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Nucleotide metabolism in cancer cells 
fuels a UDP-driven macrophage cross-talk, 
promoting immunosuppression and 
immunotherapy resistance

Many individuals with cancer are resistant to immunotherapies. Here, 
we identify the gene encoding the pyrimidine salvage pathway enzyme 
cytidine deaminase (CDA) among the top upregulated metabolic genes 
in several immunotherapy-resistant tumors. We show that CDA in cancer 
cells contributes to the uridine diphosphate (UDP) pool. Extracellular 
UDP hijacks immunosuppressive tumor-associated macrophages (TAMs) 
through its receptor P2Y6. Pharmacologic or genetic inhibition of CDA in 
cancer cells (or P2Y6 in TAMs) disrupts TAM-mediated immunosuppression, 
promoting cytotoxic T cell entry and susceptibility to anti-programmed 
cell death protein 1 (anti-PD-1) treatment in resistant pancreatic ductal 
adenocarcinoma (PDAC) and melanoma models. Conversely, CDA 
overexpression in CDA-depleted PDACs or anti-PD-1-responsive colorectal 
tumors or systemic UDP administration (re)establishes resistance. In 
individuals with PDAC, high CDA levels in cancer cells correlate with 
increased TAMs, lower cytotoxic T cells and possibly anti-PD-1 resistance. 
In a pan-cancer single-cell atlas, CDAhigh cancer cells match with T cell 
cytotoxicity dysfunction and P2RY6high TAMs. Overall, we suggest CDA and 
P2Y6 as potential targets for cancer immunotherapy.

Immunotherapy, including adoptive T cell transfer, cancer vaccines 
and immune checkpoint blockade (ICB), represents a promising treat-
ment option for individuals with cancer1. For instance, programmed 
cell death protein 1 receptor (PD-1) is an immune checkpoint protein 
expressed on the cell surface of T cells. By binding its cognate ligand 
(PD-L1), PD-1 turns down an uncontrolled T cell response by modulating 
T cell antigen receptor (TCR) signaling. In tumors, cancer cells hijack 
this pathway by overexpressing PD-L1. Hence, the therapeutic potential 
of antibodies to PD-1 has been intensely investigated2.

Despite the high response rates with prolonged survival in subsets 
of individuals with melanoma3, lung4 and renal cancer5, ICB failed to 
show clinical benefit in several other tumors, such as the majority of 
mismatch repair-proficient colorectal cancers6 and pancreatic ductal 
adenocarcinoma (PDAC)7.

PDAC is one of the most aggressive and lethal cancers, with an over-
all 5-year survival rate of 9%. The projected doubling of PDAC incidence 
by 2030 would make it the second leading cause of cancer-related death 
after lung cancer. The majority of individuals present at advanced 
stages with distant organ metastases and/or locoregional extension, 
resulting in less than 20% of individuals being eligible for resection at 
the time of diagnosis8. Most therapies, including ICB, are not effec-
tive7, and the majority of individuals who undergo surgery ultimately 
relapse9. Thus, there is urgent need for treatments that are applicable 
to most individuals with unresectable tumors or that prevent relapse 
after surgery. Several approaches to synergize ICB with pharmacologi-
cal strategies targeting immunosuppressive fibroblasts, myeloid cells 
or regulatory T cells or cancer vaccines (for example, GVAX) geneti-
cally engineered to release immunostimulatory cytokines have been 
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immunosuppressive groups (that is, low enrichment of a macrophage 
signature but higher expression of a CD8+ T cell signature; Fig. 1g).

To validate these findings, we selected two homogeneous sub-
sets of individuals with PDAC out of the above-mentioned cohort 1. 
In the first subset, we included 32 individuals with early-stage PDAC 
(stage I–IIa; N0), whereas in the second subset, we included 31 indi-
viduals with late-stage PDAC (stage IIb–III; N1–N2). To reduce the effect 
of intra tumoral variability, the pathologist used macroblocks with 
cross-sections of the whole surgical specimen to evaluate areas of 
interest and identify margin and center areas. Individuals were dichoto-
mized into CDAlow and CDAhigh cancers (Supplementary Table 1). We 
found a significant correlation between CDA expression (set 1: CDAlow 
n = 14, CDAhigh n = 18; set 2: CDAlow n = 17, CDAhigh n = 14) in malignant 
ductal cells with intratumoral CD68+ tumor-associated macrophage 
(TAM) infiltration or the CD206+ immunosuppressive fraction, both 
at the tumor border and center (Fig. 1h and Extended Data Fig. 2b,c). 
Accordingly, CD8+ T cell infiltration in the tumor center was signifi-
cantly lower in CDAhigh PDAC, but it did not change at the tumor rim 
(Fig. 1h,i and Extended Data Fig. 2d). Vice versa, low CDA expression 
matched with reduced total and CD206+ TAMs but with increased CD8+ 
T cell infiltration (Fig. 1h,i and Extended Data Fig. 2b–d).

Moreover, the analysis of pretreatment bulk RNA-seq data from 
an independent set of seven PDAC tumors22 revealed an association 
between high CDA expression and resistance to ICB (in combination 
with radiotherapy). Conversely, low CDA expression was associated 
with (partial) response (Fig. 1j).

Together, these data reinforce the idea that CDA upregulation may 
play an important role in shaping the immunosuppressive landscape 
of human PDAC and other tumors, possibly mounting immunotherapy 
resistance.

Targeting CDA in PDAC cancer cells promotes anti-PD-1 
efficacy
To assess the possible link between CDA expression in cancer cells 
and ICB resistance in PDAC, we used two mouse PDAC tumor engraft-
ment models: orthotopic KPC tumors and subcutaneous (s.c.) Panc02 
tumors. The Panc02 model is not reflective of human disease because 
it does not carry KRAS activation (occurring in 90% of human PDAC)  
and it presents more mutations and antigens than in human PDAC,  
but it is still resistant to ICB23. Instead, KPC cells, isolated from LSL- 
KrasG12D/+; LSL-Trp53R172H/+; Pdx1:creTg/+ mice, carry the most frequent 
oncogenic features of human PDAC, namely KRAS activation and 
mutant p53 with loss of the wild-type function24.

First, we examined Cda expression in sorted cells from these two 
tumor models. In-house quantitative PCR with reverse transcription 
(RT–qPCR) data showed Cda expression in cancer cells and ECs, but 
not in macrophages or T cells (Extended Data Fig. 2e,f). In contrast to 
humans, some Cda expression was found in cancer-associated fibro-
blasts (Extended Data Fig. 2e,f). Publicly available scRNA-seq data from 
autochthonous tumors in genetically engineered KPC mice11 showed 
the same pattern as observed in KPC tumor allografts (Extended Data 
Fig. 2g). Taken together, CDA is enriched in the cancer epithelial com-
partment in both humans and mice.

At this point, we genetically targeted Cda in mouse pancreatic 
cancer cell lines via CRISPR–Cas9. Cda targeting in Panc02 cells was 
achieved by testing two different single guide RNAs (sgCda 1 or sgCda 
2, the latter referred to as sgCda) and a nontargeting sgRNA (sgNT) 
as a control (Extended Data Fig. 3a,b). KPC cells (that is, FC1245 and 
FC1199) were engineered with one of the two guide RNAs only (namely, 
sgCda; Extended Data Fig. 3f,g,i,j). CDA targeting did not alter in vitro 
proliferation (Extended Data Fig. 3s).

Subsequently, sgCda or sgNT Panc02 cells were injected s.c., while 
KPC FC1245 and FC1199 cells were inoculated orthotopically in C57BL/6 
mice and treated with IgG or anti-PD-1. CDA targeting in Panc02 cancer 
cells resulted in decreased tumor growth and weight and complete 

proposed in mouse models or have been tested in the clinic10–14. In this 
context, tumor metabolism can compromise the function and fate of 
tumor-infiltrating immune cells and favor immunological tolerance15.

Cytidine deaminase (CDA) is an evolutionarily conserved enzyme 
of the pyrimidine salvage pathway responsible for the hydrolytic deami-
nation of free cytidine and deoxycytidine to uridine and deoxyuridine, 
respectively. In some cancer cell lines, CDA protects newly synthesized 
DNA from incorporating epigenetically modified forms of cytidine16. 
Although CDA deaminates and inactivates cytidine analogs used as 
chemotherapeutic agents in cancer treatment (that is, gemcitabine, 
cytosine arabinoside and 5-azacytidine), thus playing a role in chem-
oresistance17–19, the possible contribution of CDA to the extracellular 
nucleotide pool and immunotherapy resistance has never been studied.

Results
CDA in cancer cells is associated with ICB resistance
To identify metabolic genes involved in immunotherapy resistance, 
we performed a meta-analysis on in-house-generated mouse bulk 
RNA-sequencing (RNA-seq) datasets and three publicly available pre-
treatment transcriptomic datasets of tumors responsive and resistant 
to ICB, such as anti-CTLA-4 and anti-PD-1 (refs. 3,5,20; Extended Data 
Fig. 1a). Specifically, we first performed differential analysis between 
responsive and nonresponsive tumors on each dataset separately. We 
then ranked the genes by fold change and combined the rank numbers 
by calculating their rank product (Extended Data Fig. 1b). Finally, we 
filtered the ranked list for metabolic genes and calculated statistics by 
combining one-tailed P values across studies using Fisher’s method20. 
From the top ten ranked candidates, we focused on CDA because noth-
ing is known on pyrimidine metabolism in cancer immunotherapy 
(Fig. 1a and Extended Data Fig. 1b).

Of all the tumor types included in the meta-analysis, we focused 
on PDAC for the medical needs related to this aggressive and refrac-
tory tumor. Using the Xena PanCAN-GTex platform (and selecting for  
The Cancer Genome Atlas (TCGA) bulk RNA-seq datasets only), CDA 
expression was strongly upregulated in pancreatic tumor versus 
normal tissue (Fig. 1b). This finding was corroborated by immu-
nohistochemistry for CDA in an independent cohort of 63 human 
treatment-naive PDAC samples (referred to as cohort 1, stage I–III; 
N0–N2; Supplementary Table 1), revealing variable but selective expres-
sion of CDA in cancer cells but not in adjacent nontumor tissue (Fig. 1c). 
Furthermore, CDA expression was also significantly upregulated in 
colon, gastric and esophageal cancers compared to in their normal 
counterparts (Extended Data Fig. 2a).

Closer examination of the tumor microenvironment (TME) using 
a human PDAC publicly available single-cell RNA-seq (scRNA-seq) data-
set21 revealed CDA expression mainly in cancer cells and endothelial 
cells (ECs) with low expression in macrophages. The normal pancreatic 
epithelium (both acinar and ductal cells), fibroblasts and other immune 
cells, such as T, B and natural killer (NK) cells, showed no detectable  
CDA expression (Fig. 1d). However, data validation by coimmuno-
stainings of nine PDAC sections randomly selected from the previous  
cohort 1 confirmed the histopathological observation that, at the 
protein level, CDA was expressed in neoplastic ducts, but not in  
macrophages or ECs (Fig. 1e,f).

Together, CDA induction in cancer cells and its correlation with ICB 
resistance suggest its possible role in hampering antitumor responses 
and immunotherapy efficacy.

CDA in individuals with PDAC correlates with 
immunosuppression
By preselecting PDAC tumors from the TCGA PDAC cohort according 
to their highly immunosuppressive/low immunogenic landscape pro-
file (that is, PDAC tumors showing high enrichment of a macrophage 
signature but decreased expression of a CD8+ T cell signature), we 
observed that CDA expression was higher in this group than in the less 
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Fig. 1 | CDA is associated with resistance to immunotherapy. a, Meta-analysis 
on four datasets. Red indicates genes with adjusted P values of <1 × 10–3; CDA: 
9 of 1,321; adjusted P value of <1 × 10–4. b, CDA expression in pancreatic cancer 
(n = 183) and normal pancreatic tissues (n = 167). c, Representative image of CDA 
staining (purple) in tumor (right ellipse) and adjacent tissue (left ellipse) of an 
individual with PDAC (cohort 1, n = 63); scale bar, 100 µm. d, UMAP representing 
CDA expression in different cell populations of pancreatic tissue from treatment-
naive individuals with PDAC (n = 24). The number of cells analyzed is 83,960; 
epi, epithelial cells; Fibro., fibroblasts. e,f, Representative micrographs (e) 
and related quantification (percentage of colocalization; f) of CDA (green) 
with cancer cells; n = 9 out of cohort 1; scale bar, 50 µm. g, Violin plot of CDA 
expression in macrophagehighCD8+ T celllow (n = 64) versus macrophagelowCD8+ 
T cellhigh (n = 31) individuals with PDAC in TCGA. h, Histological analysis of 
treatment-naive, resectable PDAC tumors (out of cohort 1; stage I–IIa; N0). Violin 

