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Linear and nonlinear current response in disordered d-wave superconductors

L. Benfatto,1 C. Castellani ,1 and G. Seibold 2

1Dipartimento di Fisica, Università di Roma “La Sapienza”, and ISC-CNR, Piazzale Aldo Moro 5, 00185 Roma, Italy
2Institut für Physik, BTU Cottbus-Senftenberg, D-03013 Cottbus, Germany

(Received 24 July 2023; revised 6 October 2023; accepted 6 October 2023; published 20 October 2023)

We present a detailed theoretical investigation of the linear and nonlinear optical response in a model system
for a disordered d-wave superconductor. By evaluating the quasiparticle contribution (BCS response) we show
that for both quantities the gap symmetry considerably changes the paradigm of the optical response as compared
to the conventional s-wave case. For what concerns the linear response our findings agree with previous work
showing that in strongly disordered d-wave superconductors a large fraction of uncondensed spectral weight
survives below Tc, making the optical absorption around the gap-frequency scale almost unchanged with respect
to the normal state. Our numerical results are in excellent quantitative agreement with experiments in overdoped
cuprates. In the nonlinear regime we focus on the third-harmonic generation (THG), finding that, as already
established for the s-wave case, in general a large THG is triggered by disorder-activated paramagnetic processes.
However, in the d-wave case the BCS response is monotonously increasing in frequency, losing any signature
of THG enhancement when the THz pump frequency ω matches the gap maximum �, a hallmark of previous
experiments in conventional s-wave superconductors. Our findings, along with the mild polarization dependence
of the response, provide an explanation for recent THG measurements in cuprates, setting the framework for the
theoretical understanding of nonlinear effects in unconventional cuprates.
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I. INTRODUCTION

Since the discovery of high-critical temperature (Tc) super-
conductivity in cuprates, optical-conductivity measurements
have been central in advancing our understanding of their
unusual electronic properties, including, e.g., the symmetry
of the superconducting (SC) gap, the opening of a pseudogap
above Tc, or the transition from a Mott-insulating state to
a (non-) Fermi liquid with increasing doping (for a review
see, e.g., Refs. [1,2]). In more recent years, the development
of nonequilibrium spectroscopies, made possible by the use
of intense light pulses, offered the potential opportunity to
disentangle different dynamical processes at play in complex
systems via their different relaxation times [3]. With regard to
SC materials, the advent of THz spectroscopy at strong fields
turned out to be particularly promising, due to the frequency-
matching condition between the light and the typical energy
scales at play in the SC phenomenon. This condition allows
one to observe relevant effects already with pump-only ex-
periments, thanks to the ability of the intense light pulses to
trigger via nonlinear optical processes collective excitations
invisible in the linear response. This is the case, e.g., for the
long-sought amplitude or Higgs mode of the superconductor,
that couples to light only to quadratic order, being charge
neutral [4].

A paradigmatic demonstration of nonlinear THz processes
is provided by the measurement of enhanced third-harmonic
generation (THG) below Tc that has been demonstrated so far
in a variety of systems, ranging from conventional NbN [5–7]
and MgB2 [8,9] superconductors and more recently in uncon-
ventional pnictides [10] and cuprate superconductors [11–16].
From the theoretical point of view, the interpretation of these

experiments can still rely on a quasiequilibrium scheme, pro-
vided that the optical response is computed beyond linear
order. Basically, the current density in response to an applied
vector potential A(t ) can be expanded up to third order as

jα = χ
(1)
αβ Aβ + χ

(3)
αβγ δAβAγ Aδ, (1)

