive to the time period for which they are calibrated. CPMs run with a horizontal resolution less than 4 
64 km, and are able to better simulate hourly and sub-hourly rainfall extremes (Vergara-Temprado et al., 2021) 
65 due to their explicit representation of convection (Ban et al., 2020; Ban et al., 2014; Kendon et al., 2012). 
66 However, they suffer from biases, and bias correction is suggested before performing an extreme value 
67 analysis (Kendon et al., 2014; Berthou et al., 2020). Moreover, CPMs require high computational costs 
68 (Kendon et al., 2021), which limit their use only for small regions and for short reference periods (e.g., 10–20 
69 years). 

70 Although all these mentioned critical aspects, literature contains many papers in which a joint use of 
71 observed sub-daily series and climate models is proposed to evaluate possible CC effects on extremes at 
72 hydrological scales (e.g.Ganguli and Coulibaly, 2017; Hassanzadeh et al., 2014; Kao and Ganguly, 2011; Kuo 
73 et al., 2015; Mailhot et al., 2007; Mirhosseini at al., 2013; Shahabul Alam and Elshorbagy, 2015; Simonovic et 
74 al., 2016). The reader can find an extensive review in Lanciotti et al. (2022) and Sandink et al. (2016). In 
75 particular, we can mention the worldwide INTENSE Project (INTElligent use of climate models for adaptation 
76 to non-Stationary hydrological Extremes, Blenkinsop et al., 2018) and the work of Hosseinzadehtalaei et al. 
77 (2020) focusing on Europe and showing that larger changes are expected for longer return periods and 
78 shorter durations. 

79 In this context of relevant uncertainties about output from GCMs, RCMs and CPMs, many governmental 
80 agencies did not adopt these projections to take into account the future climate, but implemented simple 
81 adaptation strategies for the modification of rainfall Intensity-Duration-Frequency (IDF) and Amount-
82 Duration-Frequency (ADF) curves , which constitute the most used input for the design of several water 
83 infrastructures (Martel et al., 2021). For instance, Belgium and the UK, respectively, apply an increase of 30% 
84 (Madsen et al., 2014; Willems, 2011) and 20% (UK Department for Infrastructure, 2020) on all rainfall 
85 extremes. In Canada, a similar approach is adopted in the Province of Quebec (18%; MDDELCC, 2017) and in 
86 the City of Moncton, New Brunswick (20%; EPWDR, 2011). Denmark considers different safety factors, based 
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87 on the return period (i.e., 20%, 30%, and 40% increases are added to the 2-, 10-, and 100-year return periods, 
88 respectively). The Swedish Water and Wastewater Association (Madsen et al., 2014; Svenskt Vatten, 2011) 
89 recommends a fixed percentage increase, with an adaptive variation between 5% and 30%, depending on 
90 the region. More “physically-based” approaches refers to the well-known Clausius-Clapeyron relationship 
91 (Westra et al., 2014), according to which there should be an increase of approximately 7% in rainfall depth 
92 per 1°C of warming (projected by climate models), even if this scaling can depend on rainfall extremes 
93 frequency, i.e. longer return period events can be characterized by larger increases, leading to a super (i.e. 
94 twice) Clausius-Clapeyron scaling in some cases. For instance, the Australian Rainfall-Runoff guidelines (ARR; 
95 Ball et al., 2019) recommends a 5% increase per degree Celsius of warming while the Canadian Standard 
96 Association (CSA, 2019) recommends a value of approximately 7%/°C. However, the CSA (2019) 
97 acknowledges that shorter duration events could follow a super Clausius-Clapeyron relationship, implying 
98 that a larger rate than approximately 7%/°C of warming may be applied, depending on the area. The super 
99 Clausius-Clapeyron relationship, inducing larger increases for longer return periods and shorter durations, 

100 clearly justified the previously mentioned results for Europe, obtained by Hosseinzadehtalaei et al. (2020).

101 Moreover, focusing on the concept of return period, Cooley (2013) highlighted that it becomes ambiguous 
102 when moving from stationary to nonstationary conditions. However, the return period can still be defined 
103 for operational purposes at least in two ways: i) the extension to nonstationary conditions of the concept of 
104 expected occurrence interval, i.e. the expected waiting time until an exceedance occurs (Salas and 
105 Obeysekera, 2014); ii) the 𝑇-year period in which the expected number of exceedances, related to an 
106 associated design value, is equal to one (Parey et al., 2007, 2010). Regardless of its definition, the return 
107 period exactly or approximately summarizes the average annual probability of an exceedance. Specifically 
108 for Annual Maxima (AM) rainfall time series, the previously mentioned second definition implies:

𝑇(𝑥) =
1

1 ― 1
𝑇 ∑𝑇

𝑖=1 𝐹𝑋,𝑖(𝑥)

(1)

109 which must be numerically solved for any assigned value 𝑥 of the random variable 𝑋; 𝐹𝑋,𝑖(𝑥) represents the 
110 Cumulative Density Function (CDF), assumed as a variable in each i-th year, for AM distributions. Obviously, 
111 under stationary conditions, Eq. (1) simplifies in the well-known expression:

𝑇(𝑥) =
1

1 ― 𝐹𝑋(𝑥)
(2)

112 From Eq. (1), it is clear that, under nonstationary conditions, the concept of the 𝑇-year design value is not 
113 easily associated to the 𝐹-quantile, i.e. there is not a “one to one” correspondence 𝑇(𝑥)-𝐹𝑋(𝑥) like in Eq. (2), 
114 where stationarity is supposed. By analyzing the denominator in Eq.(1), evaluation of 𝑇(𝑥) associated to a 
115 specific design value 𝑥 depends on a summation of 𝐹𝑋,𝑖(𝑥) (with i = 1, … T), which in turn depends on when 
116 this 𝑇-year window begins: for example, the temporal intervals [2001;2030] and [2021; 2050] can provide 
117 two different 30-year design values, because 𝐹𝑋,𝑖(𝑥) can assume diverse values in these two different 30-
118 year windows. Moreover, the mathematical structure (linear, non-linear, step, etc.) of the 
119 assumed/hypothesized parametric trend along a prefixed 𝑇-year period also influences the result of Eq. (1). 
120 Instead, in some papers the correspondence 𝑇(𝑥)-𝐹𝑋(𝑥) is carried out by using Eq. (2) even in nonstationary 
121 conditions, though this approach appears less rigorous. To maintain precision in our work, we will exclusively 
122 consider variations in terms of 𝐹-quantile, unless other computational cues are provided.

123 Building upon from the above discussed overview on adaptation strategies, our work introduces a novel and 
124 efficient methodology. This approach is rooted in the hypothesis that the values of change factor, i.e. the 
125 ratio between the values of a specific quantile at two specific time horizons, are invariant when moving from 
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126 an areally-averaged scale (typical for any climate model) to a point rain gauge scale (Kilsby et al., 2007; Onof 
127 and Arnbjerg-Nielsen, 2009). The significance of our proposed methodology lies in its ability to quantify 
128 (starting from projections of any climatic model) possible future changes in probability distributions at rain 
129 gauge scale without any spatial downscaling of climate models projections. It enables the assessment of 
130 mean frequency and magnitude of extreme events and thus of any quantile, providing a valuable tool for 
131 hazard assessment over predetermined temporal horizons relevant to the design life periods of structures. 

132 To assess the impacts of CC on extreme values distributions in terms of parameters variation, we focused on 
133 analysing the Generalized Extreme Value (GEV, Jenkinson, 1955) and the Two-Component Extreme Value 
134 (TCEV, Rossi et al., 1984) distributions. We choose these two for their suitability in modelling rainfall AM 
135 series, especially considering potential increases in frequency and magnitude under CC, based on EURO-
136 CORDEX projections for Europe (Hosseinzadehtalaei et al., 2020).  Although we tested the methodology using 
137 observed rainfall characteristics in Italy, its applicability extends globally. We posit that our methodology 
138 holds particular relevance in the context of evaluating the resilience of hydraulic structures under CC, 
139 especially concerning hazard quantification.

140

141 2. Methodology

142 Focusing on rainfall AM modelling, the widely used functions in literature are EV1 (Gumbel, 1958), GEV 
143 (Generalized Extreme Value, Jenkinson, 1955), TCEV (Two Component Extreme Value, Rossi et al., 1984), Log 
144 Pearson type III (Bobee, 1975), the 3-parameter LogNormal (Johnson et al., 1994, pp. 208–238), the 
145 generalized Pareto (Hosking and Wallis, 1987; Johnson et al., 1994, p. 615), the generalized Logistic 
146 (Balakrishnan and Leung, 1988). Moreover, other distributions were recently proposed; among them we can 
147 mention: i) the Burr XII type (Moccia et al., 2021); ii) probability functions which are based on non-asymptotic 
148 approach (Marani and Ignaccolo, 2015, Lombardo et al., 2019). Another way for statistical modelling of 
149 extreme values is constituted by the Peaks Over a Threshold (POT) analysis (see Pan et al., 2022, for a very 
150 exhaustive review), in which all the extremes above a threshold are considered, and thus not only the 
151 maximum value of each year. 

152 The AM modelling is the most popular approach in practice, given its straightforwardness in the sampling 
153 process. However, by applying the theorem of total probability, the well-known relationship among AM and 
154 POT series is obtained, from which the asymptotic extreme value theory is derived (Todorovic, 1970; De 
155 Michele, 2019):

𝐹𝑋(𝑥) =
+∞

𝑛=0
𝑃𝑁(𝑛)[𝐹𝑋,𝑃𝑂𝑇(𝑥)]𝑛 (3)

156 where 𝐹𝑋(𝑥) = 𝑃[𝑋 ≤ 𝑥] is the CDF for AM distribution, 𝑃𝑁(𝑛) represents the probability associated to 𝑛 
157 exceedances (assumed as independent among them) of the threshold in one year and 𝐹𝑋,𝑃𝑂𝑇(𝑥) is the CDF 
158 for the peaks associated to the exceedances. Consequently, from Eq. (3) it is possible to obtain several 
159 expressions for 𝐹𝑋(𝑥), depending on the specific adopted mathematical formulas for 𝑃𝑁(𝑛) and 𝐹𝑋,𝑃𝑂𝑇(𝑥). 
160 In this work, we adopted the following AM distributions for the development of the proposed methodology: 
161 GEV (Sect. 2.1), derived from a Poisson counting process for 𝑃𝑁(𝑛) and a Generalized Pareto distribution 
162 (Wang 1991) for 𝐹𝑋,𝑃𝑂𝑇(𝑥); TCEV (Sect. 2.2), obtained by assuming a Poisson counting process for 𝑃𝑁(𝑛) and 
163 a mixture of two exponential distributions for 𝐹𝑋,𝑃𝑂𝑇(𝑥).