plots showing quantification of total CD68+ (left), immunosuppressive CD206+ 
TAMs (middle) and cytotoxic T cells (CD8+; right) at the tumor border or center 
(CDAhigh n = 18 individuals with PDAC; CDAlow n = 14 individuals with PDAC); 
5HPF, five high-power fields. i, Representative images of cytotoxic T cell (CD8; 
brown) infiltration in the tumor core (low magnification on the left and a zoom 
on the right) of an individual with PDAC (cohort 1, n = 63); scale bars, 10 µm (left) 
and 5 µm (right). j, Dot plot of CDA and PDCD1 expression in PDAC tumors from 
individuals before three cycles of ICB (combined with radiation on the second 
cycle). Mean expression is shown as color and is standard scaled (binarized), 
whereas dot size represents the fraction of samples with expression (Response 
n = 2; NoResponse n = 5). In b–d and f–j, n represents the number of individuals. 
Data were analyzed by unpaired, two-tailed Student’s t-tests (b, g and h), one-
way analysis of variance (ANOVA) with Tukey’s multiple comparison test (f) and 
Fisher’s combined probability test (one sided; a). Data are shown as mean ± s.e.m.
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Fig. 2 | Targeting CDA improves anti-PD-1 therapy efficacy. a, Growth of  
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control IgG (sgNT (IgG) n = 7, sgNT (anti-PD-1) n = 7, sgCda (IgG) n = 8, sgCda  
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b, Ultrasound-guided longitudinal measurements of sgNT and sgCda orthotopic 
KPC FC1245 tumors treated with anti-PD-1 or control IgG (sgNT (IgG) n = 7, sgNT 
(anti-PD-1) n = 7, sgCda (IgG) n = 7, sgCda (anti-PD-1) n = 7). c, Representative 
images (ultrasound) at day 6 and day 22 after cancer cell injection of sgNT and 
sgCda KPC FC1245 tumors. d, Weight of KPC FC1245 sgNT and sgCda tumors at 
end stage treated with anti-PD-1 or control IgG (sgNT (IgG) n = 7, sgNT (anti-PD-1) 
n = 6, sgCda (IgG) n = 7, sgCda (anti-PD-1) n = 7). e, Quantification of metastatic 
mesenteric lymph nodes in sgNT and sgCda KPC FC1245 tumor-bearing mice 
treated with anti-PD-1 or control IgG (sgNT (IgG) n = 8, sgNT (anti-PD-1) n = 7, 
sgCda (IgG) n = 7, sgCda (anti-PD-1) n = 8). Treatment regimen is indicated in b by 
the black arrowheads. f, Kaplan–Meier curves of mice bearing tumors derived 
from sgNT and sgCda KPC FC1245 clones treated with anti-PD-1 or control IgG 
(sgNT (IgG) n = 15, sgNT (anti-PD-1) n = 15, sgCda clones (IgG) n = 14, sgCda 
clones (anti-PD-1) n = 17). Data are representative of a pool of three independent 
experiments; OS, overall survival. g, Weight of control (EV in sgCda) and Cda 

knock-in (Cda KI in sgCda) tumors treated with anti-PD-1 or control IgG.  
h, Quantification of metastatic mesenteric lymph nodes in control and Cda 
knock-in tumor-bearing mice treated with anti-PD-1 or control IgG (in g–h, EV 
(IgG) n = 7, EV (anti-PD-1) n = 7, Cda KI (IgG) n = 6, Cda KI (anti-PD-1) n = 8). Data are 
representative of a pool of two independent experiments. i, Ultrasound-guided 
longitudinal measurements of orthotopic KPC FC1245 tumors treated with CDZ 
or vehicle (VHL) and anti-PD-1 or control IgG (vehicle (IgG) n = 8, VHL (anti-PD-1) 
n = 8, CDZ (IgG) n = 8, CDZ (anti-PD-1) n = 9). Treatment regimen is indicated 
by the black arrowheads. j, Weight of sgNT and sgCda KPC FC1245 tumors 
treated with CDZ or vehicle and anti-PD-1 or IgG. k, Quantification of metastatic 
mesenteric lymph nodes in CDZ- or vehicle-treated sgNT and sgCda KPC FC1245 
tumor-bearing mice in combination with anti-PD-1 or IgG (in j–k, vehicle sgNT 
(IgG) n = 5, vehicle sgNT (anti-PD-1) n = 14, CDZ sgNT (IgG) n = 9, CDZ sgNT (anti-
PD-1) n = 5, vehicle sgCda (IgG) n = 8, CDZ sgCda (anti-PD-1) n = 5). In a, b and d–k, 
n represents biological replicates. Data were analyzed by by two-way repeated 
measures ANOVA (a, b and i), two-way ANOVA with Tukey’s multiple comparison 
test (d, e, g, h, j and k) or log-rank hypothesis test (Mantel–Cox test; f). Data are 
shown as mean ± s.e.m.
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regression following anti-PD-1 treatment compared to resistant con-
trol (sgNT) tumors (Fig. 2a and Extended Data Fig. 3c–e). By contrast, 
longitudinal kinetics via ultrasound or end-stage analysis of orthotopi-
cally engrafted KPC FC1245 tumors showed that sgCda did not achieve 
any tumor growth inhibition (Fig. 2b–d and Extended Data Fig. 3h). 
However, although control (sgNT) tumors displayed no to very little 
response to anti-PD-1 treatment, mice engrafted with sgCda cancer cells 
displayed a tumor reduction of 40% to 70% compared to IgG-treated 
sgNT controls (Fig. 2b–d and Extended Data Fig. 3h). Furthermore, 
mesenteric lymph node metastases (evaluated macroscopically as in 
Mazzone et al. 25 and Casazza et al.26) were very few in the sgCda plus 
anti-PD-1 condition (Fig. 2e and Extended Data Fig. 3h). Consistently, 
genetic inhibition of Cda significantly improved the survival rate of 
KPC FC1245 tumor-bearing mice after anti-PD-1 treatment, whereas the 
three other conditions were unchanged (Fig. 2f), supporting the idea 
that CDA targeting overcomes anti-PD-1 resistance. Similar findings 
were observed by using the KPC FC1199 clone (Extended Data Fig. 3k,l). 
Of note, the in vivo levels of Pdcd1 (encoding PD-1) or Cd274 (encoding 
the PD-1 ligand PD-L1), both in vivo and in cultured cancer cells, were 
not altered by CDA depletion (Extended Data Fig. 3m–o).

We then reintroduced a cDNA encoding CDA in sgCda KPC 
FC1245 cells and injected them orthotopically (Extended Data Fig. 3p). 
Re-expression of CDA re-established anti-PD-1 resistance, as suggested 
by the increase in tumor weight and mesenteric lymph node metastases 
to the levels observed in IgG-treated groups (Fig. 2g,h). This experiment 
excludes off-target effects and proves that tumor regression is not 
linked to neoantigen formation. Mutational burden in sgNT and sgCda 
cancer cells corroborated this conclusion (Extended Data Fig. 3q).

To determine whether pharmacological blockade of CDA could be 
exploited therapeutically, we used the well-known CDA inhibitor ceda-
zuridine (CDZ), which is clinically used in combination with decitabine 
in myeloid malignancies27,28. When administered orally to KPC FC1245 
tumor-bearing mice in combination with IgG or anti-PD-1, CDZ did 
not cause overt toxicity (Extended Data Fig. 3r). Combined CDZ and 
anti-PD-1 therapy decreased tumor growth (as assessed longitudinally 
by ultrasound), end-stage tumor weight and mesenteric lymph node 
metastases (Fig. 2i–k). We did not observe any additional effect of CDZ 
when treating sgCda tumors, suggesting that the phenotype is due to 
CDA inhibition in cancer cells only (Fig. 2j,k).

Thus, both genetic and pharmacological CDA inhibition in PDAC 
models overcome immunotherapy resistance.

Targeting CDA in PDAC cancer cells alters the TME
Histological analysis revealed that in control (sgNT) s.c. Panc02 tumors, 
cytotoxic CD8+ T cells grouped at the tumor border, whereas CD8+ 
T cells were missing in the tumor center, disclosing the inability of CD8+ 
T cells to invade the tumor. However, intratumoral CD8+ T cell infiltra-
tion was significantly increased in CDA-targeted tumors (Fig. 3a,b). 
Flow cytometry analysis confirmed the increased infiltration of total 
and activated CD8+ T cells in IgG-treated sgCda Panc02 tumors (Fig. 3c). 
Conversely, both total and immunosuppressive CD206+ macrophages 
were diminished in sgCda Panc02 tumors (Fig. 3d,e and Extended Data 
Fig. 4a). No changes were observed in CD4+ or regulatory T cells, neu-
trophils, NK cells or dendritic cells (DCs; Extended Data Fig. 4b,c). The 
effect of combined CDA targeting and anti-PD-1 could not be analyzed 
due to tumor regression.

In the orthotopic KPC model, CDA targeting alone (IgG group) 
did not alter the numbers of total or activated CD8+ T cells (Fig. 3f), 
which were, however, higher after anti-PD-1 treatment than in anti-PD-
1-treated sgNT tumors. CD4+ T cells were, in general, unaffected 
(Fig. 3f). By contrast, total and CD206+ TAM infiltration was reduced 
by CDA depletion, and anti-PD-1 treatment did not change this effect 
(Fig. 3g).

Thus, CDA inhibition in cancer cells breaks immunosuppression 
and enables T cell response to anti-PD-1.

CDA contribution to anti-PD-1 resistance in other tumor types
We then extended our findings to other tumor types included in the 
initial meta-analysis. We chose the orthotopic YUMM1.7 melanoma 
cell line because it is anti-PD-1 resistant and presents genetic altera-
tions seen in a large subset of human melanomas (BrafV600E/+; Pten−/−;  
Cdkn2−/−)29. CDA depletion in combination with anti-PD-1 treatment 
reduced tumor growth (Fig. 4a and Extended Data Fig. 4d,e). More-
over, CDA targeting was sufficient to reduce both total and CD206+ 
TAM infiltration (Fig. 4b), whereas its combination with anti-PD-1 
treatment only enhanced CD8+ T cell activation (Fig. 4c). In vitro pro-
liferation of sgNT and sgCda YUMM1.7 cells did not differ (Extended 
Data Fig. 4f).

We also assessed whether CDA overexpression could establish ICB 
resistance. We picked the anti-PD-1-responsive colorectal cancer model 
(MC38) included in our meta-analysis that expresses low levels of Cda 
(Extended Data Fig. 4g). Cda overexpression in MC38 cells (Extended 
Data Fig. 4h,i) rendered the tumor more aggressive and resistant to 
anti-PD-1 therapy (Fig. 4d,e) as a result of impaired induction of a T cell 
response following anti-PD-1 administration. Although empty vector 
(EV) control MC38 tumors showed increased levels of total and early 
activated (CD69+) CD8+ T cells following anti-PD-1 treatment, CDA 
overexpression completely abrogated this CD8+ T cell response to 
anti-PD-1 therapy (Fig. 4f).

Overall, CDA induction in cancer cells mediates anti-PD-1 resist-
ance in different tumor types, such as PDAC, melanoma and colorectal 
cancer.

CDA targeting engages the immune system against the tumor
Based on the modified immune landscape after tweaking CDA  
expression in cancer cells and comparable tumor growth of sgNT 
and sgCda Panc02 cancer cells in immunodeficient (nude) mice 
(Extended Data Fig. 4j,k), we tested the contribution of CD8+ T cells and  
macrophages after CDA targeting. To this end, we performed CD8+ 
T cell depletion and macrophage adoptive transfer experiments, 
respectively.

First, we depleted CD8+ T cells in sgNT and sgCda KPC FC1245 
tumor-bearing mice all treated with anti-PD-1 therapy (Extended Data 
Fig. 4l). CD8+ T cell depletion rescued the growth of sgCda tumors 
to the level of control (sgNT) tumors; in mice treated with depleting 
anti-CD8, sgNT tumors were slightly bigger than their counterparts in 
nondepleted mice (Fig. 4g).

We then co-injected TAM-like macrophages (herein TAMs-L, which are  
bone marrow-derived macrophages (BMDMs) conditioned for 18 h 
with KPC FC1245 tumor-conditioned medium30) with sgNT or sgCda 
KPC FC1245 cells, as described previously31. Nine days after ortho-
topic injections, mice were treated with anti-PD-1. Adoptive transfer of 
TAMs-L in sgCda tumors was sufficient to abolish their growth defect, 
whereas no changes were observed after TAMs-L co-injection in sgNT 
tumors (Fig. 4h). Again, CDA depletion increased cytotoxic CD8+ T cell 
infiltration at the core without affecting their abundance at the tumor 
rim. TAMs-L co-injection completely abrogated this effect, leading 
to a reduction of cytotoxic CD8+ T cells in the tumor core (Fig. 4i). 
These data suggest that CDA-depleted cancer cells somehow lose 
their capacity to recruit macrophages and sustain their immunosup-
pressive phenotype.

Killing of ovalbumin (OVA)-expressing cancer cells by antigen- 
specific CD8+ T (OT-I) cells, major histocompatibility complex class I 
(MHC class I) exposed to the cell membrane and antigen presentation 
in OVA-expressing cancer cells (both at baseline and after interferon-γ 
(IFNγ) stimulation) were all not affected by Cda deletion (Extended 
Data Fig. 4m–o). However, in the presence of BMDMs and OVA+ sgCda 
cancer cells, OT-I T cells were activated more efficiently than when 
added to cocultures of BMDMs and OVA+ sgNT cancer cells. By contrast, 
coculture of sgNT or sgCda cancer cells only with OT-I T cells did not 
change their activation (Fig. 4j).
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These data argue that CDA depletion in cancer cells sensitizes 
tumors to immunotherapy, possibly by defeating immunosuppres-
sive TAMs and imposing their switch toward an immunostimulatory 
phenotype.