where χ (1) is the linear response which is related to the optical
conductivity and χ (3) is the nonlinear optical kernel. Despite
such a considerable simplification with respect to the pure
nonequilibrium phenomena, the interpretation of the THG ex-
periments on superconductors stimulated so far considerable
theoretical work [17–28]. The reason is that in an s-wave
superconductor both the direct contribution to χ (3) of BCS
quasiparticles and of the amplitude fluctuations of the order
parameter give the largest response to THG when the fre-
quency ω of the THz pump matches the value of the SC gap,
ω = �, making it difficult to disentangle the two effects in the
experimental results. In the case of s-wave superconductors
it has been so far established that the hierarchy among the
two contributions is ruled in a crucial way by disorder effects.
Indeed, while for clean single-band [19] and multiband [20]
s-wave superconductors the THG is dominated by diamagnet-
iclike processes, yielding a predominant response from BCS
quasiparticles, disorder makes possible also paramagneticlike
processes which also couple nonlinearly the light to the sys-
tem [21–23,25]. The consequences are twofold: From one
side, the strength of the THG is overall enhanced even by
weak disorder while still retaining a rather sharp resonance
at ω = �, explaining thus the rather large effects measured
in the experiments. From the other side, at relatively strong
disorder the Higgs response can eventually overcome the BCS
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one, allowing for a preferential channel to drive the Higgs
mode by light. In addition, disorder influences also the po-
larization dependence of the THG signal, i.e., the dependence
of the generated nonlinear current on the angle that the ap-
plied field A forms with the main crystallographic axes of the
lattice. So far, numerical studies [25,28] accounting exactly
for disorder effects on a prototypical square lattice showed
that the THG response, that is strongly polarization dependent
in the clean limit [19], becomes rather isotropic already at
moderate disorder, in agreement with usual observations in
both s-wave [6,7] and d-wave [11,14,15] superconductors.

For d-wave superconductors theoretical studies of THG
have been restricted until now to the clean limit [24], con-
firming the predominance of the BCS response in this regime.
In addition, these studies find that even though in a d-wave
superconductor a continuum of BCS excitations exists below
twice the gap maximum � even at T = 0, the nonlinear kernel
χ (3) preserves in the clean limit a strong resonance at 2� and
a pronounced polarization dependence. However, both effects
seem to be in contrast with the experimental observations in
cuprates [11,14–16], where the THG has been investigated
as a function of temperature at fixed pump frequency. Vary-
ing the temperature changes the order parameter �(T ) and
thus the optical gap 2�(T ). Unexpectedly, the THG signal
has a rather smooth temperature dependence, with no clear
signatures of a resonance effect at the temperature where the
pumping frequency matches the maximum gap value and it
has a mild polarization dependence. In addition, the THG is
found to persist on a wide range of temperatures above Tc,
calling for the possible contribution of fluctuation effects due
to the THz probing frequency [29].

In this manuscript we address explicitly the role of disorder
on the THG response of a d-wave superconductor. In general,
cuprates are usually expected to be in the relatively clean limit,
at least for underdoped and optimally doped samples, where
optical-conductivity measurements in the THz regime [30]
suggest a value 1/(2�τ ) � 0.85, with τ being the transport
scattering rate. Nonetheless, already such a small disorder
can significantly enhance the THG response and affect the
polarization dependence, as it has been shown [28] in some
recent work with the band dispersion of cuprates and s-wave
order-parameter symmetry.

The situation can be eventually different for strongly over-
doped cuprates, as, e.g., in overdoped LSCO films [31,32],
where already the linear optical response revealed a significant
uncondensed fraction of charge carriers and a concomitant
“Drude”-like behavior of σ1(ω) even below Tc. These data,
together with the experimentally found correlation between
Tc and the superfluid density [33] in the overdoped regime,
have stimulated the idea that disorder, presumably due to
out-of plane dopant ions, is a key player in understanding the
vanishing of Tc in this doping range [34–36].

To address these issues we compute the linear and nonlin-
ear current response within a disordered lattice model where
the d-wave SC order is induced via a Heisenberg-like spin-
spin interaction. As compared to previous work in the s-wave
case [25,28], the challenge here is the necessity to carry out
the numerical simulations with large lattices, since the low-
energy response is dominated by the nodal regions where
the SC gap vanishes. This is indeed the origin [37] of the

so-called universal value σ0 of the optical conductivity in the
limit ω → 0, i.e., a value independent on disorder as long as
the scattering rate is much smaller than the maximum SC gap
� and vertex corrections can be ignored [37,38]. In the present
paper we perform a systematic analysis of the linear and
nonlinear current response as a function of lattice size, using
the linear response also as a benchmark of the reliability of the
numerical results even at small disorder down to frequencies
well below �. Finite-size effects become instead irrelevant
when the scattering rate becomes of the same order as �, so in
this limit our calculated response is essentially valid down to
ω = 0. The results for the optical conductivity and the super-
fluid stiffness are in very good agreement with experimental
data from cuprate superconductors [31,32]. In particular, in
the disorder regime 2�τ ≈ 1 relevant for overdoped cuprates,
our calculations support the relevance of out-of plane impuri-
ties for the vanishing of Tc and of the superfluid fraction.