164 Whatever is the mathematical expression for 𝐹𝑋(𝑥), it can be also indicated as 𝐹𝑋 𝑥,Φ(𝑡) , where Φ(𝑡) is 
165 the array of parameters values at time 𝑡; it is clear that Φ(.) is invariant in time if the model 𝐹𝑋(𝑥) is supposed 
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166 as stationary. Starting from the chosen AM distributions, the proposed procedure considers the EURO-
167 CORDEX projections for Europe (Hosseinzadehtalaei et al. 2020), because application regards Italy (Sect. 3); 
168 they can be summarized, for any investigated cell and sub-daily duration, with a plot like the one in Fig.1, 
169 where:

170 • 𝐹 = 𝐹𝑋(.) for a simpler notation;
171 • the indicator 𝐼𝐹 = 1

1 𝐹 is represented on the horizontal axis. Although it has the same mathematical 
172 expression of Eq. (2), it is not a return period in the context of Climate Change, as discussed in the 
173 Introduction;

174 • the Change Factor 𝐶(𝐹) =
𝑋𝐹(𝑡2)
𝑋𝐹(𝑡1) is represented on the vertical axis: it is defined as the ratio between 

175 the values of a quantile 𝑋𝐹(.) at two specific times, 𝑡2 and 𝑡1, which represent the upper and lower 
176 bound, respectively, of a temporal horizon of interest. Clearly, 𝑋𝐹(𝑡2) and 𝑋𝐹(𝑡1) can be also 
177 indicated, in equivalent way, as 𝑋𝐹 Φ(𝑡2)  and 𝑋𝐹 Φ(𝑡1) , respectively;
178 • M and Q are the asymptotic and the intercept values of 𝐶(𝐹) when 𝐼𝐹→ + ∞ (i.e. 𝐹→1) and 𝐼𝐹→1 
179 (i.e. 𝐹→0), respectively. In Fig.1, the represented condition 𝑀 >  𝑄 implies that larger quantiles 
180 present larger values of 𝐶(𝐹). Q is usually greater than 1, but 𝑄 <  1 could emerge in some cases. 
181 The presence of an asymptotic value when 𝐹→1 is also theoretically justified by analyzing GEV and 
182 TCEV distributions (see Eqs. 11a-b and Eqs. 22a-b).

183

184

185 Figure 1. Plot of Change Factor 𝐶(𝐹), specific for any investigated cell and sub-daily duration (adapted from 
186 Hosseinzadehtalaei et al., 2020)

187

188 As already mentioned in the Introduction, the diagram 𝐼𝐹 ― 𝐶(𝐹) can be assumed as invariant passing from 
189 an areally-averaged scale (typical for any climate model) to the point rain gauge scale (Kilsby et al., 2007; 
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190 Onof and Arnbjerg-Nielsen, 2009), and then it can be used for evaluation of CC effects for point time series 
191 of interest.

192 Overall, the methodology can be schematized as reported in Fig. 2: for any spatial cell and sub-daily duration, 
193 the input quantities are the array Φ(𝑡1) at time 𝑡1, 𝑀 and 𝑄 values, while the output is constituted by the 
194 array Φ(𝑡2) at the final time 𝑡2; the difference between the arrays Φ(𝑡2) and Φ(𝑡1) clearly helps to quantify 
195 the variations in terms of frequency and magnitude of extreme events (see Sect. 2.1, 2.2 and 3). Evaluation 
196 of Φ(𝑡2) is carried out by simultaneously imposing:

𝑀 = 𝑙𝑖𝑚
𝐹→1

(𝐼𝐹→ + ∞)

𝑋𝐹(𝑡2)
𝑋𝐹(𝑡1) = 𝑙𝑖𝑚

𝐹→1
(𝐼𝐹→ + ∞)

𝑋𝐹 Φ(𝑡2)
𝑋𝐹 Φ(𝑡1)

(4a)

𝑄 = 𝑙𝑖𝑚
𝐹→0

(𝐼𝐹→1)

𝑋𝐹(𝑡2)
𝑋𝐹(𝑡1) = 𝑙𝑖𝑚

𝐹→0
(𝐼𝐹→1)

𝑋𝐹 Φ(𝑡2)
𝑋𝐹 Φ(𝑡1)

(4b)

197 and the minimization of the objective function S, defined as:

𝑆 =

𝑛𝐹

𝑖=1

|𝐶𝐹𝑋 𝐹𝑖, Φ(𝑡1), Φ(𝑡2) ― 𝐶(𝐹𝑖)|
𝐶(𝐹𝑖)

 
(4c)

198 where 𝑛𝐹 is the number of considered frequencies 𝐹𝑖 (𝑖 =  1, …., 𝑛𝐹), 𝐶(𝐹𝑖) are the known change factor 
199 values from plots like Fig.1 (for any AM sub-daily duration and any cell of interest), while 𝐶𝐹𝑋(𝐹𝑖) are the 
200 change factors associated to the chosen 𝐹𝑋(.) distribution, clearly depending on the arrays Φ(𝑡1) and Φ(𝑡2).

201 The whole work is aimed to investigate the eventual presence of statistical “drivers”, which could induce 
202 different values for Φ(𝑡2) (i.e., different variations of frequency and magnitude of extreme events) starting 
203 from assigned change factors. Sects. 2.1 and 2.2 detail the methodology for GEV and TCEV distributions, 
204 respectively, and highlight how TCEV should be preferred, as it is also able to discriminate ordinary and rarer 
205 extreme events. In this context, Sect. 3 focuses on the crucial role played by the skewness at 𝑡1 of the time 
206 series, as a statistical driver.
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207

208 Figure 2. Overview of the proposed methodology.

209

210 2.1. Theoretical background for GEV distribution 

211 The GEV distribution is characterized by the following CDF (Jenkinson, 1955; Coles, 2001): 

𝐹𝑋(𝑥) = 𝐹𝑋 𝑥,Φ = 𝑒― 1―𝑏
𝑥
𝜃―lnΛ

1 𝑏

           𝑏 ≠ 0
 𝑒―𝑒―

𝑥
𝜃―lnΛ

                    𝑏 = 0
(5)

212 where Λ is related to the mean annual number of exceedances above a given threshold, θ is the scale 
213 parameter, 𝑏 corresponds to the shape parameter and, clearly, Φ = (Λ, 𝜃, 𝑏). When 𝑏 = 0, the GEV 
214 distribution coincides with EV1 function (Gumbel, 1958). Moreover, EV2 (i.e. Frechet) and EV3 (i.e. Reversed 
215 Weibull) laws are obtained when 𝑏 < 0 and 𝑏 > 0, respectively (Singh, 1998). Fig. 3 shows examples of GEV 
216 functions for given 𝑏 values on the EV1 probabilistic plot. It must be remarked that the 𝑘-th moment of the 
217 GEV distribution exists if 𝑏 > 1 𝑘; i.e., the mean exists if 𝑏 > ―1, the variance if 𝑏 > 1 2, the skewness 
218 if 𝑏 > 1 3 (Gupta, 2011). 

From any Climate Model, for any cell and any duration

Projections of Change 
Factors, assumed as valid 
for the future horizons of 

interest

How can they be 
“assimilated” by the 
adopted probability 

distributions, used at rain 
gauge scale?

THE PROPOSED METHODOLOGY

MIN

Are there some statistical “drivers”, which induce 
different values for (i.e., different

variations in frequency and magnitude of extreme
events), starting from assigned Change Factors?

Choice of 

INPUT OUTPUT

, M, Q
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219

220 Figure 3. Examples of GEV functions for specific 𝑏 values on the EV1 probabilistic plot. The slope angle 
221 arctg (1 𝜃) and the intercept ― ln 𝛬 are related to the straight line associated to EV1 function, i.e. a GEV 
222 with 𝑏 =  0.