CDA targeting limits the release of uracil nucleotides
By using a supraphysiological concentration of [13C9,15N3]-labeled cyti-
dine (that is, 100 µM), we observed a decrease in intracellular uridine 
levels, which was mirrored by the accumulation of intracellular cytidine 
in sgCda versus sgNT cells (both KPC and Panc02; Fig. 5a,b and Extended 
Data Fig. 5a,b). In line with a reduced deamination of cytidine into uri-
dine, intracellular abundance of [13C9,15N3]cytidine remained higher 
in sgCda KPC cells than in CDA-proficient control cells (Fig. 5c), with a 
concomitant reduction of uridine production (Fig. 5d). Consistent with 

the decrease in intracellular uridine, sgCda KPC FC1245 cells showed 
reduced intracellular levels of uracil nucleotides (UMP, UDP and UTP) 
compared to sgNT cells (Fig. 5e). The fraction of cytidine contributing 
to the uracil nucleotide pool is likely not reflecting physiology because 
here a supraphysiological cytidine concentration has been added to 
the culture medium. However, although the relative contribution of 
extracellular cytidine to the uracil nucleotide pool will depend on the 
concentration of cytidine used and the amount of extracellular uridine 
present, our labeling experiment highlights how CDA could take part 
in the generation of this pool. This difference in uracil nucleotides in 
sgCda versus sgNT KPC FC1245 cells did not affect DNA or RNA synthe-
sis (Extended Data Fig. 5c). No major changes in adenine and cytosine 
nucleotides (that is, AMP, ADP and ATP and CMP, CDP and CTP, respec-
tively) or in UDP-hexose (Extended Data Fig. 5d–f) were observed. 
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Fig. 3 | Targeting CDA skews TAMs toward a T cell stimulatory phenotype.  
a–c, T cell immune cell landscape in sgNT and sgCda (IgG-treated) s.c. Panc02 
tumors. Representative micrographs of cytotoxic CD8+ T cells of sgNT and 
sgCda Panc02 tumors (center, top; border, bottom; a) and related histological 
quantification are shown (b; sgNT (center) n = 7, sgNT (border) n = 7, sgCda 
(center) n = 6, sgCda (border) n = 6). c, Flow cytometric quantification of 
cytotoxic T cells (CD8+), CD8+:CD4+ T cell ratio and activated cytotoxic T cells 
(CD8+CD69+ and CD8+IFNγ+) in sgNT and sgCda (IgG-treated) Panc02 tumors 
(CD8+IFNγ+, sgNT n = 5 and sgCda n = 5; all others, sgNT n = 6 and sgCda n = 5); 
scale bars, 50 µm (top) and 10 µm (bottom). d,e, Macrophage immune landscape 
in sgNT and sgCda (IgG-treated) s.c. Panc02 tumors. Representative micrographs 
(d) and related histological quantification (e) of total TAM infiltration (left; 
percentage of F4/80+ cells out of total area), CD206+ TAM infiltration (middle; 
percentage of F4/80+CD206+ cells out of total area) and CD206+ TAM polarization 
(right; F4/80+CD206+ cells out of F4/80+ area) in sgNT and sgCda (IgG-treated) 
Panc02 tumors (center and border) are shown (sgNT (center) n = 5, sgNT (border) 

n = 5, sgCda (center) n = 5, sgCda (border) n = 5); scale bar, 50 µm. f, T cell 
immune cell landscape in sgNT and sgCda orthotopic KPC FC1245 tumors. Flow 
cytometric quantification of cytotoxic T cells (left; CD8+), helper T cells (middle; 
CD4+) and activated T cells (right; CD8+IFNγ+) in sgNT and sgCda orthotopic 
KPC tumors treated with anti-PD-1 or control IgG (sgNT (IgG) n = 7, sgNT (anti-
PD-1) n = 7, sgCda (IgG) n = 7, sgCda (anti-PD-1) n = 7). g, Macrophage immune 
landscape in sgNT and sgCda orthotopic KPC FC1245 tumors. Histological 
quantification of total TAM infiltration (left; percentage of F4/80+ cells out of 
total area) and CD206+ TAM infiltration (right; percentage of F4/80+CD206+ 
cells out of total area) in sgNT and sgCda orthotopic KPC tumors treated with 
anti-PD-1 or control IgG (sgNT (IgG) n = 4, sgNT (anti-PD-1) n = 4, sgCda (IgG) n = 4, 
sgCda (anti-PD-1) n = 4). In b and c and e–g, n represents biological replicates. 
Data were analyzed by multiple unpaired, two-tailed Student’s t-tests (b, c and 
e), two-way ANOVA with Tukey’s multiple comparison test (f and g) or two-way 
repeated measures ANOVA (h). Data are shown as mean ± s.e.m.
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Also, no changes were observed in [13C5,15N2]glutamine contribution 
to uracil-containing nucleotides after CDA depletion, suggesting that 
the de novo pyrimidine nucleotide synthesis rate was not affected 
(Extended Data Fig. 5g). We also confirmed a reduction in intracellular 
uracil nucleotide levels in sgCda Panc02 cells, without any differences 
in adenine and cytosine nucleotides or in UDP-hexose (Extended Data 
Fig. 5h–j). In general, cytidine (that is, the substrate of CDA) was found 
in mouse serum (that is, ~1 µM; Extended Data Fig. 5k) and in the tumor 
interstitial fluid (TIF; that is, ~10 µM; Fig. 5f; as previously reported32) 

and also in vitro in absolute fetal bovine serum (FBS) and in the culture 
medium of both macrophages and dying KPC FC1245 cells (Extended 
Data Fig. 5k). Liquid chromatography–mass spectrometry (LC–MS) 
analysis of TIFs showed that more cytidine and less uridine was found 
in sgCda tumors than in sgNT tumors (Fig. 5f). Glucose and glutamine 
levels were the same (Extended Data Fig. 5l).

Because uracil nucleotides are important signaling molecules that 
activate G-protein-coupled membrane receptors of the P2Y family33, 
we hypothesized that the release of UTP and UDP by cancer cells is a 
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Fig. 4 | Targeting CDA overcomes anti-PD-1 resistance by shaping the TME. 
a–c, Tumor volume (a), histological quantification of total TAM infiltration 
(percentage of F4/80+ cells out of total area) and CD206+ TAM infiltration 
(percentage of F4/80+CD206+ cells out of total area; b) and flow cytometric 
quantification of activated cytotoxic CD8+ T cells (mean fluorescence intensity 
(MFI) IFNγ) in sgNT and sgCda orthotopic YUMM1.7 tumors treated with anti-
PD-1 or control IgG (c; sgNT (IgG) n = 5, sgNT (anti-PD-1) n = 5, sgCda (IgG) n = 5, 
sgCda (anti-PD-1) n = 6 (a); sgNT (IgG) n = 5, sgNT (anti-PD-1) n = 5, sgCda (IgG) 
n = 6, sgCda (anti-PD-1) n = 5 (b); sgNT (IgG) n = 6, sgNT (anti-PD-1) n = 5, sgCda 
(IgG) n = 5, sgCda (anti-PD-1) n = 6 (c)). Treatment regimen is indicated in a by  
the black arrowheads. d,e, Volume (d) and weight of MC38 tumors over-
expressing CDA (CDA O.E.) or their control (EV) treated with anti-PD-1 or  
control IgG (e). f, Flow cytometric quantification of intratumoral helper T cells  
(CD4+), cytotoxic T cells (CD8+), early activated T cells (CD8+CD69+) and 
CD8+:CD4+ T cell ratio (IgG n = 5, CDA O.E. (anti-PD-1) n = 6, EV (IgG) n = 4–7, EV 
(anti-PD-1) n = 5–9). Treatment regimen is indicated in d by the black arrowheads. 
g, Weight of sgNT and sgCda orthotopic KPC FC1245 tumors in mice treated with 

IgG or CD8-depleting antibody. All mice were treated with anti-PD-1 (sgNT (IgG) 
n = 13, sgNT (anti-CD8) n = 5, sgCda (IgG) n = 12, sgCda (anti-CD8) n = 6). Data  
are representative of a pool of two independent experiments. h, Weight of  
sgNT and sgCda orthotopic KPC FC1245 tumors resulting from cancer cells 
implanted alone or with TAMs-L (sgNT (–TAMs-L) n = 9, sgNT (+TAMs-L) n = 18, 
sgCda (–TAMs-L) n = 11, sgCda (+TAMs-L) n = 15). Data are representative of a  
pool of two independent experiments. i, Histological quantification of cytotoxic 
CD8+ T cells (center and border; sgNT (–TAMs-L) n = 8, sgNT (+TAMs-L) n = 9, sgCda 
(–TAMs-L) n = 8, sgCda (+TAMs-L) n = 7). All mice were treated with anti-PD-1. j, Flow 
cytometric quantification of activated (GZMB+ and INFγ+) and proliferating (Ki67+) 
OT-I CD8+ T cells in coculture with OVA-expressing sgNT or sgCda Panc02 cells with 
or without BMDMs (Mφ; n = 3). In a–i, n represents biological replicates, whereas 
in j, n represents independently collected cell seedings. Data were analyzed by 
two-way ANOVA with Tukey’s multiple comparison test (b, c, g, h and j), two-way 
repeated measures ANOVA (a and d), one-way ANOVA with Tukey’s multiple 
comparison test (e and f) or two-way ANOVA with a Sidak’s multiple comparison 
test (i). Data are shown as mean ± s.e.m.
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determinant factor in CDA-dependent resistance to anti-PD-1 ther-
apy. First, we measured UDP and UTP levels in the extracellular milieu  
of sgCda and sgNT KPC FC1245 tumors. CDA depletion resulted  
in reduced UDP (and UTP) in the TIF (Fig. 5g). By using a protocol  
to assess extracellular nucleotide release in response to stress  
conditions34, we found that UDP (but not ATP) was also decreased  
in the culture medium of sgCda versus sgNT cancer cells (Fig. 5h  
and Extended Data Fig. 5m).

These results suggest that, in cancer cells, CDA is engaged in a 
pathway leading to the synthesis and release of uracil nucleotides.

CDA-expressing cancer cells recruit P2Y6
+ macrophages

P2Y2, P2Y4, P2Y6 and P2Y14 of the P2Y receptor family are pyrimidine- 
selective receptors that can be activated by UDP, UTP or, in the case 

of P2Y14, UDP-glucose35–37. Analysis of publicly available human 
PDAC scRNA-seq data21 revealed that P2RY2 was weakly expressed in 
tumor epithelial cells and ECs, P2RY4 was not detectable, P2RY6 was 
strongly expressed in macrophages and ECs, and P2YR14 expression 
was restricted to fibroblasts, T and B cells and a small subset of mac-
rophages (Fig. 6a). Uniform manifold approximation and projection 
(UMAP) of different myeloid cell/macrophage subclusters showed 
that P2RY6 expression is the most widespread among the different 
macrophage clusters and is completely absent in MRC1– (CD206–) pro-
inflammatory macrophages (cluster 3; Fig. 6b). Conversely, P2RY14 
expression was mainly detected in monocyte-derived DC1 (cluster 7) 
and DC3 (cluster 4) only (Fig. 6b). Dot plots of P2RY2, P2RY6 and P2RY14 
expression in subclustered myeloid cells/macrophages revealed the 
strongest expression for P2RY6 (Fig. 6b). Comparable results were 
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tumors (sgNT n = 10 and sgCda n = 9). h, Extracellular levels of UDP in the culture 
medium of sgNT and sgCda KPC FC1245 cells (sgNT n = 3 and sgCda n = 4).  
In a–e and h, n represents independently collected cell seedings. In f and g,  
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two-tailed Student’s t-tests (e). Data are shown as mean ± s.e.m.
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found in TAMs from different mouse tumor types30,38 and in publicly 
available scRNA-seq data from autochthonous tumors in KPC mice11,  
showing a strong expression of P2ry6 and weak expression of  
P2ry14 and P2ry2 in macrophages (Extended Data Fig. 6a,b).

Furthermore, flow cytometric analysis of tumor-infiltrating 
CD45+ immune cells in samples from individuals with PDAC and in 
both KPC FC1245 and Panc02 tumors displayed P2Y6 expression in 
TAMs (mostly in the CD206+ subset) and tumor-infiltrating neutrophils 

(TANs; Fig. 6c–e). Nonmyeloid cells and cancer cells in both human and 
mouse PDACs had little to no P2Y6 expression (Fig. 6c–e and Extended 
Data Fig. 6c).

P2Y6 is a high-affinity receptor for UDP, and it is weakly responsive 
to UTP33,39. Once released or leaked in the extracellular milieu40, UTP 
is converted to UDP by ectonucleotidases. In both human and mouse 
PDAC scRNA-seq datasets, ectonucleotidases (for example, ENTPD1, 
ENTPD2 and ENTPD3) were found to be abundantly expressed in ECs, 
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(n = 3–4). i, Concentration–response curves for the peak increase in fluorescence 
ratio in response to UDP or UTP. Solid lines represent best fit with the Hill 
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fibroblasts and immune cells (Extended Data Fig. 7a–c). Therefore, 
released UDP, or UTP-derived UDP, can activate P2Y6.

We then treated BMDMs with 100 µM UDP, based on previous  
studies40,41, and proved the chemotactic potential of UDP; this effect 
was inhibited by the P2Y6 antagonist MRS2578 (ref. 42; Fig. 7a).  
MRS2578 also fully abrogated the UDP-evoked intracellular calcium  
response (Extended Data Fig. 7d). As TAMs (Extended Data Fig. 6a,b),  
BMDMs expressed tenfold more P2ry6 than P2ry14, and P2ry6  
silencing only completely prevented macrophage migration toward 
UDP (Fig. 7b and Extended Data Fig. 7e). We then observed that at 
both RNA and protein levels, P2Y6 expression was the highest in M0 
or M2-like (that is, stimulated with interleukin-4 (IL-4)) BMDMs and 
was decreased in M1-like (that is, stimulated with lipopolysaccha-
ride (LPS) and IFNγ) BMDMs (Fig. 7c,d). The same was true in human 
monocyte-derived macrophages (hMDMs), where M2-like polarization 
(that is, stimulation with IL-4) resulted in higher P2Y6 expression than 
M1-like hMDMs (stimulated with LPS and IFNγ; Fig. 7e), correlating 
with reduced expression of immunostimulatory CD80 and increased  
CD206 levels (Extended Data Fig. 7f). Like IL-4, UDP induced CD206 
expression in BMDMs that was inhibited by MRS2578 (Fig. 7f).

Third, BMDM migration toward sgCda cells was lower than 
toward sgNT cells, and UDP supplementation rescued this defect while 
MRS2578 reduced macrophage migration toward sgNT cancer cells 
(Fig. 7g). Similarly, coculture of sgCda cells with BMDMs resulted in a 
reduced percentage of CD206+ macrophages, which was rescued by 
adding UDP to the medium, whereas P2Y6 inhibition reduced the per-
centage of CD206+ macrophages in cocultures with sgNT cells (Fig. 7h). 
These data argue that cancer cells recruit P2Y6

+ macrophages and 
sustain their immunosuppression activity via UDP (and UTP) release.