For the THG our calculations show a marked qualitative
difference with respect to the s-wave case. Indeed, while the
general mechanism of a strong overall enhancement of para-
magneticlike THG processes is confirmed, for d-wave pairing
the response rapidly loses the resonance at 2� characteristic
of the clean limit that is instead found to survive for s-wave
superconductors up to strong disorder [25]. At the same time,
disorder washes out the strong orientation dependence due to
the diamagneticlike processes dominating the clean case, in
analogy with the s-wave case. Both effects, i.e., the absence of
a marked frequency resonance of χ (3) at 2� and the smooth
polarization dependence, are in good agreement with the re-
cent experimental findings [11,14–16], as discussed above.

The paper is organized as follows. In Sec. II we discuss
the model and how the disordered ground state solutions
are obtained within the Bogoljubov–de Gennes approach.
Section III presents the corresponding results for the optical
conductivity that are discussed within the context of experi-
ments on the superfluid density in overdoped cuprates. The
influence of disorder on the third harmonic response and its
dependence on the polarization of the incoming light is then
analyzed in Sec. IV and we conclude our discussion in Sec. V.
In Appendix A we give a detailed derivation on how we com-
pute the linear and nonlinear current, Appendix B is devoted
to an analysis of finite size effects, Appendix C discusses the
evaluation of the universal conductivity for the parameters
used in the present paper, and finally in Appendix D we report
the estimate of the transport scattering time for the different
disorder levels we used to evaluate the optical response.

II. MODEL AND FORMALISM

To model the d-wave SC order emerging in cuprates we
consider a tight-binding model on a square lattice, with an in-
teraction part modeled as intersite spin-spin (∼J) interactions
together with local on-site disorder (cf., e.g., Refs. [39–41])

H =
∑
i jσ

(ti j − μδi j )c
†
iσ c jσ +

∑
iσ

Viniσ

+ J
∑
〈i j〉

[
SiS j − 1

4
nin j

]
, (2)
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where ti j includes the hopping between nearest (∼t) and
next-nearest (∼t ′) neighbors, 〈i j〉 denotes the summation over
nearest neighbors only, and Si is the spin operator at lattice site
Ri. Vi is a random variable taken from a flat distribution with
−V0 � Vi � +V0.

In order to avoid any interference with competing phases,
we neglect the decoupling of the interaction part with respect
to on- (i = j) and intersite (i 	= j) charge densities 〈c†

i,σ c j,σ 〉.
The mean-field Hamiltonian therefore reads

HMF =
∑
i jσ

(ti j − μδi j )c
†
iσ c jσ +

∑
iσ

Viniσ (3)

+1

2

∑
i,δ

[�i,δ (c†
i,↑c†

i+δ,↓ + c†
i+δ,↑c†

i,↓) + �∗
i,δ (ci,↓ci+δ,↑

+ ci+δ,↓ci,↑)] + 1

J

∑
i,δ

|�i,δ|2, (4)

where

�i,δ = −J

2
[〈ci,↓ci+δ,↑〉 + 〈ci+δ,↓ci,↑〉] (5)

represent a bond SC order parameter with δ ≡ ±x,±y.

A. Equilibrium solution

In equilibrium, in analogy with the well-studied s-wave
case [25,42–47], the Hamiltonian Eq. (3) can be diagonalized
by means of the Bogoliubov–de Gennes (BdG) transformation

ciσ =
∑

k

[ui(k)γk,σ − σv∗
i (k)γ †

k,−σ
],

which yields the eigenvalue equations:

ωkun(k) =
∑

j

tn ju j (k) + [Vn − μ]un(k)

+
∑

δ

�n,δvn+δ (k), (6)

ωkvn(k) = −
∑

j

tn jv j (k) − [Vn − μ]vn(k)

+
∑

δ

�∗
n,δun+δ (k). (7)

In the following ui(k) and vi(k) are taken to be real. This
excludes, e.g., ground states with circular currents which have
been studied in models where disorder is implemented via
a variable concentration ni of scatterers with fixed impurity
strength [35,48]. In our system with an Anderson type of
disorder the calculations with complex ui(k) and vi(k) did not
yield stable solutions at small and intermediate disorder. For
large V0/t ∼ 1 we observe instabilities in the ground state (cf.
Sec. V), which may be due to circular currents and which will
be investigated in detail elsewhere.

Starting from an initial random distribution for the
anomalous expectation values we diagonalize the system of
equations (6) and (7) and iterate up to a given accuracy (10−8)
for the �i,δ . In order to check the stability of the solution we
also add random values to the iterated anomalous expectation
values and check if a subsequent iteration converges to the
same previous solution.