223

224 Focusing on the theoretical skewness 𝛾, its expression depends on the shape parameter 𝑏 only (Gupta, 2011; 
225 Dey and Yan, 2016): 

𝛾 = 𝑠𝑔𝑛(𝑏) ∙
―Γ(1 + 3𝑏) + 3Γ(1 + 2𝑏) ∙ Γ(1 + 𝑏) ― 2Γ3(1 + 𝑏)

[Γ(1 + 2𝑏) ― Γ2(1 + 𝑏)]1.5            𝑏 ≠ 0
1.14 𝑏 = 0

(6)

226 where 𝑠𝑔𝑛(.) and Γ(.) are Sign and Complete Gamma functions, respectively (Abramowitz and Stegun, 1970). 
227 From Fig. 4, it can be highlighted that EV3 distribution is characterized by skewness values which are less 
228 than EV1 one, even negative in many cases. Consequently, as EV3 also presents a finite upper bound for 𝑋 
229 (Kottegoda and Rosso, 2008, p. 417; Moccia et al., 2021), this distribution has limited applications for analysis 
230 of hydrological AM series (Gupta, 2011). Therefore, in this work, authors only considered GEV functions with 
231 𝑏 ≤ 0.
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232

233 Figure 4. GEV skewness against the shape parameter 𝑏.

234

235 Eq. (5) can be rewritten in terms of the reduced and dimensionless variable 𝑌 = 𝑋
𝜃 ―𝑙𝑛Λ (Rossi et al., 1984):

𝐹𝑌(𝑦) = 𝑒―[1―𝑏𝑦]1 𝑏              𝑏 ≠ 0
 𝑒―𝑒―𝑦                        𝑏 = 0 (7)

236 As 𝑌 is a linear transformation of 𝑋, these two random variables clearly present the same value for skewness 
237 and 𝐹𝑋(𝑥) = 𝐹𝑌(𝑦). Eq. (7) obviously allows for a comparison, in terms of probability distribution, among 
238 samples with different scales θ and values of Λ. From Eq. (7), the expression for the generic quantile 𝑌𝐹 = 𝑌𝐹
239 (𝑏) is:

𝑌𝐹 =
1 ― ( ―ln𝐹𝑌(𝑦))𝑏

𝑏       𝑏 ≠ 0
―ln[ ―ln𝐹𝑌(𝑦)]          𝑏 = 0

(8)

240 with 𝑌𝐹(𝑏)→ + ∞ and 𝑌𝐹(𝑏)→ ― ∞  when 𝐹𝑌(𝑦)→1 and 𝐹𝑌(𝑦)→0, respectively, for 𝑏 ≤ 0 (i.e. for EV1 and 
241 EV2 distributions, considered in this work). Then, 𝑋𝐹 is computed as:

𝑋𝐹 = 𝜃 ∙ (𝑌𝐹(𝑏) + lnΛ) (9)

242 Eqs. (5-9) refer to the stationary approach (i.e., parameters are assumed as constant in time). As also 
243 indicated in Sect. 2, the extension to a nonstationary modelling implies to consider all, or some (at least one) 
244 parameters as varying with covariates, which could be time or explanatory variables that vary with time (Salas 
245 et al., 2018). Sometimes, both Λ and θ are assumed as Λ(𝑡) and θ(𝑡), while keeping 𝑏 constant (El Adlouni 
246 et al., 2007; Ruggiero et al., 2010). As reported in Coles (2001), for nonstationary (NS) GEV models it appears 
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247 unrealistic to consider the shape parameter 𝑏 as a smooth function of time or a function of a covariate, as it 
248 is difficult to estimate 𝑏 with precision even in the stationary case. 

249 In this context of invariance for shape parameter 𝑏, it is clear from Eqs. (7-8) that 𝐹𝑌(𝑦) and, consequently, 
250 all the quantiles 𝑌𝐹, can be modelled with a stationary approach, while the relative variation of the quantile 
251 𝑋𝐹 in the time interval [𝑡1; 𝑡2] can be computed as:

∆𝑋𝐹(𝑡2 ― 𝑡1)
𝑋𝐹(𝑡1) =

𝑋𝐹(𝑡2) ― 𝑋𝐹(𝑡1)
𝑋𝐹(𝑡1) = 𝐶(𝐹) ― 1 =

=
𝜃(𝑡2) ∙ (𝑌𝐹 + lnΛ(𝑡2)) ― 𝜃(𝑡1) ∙ (𝑌𝐹 + lnΛ(𝑡1))

𝜃(𝑡1) ∙ (𝑌𝐹 + lnΛ(𝑡1)) =
𝜃(𝑡2) ∙ (𝑌𝐹 + lnΛ(𝑡2))
𝜃(𝑡1) ∙ (𝑌𝐹 + lnΛ(𝑡1)) ― 1

(10a)

252 in which, clearly, 𝑌𝐹 = 𝑌𝐹(𝑏(𝑡2)) = 𝑌𝐹(𝑏(𝑡1)) = 𝑌𝐹(𝑏) for a prefixed value of shape parameter 𝑏 assumed 
253 as constant in time. In this work, we set 𝜃(𝑡2) = 𝑀𝜃(𝑡1) and Λ(𝑡2) = 𝐾Λ(𝑡1), where 𝑀 and 𝐾 are factors of 
254 increase/decrease. In this context, the use of the symbol “𝑀” is not ambiguous with respect to Fig.1: as 
255 specified in Eqs. 11a-b, this factor of increase/decrease for 𝜃 corresponds to the asymptotic value of 𝐶(𝐹) 
256 when 𝐹→1.  Eq. (10a) can be rewritten as:

∆𝑋𝐹(𝑡2 ― 𝑡1)
𝑋𝐹(𝑡1) = 𝐶(𝐹) ― 1 =

𝑀 ∙ 𝜃(𝑡1) ∙ (𝑌𝐹 + ln𝐾Λ(𝑡1))
𝜃(𝑡1) ∙ (𝑌𝐹 + lnΛ(𝑡1)) ― 1 =

𝑀 ∙ (𝑌𝐹 + ln𝐾Λ(𝑡1))
(𝑌𝐹 + lnΛ(𝑡1)) ― 1 (10b)

257 Figs. (5-6) illustrate the values assumed by ∆𝑋𝐹 𝑋𝐹 for several initial values (i.e. at 𝑡1) of Λ and 𝐹 = 0.5, 0.9, 
258 0.98, 0.995, when 𝑏 =  0 (EV1) and 𝑏 = ―0.1 and ― 0.2 (EV2), and by considering 𝑀 =  1, 1.2, 1.3 and 𝐾 
259 varying from 0.5 to 3. For each value of shape parameter 𝑏 and for any initial value of Λ, a reader can observe 
260 a clockwise rotation of the ∆𝑋𝐹 𝑋𝐹 curve when 𝐹 increases, with respect to the center placed in the point (
261 𝐾 = 1, ∆𝑋𝐹 𝑋𝐹 = 𝑀 ― 1); this rotation tends to the horizontal line having equation ∆𝑋𝐹 𝑋𝐹 = 𝑀 ― 1, as 
262 below demonstrated by evaluating the limit of Eq. (11) when 𝐹→1 (i.e., 𝑌𝐹→ + ∞):

lim
𝐹→1

(𝑌𝐹→ + ∞)

𝑀 ∙ (𝑌𝐹 + ln𝐾Λ(𝑡1))
(𝑌𝐹 + lnΛ(𝑡1)) ― 1 = lim

𝐹→1
(𝑌𝐹→ + ∞)

𝑌𝐹 ∙ 𝑀 ∙ 1 +
ln𝐾Λ(𝑡1)

𝑌𝐹

𝑌𝐹 ∙ 1 +
lnΛ(𝑡1)

𝑌𝐹

― 1 = 𝑀 ― 1 (11a)

263 from which it is straightforward to assert that (as also expected from Eq. 4a):

lim
𝐹→1

(𝑌𝐹→ + ∞)

𝐶(𝐹) = lim
𝐹→1

(𝑌𝐹→ + ∞)

𝑌𝐹 ∙ 𝑀 ∙ 1 +
ln𝐾Λ(𝑡1)

𝑌𝐹

𝑌𝐹 ∙ 1 +
lnΛ(𝑡1)

𝑌𝐹

= 𝑀 (11b)

264 Consequently, it is evident that, by hypothesizing the shape parameter 𝑏 as invariant, longer quantiles 
265 present larger increases of ∆𝑋𝐹 𝑋𝐹 when 𝐾 ≤ 1 (i.e., a decrease of the mean annual number Λ of events 
266 above a threshold), and smaller increase of ∆𝑋𝐹 𝑋𝐹 for 𝐾 > 1. Focusing the investigation on Europe, the 
267 case 𝐾 ≤ 1 well-matches with Hosseinzadehtalaei et al. (2020), in terms of greater ∆𝑋𝐹 𝑋𝐹 values for higher 
268 percentiles, and it is clearly compatible with the expected longer dry spells of climatic projections 
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269 (Seneviratne et al., 2012; Hov et al., 2013). Specifically, the ranges [0.75; 1] for 𝐾 and [1.2; 1.3] for 𝑀 seem 
270 coherent with the expected median variation factors for the quantiles 𝑋𝐹, i.e. [1.1; 1.16] for RCP 4.5 and 
271 [1.17; 1.25] for RCP 8.5, respectively (see Fig. 8 in Hosseinzadehtalaei et al., 2020), while 𝑀 belonging to the 
272 range [1; 1.6] allows for also reproducing the whole ensemble of change factors for the quantiles 𝑋𝐹, i.e. less 
273 than 1 or greater than 1.5 (see Figs. S3-S16 in Hosseinzadehtalaei et al., 2020).

274 However, these obtained results highlight the independence of ∆𝑋𝐹 𝑋𝐹 on the scale parameter 𝜃 (which is 
275 strictly related to the resolution), thus making impossible the discrimination of higher increases for shorter 
276 durations (Hosseinzadehtalaei et al., 2020), unless different values of 𝑀 factor are assumed (with smaller 
277 values for coarser time scales). From Figs. 5-6, ∆𝑋𝐹 𝑋𝐹 seems to do not depend in significant way on the 
278 shape parameter 𝑏, i.e. on the skewness (see Eq. 6). Moreover, application of Eq. (4b) for GEV implies:

lim
𝐹→0

(𝑌𝐹→ ― ∞)

𝐶(𝐹) = 𝑄 = lim
𝐹→0

(𝑌𝐹→ ― ∞)

𝑌𝐹 ∙ 𝑀 ∙ 1 +
ln𝐾Λ(𝑡1)

𝑌𝐹

𝑌𝐹 ∙ 1 +
lnΛ(𝑡1)

𝑌𝐹

= 𝑀 (12)

279 that restricts the use of GEV with the shape parameter 𝑏 as invariant in time, only when the plot in Fig. 1 is a 
280 horizontal line (i.e. 𝑀 = 𝑄).

281 Additionally, to directly focus on the rarer events (characterized by the expected larger increases), a user can 
282 adopt probability functions which separately consider ordinary and outlier extreme values, like the TCEV 
283 (Two-Component Extreme Values, Rossi et al., 1984) distribution, described in Sect. 2.2.