Finally, we deleted P2Y6 in the myeloid cell-specific lineage by 
intercrossing P2ry6loxP/loxP mice with LysM-cre mice (herein P2ry6ΔMy and 
the related wild-type control P2ry6WT). P2ry6 levels were again found 
to be much higher in TAMs than in TANs, and deletion of P2ry6 was 
almost complete in sorted TAMs from tumor-bearing P2ry6ΔMy mice 
and less efficient in TANs (Extended Data Fig. 7g). When measuring 
intra cellular calcium release42 at different concentrations of UDP or 
UTP, we observed concentration-dependent calcium responses to both 
UDP and UTP in P2ry6WT but not P2ry6ΔMy BMDMs (Fig. 7i,j).

We then performed in vivo experiments where anti-PD-1 was 
able to decrease orthotopic KPC FC1245 tumor area in P2ry6ΔMy mice 
only (Fig. 8a). Transfer of wild-type macrophages to tumor-bearing 
P2ry6ΔMy mice was sufficient to abrogate the inhibitory effect of myeloid  
cell-specific P2y6 deletion on tumor growth (Fig. 8a), highlighting  
P2Y6 in macrophages as a key regulator of ICB resistance.

We then assessed in vivo whether supplementation with exog-
enous UDP could re-establish resistance to anti-PD-1 therapy in sgCda 
tumors. Indeed, systemic (intraperitoneal (i.p.)) injection of uridine-
5′-O-α,β-methylene-diphosphate (UMP-CP; a hydrolytically stable 
analog of UDP) in anti-PD-1-treated sgCda KPC FC1245 tumor-bearing 
mice restored tumor weight to the same level as observed in anti- 
PD-1-treated sgNT tumor-bearing mice (Fig. 8b). P2ry6 deletion in 
myeloid cells completely abrogated this effect (Fig. 8b).

To corroborate the mechanistic findings in human datasets, we 
aimed to reveal the link between CDA expression and the immune 
landscape in PDAC and many other cancers. A pan-cancer study43 with 
16 scRNA-seq datasets (including 11 different tumor types) highlighted 
an association between high CDA levels in cancer cells and a ‘cold’ 
immune microenvironment (that is, negative correlation with average 
expression of PRF1 or IFNG in CD8+ T cells versus a positive correlation 
with average expression of protumoral P2RY6, CD204, CD163 or MRC1  
in TAMs with respect to average expression of CDA in cancer cells  
across these 16 datasets; Fig. 8c). Likewise, in the PDAC TCGA dataset, 
CDA and P2RY6 were positively correlated (Fig. 8d).

Therefore, CDA induction in cancer cells promotes immunosup-
pression through activation of P2Y6 in TAMs.

Discussion
Here, we show that the pyrimidine salvage pathway enzyme CDA is a lim-
iting factor to replenish the extracellular milieu with uracil nucleotides, 
supporting the recruitment of immunosuppressive TAMs through the 
activation of the UDP receptor P2Y6. This prevents cytotoxic T cell 
infiltration, proliferation and function, which leads to the failure of 
anti-PD-1 treatment.

Although previous approaches have successfully re-educated 
TAMs toward antitumoral functions44, here, we observed that reduc-
ing UDP levels by CDA inhibition mitigates TAM migration and their 
protumoral phenotype but in most cases is insufficient to achieve 
tumor inhibition. When breaking immune suppression, tumors rely on 
immune checkpoints to prevent T cell proliferation and activation45. As 
a result, targeting CDA in cancer cells or inhibiting P2Y6 in macrophages 
renders T cells susceptible to anti-PD-1 therapy. We have carefully 
excluded the possibility that these effects are due to neoantigens 
while, consistent with previous research46, we show that TAMs, and in 
particular P2Y6-expressing TAMs, play a crucial role in establishing a 
T cell-excluded tumor phenotype and contribute to immunotherapy 
resistance (Fig. 8e).

Prior studies have explored CDA’s ability to deactivate nucleoside 
analogs17, and CDA inhibitors have been tested to extend the half-life 
of the deoxycytidine analog and chemotherapeutic drug, namely 
gemcitabine47–50. Our work presents a mechanism by which cancer 
cells use nucleotide metabolism to mount immunosuppression and 
ICB resistance. Combining CDA inhibitors with both gemcitabine and 
anti-PD-1 therapy may have synergic effects, potentiating the cytotoxic 
impact of gemcitabine on cancer cells and tumor immunogenicity51,52 
and enabling the immune system to act against the tumor in response 
to anti-PD-1. However, only a few P2Y6 antagonists have been developed 
and evaluated, primarily in vitro or in mice, on medical conditions 
such as obesity, type 2 diabetes or cardiac fibrosis53–56. Therefore, our 
study suggests the repurposing of both CDA and P2Y6 inhibitors in 
immuno-oncology.

Targeting the pyrimidine salvage pathway reduces the extracel-
lular abundance of uracil-containing nucleotides without disrupting 
nucleic acid synthesis. UTP, a product of this pathway, directly serves 
as a substrate of the RNA polymerase and is indirectly linked to DNA 
synthesis through the production of deoxythymidine triphosphate. 
Moreover, UTP plays a crucial role as an energy carrier, participates 
in carbohydrate metabolism and contributes to the formation of gly-
coproteins and proteoglycans. In addition, a recent study has shown 
that PDAC relies on extracellular uridine uptake in glucose-restricted 
conditions, fueling carbon metabolism (through the liberation of its 
ribose) and contributing also to the pool of uracil nucleotides57. Our 
findings suggest that the pyrimidine salvage pathway complements 
de novo pyrimidine synthesis and extracellular uridine utilization, 
offering an additional source for uridine and uracil nucleotide produc-
tion. Perturbing CDA activity leads to a decrease in the pools of uridine 
and uracil-containing nucleotides, which forces the cell to preserve 
them for its own metabolism.

Extracellularly, nucleotides can trigger immunoregulatory mecha-
nisms that affect chemotaxis, differentiation, immune recognition and 
effector functions of innate and adaptive immune cells58. Although 
the role of purinergic receptors (for example, adenosine receptors) in 
cancers has been largely studied58,59, less is known on pyrimidinergic 
signaling. In particular, the UDP-activated metabotropic receptor P2Y6 
has been implicated in the regulation of myeloid cells, promoting type 
2 functions, hyper-reactivity and immunosuppression in contexts such 
as experimental asthma and dust mite allergy in mice or autoimmune 
Graves’ disease in humans60–62. In cancer, there is limited research on the 
UDP–P2Y6 axis. Only one publication to date has suggested its prometa-
static role by mediating neutrophil propagation in the premetastatic 
niche of melanomas63. In our study, P2Y6 in macrophages establishes 
communication with cancer cells that sustains immunosuppression 
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Fig. 8 | CDA- and UDP-dependent anti-PD-1 resistance is executed by 
macrophages via the P2Y6 receptor. a, Longitudinal measurements of tumor 
area by ultrasound imaging in KPC FC1245 tumor-bearing P2y6WT and P2y6ΔMy 
mice treated with anti-PD-1 or control IgG (P2y6WT (IgG) n = 10, P2y6WT (anti-PD-1) 
n = 10, P2y6ΔMy (IgG) n = 5, P2y6ΔMy (anti-PD-1) n = 7, P2y6ΔMy + TAMs-L (anti-PD-1) 
n = 4). Treatment regimen is indicated by the black arrowheads. b, Weight of 
sgNT and sgCda KPC FC1245 tumors in P2y6WT and P2y6ΔMy mice treated i.p. with 
UMP-CP (10 mg per kg (body weight)) or PBS and cotreated with anti-PD-1 (sgNT 
P2y6WT (PBS) n = 7, sgCda P2y6WT (PBS) n = 7, sgCda P2y6WT (UMP-CP) n = 13, sgCda 
P2y6ΔMy (UMP-CP) n = 14). Data are representative of a pool of two independent 
experiments. c, Correlation between CDA expression in cancer cells (CCs)  
versus IFNG or PRF1 expression in CD8+ T cells or P2RY6, CD163, MSR1 or  
MRC1 expression in macrophages at single-cell resolution in 11 diverse cancer 
types. d, Spearman correlation analysis between P2RY6 and CDA expression  
in individuals with PDAC from TCGA (n = 177); TPM, transcripts per million.  
e, Scheme of the contribution of CDA and P2Y6

+ macrophages to immunotherapy 

resistance. Induction of CDA expression in pancreatic cancer cells contributes to 
the production and release of uracil nucleotides. Released UDP, as well as UTP-
derived UDP, binds with high affinity to the cognate receptor P2Y6 expressed by 
TAMs, therefore fostering their recruitment and immunosuppressive features. 
This ultimately shields the tumor from the entry and activation of cytotoxic 
T cells, a condition that renders the tumor refractory to anti-PD-1 treatment. 
Inhibition of CDA or P2Y6 breaks this cross-talk between cancer cells and TAMs 
by decreasing the amount of UDP in the TME. It follows that tumors are less 
infiltrated by immunosuppressive TAMs, and their phenotype is now more 
immunostimulatory, altogether favoring (instead of preventing) the recruitment 
and activation of cytotoxic T cells in response to anti-PD-1 treatment. Under 
this condition, resistant tumors are sensitized to anti-PD-1 therapy, displaying 
reduced primary growth and metastatic dissemination. In a and b, n represents 
biological replicates. Data were analyzed by two-way repeated measures ANOVA 
(a), two-way ANOVA with a Tukey’s multiple comparison test (b) and two-sided 
Spearman’s test (c). Data are shown as mean ± s.e.m.
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and hinders T cell recruitment. The release of nucleotides (that is, UDP 
and UTP) can occur actively through regulated mechanisms, such as 
exocytosis, channels and transporters, but greatly via nonregulated 
mechanisms, such as cytolysis of damaged or dying cells in response to 
stressors such as hypoxia or cytotoxic agents64,65. Our findings exclude 
the possibility of futile cycles where de novo pyrimidine synthesis 
would contribute to cytidine in the salvage pathway, suggesting that 
exogenous cytidine (derived from the circulation, excreted by mac-
rophages or released by dying cells) is the primary CDA substrate66. Our 
findings argue that when cytidine is in the extracellular environment, 
some of it can be used for uridine synthesis and, eventually, contribute 
to uracil-containing nucleotides. Once outside the cancer cell, UDP 
(and UTP) binds to P2Y6, which we predominantly identified in TAMs 
within PDAC tumors. Disrupting this communication through CDA or 
P2Y6 inhibition leads to the infiltration of effector T cells into the tumor, 
transforming it into a T cell-inflamed or ‘hot’ state, a condition that 
enables the effectiveness of anti-PD-1 treatment. Based on the exist-
ing research on UDP–P2Y6 and its role in neutrophils and metastasis63, 
as well as the expression of P2Y6 in myeloid cells in both human and 
mouse PDAC, we cannot rule out that interfering with this pathway also 
disrupts the immunosuppressive capacity of P2Y6-expressing TANs.

The similarity between the cellular and molecular pathways 
hijacked by a tumor and those involved in tissue repair raises the pos-
sibility of a physiological function of this CDA–UDP–P2Y6 axis. Tissue 
damage might trigger the release of UDP and UTP into the extracellular 
environment64,65, potentially activating an anti-inflammatory program 
mediated by the recruitment of P2Y6-expressing macrophages. This, 
in turn, may halt T cell recruitment and their cytolytic activity while 
facilitating cell debris clearance and tissue repair, functions associated 
with M2-like anti-inflammatory macrophages.

From a clinical perspective, our research argues that combining 
CDA or P2Y6 inhibition with immunotherapy in PDAC could be a prom-
ising approach for treating nonresectable or borderline resectable 
tumors, aiming to reduce the neoplastic mass before surgery. Our 
results in the YUMM1.7 melanoma model also suggest a therapeutic 
option for individuals facing initial or successive resistance to ICB, 
which occurs in about 60% of treated individuals. Moreover, our bio-
informatic analyses in individuals with cancer demonstrate that CDA 
levels are highest in 11 different tumor types with immunosuppressive 
features (that is, high in P2RY6, MRC1 and MSR1 levels in macrophages 
and low in IFNG and PRF levels in CD8+ T cells). These observations 
align strongly with our mechanistic findings in mice. It remains to 
be explored whether CDA or P2Y6 blockade in combination with ICB 
might work in all these tumor types. Because most of our experimental 
design relies on the use of anti-PD-1, more data are warranted to assess if 
these conclusions can be extended to anti-CTLA-4 and other ICB-based 
therapies at large.

Immunotherapy has been recommended as a second-line treat-
ment for mismatch repair-deficient advanced PDAC67. However, there 
have been sporadic cases of partial response to immunotherapy in 
mismatch repair-proficient PDAC68. Our retrospective analysis in a 
published dataset of individuals with PDAC22, together with the ini-
tial meta-analysis in individuals with metastatic melanoma and renal 
cancer3,5,69, suggests that nearly all tumors with high CDA expression 
before treatment will not respond to ICB (anti-PD-1 or anti-CTLA-4 
in melanoma, anti-PD-1 in renal cancer and three cycles of anti-PD-1/
anti-CTLA-4 combined with radiation on cycle two in individuals with 
PDAC). Conversely, low CDA expression in cancer cells identifies a 
subgroup of individuals with PDAC with fewer immunosuppressive 
TAMs and more T cells who might benefit from ICB. Tailored prospec-
tive studies will provide further insights into whether the CDA status of 
the tumor should be considered when selecting individuals with PDAC 
for cancer immunotherapy.

Overall, our research uncovers how cancer cells exploit the 
CDA-mediated pyrimidine salvage pathway to create a TME rich in 

UDP (and UTP). This environment supports the infiltration and immu-
nosuppressive features of P2Y6-expressing TAMs, hampering CD8+ 
T cell recruitment and activation. We provide compelling evidence that 
inhibiting this axis in PDAC, and other cancer types, has the potential 
to enhance immunotherapy.

Methods
Ethics statement
All experimental animal procedures were approved by the Institutional 
Animal Care and Research Advisory Committee of KU Leuven (ECD 
P226/2017 and P060/2021). All human data contained in this study 
were approved by the Ethical Committee of the University Hospitals 
KU Leuven with reference number ML3452 (related to histology and 
flow cytometric analyses). All participants provided informed consent. 
Clinical information is provided in Supplementary Table 1.