Results are obtained for a charge density n = 0.875 and all
parameters are measured with respect to the nearest-neighbor
hopping t . The exchange coupling is taken as J/t = 1 and
we also include a next-nearest-neighbor hopping t ′/t = −0.2,
as appropriate for cuprates. For the homogeneous system one
obtains a d-wave gap

�k = �

2
[cos(kx ) − cos(ky)], (8)

with �/t = 0.316 and thus a maximum optical gap 2�,
which decreases upon including disorder. In cuprates, gap
values extracted from angle-resolved photoemission (ARPES)
on Bi2212 (see, e.g., Ref. [49]) can reach values � =
30–40 meV, which in our model would correspond to hopping
values t = 100–130 meV. This is compatible with our value
for the exchange coupling J/t = 1 and even with tight-binding
fits to the dispersion and Fermi surface as obtained by ARPES
[50]. However, for other compounds the hopping is estimated
to be in the range t = 200–300 meV so that our investiga-
tions should be considered as a qualitative but not necessarily
a quantitative prediction of the linear and nonlinear current
response in cuprate superconductors.

B. Equations of motion for the density matrix to evaluate
the response to a time-dependent vector potential

Denoting with ρ and κ the normal and anomalous averages,

ρi j = 〈c†
i,↑c j,↑〉, ρ̄i j = 〈ci,↓c†

j,↓〉,
κ

†
i j = 〈c†

i,↑c†
j,↓〉, κi j = 〈ci,↓c j,↑〉,

the total density matrix can be defined as

R =
(

ρ κ†

κ ρ̄

)
. (9)

In the inhomogeneous systems it is represented by a 2L × 2L
matrix, with the lattice size L varying from 52 to 68 in our
simulations. The equation of motion reads [51]

i
d

dt
R = [R,HBdG], (10)

where the BdG Hamiltonian matrix can be derived from the
BdG mean field energy as

Hi j = ∂EBdG

∂R ji
(11)

and the latter is given by

EBdG = −
∑

i j

ti j (ρi j − ρ̄i j ) − J

4

∑
〈i j〉

κ
†
i jκi j

+
∑

i

Vi(ρii − ρ̄ii + 1).

In the absence of an external field the density matrix R and
the Hamiltonian HBdG commute, so it simply follows from
Eq. (10) that the density matrix has no time evolution. The
dynamics of R(t ) is induced via the coupling to the elec-
tromagnetic field �E (t ) = −∂ �A(t )/∂t . Let us consider, e.g.,
the case of a (spatially constant) field along the x direction.
Ax(t ) is coupled to the system via the Peierls substitution
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c†
i+x,σ ci,σ → eiAx (t )c†

i+x,σ ci,σ , where for simplicity we will
drop from the equations all the constant by putting the lattice
spacing, the electronic charge e, the light velocity c, and the
Planck constant h̄ equal to one. As one can easily check, the
interaction terms in Eq. (2) are unaffected by the Peierls sub-
stitution, while the kinetic-energy part gets modified, leading
to the following contribution to EBdG:

T BdG = −t{eiAx ρi+x,i + e−iAx ρi−x,i − e−iAx ρ̄i+x,i − eiAx ρ̄i+x,i}
− t ′{eiAx ρi+x,i+y + e−iAx ρi−x−y,i − e−iAx ρ̄i+x+y,i

− eiAx ρ̄i+x+y,i + eiAx ρi+x,i−y + e−iAx ρi−x+y,i

− e−iAx ρ̄i+x−y,i − eiAx ρ̄i+x−y,i}. (12)

Writing Ax(t ) = A0 f (t ) one can now expand the density ma-
trix and the Hamiltonian [i.e., the kinetic part resulting from
Eq. (12)] in powers of A0, i.e.,

R =
∑
n=0

An
0R(n), (13)

where R(0) is the equilibrium density matrix for which

[R(0),HBdG] = 0, (14)

as we already emphasized above. The current density
is obtained at all orders in Ax as jx = −(1/N ) ∂EBdG

∂Ax
=

−(1/N ) ∂T BdG

∂Ax
with N ≡ L2. Thus, by retaining terms up to

third order in Ax, one has

jx = (
1 − 1

2 A2
x

)
jx
para + Ax

(
1 − 1

6 A2
x

)
jx
dia, (15)

with

jx
para = it

∑
n

[ρn+x,n − ρ̄n−x,n − ρn−x,n + ρ̄n+x,n]