284 Nevertheless, it should be remarked that this analysis on 𝑀 and 𝐾 (and other) factors can be clearly coupled 
285 with the adoption of trend functions (linear, non-linear, step, and so on) along the time interval [𝑡1; 𝑡2] (see 
286 Sect. 3).
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287

288 Figure 5. ∆𝑋𝐹 𝑋𝐹 for several initial values of Λ and 𝐹 =  0.5, 0.9, when 𝑏 = 0 (EV1) and 𝑏 =  ― 0.1 and ―
289 0.2 (EV2), and by considering 𝑀 =  1, 1.2, 1.3 and 𝐾 varying from 0.5 to 3.
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292 Figure 6. ∆𝑋𝐹 𝑋𝐹 for several initial values of Λ and 𝐹 =  0.98, 0.995, when 𝑏 = 0 (EV1) and 𝑏 =  ― 0.1 and 
293 ― 0.2 (EV2), and by considering 𝑀 =  1, 1.2, 1.3 and 𝐾 varying from 0.5 to 3.
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296 2.2. Theoretical background for TCEV distribution 

297 In Sect. 2.1, we focused on Europe and we highlighted that the use of a NS GEV distribution with 𝐾 factor 
298 belong to [0.75; 1] and 𝑀 inside the range [1; 1.6] allows for reproducing the results in Hosseinzadehtalaei 
299 et al. (2020). However, assuming a reduction of the mean annual number of events above a threshold (i.e. 
300 𝐾 ≤ 1) seems in contrast with other works (like Papalexiou and Montanari, 2019), in which an increase of 
301 frequency for heavy extreme events emerges from data analysis, unless a probability distribution able to 
302 discriminate ordinary and “outlier” extreme values is adopted. With this aim, the use of the TCEV (Two 
303 Component Extreme Value, Rossi et al., 1984) function appears useful. Its mathematical expression is:

𝐹𝑋(𝑥) = 𝐹𝑋 𝑥,Φ = 𝑒―𝛬1𝑒
― 𝑥

𝜃1 ―𝛬2𝑒
― 𝑥

𝜃2 = 𝑒―𝑒―
𝑥

𝜃1
―ln𝛬1 ―𝑒―

𝑥
𝜃2

―ln𝛬2
= 𝑒―𝑒―

𝑥
𝜃1

―ln𝛬1
∙ 𝑒―𝑒―

𝑥
𝜃2

―ln𝛬2 (13)

304

305 in which 𝛬1 and 𝛬2 (with 𝛬1 > 𝛬2) are the mean annual number for ordinary and outlier events, respectively, 
306 while 𝜃1 and 𝜃2 (with 𝜃1 < 𝜃2) are the correspondent mean values for intensities, and clearly Φ =
307 (𝛬1,𝜃1,𝛬2,𝜃2). As shown in the last member of Eq. (13), TCEV can be considered as a product of two EV1 
308 functions. Focusing on Eq. (3), TCEV is obtained from a POT series in which 𝑃𝑁(𝑛) is a Poisson distribution 
309 with parameter 𝛬 = 𝛬1 + 𝛬2, while 𝐹𝑋,𝑃𝑂𝑇(𝑥) is a mixture of two exponential functions:

𝐹𝑋,𝑃𝑂𝑇(𝑥) =
𝛬1

𝛬1 + 𝛬2
𝑒― 𝑥

𝜃1 +
𝛬2

𝛬1 + 𝛬2
𝑒

― 𝑥
𝜃2 (14)

310

311 Starting from these considerations, an overall reduction for 𝛬 = 𝛬1 + 𝛬2 (Sect. 2.1) is clearly coherent with 
312 a decrease of 𝛬1 (greater) and a simultaneous increase for 𝛬2 (smaller). Fig. 7 shows a qualitative example 
313 of TCEV curve on an EV1 probabilistic plot, where both ordinary and outlier components are associated to 

314 straight lines with equations 𝑌 =
𝑋
𝜃1

― ln𝛬1 and 𝑌 =
𝑋
𝜃2

― ln𝛬2, respectively.

315



15

316

317 Figure 7. EV1 probabilistic plot. Qualitative example of TCEV (green) curve, and ordinary (straight blue line) 
318 and outlier (straight red line) components.

319

320 A well-known TCEV formulation, mainly used in contexts of statistical regionalization (Rossi et al., 1984), is 

321 obtained by introducing two dimensionless parameters 𝜃∗ =
𝜃2

𝜃1
 and 𝛬∗ =

𝛬2

𝛬
1

𝜃∗
1

:

𝐹𝑋(𝑥) = 𝐹𝑋 𝑥,Φ = 𝑒―𝛬1𝑒
― 𝑥

𝜃1 ―𝛬∗𝛬
1

𝜃∗
1 𝑒

― 𝑥
𝜃∗𝜃1 (15)

322

323 for which the theoretical skewness only depends on 𝜃∗ and 𝛬∗ (Beran et al., 1986), with obviously 𝜃∗ ≥ 1 and 
324 Λ∗ ≥ 0, and clearly Φ = (𝛬1,𝜃1,𝛬∗,𝜃∗).   It should be remarked that Eqs. (13) and (15) coincide with EV1 
325 distribution when 𝛬2 = 0 (i.e. 𝛬∗ = 0).

326 Similarly to GEV (Sect. 2.1), we consider the reduced EV1 variable (Rossi et al., 1984), which is defined in this 
327 case as:

𝑌 =
𝑋
𝜃1

― ln𝛬1 (16)

328

329 i.e., by only considering the parameters of the ordinary component. Clearly, also in this case 𝑌 is a linear 
330 transformation of 𝑋, and consequently these two random variables present the same value for skewness and 
331 𝐹𝑋(𝑥) = 𝐹𝑌(𝑦). Then, it is possible to rewrite Eq. (15) as:
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𝐹𝑌(𝑦) = 𝑒―𝑒―𝑦―𝛬∗𝑒― 𝑦
𝜃∗ = 𝑒―𝑒―𝑦 ∙ 𝑒―𝛬∗𝑒― 𝑦

𝜃∗ = 𝑒―𝑒―𝑦 ∙ 𝑒―𝑒―
𝑦

𝜃∗―𝑙𝑛𝛬∗ (17)

332

333 which allows for a comparison, in terms of probability distribution, among samples with different values of 
334 𝜃1 and 𝛬1 for the ordinary component. Unlike GEV, the TCEV quantile 𝑌𝐹 = 𝑌𝐹(𝛬∗,𝜃∗) must be estimated by 
335 numerical inversion of Eq. (17). However, similarly to GEV with 𝑏 ≤ 0, 𝑌𝐹(𝛬∗,𝜃∗)→ + ∞ and 𝑌𝐹(𝛬∗,𝜃∗)→ ― ∞  
336 when 𝐹𝑌(𝑦)→1 and 𝐹𝑌(𝑦)→0, respectively, and then 𝑋𝐹 can computed as:

𝑋𝐹 = 𝜃1 ∙ (𝑌𝐹(𝛬∗,𝜃∗) + ln𝛬1) (18)

337 Concerning a NS approach for TCEV distribution, four plausible scenarios could be considered: a reduction of 
338 𝛬1 and a simultaneous increase for 𝛬2 (with a total decrease of 𝛬 = 𝛬1 + 𝛬2) is considered for all the 
339 considered scenarios. Moreover: Scenario 1 has no change for 𝜃1 and 𝜃2, that implies a growth for 𝛬∗, while 
340 𝜃∗ is constant (Fig. 8); Scenario 2 presents an increase for 𝜃2 and no change for 𝜃1, and then both 𝛬∗ and 𝜃∗ 
341 increase (Fig. 9); both 𝜃1 and 𝜃2 show the same rate of increment in Scenario 3 (Fig. 10), and consequently 
342 𝛬∗ increases while 𝜃∗ is constant (like in Scenario 1, but in this case 𝜃1 and 𝜃2 are characterized by a growth); 
343 also in Scenario 4, both 𝜃1 and 𝜃2 increase, but the rate of increment for 𝜃2 is greater (Fig. 11), that means 
344 an increase for both 𝛬∗ and 𝜃∗ (like in Scenario 2, but in this case 𝜃1 is also growing). 

345

346

347 Figure 8. Scenario 1 for NS-TCEV, on EV1 probabilistic plot.

348

349
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350

351 Figure 9. Scenario 2 for NS-TCEV, on EV1 probabilistic plot.

352

353

354 Figure 10. Scenario 3 for NS-TCEV, on EV1 probabilistic plot.
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355

356 Figure 11. Scenario 4 for NS-TCEV, on EV1 probabilistic plot.

357

358 Focusing on 𝐹 =  0.98 and 𝐹 =  0.995 as examples, Figs. 12-13 show the plots of 𝑌𝐹(𝜃∗,Λ∗), from which it is 
359 possible to quantify the variations of quantile 𝑌𝐹 on the basis on ∆𝜃∗(𝑡2 ― 𝑡1) = 𝜃∗(𝑡2) ― 𝜃∗(𝑡1) and ∆Λ∗
360 (𝑡2 ― 𝑡1) = Λ∗(𝑡2) ― Λ∗(𝑡1). From Figs. 12-13 it is clear that, for 𝜃∗(𝑡1) and 𝜃∗(𝑡2) very close to 1, the 
361 increases of 𝑌𝐹 are not relevant even for a significant growth of Λ∗. 

362

363 Figure 12. Plot of 𝑌0.98(𝜃∗,Λ∗), from which it is possible to quantify the variations of quantile 𝑌𝐹 on the 
364 basis on ∆𝜃∗(𝑡2 ― 𝑡1) = 𝜃∗(𝑡2) ― 𝜃∗(𝑡1) and ∆Λ∗(𝑡2 ― 𝑡1) = Λ∗(𝑡2) ― Λ∗(𝑡1); it is clear that, for 𝜃∗(𝑡1) and 
365 𝜃∗(𝑡2) very close to 1, the increases of 𝑌𝐹 are not relevant even for a significant growth of Λ∗.
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366

367

368

369 Figure 13. Plot of 𝑌0.995(𝜃∗,Λ∗), from which it is possible to quantify the variations of quantile 𝑌𝐹 on the 
370 basis on ∆𝜃∗(𝑡2 ― 𝑡1) = 𝜃∗(𝑡2) ― 𝜃∗(𝑡1) and ∆Λ∗(𝑡2 ― 𝑡1) = Λ∗(𝑡2) ― Λ∗(𝑡1); it is clear that, for 𝜃∗(𝑡1) and 
371 𝜃∗(𝑡2) very close to 1, the increases of 𝑌𝐹 are not relevant even for a significant growth of Λ∗.