Animals
Female mice, 8 to 10 weeks old, were maintained under pathogen-free 
and temperature- and humidity-controled conditions on a 12-h 
light/12-h dark cycle and received normal chow (ssniff R/M-H). Ani-
mals with symptoms of illness, that lost 20% of their initial body 
weight or with s.c./intradermal tumors that were ulcerated or big-
ger than 2,000 mm3 were killed. Therefore, the maximum permit-
ted tumor burden in mouse experiments was not exceeded. C57BL/6 
and NMRI-Foxn1nu mice were purchased from Envigo. OT-I mice were 
purchased from Taconic. The P2ry6 floxed mouse line (P2ry6tm1Jabo; 
MGI:5304911 (ref. 62)) in the C57BL/6 background was kindly provided 
by J. A. Boyce (Harvard Medical School, Boston). P2ry6ΔMy mice were 
generated by intercrossing P2ry6 floxed mice with a LysM-cre deleter 
(B6.129P2-Lyz2tm1(cre)Ifo/J, Jackson Laboratory).

Cell lines
Panc02 cells were provided by B. Wiedenmann (Charité, Berlin) and 
were cultured in DMEM (Gibco) supplemented with 10% FBS (Gibco) 
and 1% penicillin/streptomycin (Pen/Strep; Gibco). KPC FC1245 and 
FC1199 cells, a gift from D. Tuveson (Cold Spring Harbor), were gener-
ated from KrasLSL.G12D/+; Trp53R172H/+; Pdx1-cretg/+ mice and were cultured 
in DMEM supplemented with 10% FBS, 1 mM sodium pyruvate (Gibco) 
and 1% Pen/Strep (Gibco). MC38 cells were obtained from Kerafast and 
were cultured in DMEM supplemented with 10% FBS, 2 mM glutamine 
(Gibco), 0.1 mM nonessential amino acids (Gibco), 1 mM sodium pyru-
vate, 10 mM HEPES (Gibco) and 1% Pen/Strep. CT26 cells were pur-
chased from ATCC and were cultured in RPMI (Gibco) supplemented 
with 10% FBS and 1% Pen/Strep. YUMM1.7 cells were a gift from R. Marais 
(Cancer Research UK, Manchester) (Sigma-Aldrich) and were cultured 
in DMEM/F-12 medium supplemented with 10% FBS and 1% Pen/Strep.

Cells were incubated at 37 °C in a 5% CO2 humidified atmosphere. 
All cell lines were authenticated based on morphological criteria only.

Lentiviral knockdown and overexpression strategies
Panc02, KPC1245, KPC1199 and YUMM1.7 cells were transduced with a 
doxycycline-inducible Cas9 nuclease (Edit-R Inducible Lentiviral Cas9, 
Dharmacom), selected with blasticidin (Bio-Connect) and transduced 
with a vector containing an sgRNA targeting Cda or a control nontar-
geting guide RNA (Supplementary Table 2). A multiplicity of infection 
reaching approximately 30% of transduction was used. Transduced 
cells were then selected with puromycin (2 µg ml−1; Sigma-Aldrich), 
treated for 7 days with doxycycline (2.5 µg ml−1; Sigma-Aldrich) to 
induce Cas9 expression and grown for 7 more days in doxycycline-free 
medium before any functional assays. Single-cell clone isolation and 
expansion were performed by using limiting dilution cloning. A pool 
of six clones was used exclusively for survival analysis in mice, being a 
long-term in vivo experiment.

OVA expression in Panc02 cells and CDA overexpression in sgCda 
KPC FC1245 and MC38 cells were achieved by using a lentiviral vector 
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with the open reading frame under the control of a cytomegalovirus 
promoter. Control cells were transduced with EVs. Transduced cells 
were then selected with puromycin (2 µg ml−1; Sigma-Aldrich).

Silencing and overexpression efficiency was checked by both 
RT–qPCR and western blotting.

RNA extraction, cDNA synthesis and RT–qPCR
RNA was extracted with an RNeasy Minikit (Qiagen), according to 
the manufacturer’s instructions, quantified with a Nanodrop 2000 
(Thermo Scientific) and retrotranscribed into cDNA with a Quanti-
Tect Reverse Transcription kit (Qiagen) or SuperScript III First-Strand 
Synthesis System (Invitrogen), according to manufacturer’s protocol. 
Primer mix and PowerUp SYBR Green mix (Applied Biosystems) or 
TaqMan Fast Universal PCR master mix were prepared according to 
manufacturer’s instructions (Applied Biosystems). Analyses were per-
formed using a QuantStudio 12K Flex Real-Time PCR System (Applied 
Biosystems, v1.4). The primers used are listed in Supplementary Table 2.  
Of note, for Cda, we designed an in-house protocol using primers  
probing the targeting region shared by both gRNAs against Cda.

Protein extraction and immunoblotting
Immunoblotting on whole-cell lysates was performed as previously 
described70. The following antibodies were used: rabbit anti-mouse 
CDA and horseradish peroxidase (HRP)-conjugated anti-β-tubulin 
and appropriate HRP-conjugated secondary antibody. The signal was 
visualized with Enhanced Chemiluminescent reagents (Invitrogen) 
or SuperSignal West Femto Chemiluminescent Substrate (Thermo 
Scientific) with a digital imager (ImageQuant LAS 4000, GE Health 
Care Life Science Technologies).

Cancer cell conditioned medium
In total, 200,000 sgNT or sgCda cells were seeded in 500 µl of complete 
DMEM supplemented with 10% FBS, 1% Pen/Strep and 1 mM sodium 
pyruvate (Gibco) in 24-well plates for 36 h, after which the supernatant 
was collected and filtered using a 0.22-µm filter.

Cell growth analysis
sgNT and sgCda Panc02, KPC1245, KPC1199 and YUMM1.7 cells were 
seeded in six-well plates (5 × 104 cells per 2 ml per well) and incubated 
at 37 °C in a 5% CO2 humidified atmosphere until cells attached (t0) 
or for 24 (t24), 48 (t48) or 72 h (t72). At different time points, cells were 
counted using a hemocytometer. The cell growth rate was defined as 
the number of cell divisions normalized to t0.

RNA and DNA assays
KPC FC1245 sgNT and sgCda cells were seeded in 48-well plates 
(0.5 × 105 cells per 250 µl per well) the day before the experiments, 
which was performed by using an RNA synthesis assay kit (ab228561) 
or a Click-iT EdU Alexa Fluor 647 Flow Cytometry Assay kit (C10634), 
following the manufacturer’s instructions.

Samples were then analyzed using an LSRFortessa (BD Biosciences) 
flow cytometer. Negative controls were used to ensure proper gating 
of positive cells. Data were collected and analyzed with BD FACSDiva 
(v9.0) and FlowJo software (v10.8.1), respectively.

LC–MS
Cancer cells were seeded at a density of 30,000 cells per well in com-
plete DMEM in six-well plates. The day after, the cells and empty wells 
(for background control) were washed with PBS and replenished with 
DMEM containing 10% dialyzed FBS (to remove the naturally present 
cytidine), 1% Pen/Strep, 5.5 mM glucose, 2 mM glutamine, 1% Pen/
Strep and 0.1 mM labeled (13C9 = 98%, 15N3 = 96–98%, Eurisotop) or unla-
beled cytidine (Sigma-Aldrich) for 48 h. Cells were then washed once in 
ice-cold saline solution (9 g l−1 NaCl), covered with 250 µl of precooled 
80% methanol for 2 min, scraped, transferred to fresh vials and stored at 

−80 °C overnight. Samples were then centrifuged at 20,000g for 15 min 
at 4 °C, and the supernatant was used for analysis. The cell pellet was 
dissolved in 100 µl of 200 mM NaOH for 20 min at 95 °C, and the protein 
concentration was determined. Samples that were used to assess the 
de novo pyrimidine nucleotide synthesis rate were prepared by incu-
bating cells with labeled glutamine (13C5 = 99%, 15N2 = 99%, Eurisotop) 
for 24 h and by following the protocol described above.

For LC–MS analysis, 10 µl of sample was loaded, and the metabo-
lites were resolved on a Q Exactive Hybrid Quadrupole-Orbitrap mass 
spectrometer (Thermo Scientific).

Absolute concentrations of uridine, cytidine and both uracil and 
adenine nucleotides were calculated by spiking the internal standard 
into the sample. Absolute concentrations were normalized for pro-
tein content. All raw data are available at Metabolomics Workbench71 
(DATATRACK ID 4162, Study ID ST002791).

Extracellular UDP quantification
Extracellular UDP was measured following an adapted protocol from 
the literature34. Briefly, confluent monolayers of sgNT and sgCda KPC 
FC1245 cells were cultured in DMEM (Gibco, A1443001) supplemented 
with 5.5 mM glucose, 2 mM glutamine, 1% dialyzed FBS (Sigma-Aldrich), 
1% Pen/Strep (Gibco) and 0.1 mM unlabeled cytidine (Sigma-Aldrich) 
for 6 h at 37 °C. Extracellular UDP was detected by using a MicroMolar 
UDP Assay kit (ProFoldin), in accordance with the manufacturer’s 
protocol. UDP levels were measured by detecting fluorescence using 
a microplate reader (Tecan), and a standard curve of UDP was used to 
quantify the concentration.

Extracellular ATP quantification
sgNT and sgCda KPC FC1245 cells were seeded (120,000 cells per well) 
in 1.4 ml of complete DMEM for 48 h at 37 °C. The medium was col-
lected and centrifuged at 16,000g at 4 °C for 15 min. The supernatant 
was collected and stored at −80 °C. ATP was then measured with a 
luminescent ATP Detection Assay kit (Abcam, 113849), in accordance 
with the manufacturer’s protocol. Luminescence was detected using a 
microplate reader (Tecan). An ATP standard curve was used to quantify 
the concentration.

Tumor models
Panc02 (4 × 106), MC38 (1 × 106) and CT26 (2 × 106) cells were injected 
s.c. into the right flank of mice in 200 µl of PBS. YUMM1.7 cells (1 × 106) 
were injected intradermally in 50 µl of PBS. Tumor volumes were meas-
ured at least three times per week. FC1245 (0.4 × 105) or FC1199 cells 
(0.15 × 106; referred to as KPC cells) were injected orthotopically into 
the pancreas (head) in 20 µl of PBS. Alternatively, in the adoptive trans-
fer experiment, 0.4 × 105 KPC FC1245 cells were resuspended together 
with 0.8 × 105 TAMs-L30 and injected orthotopically into the pancreas 
(head) in 20 µl of PBS.

At the indicated time points, mice were randomized and treated 
i.p. with 10 mg per kg (body weight) Ultra-LEAF Purified anti-PD-1 (Bio-
Legend, 96167, RMP1-14), 5 mg per kg (body weight) anti-CD8 (BioXcell) 
or control IgG from rat serum (Sigma-Aldrich). For the UMP-CP experi-
ment, mice were injected i.p. with 10 mg per kg (body weight) UMP-CP 
(BIOLOG, U009-05) daily or control vehicle (PBS) twice daily. Treatment 
started at day 5 after cancer cell injection and continued until day 11 
after injection. In CDZ experiments, mice were treated by oral gavage 
with 30 mg per kg (body weight) CDZ (DC Chemicals, DC20978) or 
vehicle (drinking water) daily starting at day 4 after cancer cell injection 
until the end of the experiment.

Mice were monitored continuously during the experiments. At the 
indicated time points, tumor area was assessed via ultrasound imaging. 
At end stage (20 days after cancer cell injection), tumor weight was 
registered, and samples were collected. Moreover, in the orthotopic 
KPC FC1245 and FC1199 models, metastatic mesenteric lymph nodes 
were assessed.
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Ultrasound
An ultrasound was performed using a Vevo3100 (Vevo Lab 5.7.1) from 
VisualSonics. A transducer with central frequency at 40 MHz, gain at 
30 dB and 13-mm depth was used for imaging the tumors using B Mode 
at 100% transmit power. Mice were anesthetized using 2% isofluorane at 
approximately 2 l min−1, and hair was removed over the abdomen. Body 
temperature was monitored and kept within 37 °C ± 1 °C using a heat 
lamp. Ultrasound gel was used. Acquired images at the indicated time 
points were analyzed using the VisualSonics imaging software pack-
age. Two measurements of the largest diameters of each tumor were 
recorded. To maintain consistency and reliability of the experimental 
data, measurements of mice with prominent scar tissue (growing at the 
surgical site and connected to the pancreatic tumor) were not included.

Tumor-conditioned medium
KPC FC1245 sgNT tumors explanted from wild-type mice were minced 
in 12 ml of DMEM supplemented with 1% Pen/Strep (FBS free) and 
incubated at 37 °C for 72 h. The medium was then filtered, and the 
cell-free supernatant was supplemented with 20 mM HEPES and 2 mM 
l-glutamine and stored at −20 °C.

TIF
Tumor-bearing mice were killed with 75 µl of a 60 mg ml−1 Dolethal 
solution (pentobarbital sodium, Vetoquinol). Subsequently, sgNT and 
sgCda primary tumors were collected, washed with saline and dried 
from liquid excess. Tissues were then placed in a homemade filtered 
centrifugation tube supplemented with a 20-µm nylon mesh filter 
(Repligen) and centrifuged at 400g at 4 °C for 10 min. Between 1 and 
14 µl of TIF was collected and stored on dry ice. TIF volume was used to 
determine the metabolite concentration measured by MS.

MS of TIF
Metabolites were extracted by the addition of 800 µl of MS-grade 
methanol–water buffer (methanol:water 5:3 (vol/vol)) containing 
the internal standards glutaric acid (5 µg ml–1; Sigma-Aldrich, G3407) 
and [13C6]glucose (30 µg ml–1; Cambridge Isotope Laboratories, CLM-
1396), followed by 500 µl of chloroform. Samples were then vortexed 
and centrifuged at 4 °C for 10 min each. The polar (top) phases were 
collected, divided into two equal parts for gas chromatography–MS 
(GC–MS) and LC–MS analysis and dried using a vacuum concentrator. 
The dried metabolite extracts were stored at −80 °C until analysis.