+ it ′ ∑
n

[ρn+x+y,n − ρ̄n−x−y,n − ρn−x−y,n + ρ̄n+x+y,n]

+ it ′ ∑
n

[ρn+x−y,n − ρ̄n−x+y,n − ρn−x+y,n + ρ̄n+x−y,n],

(16)

jx
dia = −t

∑
n

[ρn+x,n − ρ̄n−x,n + ρn−x,n − ρ̄n+x,n]

− t ′ ∑
n

[ρn+x+y,n − ρ̄n−x−y,n + ρn−x−y,n − ρ̄n+x+y,n]

− t ′ ∑
n

[ρn+x−y,n − ρ̄n−x+y,n + ρn−x+y,n − ρ̄n+x−y,n].

(17)

Here the subscript para and dia refer to the usual identifi-
cation of the leading terms coupling the gauge field to the
fermionic operators in the Hamiltonian, i.e., the linear cou-
pling between the paramagnetic term and Ax and a quadratic
coupling between the electronic density and A2

x , which leads
to the standard diamagnetic contribution to the current in
linear response. To make a closer connection to standard no-
tation in Nambu operators for the SC state [17,19–24,27], the
paramagnetic term is described by a τ0 Pauli matrix and the
diamagnetic term by a τ3 matrix. Here the jx

para and jx
dia terms

represent directly average values of such fermionic operators

in the presence of the external gauge field and such are ex-
pressed in terms of the density-matrix elements ρ, which in
turn contain the dependence on Ax at all orders. The expansion
Eq. (13) therefore explicitly reads

jx
para =

∑
n

An
0 jx,(n)

para , jx
dia =

∑
n

An
0 jx,(n)

dia ,

which upon inserting into Eq. (15) allows us to extract the
various current contributions to order n, j (n)

x .
In particular, the third harmonic contribution to the current

density reads

j (3)
x = jx,(3)

para − 1
2 A2

0 jx,(1)
para + A0 jx,(2)

dia − 1
6 A3

0 jx,(0)
dia , (18)

where we find that, similar to the isotropic s-wave case [25],
the dominant para- and diamagnetic contributions are given
by jx,(3)

para and A0 jx,(2)
dia . On the other hand, jx,(1)

para and jx,(0)
dia

enter the calculation of the optical conductivity in first or-
der. The explicit expressions for the nth order density matrix
(n = 1, 2, 3), from which para- and diamagnetic current con-
tributions can be obtained according to Eqs. (16) and (17), are
given in Appendix A.

The consideration of disordered d-wave superconductors
requires the investigation of large systems in order to capture
the responses at low energies. Here we study lattices between
52×52 and 68×68, which allows us to elucidate the role of
finite-size effects. On the other hand, due to the large system
sizes it is not possible to include collective (SC amplitude,
SC phase, and density) excitations on top of the BdG solution
due to the much larger matrices required when interactions be-
tween quasiparticle excitations are taken into account within a
random phase approximation. Therefore, the responses reflect
the quasiparticle contributions only. The collective-mode con-
tribution has been shown to become sizable in both the linear
[44,52] and the nonlinear [25] response of strongly disordered
s-wave superconductors. The accuracy of our calculations
is determined by the ratio J/B, where B ≈ 8t denotes the
bandwidth. For our parameters given above J/B = 0.125 < 1
and we will consider moderate levels of disorder only, so that
we expect only a minor contribution of collective modes. In
fact, preliminary calculations on small systems confirm this
hypothesis which is also supported by the evaluation of the
stiffness including phase fluctuations in Sec. III. Therefore,
we will focus for the moment on the BCS response only,
that is presumably the most relevant one in the underdoped
and optimally doped regime of cuprates. For this reason, we
implement here a different (and faster) procedure for evaluat-
ing the response functions with respect to our previous work
[25,28], since instead of solving the time dependent density
matrix for an arbitrary vector potential we directly truncate the
equations of motion for each frequency at the desired order.