372

373 This behavior is confirmed in Fig. 14, where the dependence of 𝑌𝐹 and the partial derivate ∂𝑌𝐹 ∂Λ∗ on Λ∗ 
374 are shown for prefixed values of 𝜃∗ assumed as constant in time, e.g. Scenarios 1 and 3 represented in Figs. 
375 8 and 10. 
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381 Figure 14. Plot of 𝑌𝐹 and ∂𝑌𝐹 ∂Λ∗ depending on Λ∗, for fixed values of 𝜃∗; according to Figs.12-13,  𝜃∗ very 
382 close to 1 induces (mainly for higher F) smaller variations of 𝑌𝐹, whatever is the value of Λ∗.

383

384 Higher constant values of 𝜃∗ induce wider variations of 𝑌𝐹, mainly for high quantiles, and greater rates of 
385 variation (i.e. ∂𝑌𝐹 ∂Λ∗) emerge for small values of Λ∗. Moreover, according to Beran et al. (1986), values of 
386 𝜃∗ very close to 1 imply smaller values of skewness, whatever is Λ∗, while higher 𝜃∗ induces an increase in 
387 skewness. Consequently, if ordinary and outlier extreme events are clearly discriminated like in TCEV 
388 distribution, initial skewness seems to represent an important statistical driver for well predicting the effects 
389 of potential Climate Change. 

390 To simplify the mathematical approach, it should be noted that TCEV distribution converges to an EV1 
391 distribution for very low 𝐹- values (see also the blue line in Fig. 6):

lim
𝐹→0

𝐹𝑋(𝑥) = e―e―
𝑥

𝜃1
― ln 𝛬1 (19)

392 and to another EV1 distribution for very high 𝐹- values (see also the red line in Fig. 6):

lim
𝐹→1

𝐹𝑋(𝑥) = e―e―
𝑥

𝜃2
― ln 𝛬2 (20)

393 Consequently, we can discriminate the tendency of ∆𝑋𝐹 𝑋𝐹 when 𝐹→0 and 𝐹→1, similarly to Sect. 2.1:

𝑙𝑖𝑚
𝐹→0

(𝑌𝐹→ ― ∞)

∆𝑋𝐹(𝑡2 ― 𝑡1)
𝑋𝐹(𝑡1) = 𝑙𝑖𝑚

𝐹→0
(𝑌𝐹→ ― ∞)

𝐶(𝐹) ― 1 = 𝑙𝑖𝑚
𝐹→0

(𝑌𝐹→ ― ∞)

𝑌𝐹 ∙ 𝜃1(𝑡2) ∙ 1 +
ln𝛬1(𝑡2)

𝑌𝐹

𝑌𝐹 ∙ 𝜃1(𝑡1) ∙ 1 +
ln𝛬1(𝑡1)

𝑌𝐹

― 1

= 𝑙𝑖𝑚
𝐹→0

(𝑌𝐹→ ― ∞)

𝑌𝐹 ∙ 𝑄 ∙ 𝜃1(𝑡1) ∙ 1 +
ln𝐾1𝛬1(𝑡1)

𝑌𝐹

𝑌𝐹 ∙ 𝜃1(𝑡1) ∙ 1 +
ln𝛬1(𝑡1)

𝑌𝐹

― 1 = 𝑄 ― 1

(21a)

394 from which

𝑙𝑖𝑚
𝐹→0

(𝑌𝐹→ ― ∞)

𝐶(𝐹) = 𝑙𝑖𝑚
𝐹→0

(𝑌𝐹→ ― ∞)

𝑌𝐹 ∙ 𝜃1(𝑡2) ∙ 1 +
ln𝛬1(𝑡2)

𝑌𝐹

𝑌𝐹 ∙ 𝜃1(𝑡1) ∙ 1 +
ln𝛬1(𝑡1)

𝑌𝐹

= 𝑙𝑖𝑚
𝐹→0

(𝑌𝐹→ ― ∞)

𝑌𝐹 ∙ 𝑄 ∙ 𝜃1(𝑡1) ∙ 1 +
ln𝐾1𝛬1(𝑡1)

𝑌𝐹

𝑌𝐹 ∙ 𝜃1(𝑡1) ∙ 1 +
ln𝛬1(𝑡1)

𝑌𝐹

= 𝑄

(21b)

395
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396 and

𝑙𝑖𝑚
𝐹→1

(𝑌𝐹→ + ∞)

∆𝑋𝐹(𝑡2 ― 𝑡1)
𝑋𝐹(𝑡1) = 𝑙𝑖𝑚

𝐹→1
(𝑌𝐹→ + ∞)

𝐶(𝐹) ― 1 = 𝑙𝑖𝑚
𝐹→1

(𝑌𝐹→ + ∞)

𝑌𝐹 ∙ 𝜃2(𝑡2) ∙ 1 +
ln𝛬2(𝑡2)

𝑌𝐹

𝑌𝐹 ∙ 𝜃2(𝑡1) ∙ 1 +
ln𝛬2(𝑡1)

𝑌𝐹

― 1

= 𝑙𝑖𝑚
𝐹→1

(𝑌𝐹→ + ∞)

𝑌𝐹 ∙ 𝑀 ∙ 𝜃2(𝑡1) ∙ 1 +
ln𝐾2𝛬2(𝑡1)

𝑌𝐹

𝑌𝐹 ∙ 𝜃2(𝑡1) ∙ 1 +
ln𝛬2(𝑡1)

𝑌𝐹

― 1 = 𝑀 ― 1

(22a)

397

398 from which:

𝑙𝑖𝑚
𝐹→1

(𝑌𝐹→ + ∞)

𝐶(𝐹) = 𝑙𝑖𝑚
𝐹→1

(𝑌𝐹→ + ∞)

𝑌𝐹 ∙ 𝜃2(𝑡2) ∙ 1 +
ln𝛬2(𝑡2)

𝑌𝐹

𝑌𝐹 ∙ 𝜃2(𝑡1) ∙ 1 +
ln𝛬1(𝑡1)

𝑌𝐹

= 𝑙𝑖𝑚
𝐹→1

(𝑌𝐹→ + ∞)

𝑌𝐹 ∙ 𝑀 ∙ 𝜃2(𝑡1) ∙ 1 +
ln𝐾2𝛬2(𝑡1)

𝑌𝐹

𝑌𝐹 ∙ 𝜃2(𝑡1) ∙ 1 +
ln𝛬2(𝑡1)

𝑌𝐹

= 𝑀

(22b)

399 where: 𝑌𝐹 =
𝑋𝐹

𝜃1
― ln 𝛬1 in Eqs. (21a-b) while 𝑌𝐹 =

𝑋𝐹

𝜃2
― ln 𝛬2 in Eqs. (22a-b); 𝜃1(𝑡2) = 𝑄 ∙ 𝜃1(𝑡1) and Λ1(𝑡2)

400 = 𝐾1 ∙ Λ1(𝑡1) in Eqs.(21a-b); 𝜃2(𝑡2) = 𝑀 ∙ 𝜃2(𝑡1) and Λ2(𝑡2) = 𝐾2 ∙ Λ2(𝑡1) in Eqs.(22a-b). Like for NS GEV 
401 (Sect. 2.1), the use of symbols “𝑀” and “𝑄” is not ambiguous with respect to Fig. 1: from Eqs. (21a-b) the 
402 factor of increase/decrease for 𝜃1 corresponds to the intercept value of 𝐶(𝐹) when 𝐹→0; from Eqs. (22a-b) 
403 the factor of increase/decrease for 𝜃2 corresponds to the asymptotic value of 𝐶(𝐹) when 𝐹→1.

404 Consequently, TCEV distribution is very suitable for application of the proposed methodology; its adoption is 
405 clearly not restricted to the case 𝑀 = 𝑄 (see Sect. 2.1). In detail, as also indicated in Fig. 2: 

406 • for any spatial cell and AM duration, starting from a plot 𝐼𝐹 ― 𝐶(𝐹) like in Fig.1 (derived from any 
407 climatic model), the increase/decrease factors 𝑄 and 𝑀 (with 𝑀 > 𝑄 ) for the mean magnitudes 𝜃1 
408 and 𝜃2, related to a rain gauge of interest (inside the investigated spatial cell), are clearly input 
409 values;
410 • conversely, the increase/decrease factors 𝐾1 and 𝐾2 for the mean annual frequencies must be 
411 calculated, by minimizing the Objective Function 𝑆 in Eq. (4c), where the values of 𝐶𝐹𝑋

412 𝐹𝑖, Φ(𝑡1), Φ(𝑡2)  depend on the input quantities Λ1(𝑡1), 𝜃1(𝑡1), Λ2(𝑡1), 𝜃2(𝑡1), 𝑄, 𝑀, and on 𝐾1, 
413 𝐾2 (to be estimated);
414 • as widely discussed in the next Sect. 3, the possibility of also evaluating 𝐾1 and 𝐾2, with respect to 
415 the sole information of 𝑄 and 𝑀 (deducible from the mere use of Fig. 1), allows to investigate if some 
416 statistical “drivers” play a crucial role for the (significant or not) increase/reduction of frequencies of 
417 extreme events (in Sect. 3.2, the importance of the skewness at time 𝑡1 will be highlighted). In other 
418 words, starting from a fixed plot like in Fig.1, we analyze if different values of the identified driver(s) 
419 can induce different combinations 𝐾1, 𝐾2, and consequently distinct hazard evaluations for the 
420 horizon [𝑡1; 𝑡2] (Sect. 3.3).
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421 As regard the last bullet point, two simple kinds of temporal evolution for the function Λ1(𝑡), 𝜃1(𝑡), Λ2(𝑡) 
422 and 𝜃2(𝑡) are assumed in this work:

423 • from the former (Fig. 15), indicated as E1, all the TCEV parameters are linear functions in the interval 
424 [𝑡1; 𝑡2], without any change of slope (i.e., with a constant value of the derivative). According to the 
425 previous considerations, it is expected that Λ1(𝑡) is a decreasing function, while Λ2(𝑡), 𝜃1(𝑡) and 𝜃2
426 (𝑡) are increasing functions with 𝑀 >  𝑄 (and then only the fourth scenario, previously represented 
427 in Fig. 11, can be plausible for evaluation of CC effects in this context). The results obtained in Sect. 
428 3.1 will confirm these expected behaviors;
429 • on the basis on the latter considered kind of temporal evolution (Fig. 16), named as E2, all the TCEV 
430 parameters are linear increasing (Λ2(𝑡), 𝜃1(𝑡), 𝜃2(𝑡), with 𝑀 >  𝑄), or decreasing (Λ1(𝑡)) functions 
431 until 𝑡∗ , with 𝑡1 < 𝑡∗ < 𝑡2, and then constant along the interval [𝑡∗;𝑡2]. This pattern is suitable for 
432 “stabilization scenarios”, in which the rate of radiative forcing is stopped when prefixed thresholds 
433 for emissions of greenhouse gasses are reached (Nazarenko et al., 2015).