Glucose was analyzed by GC–MS, whereas UDP, UTP, cytidine,  
uridine and glutamine were analyzed by LC–MS. For GC measure-
ments, a standard curve of glucose (Sigma-Aldrich, G7021) was used to  
calculate the concentration of the metabolite in the samples. The 
standard curve was extracted in parallel with the samples.

UDP, UTP, cytidine, uridine and glutamine measurements were 
acquired by LC–MS using a Dionex UltiMate 3000 LC System (Thermo 
Scientific) with a thermal autosampler set at 4 °C coupled to a Q Exactive 
Orbitrap mass spectrometer (Thermo Scientific). Standard curves for 
UDP (Sigma-Aldrich, 94330), UTP ( Jena Bioscience, NU-1024S), cytidine 
(Sigma-Aldrich, C4654), uridine (Sigma-Aldrich, U3003) and glutamine 
(Gibco, 25030-34) were used to calculate the concentration of these 
metabolites in the samples. All raw data are available at Metabolomics 
Workbench71 (DATATRACK ID 4718, Study ID ST003154).

BMDM isolation and polarization
Mouse BMDMs were derived as described previously26,30. For polariza-
tion assays, 2 × 105 Panc02 cancer cells (sgNT or sgCda) were seeded 
48 h before the addition of 4 × 105 BMDMs. At this point, the medium 
was replaced with DMEM, DMEM + 10 nM IL-4, DMEM + 100 µM UDP 
or DMEM + 100 µM UDP + 10 µM MRS2578 (Selleck Chemicals, S2855). 
After 36 h of coculture, polarization was assessed by flow cytometry.

To differentiate BMDMs toward TAMs-L, 7 × 106 BMDMs were 
seeded in treated Petri dishes (Corning 60-mm TC-treated culture dish)  

in DMEM supplemented with 10% FBS, 1% Pen/Strep and 20% tumor- 
conditioned medium for 18 h at 37 °C in a 5% CO2 humidified 
atmosphere.

BMDM electroporation
Silencing of P2ry6 or P2ry14 was achieved by electroporation with 
specific short interfering RNAs (siRNAs). Briefly, 8 × 106 BMDMs  
were resuspended in 500 µl of Opti-MEM and electroporated (250 V, 
950 mF, ∞Ω) with 100 pmol of each of three siRNAs in combination. 
Following 24 h of incubation in DMEM supplemented with 10% FBS,  
1% Pen/Strep and 2 mM glutamine (Gibco) at 37 °C in a 5% CO2  
humidified atmosphere, a migration assay was performed.

Commercially available siRNAs were purchased from ID Technol-
ogy or Invitrogen (scrambled control), and their assay IDs are listed in 
Supplementary Table 2.

BMDM migration assay
For migration assays, 1 × 105 mouse BMDMs were seeded on 8-µm 
polycarbonate membranes (Transwell, Costar) with or without 10 µM 
MRS2578 (Selleck Chemicals, S2855). When indicated, 2 × 105 sgNT 
and sgCda cells were seeded in the bottom chambers 36 h before 
macrophage migration in DMEM supplemented with 2% FBS and 1% 
Pen/Strep. After incubation, 100 µM UDP or 10 µM MRS2578 (Selleck 
Chemicals, S2855) was added to the chamber. After 6 h of incubation, 
the cells were removed from the top of each membrane. The migrated 
cells were fixed in 4% paraformaldehyde and stained with crystal violet 
(2.5 g l−1). Images were acquired with an Olympus BX41 microscope and 
CellSense imaging software (v.1.18).

Fluorimetric intracellular calcium measurements in BMDMs
Mouse BMDMs from P2ry6WT and P2ry6ΔMy animals were seeded in 
96-well plates with a clear film bottom (Greiner, 655090) at 1 × 105 cells 
per well and cultured overnight at 37 °C in DMEM supplemented with 
10% FBS and 1% Pen/Strep. Cells were then incubated with the ratiometric 
calcium-sensitive dye Fura-2 AM (1 µM; Biotium, 50033) and 0.06% Plu-
ronic F-127 (Invitrogen, P3000MP) for 30 min, after which the medium 
was aspirated and replaced by assay buffer containing 150 mM NaCl, 
6 mM KCl, 2 mM CaCl2, 1.5 mM MgCl2 and 10 mM HEPES (pH 7.4 with 
NaOH). Plates were then transferred to a fluorescence plate reader 
(Molecular Devices, FlexStation 3). Changes in intracellular calcium after 
stimulation with different concentrations of UDP or UTP were quantified 
as Δrationormalized, which was calculated as the increase in the ratio of the 
Fura-2 fluorescence signal after excitation at 340 and 380 nm (F340/F380) 
normalized to the response to the ionophore ionomycin (2 µM; Thermo 
Scientific, I24222). Where indicated, cells were preincubated for 30 min 
with MRS2578 (10 µM; Selleck Chemicals, S2855) before the Fura-2 assay.

PBMC isolation, MDM differentiation and polarization
Human buffy coats were obtained from healthy anonymized donors 
at the Biobank Rode Kruis-Vlaanderen (institutional approval 
RKOV_19015). PBMCs were isolated by Ficoll density gradient cen-
trifugation (Axis-Shield, 1114545) and washed in PBS containing 1 mM 
EDTA (dilution 1:4). Monocytes were then isolated using magnetic 
CD14-conjugated microbeads (Miltenyi Biotec, 130-050-201) according 
to the manufacturer’s instructions. To obtain MDMs, monocytes were 
cultured in six-well plates (1 × 106 cells per well) in RPMI supplemented 
with 10% FBS, 2 mM l-glutamine, 1% Pen/Strep and 25 ng ml−1 recom-
binant human macrophage colony-stimulating factor (PeproTech, 
300-25) for 6 days. On the third day, the original medium was combined 
with 50% fresh medium with macrophage colony-stimulating factor. 
On day 6, MDMs were polarized toward an M1-like (10 ng ml−1 INFγ 
(PeproTech, 300-02) + 100 ng ml−1 LPS (Sigma-Aldrich, L2630)) or 
M2-like (20 ng ml−1 IL-4; PeproTech, 300-04) phenotype for 48 h. Macro-
phages were then collected, resuspended in fluorescence-activated 
cell sorting (FACS) buffer and stained (30 min at 4 °C) with fixable 
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viability dye (Thermo Fisher, 65-0865-18), Fc receptor binding inhibi-
tor (eBioscience, 14-9161-71) and antibodies to human CD14, P2RY6, 
CD80, CD115, HLA-DR, CD163 and CD206. Samples were analyzed using 
an LSRFortessa (BD Biosciences) flow cytometer. FMO or IgG isotype 
controls were used to ensure proper gating of positive populations. 
Data were collected and analyzed with BD FACSDiva (v.9.0) and FlowJo 
software (v.10.8.1), respectively.

OT-I T cell preparation and preactivation
Total splenocytes from OT-I mice were isolated from spleens by filtering 
the cells through a 40-µm-pore cell strainer in sterile PBS and centri-
fuging at 350g for 7 min. Red blood cells were lysed using Hybri-Max 
(Sigma-Aldrich) buffer. Total splenocytes were cultured in 1 ml of T cell 
medium (RPMI supplemented with 10% FBS, 1% Pen/Strep, 1% nones-
sential amino acids, 1% sodium pyruvate and 25 µM β-mercaptoethanol) 
at 37 °C in a humidified 5% CO2 incubator. As detailed below, OT-I T cells 
were either preactivated for 3 days with 1 µg ml−1 soluble anti-mouse 
CD28 (BD Biosciences) or 1 µg ml−1 ‘SIINFEKL’ peptide (IBA Lifesciences) 
and 10 ng ml−1 recombinant human IL-2 (PeproTech). After 72 h, acti-
vated OT-I T cells were transferred into fresh medium containing IL-2 
and allowed to expand for 5–7 days.

FACS analysis of OT-I T cell cytotoxicity, activation and 
proliferation
sgNT and sgCda OVA-expressing Panc02 cells were labeled with 1 µM 
carboxyfluorescein succinimidyl ester (CFSE; Thermo Fisher Scientific) 
for 10 min at room temperature. sgNT and sgCda non-OVA Panc02 cells 
were labeled with 3.5 µM Violet cell tracer (Thermo Fisher Scientific) at 
37 °C for 20 min. Mixed populations of OVA-expressing CFSE-labeled 
sgNT or sgCda Panc02 cells and non-OVA-expressing Violet-labeled sgNT 
or sgCda Panc02 cells were seeded at a 1:1 ratio and cocultured with pre-
activated OT-I CD8+ T cells for 24 h at the indicated effector:target ratios. 
Cells were stained with Zombie NIRTM Fixable Viability Dye, washed and 
analyzed by flow cytometry for changes in the ratio of CFSE+:Violet+ cells.

OVA-expressing sgNT or sgCda cells were cocultured with or with-
out BMDMs at a 1:4 ratio for 24 h, after which, total splenocytes from 
OT-I mice were added at a 1:15 (cancer cell:splenocyte) ratio for 36 h 
in T cell medium with 10 ng ml−1 recombinant human IL-2. Cells were 
then stained with Fixable viability dye (eBioscience, 65-0866-14) and 
the following cocktail of antibodies for 30 min at 4 °C: anti-mouse 
TCR-β chain, anti-CD4, anti-CD8, anti-IFNγ, anti-GZMB and anti-Ki-67. 
Data were collected and analyzed with BD FACSDiva (v.9.0) and FlowJo 
software (v.10.8.1), respectively.

FACS analysis of SIINFEKL-bound MHC class I and CD274 
expression
OVA-expressing sgNT and sgCda Panc02 cells were seeded at a density 
of 500,000 cells per well in 12-well plates with or without 1,000 U ml−1 
IFNγ (Peprotech). On day 3, 50,000 cells were seeded in 96-well 
round-bottom plates. After 24 h, the cells were stained for 30 min at 
4 °C with the viability dye (eBioscience, 65-0863-18), anti-H-2Kb MHC 
class I and 25-D1.16 and were analyzed by flow cytometry.

To assess CD274 expression, 0.1 × 106 Panc02, KPC FC1245 or 
FC1199 cells were seeded in complete DMEM for 6 h. Medium was then 
replaced with complete DMEM supplemented with 100 ng ml−1 IFNγ 
(Thermo Fisher Scientific, BMS326). After 24 h, cancer cells were col-
lected, and CD274 expression was assessed by flow cytometry. Samples 
were analyzed using an LSRFortessa (BD Biosciences) flow cytometer. 
An FMO control was used to ensure proper gating of positive popula-
tions. Data were collected and analyzed with BD FACSDiva (v.9.0) and 
FlowJo software (v.10.8.1), respectively.

Histology and immunostaining
For mouse tumor tissue staining, deparaffinization and antigen retrieval 
(Dako) were performed, followed by blocking with preimmune donkey 

serum (PID; Sigma-Aldrich) diluted 1:10 in Tris-NaCl blocking buffer 
(TNB). Tissue sections were then incubated with primary antibodies 
(rabbit anti-mouse CD8, rat anti-mouse F4/80 or goat anti-mouse 
MMR/CD206) + 10% PID in TNB overnight at room temperature. Sec-
tions were then incubated with the appropriate biotin-conjugated 
secondary antibody in TNB for 45 min. F4/80, CD8 and MMR/CD206 
immune complexes were then amplified with streptavidin-HRP conju-
gate and cyanine 3 (PerkinElmer) or a TSA Fluorescein kit (PerkinElmer)  
according to the manufacturer’s instructions. Hoechst solution  
(Life Technologies; 1:1,000) was used to visualize nuclei, and slides 
were mounted with ProLong Gold mounting medium without DAPI 
(Invitrogen). Imaging and microscopic analyses were performed with 
an Olympus BX41 microscope and CellSense imaging software (v.1.18).

For human tumor sections from cohort 1 (Supplementary Table 1),  
immunohistochemical stains were performed on a Bond-III Fully Auto-
mated IHC and ISH Stainer (Leica Biosystems). Primary antibodies to 
CDA and CD8 were used in combination with the EnVision + Dual Link 
System-HRP (Dako). Bond Polymer Refine Red Detection and Bond 
Polymer Refine Detection kits (Leica Biosystems) were used following 
the manufacturer’s instructions. For CD68 and CD206 stainings, the 
secondary antibodies were Alexa Fluor 488 anti-mouse IgG3 and Alexa 
Fluor 647 anti-mouse IgG2B, respectively. Slides were scanned with 
a Zeiss Axio Scan. Digital images were analyzed and processed by an 
expert pathologist. Autofluorescence was subtracted using a reference 
image of the same tissue. CD8+, CD68+ and CD68+CD206+ cells were 
counted in ten random high-power fields, five high-power fields in the 
tumor border and five in the tumor center. High expression of CDA was 
defined as >10% diffuse strong expression in tumor cells (where diffuse 
refers to areas of cells within the cross-section, excluding some possible 
nonspecific staining in the borders or next to necrosis).

For immunofluorescence co-stainings of nine PDAC tumor sections  
(out of cohort 1) for CD31, CD68, CK7 and CDA, deparaffinization and 
antigen retrieval (Dako) were performed, followed by blocking with 
PID (Sigma-Aldrich) diluted 1:10 in TNB. Afterward, the sections were 
incubated with primary antibodies (rabbit anti-human CDA, mouse 
anti-human CD68, mouse anti-human CK7 or mouse anti-human CD31) 
overnight at room temperature. Sections were then incubated with the 
proper biotin-conjugated secondary antibody. Immune complexes 
were amplified with streptavidin-HRP conjugate (PerkinElmer) and a 
TSA Fluorescein kit (PerkinElmer; for CDA) or cyanine 3 (PerkinElmer; 
for CD31, CD68 and CK7), according to the manufacturer’s instructions. 
Hoechst solution (Life Technologies; 1:1,000) was used to visualize 
nuclei, and slides were mounted with ProLong Gold mounting medium 
without DAPI (Invitrogen). Imaging and microscopic analysis were 
performed with an Olympus BX41 microscope and CellSense imaging 
software (v.1.18).