434 Once assumed the kind of temporal evolution for the TCEV parameters, it is possible to evaluate for any 
435 design value 𝑥 of interest:

436 • the Hazard 𝐻(𝑥,𝑡1,𝑡2) (Salas and Obeysekera, 2014; Volpi, 2019):

             𝐻(𝑥,𝑡1,𝑡2) = 1 ―

𝑡2

𝑗=𝑡1

𝐹𝑋(𝑥,Λ1(𝑗),Λ2(𝑗),θ1(𝑗),θ2(𝑗)) (23)

437 which corresponds to the probability that the event 𝑋 > 𝑥 occurs at least one time into a period of 
438 interest, in this case the interval [𝑡1; 𝑡2];
439 • the stationary case for the Hazard:

              𝐻𝑆𝑡𝑎𝑡(𝑥,𝑡1,𝑡2) = 1 ― [𝐹𝑋(𝑥,Λ1(𝑡1),Λ2(𝑡1),θ1(𝑡1),θ2(𝑡1))](𝑡2―𝑡1) (24)

440 where all the TCEV parameters are invariant along the interval [𝑡1; 𝑡2], with respect to the values 
441 assumed at 𝑡1;
442 • the Hazard variation:

              ∆𝐻(𝑥,𝑡1,𝑡2) = 𝐻(𝑥,𝑡1,𝑡2) ― 𝐻𝑆𝑡𝑎𝑡(𝑥,𝑡1,𝑡2) (25)

443 that clearly quantifies CC effects in terms of hazard.

444
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445

446 Figure 15. E1 temporal evolution for the function Λ1(𝑡), 𝜃1(𝑡), Λ2(𝑡) and 𝜃2(𝑡)

447

448

449 Figure 16. E2 temporal evolution for the function Λ1(𝑡), 𝜃1(𝑡), Λ2(𝑡) and 𝜃2(𝑡)

450

451

452



25

453 3. Numerical experiments and discussion 

454 As reported in Sect. 2, the elaborations discussed here are related to the TCEV distribution only, particularly 
455 suitable to discriminate outliers from ordinary extreme events. The dataset is introduced In Sect. 3.1, while 
456 the numerical experiments are presented in Sects. 3.2 and 3.3.

457 3.1. Dataset 

458 In Italy, hydrological monitoring has been performed by National Hydrographic and Mareographic Service 
459 (SIMN) for several years. In 2002, the entire monitoring network was transferred to regions with a Prime 
460 Ministerial Decree of the 24/07/2002. Therefore, data management was assigned in most of the cases to the 
461 Regional Department of Civil Protection (or to Regional Agencies). A list of the hydrological agencies that 
462 conduct the data collection and management after the dismantlement of SIMN are reported in Mazzoglio et 
463 al. (2020). Information about the data policies and how raw data can be accessed is also included. 
464 Hydrological data can be also accessed through the hydrological yearbooks (freely available at 
465 http://www.bio.isprambiente.it/annalipdf/). Data at daily resolution are provided by The Italian National 
466 Institute for Environmental Protection and Research (ISPRA) in the form of a unified and open-access system, 
467 called National System for the Collection, Elaboration and Diffusion of Climatological Data (SCIA; Desiato et 
468 al., 2007). 

469 Several studies concerning TCEV application for extreme rainfall series (at daily and sub-daily resolutions) 
470 were carried out in Italy (see, for example, Versace et al., 1989; Ferro and Porto, 1999; Boni et al., 2006; 
471 Caporali et al., 2008; De Luca and Galasso, 2018; Forestieri et al., 2018b). Recently, De Luca and Napolitano 
472 (2023) demonstrated that the major part of sample values of skewness for updated daily AM series can be 
473 modelled with Λ∗ comprised between 0 (i.e. by using an EV1 distribution) and 0.10-0.15, with θ∗ at most 
474 equal to 2.5-3. For sub-daily time series (usually more skewed), when their sample size is significantly smaller 
475 than daily one, it is frequent to assume the same values of daily Λ∗ and θ∗ and then to carry out estimation 
476 only for Λ1 and θ1, to respect the parametric parsimony.

477 Building upon the insights gathered from previous works, we selected six plausible groups of TCEV 
478 parameters (which provide values of quantiles that are coherent with time series in Italy), for the durations 
479 𝑑 = 1, 3, 6, 12 and 24 h and related to 𝑡 =  𝑡1 (i.e. before the beginning of any possible climate change 
480 scenario), which can be schematized in two main levels:

481 1. the finer resolutions have a larger ratio 
Λ2(𝑡1)
Λ1(𝑡1) with respect to the coarser durations, that means 

482 greater mean annual frequencies Λ2(𝑡1) for outliers and smaller values for Λ1(𝑡1) when 𝑑 = 1, 3 h;

483 2. all the durations are characterized by the same ratio 
Λ2(𝑡1)
Λ1(𝑡1);

484 each one with three sub levels:

485 a. the finer resolutions present greater values of θ∗(𝑡1) with respect to the coarser ones (characterized 
486 by θ∗(𝑡1) closer to 1), that means time series are more skewed when 𝑑 = 1, 3, 6 h, while an “EV1 
487 alike” skewness is related to 𝑑 = 12, 24 h;
488 b. all the durations are characterized by θ∗(𝑡1) = 2, i.e. all the time series are more significantly skewed 
489 with respect to EV1;
490 c. all the durations are characterized by θ∗(𝑡1) = 1.2, i.e. all the time series present a skewness not so 
491 far from γ1 = 1.14.

492 The last two sub levels are coherent with the hypothesis of assuming the same daily set (Λ∗, θ∗) for 𝑑 =  1, 
493 3, 6, 12 and 24 h, when sample size of sub daily time series is considerably smaller than the daily one. Overall, 
494 these six groups are indicated in the following as G1a, G1b, G1c, G2a, G2b and G2c (see Tables 1-6, in which the 
495 quantiles X0.9(𝑡1), X0.99(𝑡1) and X0.995(𝑡1) are also indicated).

http://www.bio.isprambiente.it/annalipdf/
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496 As regards the evaluation of CC effects, according to Hosseinzadehtalaei et al. (2020), we chose a temporal 
497 horizon 𝑡2 ― 𝑡1=100 years and we considered, for 𝑀 and 𝑄, the median values of RCP4.5, derived for the 
498 entire Europe (see Table 7), which can be assumed as valid for Italy (see Figs. 8 and S3 in Hosseinzadehtalaei 
499 et al., 2020).  Based on all these assumptions and on Sect. 2.2: Sect. 3.1 refers to the estimation of θ1(𝑡2), θ2
500 (𝑡2), Λ1(𝑡2) and Λ2(𝑡2) for the six groups of plausible TCEV parameters for Italy; examples of hazard 
501 evaluation are discussed in Sect. 3.2, in which the temporal evolutions E1 and E2 (Figs. 15-16) for θ1(𝑡), θ2
502 (𝑡), Λ1(𝑡), Λ2(𝑡), with t ∈ [𝑡1,𝑡2], are assumed. Moreover, from θ2(𝑡2) = 𝑀 ∙ θ2(𝑡1) and θ1(𝑡2) = 𝑄 ∙ θ1(𝑡1), 
503 it can be highlighted that:

θ∗(𝑡2) =
θ2(𝑡2)
θ1(𝑡2) =

𝑀 ∙ θ2(𝑡1)
𝑄 ∙ θ1(𝑡1) =

𝑀
𝑄 ∙ θ∗(𝑡1) (26)

504 and then the ratio 𝑀 𝑄 represents the variation factor for θ∗ parameters. For RCP4.5 scenario, there is an 
505 increase for all the durations, between about 6% and 7% (see the third column of Table 7).

506

507 Table 1. G1a group: TCEV parameters and values of quantiles X0.9(𝑡1), X0.99(𝑡1) and X0.995(𝑡1)

𝒅

(h)

𝚲𝟏(𝒕𝟏) 

(-)

𝛉𝟏(𝒕𝟏) 

(mm)

𝚲∗(𝒕𝟏) 

(-)

𝛉∗(𝒕𝟏) 

(-)

𝚲𝟐(𝒕𝟏) 

(-)

𝛉𝟐(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗
(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗𝟗
(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗𝟗𝟓
(𝒕𝟏) 

(mm)

1 15 8 0.169 2.5 0.5 20 45 80 93

3 20 12 0.101 2 0.45 24 67 103 115

6 25 15 0.080 2 0.4 30 86 129 144

12 30 22 0.036 1.5 0.35 33 126 180 196

24 30 30 0.018 1.2 0.3 36 170 241 262

508

509 Table 2. G1b group: TCEV parameters and values of quantiles X0.9(𝑡1), X0.99(𝑡1) and X0.995(𝑡1)

𝒅

(h)

𝚲𝟏(𝒕𝟏) 

(-)

𝛉𝟏(𝒕𝟏) 

(mm)

𝚲∗(𝒕𝟏) 

(-)

𝛉∗(𝒕𝟏) 

(-)

𝚲𝟐(𝒕𝟏) 

(-)

𝛉𝟐(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗
(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗𝟗
(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗𝟗𝟓
(𝒕𝟏) 

(mm)
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1 15 8 0.129 2 0.5 16 43 68 77

3 20 12 0.101 2 0.45 24 67 103 115

6 25 15 0.080 2 0.4 30 86 129 144

12 30 22 0.064 2 0.35 44 129 190 211

24 30 30 0.055 2 0.3 60 175 256 284

510

511 Table 3. G1c group: TCEV parameters and values of quantiles X0.9(𝑡1), X0.99(𝑡1) and X0.995(𝑡1)

𝒅

(h)

𝚲𝟏(𝒕𝟏) 

(-)

𝛉𝟏(𝒕𝟏) 

(mm)

𝚲∗(𝒕𝟏) 

(-)

𝛉∗(𝒕𝟏) 

(-)

𝚲𝟐(𝒕𝟏) 

(-)

𝛉𝟐(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗
(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗𝟗
(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗𝟗𝟓
(𝒕𝟏) 

(mm)

1 15 8 0.052 1.2 0.5 9.6 40 59 65

3 20 12 0.037 1.2 0.45 14.4 64 92 101

6 25 15 0.027 1.2 0.4 18 83 118 129

12 30 22 0.021 1.2 0.35 26.4 125 177 192

24 30 30 0.018 1.2 0.3 36 170 241 262

512

513 Table 4. G2a group: TCEV parameters and values of quantiles X0.9(𝑡1), X0.99(𝑡1) and X0.995(𝑡1)

𝒅

(h)

𝚲𝟏(𝒕𝟏) 

(-)

𝛉𝟏(𝒕𝟏) 

(mm)

𝚲∗(𝒕𝟏) 

(-)

𝛉∗(𝒕𝟏) 

(-)

𝚲𝟐(𝒕𝟏) 

(-)

𝛉𝟐(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗
(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗𝟗
(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗𝟗𝟓
(𝒕𝟏) 

(mm)

1 20 8 0.151 2.5 0.5 20 47 80 93
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3 20 12 0.112 2 0.5 24 67 104 117

6 20 15 0.112 2 0.5 30 84 130 146

12 20 22 0.068 1.5 0.5 33 119 174 191

24 20 30 0.041 1.2 0.5 36 159 231 252

514

515 Table 5. G2b group: TCEV parameters and values of quantiles X0.9(𝑡1), X0.99(𝑡1) and X0.995(𝑡1)

𝒅

(h)

𝚲𝟏(𝒕𝟏) 

(-)

𝛉𝟏(𝒕𝟏) 

(mm)

𝚲∗(𝒕𝟏) 

(-)

𝛉∗(𝒕𝟏) 

(-)

𝚲𝟐(𝒕𝟏) 

(-)

𝛉𝟐(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗
(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗𝟗
(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗𝟗𝟓
(𝒕𝟏) 

(mm)

1 20 8 0.112 2 0.5 16 45 69 78

3 20 12 0.112 2 0.5 24 67 104 117

6 20 15 0.112 2 0.5 30 84 130 146

12 20 22 0.112 2 0.5 44 123 191 214

24 20 30 0.112 2 0.5 60 168 260 292

516

517 Table 6. G2c group: TCEV parameters and values of quantiles X0.9(𝑡1), X0.99(𝑡1) and X0.995(𝑡1)

𝒅

(h)

𝚲𝟏(𝒕𝟏) 

(-)

𝛉𝟏(𝒕𝟏) 

(mm)

𝚲∗(𝒕𝟏) 

(-)

𝛉∗(𝒕𝟏) 

(-)

𝚲𝟐(𝒕𝟏) 

(-)

𝛉𝟐(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗
(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗𝟗
(𝒕𝟏) 

(mm)

𝐗𝟎.𝟗𝟗𝟓
(𝒕𝟏) 

(mm)

1 20 8 0.041 1.2 0.5 9.6 42 62 67

3 20 12 0.041 1.2 0.5 14.4 64 92 101
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6 20 15 0.041 1.2 0.5 18 80 115 126

12 20 22 0.041 1.2 0.5 26.4 117 169 185

24 20 30 0.041 1.2 0.5 36 159 231 252

518

519 Table 7. Assumed Q and M values, referred to RCP4.5.

𝒅

(h)

𝑸 

(-)

𝑴 

(-)

𝑴/𝑸

(-)

1 1.106 1.186 1.072

3 1.106 1.186 1.072

6 1.101 1.176 1.068

12 1.095 1.167 1.066

24 1.089 1.155 1.061

520

521

522 3.2. Estimation of 𝛉𝟏(𝒕𝟐), 𝛉𝟐(𝒕𝟐), 𝚲𝟏(𝒕𝟐) and 𝚲𝟐(𝒕𝟐) 

523 Starting from the “known” values of 𝑀 and 𝑄, the minimization of Eq. (4c) in terms of 𝐾1 and 𝐾2 for all the 
524 durations were carried out by considering the following 𝑛𝐹 = 6 frequencies 𝐹𝑖: 0.5, 0.8, 0.9, 0.95, 0.98 and 
525 0.99. Powell’s algorithm (Press et al., 1988) was adopted, and the search of the minimum was made from the 
526 initial point (1, 1) for (𝐾1, 𝐾2), i.e. from the situation at 𝑡1. The obtained results are shown in Figs. 17-18 and 
527 in Tables 8-9, where 𝐾𝑇𝑂𝑇 is defined as:

𝐾𝑇𝑂𝑇 =
𝐾1 ∙ Λ1(𝑡1) + 𝐾2 ∙ Λ2(𝑡1)

Λ1(𝑡1) + Λ2(𝑡1)
(27)

528 and it represents the increase/decrease factor for the overall frequency Λ(𝑡1) = Λ1(𝑡1) + Λ2(𝑡1), e.g. Λ(𝑡2)
529 = 𝐾𝑇𝑂𝑇 ∙ Λ(𝑡1). As expected in Sects. 2.1 and 2.2, 𝐾𝑇𝑂𝑇 is always less than 1, but the reduction for Λ1(.) and 
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530 the increase for Λ2(.) are strongly marked when Λ∗(𝑡1)→0 and θ∗(𝑡1)→1, that means a time series with an 
531 “EV1 alike” skewness at 𝑡1.

532 These outcomes can be justified by the analysis of the previous Figs. 12-13 (Sect. 2.2): if 𝜃∗(𝑡1) = 1.2 and 
533 𝑀/𝑄 ∈ [1.061;1.072] (see Table 7), then 𝜃∗(𝑡2) ∈ [1.27;1.29] and consequently, as both 𝜃∗(𝑡1) and 𝜃∗(𝑡2) 
534 are close to 1, a unit increment for 𝑌𝐹 requires a significant growth of Λ∗, that can be reached with (both or 
535 at least one condition) 𝐾2 ≫ 1 (i.e. Λ2(𝑡2) ≫ Λ2(𝑡1)) and 𝐾1 ≪ 1 (i.e. Λ1(𝑡2) ≪ Λ1(𝑡1)). Figs. 19-24 show the 
536 vectors of variation on the plot (Λ∗, θ∗) for each investigated group of TCEV parameters. This analysis clearly 
537 highlights the crucial role played by the skewness at 𝑡1, and in particular by 𝜃∗(𝑡1): in order to respect 

538 prefixed change factors (from assumed climatic projections), if 𝜃∗(𝑡1) is close to 1 and 𝜃∗(𝑡2) =
𝑀
𝑄 ∙ 𝜃∗(𝑡1) is 

539 consequently not so far from 𝜃∗(𝑡1) (i.e., less than 1.8-2, as the ratio 𝑀 𝑄 should rarely assume values 
540 greater than 1.5 in all the RCP outputs, see also Hosseinzadehtalaei et al., 2020), then substantial variations 
541 in frequencies (e.g. Λ∗(.)) are necessary (see Figs. 12-13 and 19-24). Moreover, these results are coherent 
542 with Papalexiou and Montanari (2019), in which an increase of frequency for heavy extreme events emerges 
543 for daily time series, usually less skewed than the hourly scales.