Transcriptomics (unique mutations)
Total RNA was extracted using TRIzol (Life Technologies), and polyade-
nylated fragments were isolated, reverse transcribed and converted 
into indexed sequencing libraries using a KAPA stranded mRNA-seq 
kit (Sopachem). The first 50 bases of these libraries were sequenced 
on a HiSeq 2500 system (Illumina). After removal of the sequencing 
adapters, raw reads were mapped to the reference transcriptome and 
genome (GRCm38/mm10) using the Bowtie TopHat pipeline72. Mapped 
reads were assigned to Ensembl gene IDs by HTSeq, resulting in, on aver-
age, 35,159,030 ± 6,605,340 assigned counts per sample. Variants were  
identified following GATK’s best practice, and only variants unique 
in one sample were retained, resulting in, on average, 1,132 ± 266 
mutations.

Meta-analysis
The meta-analysis approach used to identify antiangiogenic target 
genes was similar to that reported previously73. For human transcrip-
tomics datasets, we used RECIST criteria, as provided by the authors,  
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to classify tumors according to treatment response. For in-house 
mouse data, we used tumor growth curves to classify tumors into 
responsive, low-responsive and nonresponsive groups.

We performed differential analysis between responsive and non-
responsive tumors on each dataset separately to identify differentially 
expressed genes and their false discovery rate-corrected P values 
(limma package74). We then integrated differential expression results 
using a product-based meta-analysis75. Briefly, we ranked the results of 
each pairwise comparison by log2 (fold change). The most upregulated 
genes received the lowest rank number (top-ranking genes), and the 
most downregulated genes received the highest rank number. We 
combined the rank numbers for all genes in all pairwise comparisons by 
calculating their product to obtain a final list of ranked genes associated 
with immunotherapy resistance. To assess statistical significance, we 
used a recently developed algorithm to determine accurate approxi-
mate P values for each gene based on the rank product statistic76 and 
obtained Benjamini–Hochberg adjusted P values using the R package 
qvalue77. We filtered rank-based meta-analysis results for metabolic 
genes, as described previously78.

Human RNA-seq
Various scRNA-seq pan-tumor maps were obtained from Tumor 
Immune Single Cell Hub43. We derived the average expression of CDA 
(in cancer cells only per dataset), IFNG or PRF1 (in CD8+ T cells only 
per dataset) or P2RY6, CD163, MSR1 or MRC1 (in macrophages only per 
dataset) and performed a Pearson’s correlation between them using 
the 16 datasets as variables.

Individuals with PDAC in TCGA were subdivided into two groups, 
that is, macrophagehighCD8+ T celllow or macrophagelowCD8+ T cellhigh 
(where macrophages or CD8+ T cell bifurcations were based on prede-
fined genetic signatures) using established computational workflows, 
and CDA expression in these two subgroups was derived79,80. Expres-
sion profiles for PDAC samples in log2p(TPM + 0.001) were further 
processed using Spearman’s gene-to-gene correlation with the Python 
Scipy SpearmanR module81.

DESeq2 prenormalized data by the original authors were down-
loaded from GSE179351. Expression of PDCD1 and CDA in individuals 
with PDAC before treatment with ICB plus radiotherapy was analyzed 
and represented as dot plots. Dot sizes represent the proportion 
of individuals with nonzero expression. The color scale represents 
standard-scaled mean expression per genetic marker. ‘NoResponse’ 
includes individuals that exhibited either stable or progressive disease, 
whereas ‘Response’ includes individuals that achieved either partial 
or complete response, as defined in Supplementary Table 8 of Parikh 
et al. 22 (NCT03104439).

FACS analysis on tumors
Mouse tumors were collected and minced in αMEM (Lonza) supple-
mented with 5% FBS, 1% Pen/Strep, 50 µM β-mercaptoethanol (Gibco), 
5 U ml−1 DNase I (QIAGEN), 0.85 mg ml−1 collagenase V (collagenase from 
Clostridium histolyticum; Sigma-Aldrich), 1.25 mg ml−1 collagenase 
D (collagenase from C. histolyticum; Roche) and 1 mg ml−1 Dispase II 
(Gibco) and incubated for 30 min at 37 °C. The digested tissue was 
filtered using a 70-µm-pore strainer, and cells were centrifuged for 
5 min at 300g. The samples were resuspended in Red Blood Cell Lysing 
Buffer Hybri-Max (Sigma-Aldrich) for 30 s, inactivated with FACS buffer 
(PBS containing 2% FBS and 2 mM EDTA) and centrifuged. The cell pel-
lets were resuspended in FACS buffer and filtered with a 40-µm-pore 
strainer. Cells were resuspended in FACS buffer and, for intracellular 
measurement of IFNγ and GZMB, single-cell suspensions were cultured 
in RPMI supplemented with 10% FBS, 1% glutamine and 1% Pen/Strep 
and stimulated with phorbol 12-myristate 13-acetate/ionomycin Cell 
Stimulation Cocktail (eBioscience, 1:500) in the presence of brefeldin 
A (BioLegend; 1:1,000) or monensin (eBioscience; 1:1,000) for 4 h 
at 37 °C. Subsequently, cells were incubated for 15 min at 4 °C with 

mouse BD Fc block-purified monoclonal rat anti-mouse CD16/CD32 
(BD Pharmingen, 553142) and stained with Fixable viability dye (eBio-
science, 65-0866-14) and the following antibodies for 30 min at 4 °C: 
anti-mouse CD45, CD11b, TCRβ chain, CD4, CD8, CD69, F4/80, IFNγ, 
GZMB, MHC class II, CD11c, CD206, Ly6G, CD335 (NKp46), Foxp3, 
CD25 and P2RY6. Cells were washed and analyzed by FACS using an 
LRSFortessa X-20 (BD Bioscience).

Fresh human PDAC samples were digested with Liberase DL 
(Sigma-Aldrich, 5401160001), Liberase TL (Sigma-Aldrich, 5401020001) 
and DNase I (Sigma-Aldrich, D4527) in αMEM supplemented with 2% 
FBS. The digestion was performed using a MACS dissociator, follow-
ing the manufacturer’s instructions (Miltenyi Biotec). Tumor samples 
were then resuspended in FACS buffer and filtered through 70- and 
40-µm-pore strainers. Subsequently, samples were incubated for 
15 min at 4 °C with human Fc receptor binding inhibitor (eBioscience, 
14-9161-71) and stained for 30 min at 4 °C with the following anti- 
human antibodies: CD14, P2RY6, CD204, CD11b, CD115, HLA-DR, 
CD3, CD163, CD206, CD45, CD15, CD31 and CD326. Cells were then  
washed and analyzed by FACS using an LRSFortessa X-20 (BD Biosci-
ence). FMO controls, unstained control and single-staining or IgG 
isotype controls were performed to ensure proper gating strategy. 
Data were collected and analyzed with a BD FACSDiva (v.9.0) and FlowJo 
software (v.10.8.1), respectively.

Cell sorting
Panc02 CD90.1 and KPC FC1245-CD90.1 tumors were processed as 
previously mentioned. After obtaining single-cell suspensions, CD45 
enrichment was performed by following the manufacturer’s instruc-
tions (CD45 MicroBeads, mouse, 130-052-301).

Cells (CD45+ and CD45–) were then incubated for 15 min at 4 °C 
with mouse BD Fc block-purified monoclonal rat anti-mouse CD16/
CD32 (BD Pharmingen, 553142) and stained with Fixable viability dye 
(eBioscience, 65-0866-14 or 65-0863-18) and the following cocktail of 
antibodies for 30 min at 4 °C: anti-mouse CD45, CD11b, F4/80, TCRβ 
chain, CD90.1, CD90.2, CD31, CD11c and Ly6G. Cells were washed  
and sorted using a FACSAria Fusion (BD Biosciences) flow cytome-
ter. Data were collected and analyzed with BD FACSDiva (v.9.0) and  
FlowJo software (v.10.8.1), respectively. FMO controls, unstained con-
trols and single-staining controls were performed to ensure proper 
gating. Postsort purity of the gating strategy is included in Supple-
mentary Figs. 1–4.

Statistics and reproducibility
All statistical analyses were performed using GraphPad Prism 9.5.0 
software. Statistical significance was calculated by two-tailed unpaired 
t-test on two experimental conditions or multiple two-tailed unpaired 
t-tests and two-way ANOVA when repeated measures were compared, 
with P < 0.05 considered statistically significant as indicated in each 
figure legend. The exact P values are reported in each figure, except 
when P < 0.0001.

No statistical methods were used to predetermine sample sizes, 
but our sample sizes are similar to those reported in previous pub-
lications for the same type of experiments and readout70,82,83. The 
exact sample sizes are indicated in the figure legends. Independent 
experiments were pooled and analyzed together whenever possible, 
as detailed in the figure legends. Where appropriate, Shapiro–Wilk 
tests were performed to check the distribution of samples. Detec-
tion of mathematical outliers was then performed using the Grubbs’ 
test in GraphPad. Animals were excluded only if they died, had to be 
killed according to protocols approved by the animal experimental 
committees or when the measurement was not reliable for technical 
issues (specifically for ultrasound). For in vitro experiments, no data 
were excluded. For in vivo studies, tumor measurement, treatment and 
analysis were performed blindly by different researchers to ensure that 
the studies were run in a blinded manner. Animals were randomized, 
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with each group receiving mice with similar tumor size or similar body 
weight. For in vitro studies, randomization and blinding of cell lines 
was not possible; however, all cell lines were treated identically without 
prior designation. All graphs show mean values ± s.e.m.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
In-house mouse bulk RNA-seq datasets that support the findings 
of this study have been deposited in the Gene Expression Omnibus 
under accession number GSE196790. Publicly available mouse bulk 
RNA-seq datasets can be found in refs. 30,38 under accession numbers 
GSE126722 and E-MTAB-5032. A publicly available mouse orthotopic 
KPC scRNA-seq dataset from ref. 11 under accession number GSE129455 
was used. For the meta-analysis, publicly available human metastatic 
melanoma and renal cancer datasets can be found in refs. 3,5,69 under 
accession numbers GSE78220 and GSE67501 and in dbGap under acces-
sion number phs000452.v2.p1. The bulk RNA-seq human PDAC data 
were derived from ref. 22 under accession number GSE179351 and 
from the TCGA Research Network. TGCA data were downloaded from 
the UCSC Xena platform (http://xena.ucsc.edu/). scRNA-seq data of 
human PDAC samples can be found in ref. 21 under accession number 
GSA CRA001160. Various human (stomach adenocarcinoma, skin 
cutaneous melanoma, pancreatic adenocarcinoma, ovarian cancer, 
non-small cell lung cancer, liver hepatocellular carcinoma, head and 
neck squamous cell carcinoma, glioblastoma/glioma, colorectal 
cancer, cholangiocarcinoma and basal cell carcinoma) scRNA-seq 
datasets were derived from Tumor Immune Single Cell Hub under 
accession numbers GSE134520, GSE72056, GSE111672, CRA001160, 
GSE118828, GSE143423, GSE127465, GSE117570, E-MTAB-6149, 
GSE125449, GSE103322, GSE141982, GSE138794, GSE146771, GSE125449 
and GSE123813. In-house LC–MS (in vitro and in vivo) data have been 
deposited in Metabolomics Workbench71 under Study IDs ST003154 
and ST002791. Source data are provided with this paper. All other data 
supporting the findings of this study are available from the correspond-
ing author upon reasonable request.

Code availability
All code used to analyze data in this study is available on GitHub at 
https://github.com/mazzonelab. All other code supporting the find-
ings of this study are available in the Methods or are available from the 
corresponding author upon reasonable request.
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for TCGA bulk RNA sequencing datasets only) representing CDA expression  
in colon (Normal Tissue n=308, Primary Tumor n=288), stomach (Normal  
Tissue n=210, Primary Tumor n=414) and esophagus (Normal Tissue n=653, 
Primary Tumor n=195) cancer. (b–d) Histological analysis of treatment-naïve, 
resectable PDAC tumors (out of cohort #1; stage IIb-III; N1-N2). (b) Violin plots  
of histological quantification of total CD68+ at tumor border or center.  
(c) Violin plots of histological quantification of immunosuppressive CD206+ 
tumor-associated macrophages (TAMs) at tumor border or center. (d) Violin 
plots of histological quantification of cytotoxic T cells (CD8+) at tumor border 

or center. CDAhigh n=14 and CDAlow n=17 PDAC patients. (e) Cda expression in 
different cell populations sorted from murine orthotopic KPC FC1245 tumors. 
n=4. n represents biological replicates. (f) Cda expression in different cell 
populations sorted from murine s.c. Panc02 tumors (sorted Panc02 CD90.1+ 
cells and in vitro Panc02 cells in grey as reference). TAMs n=4; in vitro Panc02 
n=3; all the others n=2. n represents biological replicates. (g) Cda expression in 
different cell populations in mouse PDAC (KPC GEMM) from a publicly available 
single-cell RNA-sequencing (scRNAseq) dataset. n=4. n represents biological 
replicates. Statistical analysis: p value was assessed by unpaired, two-tailed 
Student’s t-test (a, b-d). Graphs show mean ± SEM.
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Extended Data Fig. 3 | Tools’ validation for the study of CDA’s role in 
immunotherapy resistance. (a-b) (a) Cda expression in control (sgNT) and 
sgCda #1 or sgCda #2 (otherwise called sgCda) Panc02 cells. n=3. n represents 
independently collected cell seedings. (b) CDA expression in sgNT and sgCda 
#1 or sgCda #2 Panc02 cells. Representative out of 3 independent experiments. 
Arrowhead shows CDA specific band. (c-e) (c) Weight of sgNT and sgCda s.c. 
Panc02 tumors, treated with anti-PD-1 or control IgG. sgNT (IgG) n=7, sgNT  
(anti-PD-1) n=7, sgCda (IgG) n=8, sgCda (anti-PD-1) n=9. (d-e) Growth and 
weight of sgNT and sgCda #1 s.c. Panc02 tumors, treated with anti-PD-1 or IgG. 
Treatment regimen is indicated in (d) by the black arrowheads. sgNT (IgG) n=7, 
sgNT (anti-PD-1) n=7, sgCda #1 (IgG) n=7, sgCda #1 (anti-PD-1) n=8. n represents 
biological replicates. (f-g) (f) Cda expression in sgNT and sgCda KPC FC1245 cells. 
n=3. n represents independently collected cell seedings. (g) CDA expression 
in sgNT and sgCda KPC FC1245 cells. Representative out of 3 independent 
experiments. Arrowhead shows CDA specific band. (h) Representative images of 
tumors (left) and metastatic mesenteric lymph nodes (right; arrow) of sgNT and 
sgCda orthotopic KPC FC1245 tumor-bearing mice, treated with anti-PD-1 or IgG. 
Scale bar, 1 cm. (i-j) (i) Cda expression in sgNT and sgCda KPC FC1199 cells. n=4. 
n represents independently collected cell seedings. ( j) CDA expression in sgNT 
and sgCda KPC FC1199 cells. Representative out of 3 independent experiments. 
Arrowhead shows CDA specific band. (k-l) (k) Weight of sgNT and sgCda 
orthotopic KPC FC1199 tumors, treated with anti-PD-1 or IgG. (l) Quantification 
of metastatic mesenteric lymph nodes in sgNT and sgCda KPC FC1199 tumor-
bearing mice, treated with anti-PD-1 or IgG. (k, l) sgNT (IgG) n=11, sgNT (anti-PD-1) 