544

545 Table 8. Estimation of 𝐾1, 𝐾2 and 𝐾𝑇𝑂𝑇 for the TCEV parametric groups G1a, G1b, G1c

G1a G1b G1c

𝒅

(h)

𝑲𝟏 

(-)

𝑲𝟐 

(-)

𝑲𝑻𝑶𝑻 

(-)

𝑲𝟏 

(-)

𝑲𝟐 

(-)

𝑲𝑻𝑶𝑻 

(-)

𝑲𝟏 

(-)

𝑲𝟐 

(-)

𝑲𝑻𝑶𝑻 

(-)

1 0.96 1.01 0.96 0.95 1.18 0.96 0.70 5.46 0.85

3 0.95 1.27 0.96 0.95 1.27 0.96 0.68 7.64 0.83

6 0.94 1.35 0.94 0.94 1.35 0.94 0.70 9.35 0.84

12 0.88 3.37 0.91 0.95 1.46 0.95 0.71 12.01 0.84

24 0.72 13.56 0.85 0.95 1.55 0.95 0.72 13.56 0.85

546
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547

548 Figure 17. Estimation of 𝐾1, 𝐾2 for the TCEV parametric groups G1a, G1b, G1c

549

550 Table 9. Estimation of 𝐾1, 𝐾2 and 𝐾𝑇𝑂𝑇 for the TCEV parametric groups G2a, G2b, G2c

G2a G2b G2c

𝒅

(h)

𝑲𝟏 

(-)

𝑲𝟐 

(-)

𝑲𝑻𝑶𝑻 

(-)

𝑲𝟏 

(-)

𝑲𝟐 

(-)

𝑲𝑻𝑶𝑻 

(-)

𝑲𝟏 

(-)

𝑲𝟐 

(-)

𝑲𝑻𝑶𝑻 

(-)

1 0.98 1.03 0.98 0.94 1.24 0.95 0.67 7.10 0.83

3 0.96 1.21 0.96 0.96 1.21 0.96 0.67 7.10 0.83

6 0.93 1.21 0.93 0.93 1.21 0.93 0.70 6.47 0.85

12 0.86 2.20 0.89 0.95 1.18 0.95 0.72 6.21 0.85

24 0.73 6.12 0.86 0.95 1.18 0.95 0.73 6.12 0.86

551
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552

553 Figure 18. Estimation of 𝐾1, 𝐾2 for the TCEV parametric groups G2a, G2b, G2c

554

555 Figure 19. Vectors of variation on the plot (Λ∗, θ∗) for the TCEV parametric groups G1a
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556

557 Figure 20. Vectors of variation on the plot (Λ∗, θ∗) for the TCEV parametric groups G1b

558

559

560 Figure 21. Vectors of variation on the plot (Λ∗, θ∗) for the TCEV parametric groups G1c

561
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562

563 Figure 22. Vectors of variation on the plot (Λ∗, θ∗) for the TCEV parametric groups G2a

564

565

566 Figure 23. Vectors of variation on the plot (Λ∗, θ∗) for the TCEV parametric groups G2b

567
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568

569 Figure 24. Vectors of variation on the plot (Λ∗, θ∗) for the TCEV parametric groups G2c; according to Figs.12-
570 13,  𝜃∗ very close to 1 induces significant increases for Λ∗, in order to respect prefixed change factors (from 
571 assumed climatic projections).

572

573 3.3. CC effects in terms of Hazard variation

574 Focusing on 𝑑 =  1 h and on the groups G1a,b,c (the results for other scales and G2a,b,c are not shown but they 
575 are very similar), the plots of ∆𝐻(𝑥,𝑡1,𝑡2) (Eq. 25) concerning the assumed evolutions E1 (Fig. 15) and E2 (Fig. 
576 16) are reported in Figs. 25-26, respectively. In detail: we set 𝑡2 ― 𝑡1 = 100 years (as already mentioned in 
577 Sect. 3) and, regarding E2 evolution (Fig. 16), 𝑡∗ ― 𝑡1 was fixed equal to 70 years (Caesar et al., 2013; 
578 Meinshausen et al., 2011; Rogelj et al., 2012; van Vuuren et al., 2011). Moreover, focusing on  Λ1(𝑡1) = 15, 
579 Λ2(𝑡1) = 0.5 and θ1(𝑡1) = 8 mm, the cases θ∗(𝑡1) = 1.2 (G1c), θ∗(𝑡1) = 2 (G1b), θ∗(𝑡1) = 2.5 (G1a) and θ∗(𝑡1)
580 = 3 were analyzed.

581 For both types of evolution, θ∗(𝑡1) = 1.2 induces the maximum peak of ∆𝐻(.). This result can be explained 
582 by the following reason: as θ∗(𝑡1) values closer to 1 imply a marked increase of Λ2 (see Sect. 3.1), i.e. the 
583 mean annual number of occurrences of outlier extreme events, it is clear that probability of having at least 
584 one exceedance of these rarer events (associated to X0.99(𝑡1), X0.995(𝑡1), and so on) in (𝑡2 ― 𝑡1) years should 
585 much more increase if there is a strong growth for this frequency. Then, with the goal of having specific 
586 change factors for the quantiles of interest, the crucial role of initial skewness, and in particular of θ∗(𝑡1), 
587 emerges also for evaluation of ∆𝐻(.).

588
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589

590 Figure 25. E1 evolution: plot of ∆𝐻(𝑥,𝑡1,𝑡2) for Λ1(𝑡1) = 15, Λ2(𝑡1) = 0.5 and θ1(𝑡1) = 8 mm and different 
591 θ∗(𝑡1)

592

593

594 Figure 26. E2 evolution: plot of ∆𝐻(𝑥,𝑡1,𝑡2) for Λ1(𝑡1) = 15, Λ2(𝑡1) = 0.5 and θ1(𝑡1) = 8 mm and different 
595 θ∗(𝑡1)

596

597
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598 4. Conclusions

599 This work shows how CC effects can be quantified at hydrological resolutions with a quick and user-friendly 
600 methodology. Attention was focused on rainfall Annual Maxima (AM), and on how specific climate model 
601 projections, assumed as valid for the future horizons of interest, can be “assimilated” by the adopted 
602 probability distributions, used at rain gauge scale, i.e. point scale. In detail, after a discussion about GEV 
603 function, we analyzed in-depth the parametric space of TCEV distribution, particularly able to discriminate 
604 ordinary and rarer extreme events. The obtained results remarked that prefixed change factors, specific of 
605 the quantiles of interest, can be obtained in different ways, strongly depending on the initial skewness of 
606 time series modelled with TCEV. AM series that are initially “EV1 alike” skewed will be characterized by a 
607 strong increase of the mean annual frequency of outliers, and these results are coherent with Papalexiou and 
608 Montanari (2019), who found an increase in frequency of heavy extreme events at daily resolution, usually 
609 less skewed than the hourly scales. Future developments of this analysis will regard: i) the definition of 
610 transient rainfall Amount-Duration-Frequency curves (ADFs), which constitute the most used input for the 
611 design of several water systems, and ii) resilience evaluation for hydraulic structures of interest, in order to 
612 plan possible structural or non-structural measures to cope with possible Climate Change. For all the 
613 discussed aspects, we believe that this work and its following perspectives can be a valuable contribution to 
614 quantification of CC Effects.

615
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869 Figure 7. EV1 probabilistic plot. Qualitative example of TCEV (green) curve, and ordinary (straight blue line) 
870 and outlier (straight red line) components.

871 Figure 8. Scenario 1 for NS-TCEV, on EV1 probabilistic plot.

872 Figure 9. Scenario 2 for NS-TCEV, on EV1 probabilistic plot.

873 Figure 10. Scenario 3 for NS-TCEV, on EV1 probabilistic plot.

874 Figure 11. Scenario 4 for NS-TCEV, on EV1 probabilistic plot.

875 Figure 12. Plot of 𝑌0.98(𝜃∗,Λ∗), from which it is possible to quantify the variations of quantile 𝑌𝐹 on the basis 
876 on ∆𝜃∗(𝑡2 ― 𝑡1) = 𝜃∗(𝑡2) ― 𝜃∗(𝑡1) and ∆Λ∗(𝑡2 ― 𝑡1) = Λ∗(𝑡2) ― Λ∗(𝑡1); it is clear that, for 𝜃∗(𝑡1) and 𝜃∗(𝑡2) 
877 very close to 1, the increases of 𝑌𝐹 are not relevant even for a significant growth of Λ∗.

878 Figure 13. Plot of 𝑌0.995(𝜃∗,Λ∗), from which it is possible to quantify the variations of quantile 𝑌𝐹 on the basis 
879 on ∆𝜃∗(𝑡2 ― 𝑡1) = 𝜃∗(𝑡2) ― 𝜃∗(𝑡1) and ∆Λ∗(𝑡2 ― 𝑡1) = Λ∗(𝑡2) ― Λ∗(𝑡1); it is clear that, for 𝜃∗(𝑡1) and 𝜃∗(𝑡2) 
880 very close to 1, the increases of 𝑌𝐹 are not relevant even for a significant growth of Λ∗.

881 Figure 14. Plot of 𝑌𝐹 and ∂𝑌𝐹 ∂Λ∗ depending on Λ∗, for fixed values of 𝜃∗; according to Figs.12-13,  𝜃∗ very 
882 close to 1 induces (mainly for higher F) smaller variations of 𝑌𝐹, whatever is the value of Λ∗.

883

884 Figure 15. E1 temporal evolution for the function Λ1(𝑡), 𝜃1(𝑡), Λ2(𝑡) and 𝜃2(𝑡)

885 Figure 16. E2 temporal evolution for the function Λ1(𝑡), 𝜃1(𝑡), Λ2(𝑡) and 𝜃2(𝑡)

886 Figure 17. Estimation of 𝐾1, 𝐾2 for the TCEV parametric groups G1a, G1b, G1c

887 Figure 18. Estimation of 𝐾1, 𝐾2 for the TCEV parametric groups G2a, G2b, G2c

888 Figure 19. Vectors of variation on the plot (Λ∗, θ∗) for the TCEV parametric groups G1a

889 Figure 20. Vectors of variation on the plot (Λ∗, θ∗) for the TCEV parametric groups G1b

890 Figure 21. Vectors of variation on the plot (Λ∗, θ∗) for the TCEV parametric groups G1c

891 Figure 22. Vectors of variation on the plot (Λ∗, θ∗) for the TCEV parametric groups G2a

892 Figure 23. Vectors of variation on the plot (Λ∗, θ∗) for the TCEV parametric groups G2b

893 Figure 24. Vectors of variation on the plot (Λ∗, θ∗) for the TCEV parametric groups G2c; according to Figs.12-
894 13,  𝜃∗ very close to 1 induces significant increases for Λ∗, in order to respect prefixed change factors (from 
895 assumed climatic projections). 

896 Figure 25. E1 evolution: plot of ∆𝐻(𝑥,𝑡1,𝑡2) for Λ1(𝑡1) = 15, Λ2(𝑡1) = 0.5 and θ1(𝑡1) = 8 mm and different 
897 θ∗(𝑡1)

898 Figure 26. E2 evolution: plot of ∆𝐻(𝑥,𝑡1,𝑡2) for Λ1(𝑡1) = 15, Λ2(𝑡1) = 0.5 and θ1(𝑡1) = 8 mm and different 
899 θ∗(𝑡1)
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