n=17, sgCda (IgG) n=9, sgCda (anti-PD-1) n=14. n represents biological replicates. 
Data are representative of a pool of two independent experiments. (m-n) Pdcd1 
and Cd274 expression in bulk RNAseq from Panc02 sgNT and sgCda tumors. 
n=5. n represents biological replicates. (o) CD274 expression (MFI in alive cells) 
in sgNT or sgCda Panc02, KPC FC1245 and KPC FC1199 cells. n=3. n represents 
independently collected cell seedings. (p) CDA expression in sgNT KPC FC1245, 
non-transduced (referred to as “-“ in the panel), as well as sgCda KPC FC1245 
cells transduced with an empty vector (EV) or with a vector overexpressing Cda 
(CDA KI) by Western Blot. Representative out of 3 independent experiments. 
Arrowhead shows CDA specific band. (q) Mutational burden of Panc02 sgNT 
and sgCda cells. Cas9 transcription was induced (+) or not (-) with doxycycline 
(GSE196790). n=2. n represents independently collected cell seedings. (r) Body 
weight of sgNT or sgCda KPC FC1245 tumor bearing-mice, treated with CDZ/
control vehicle, in combination with α-PD-1 or IgG. Vehicle-sgNT (IgG) n=4, 
vehicle-sgNT (anti-PD-1) n=4, CDZ-sgNT (IgG) n=4, CDZ-sgNT (anti-PD-1) n=4, 
vehicle-sgCda (anti-PD-1) n=7 and CDZ-sgCda (anti-PD-1) n=7. Treatment regimen 
is indicated by the black arrowheads. n represents independently collected cell 
seedings. Data are representative of a pool of two independent experiments. 
(s) Cell proliferation of control and Cda-depleted Panc02, KPC FC1245 and 
KPC FC1199 cells. n=2-3. n represents independently collected cell seedings. 
Statistical analysis: p value was assessed by one-way ANOVA with Tukey’s multiple 
comparison test (a), two-way ANOVA with Tukey’s multiple comparison test (c, e, 
k, l,), two-way RM ANOVA (d and s), unpaired, two-tailed Student’s t-test (f, i, m, n), 
multiple unpaired, two-tailed Student’s t-test (o). Graphs show mean ± SEM.
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Extended Data Fig. 4 | CDA inhibition re-shapes the tumor immune 
microenvironment. (a) Flow cytometric quantification of (left) total (F4/80+), 
(middle) immunostimulatory (CD11c+F4/80+), and (right) immunosuppressive 
(CD206+F4/80+) tumor-associated macrophages (TAMs) in IgG-treated sgNT 
and sgCda Panc02 tumors. (right) sgNT (n=9) and sgCda (n=9); (left and middle) 
sgNT (n=6) and sgCda (n=6). n represents biological replicates. (b-c) (b) 
Flow cytometric quantification of intratumoral helper (CD4+) and regulatory 
(CD4+Foxp3+CD25+) T cells or (c) total natural killer cells (NKp46+), neutrophils 
(Ly6G+), dendritic cells (CD11c+) in IgG-treated sgNT and sgCda Panc02 tumors. 
(b) CD4+, sgNT (n=7) and sgCda (n=6); Tregs, sgNT (n=6) and sgCda (n=5); (c) 
DCs, sgNT (n=6) and sgCda (n=6); all the others, sgNT (n=7) and sgCda (n=7). 
n represents biological replicates. (d-e) (d) Cda expression in sgNT and sgCda 
YUMM 1.7 cells. n=3. n represents independently collected cell seedings.  
(e) CDA expression in sgNT and sgCda YUMM 1.7 cells. n represents 
independently collected cell seedings. Arrowhead shows CDA specific band. 
(f) Cell proliferation of sgNT and sgCda YUMM 1.7 cells. n=3. n represents 
independently collected cell seedings. (g) Cda expression in (left) MC38 and 
Panc02 cells and (right) whole tumors. MC38 cells n=3; MC38 tumor n=2;  
Panc02 cells n=4; Panc02 tumor n=3. n represents (in vitro) independently 
collected cell seedings or (tumor) biological replicates. (h-i) (h) Cda expression  
in MC38 cells transduced with empty vector (EV) or a vector overexpressing Cda  
(CDA O.E). n=3. n represents independently collected cell seedings. (i) CDA 
expression in non-transduced (referred to as WT), as wells as EV or CDA O.E  

MC38 cells. n represents independently collected cell seedings. Arrow shows 
CDA specific band. (j-k) ( j) Growth and (k) weight of sgNT and sgCda s.c.  
Panc02 tumors in nude (NMRI-Fox1nu) or immunocompetent (C57BL/6) mice.  
( j) sgNT-C57BL/6 n=9, sgCda-C57BL/6 n=9, sgNT-NMRI-Fox1nu n=7, sgCda-NMRI-
Fox1nu n=7; (k) sgNT-C57BL/6 n=9, sgCda-C57BL/6 n=8, sgNT-NMRI-Fox1nu n=7, 
sgCda-NMRI-Fox1nu n=6. n represents biological replicates. Treatment regimen 
is indicated in ( j) by the black arrowheads. (l) Flow cytometric quantification 
(at end-stage) of cytotoxic T cells (% of CD8+ out of TCRβ+ cells) in blood of 
KPC FC1245 tumor-bearing mice, treated with anti-PD-1 and IgG or anti-CD8 
depleting antibody (anti-CD8). sgNT (IgG) n=5, sgCda (IgG) n=5, sgNT (anti-
CD8) n=4, sgCda (anti-CD8) n=5. n represents biological replicates. (m) OT-I 
CD8+ T-cell killing capacity of sgNT and sgCda OVA-expressing Panc02 cells. 
n=3. n represents independently collected cell seedings. (n-o) Flow cytometric 
quantification of (n) total H-2Kb MHC class I and (o) H-2Kb MHC class I bound to 
the OVA-derived peptide SIINFEKL in OVA-expressing sgNT and sgCda Panc02 
cells, at baseline or after IFN-y stimulation. sgNT (- IFN-y) n=7, sgCda (- IFN-y) n=7, 
sgNT (+ IFN-y) n=6, sgCda (+ IFN-y) n=6. n represents independently collected 
cell seedings. Statistical analysis: p value was assessed by multiple unpaired, 
two-tailed Student’s t-test (a, b, n-o), unpaired, two-tailed Student’s t-test (c, d, h), 
two-way RM ANOVA (f and j), two-way ANOVA with Tukey’s multiple comparison 
test (k), two-way ANOVA with Sidak’s multiple comparison test (l, m). Graphs 
show mean ± SEM.
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Extended Data Fig. 5 | Production of various nucleotides and carbon tracing 
in cancer cells upon CDA depletion. (a-b) Intracellular abundance of total (a) 
uridine and (b) cytidine in sgNT and sgCda Panc02 cells. sgNT n=4 and sgCda n=4. 
(c) DNA and RNA synthesis of sgNT and sgCda KPC FC1245 cells. DNA, n=5; RNA 
n=6. (d-e) (d) Intracellular levels of adenine (AMP, ADP and ATP) and (e) cytosine 
(CMP, CDP and CTP) nucleotides in sgNT and sgCda KPC FC1245 cells. sgNT  
n=4 and sgCda n=4. (f) UDP-hexose species (UDP-glucose and UDP-galactose)  
in sgNT and sgCda KPC FC1245 and Panc02 cells. sgNT n=4 and sgCda n=4.  
(g) Fractional contribution (percentage of labelled metabolite out of total 
amount) of supplemented 13C5,15N2 glutamine to the intracellular uracil 
nucleotide pools (UMP, UDP and UTP) in sgNT and sgCda KPC FC1245 cells. sgNT 
n=3 and sgCda n=3. (h-j) (h) Intracellular levels of uracil nucleotides, (i) adenine 
nucleotides and ( j) cytosine nucleotides in sgNT and sgCda Panc02. sgNT n=4 
and sgCda n=4. (k) Extracellular levels of cytidine in mouse serum (tumor-free), 
standard or dialyzed fetal bovine serum (FBS and Dial. FBS), culture medium of 
bone marrow-derived macrophages (BMDMs) and (staurosporine-treated) dying 
KPC FC1245 cancer cells. Mouse serum n=6 (n represents biological replicates), 

FBS n=1, Dial. FBS n=1, BMDMs n=3, dying KPC cells n=3. (l) Extracellular levels 
of (left) glucose and (right) glutamine in the interstitial fluid of orthotopic 
sgNT and sgCda KPC FC1245 tumors. (left) sgNT n=7 and sgCda n=5; (right) 
sgNT n=10 and sgCda n=9. (m) Extracellular levels of ATP in the culture medium 
of sgNT and sgCda KPC FC1245 cells. sgNT n=4 and sgCda n=4. (4a-j, l, m) n 
represents independently collected cell seedings. (a and b, d-l) cytidine, uridine, 
UDP-hexose, uracil-, adenine- and cytosine-containing nucleotides, glucose, 
and glutamine were measured by employing liquid chromatography-mass 
spectrometry. (m) ATP in the culture medium was measured by employing ELISA 
assay. Cancer cells were cultured in DMEM medium supplemented with 10% 
dialyzed FBS (to remove the naturally present cytidine) and (a, b, f, h-j) 0.1 mM 
unlabeled cytidine or (d-f) 0.1 mM 13C9,15N3 cytidine. (g) KPC FC1245 were cultured 
in DMEM medium supplemented with 10% dialyzed FBS, 0.1 mM unlabeled 
cytidine and 2 mM 13C5,15N2 glutamine. Statistical analysis: p value was assessed by 
unpaired, two-tailed Student’s t-test (a-c, l and m), multiple unpaired Student’s 
t-test (d-j). Graphs show mean ± SEM.
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Extended Data Fig. 6 | P2Y receptors in tumor-associated macrophages 
(TAMs). (a) Expression of P2Y receptor family members in TAMs of murine 
(left, E-MTAB-5032) LLC and (right, GSE126722) 4T1 tumors. In box plot, boxes 
correspond to the 25th and 75th quartiles, horizontal lines to the median, and 
whiskers extend to 1.5 times the interquartile range, with outliers shown by dots. 
LLC n= 16, 4T1 n= 10. (b) (left) P2ry2, (middle) P2ry6 and (right) P2ry14 expression 

in different cell populations in mouse PDAC (KPC GEMM) from a publicly 
available scRNA-seq dataset (GSE129455). n=4. n represents biological replicates. 
(c) P2ry6 expression in TAMs and CD90.1+ cancer cells sorted from orthotopic 
KPC FC1245 tumors. n=4. n represents biological replicates. Statistical analysis:  
p value was assessed by unpaired, two-tailed Student’s t-test (c). Graphs show 
mean ± SEM.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Expression of ectonucleotidases and P2Y6 in PDAC 
patients and mouse model. (a-d) Uniform manifold approximation and 
projection (UMAP) representing the different cell clusters of PDAC (a) patients or 
(b) mice, extracted from publicly available scRNAseq datasets (GSA:CRA001160 
and GSE129455). Number of cells analyzed is (a) 83960 and (b) 11236.  
(c-d) Differential expression gene analysis (DEGs) of different ectonucleotidases 
across the different cell clusters in both PDAC (c) patients and (d) mice. (e) Time 
course of the changes in the fluorescence ratio (F340/F380) of the calcium 
indicator Fura-2 in P2ry6WT bone marrow-derived macrophages (BMDMs) in 
response to 1000 nM of UDP with or without MRS2578 (10 µM). Responses 
were normalized to the response to the calcium ionophore ionomycin (2 µM). 
n=3. n represents independently collected cell seedings. (f) P2ry6 and P2ry14 

expression in BMDMs after siRNA-mediated silencing by siP2ry6 or siP2ry14 
and scramble controls. n=3. n represents independently collected cell seedings. 
(g) Flow cytometric quantification of CD80 and CD206 expression (ΔMFI) in 
human M1-like (IFN-y + LPS) and M2-like (IL-4) in vitro polarized monocyte-
derived macrophages (hMDMs). n=3. n represents independently collected 
cell seedings. (h) P2ry6 expression in TAMs and tumor-associated neutrophils 
(TANs) sorted from orthotopic KPC FC1245 tumors in P2ry6WT and P2ry6ΔMy mice. 
n=4. n represents biological replicates. Statistical analysis: p value was assessed 
by unpaired, two-tailed Student’s t-test (c and f), multiple unpaired, two-tailed 
Student’s t-test (d), two-way ANOVA with Sidak’s multiple comparison test (g). 
Graphs show mean ± SEM.
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