III. LINEAR RESPONSE AND SUPERFLUID STIFFNESS

The optical conductivity σ (ω) = σ1(ω) + iσ2(ω) for an
applied electric field along ex and the current response along
the same direction is obtained from

σ1(ω) = π [−〈tx〉 + χ1(ω = 0)]δ(ω) − χ2(ω)

ω
, (19)

σ2(ω) = −〈tx〉 + χ1(ω)

ω
, (20)
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where χ1,2 are the real and imaginary parts of the current-
current correlation function χ (ω), respectively. Within our
formalism, cf. Appendix A, χ (ω) is obtained from χ (ω) ≡
j (1)
para(ω) and 〈tx〉 ≡ j (0)

dia , where in general j (n)
para/dia refers to the

nth term in the expansion in powers of the gauge field of the
paramagnetic or diamagnetic electronic current. Since the dia-
magnetic current response is already linear in the gauge field,
the zeroth term is sufficient to compute the linear response.
We set h̄ = e = a ≡ 1 so that the conductivity in these units
is dimensionless and should be multiplied by e2/h̄ in order to
obtain a two-dimensional σ (ω) in SI units. In order to obtain
the three-dimensional σ (ω) for layered cuprates one should
multiply the dimensionless conductivity times e2/(h̄d ), with
d denoting the interlayer spacing.

Figure 1 reports real and imaginary parts of the optical
conductivity obtained from averages over disorder configura-
tions (10–20 samples) and averages over system sizes from
52×52 to 68×68; see also discussion below. Here blue solid
lines denote results in the SC state at T = 0, while red dashed
lines denote results at T = 0 in the absence of SC order. On
finite lattices and for a given particle number the chemical
potential μ does not necessarily coincide with an available
quasiparticle energy εk , so the minimum gap for a d-wave
superconductor Ek =

√
(εk − μ)2 + �2

k can be different from
zero also along the nodal direction. As shown in Appendix B,
for a clean system this minimum gap is an oscillatory function
of the system size N . Clearly also the low-energy density of
states depends on N . Nonetheless, this spurious effect can be
removed by performing an additional average over systems
of different sizes, as shown explicitly in Appendix B in the
homogeneous case. The gray region in Fig. 1 indicates the
spread of the results due to the evaluation on different lattice
sizes. For disorder values up to V0/t = 0.5 it can be seen that
finite-size effects become relevant in the real part of the optical
conductivity for frequencies below ω ∼ 0.25t , whereas they
have only minor influence on σ2(ω). In the strong disorder
limit V/t = 1.0 finite-size effects are no longer relevant, so
that we can consider the results reliable down to ω = 0 in this
case.

To better quantify the disorder strength we estimate the
dimensionless quantity 2�τ , where � is the gap maximum
obtained for each disorder level from the maximum in the
density of states and τ is the normal-state transport scat-
tering time. To this aim we extract τ from an analysis of
the normal-state conductivity, as outlined in Appendix D.
In general, by increasing disorder (i.e., by decreasing 2�τ ),
one observes an enhancement of σ1(ω) in the frequency
range below 2�, as due to the increase of the paramagnetic
current response [χ2(ω) in Eq. (19)], see Figs. 1(a), 1(c),
1(e), and 1(g), similar to previous theoretical studies [34–36].
For a d-wave superconductor it has been shown [37] that
the conductivity approaches a so-called universal value σ0 =
limω→0 Reσ (ω, T = 0) ≈ e2Nσv2

F h̄/(π�) for weak disorder,
irrespective of the disorder model. Here Nσ is the DOS per
spin at the Fermi level in the normal state, vF is the Fermi
velocity, and the order parameter has the d-wave angular
dependence �(kF ) = � cos(2φ) on the Fermi surface in the
clean case. In Appendix C we evaluate σ0 for the parameters
of our model showing that σ0 = 2.38[e2/h̄] in the weak-
disorder limit. On the other hand, as disorder increases σ0

FIG. 1. Optical conductivity at T = 0 in the SC state (blue solid
line) and in the non-SC state (red dashed line) for increasing disorder,
as indicated in the panels. Panels (a), (c), (e), and (g) show the real
part σ1, and panels (b), (d), (f), and (h) show the product ωσ2 with
σ2 imaginary part. The limit ω → 0 of ωσ2 identifies the superfluid
stiffness, while its high-frequency limit coincides with −〈tx〉, that
is weakly disorder dependent. Here we used J/t = 1, n = 0.875,
t ′/t = −0.2, and we averaged over different lattice sizes from 52×52
to 68×68. The variance with regard to the different lattice sizes is
indicated by the gray shaded areas. A Lorentzian broadening (cf.
Appendix A 1) η = 0.02t has been used. The vertical dotted lines
indicate the maximum spectral gap 2� extracted from the density of
states.

is no longer universal and its value depends on the disorder
realization. We used the approach of Ref. [53] to estimate
σ0 = 0.6[e2/h̄] in the strong-disorder unitary limit for our
parameter values. These two limiting analytical values can
be compared with the numerical estimates of Fig. 1. As
mentioned above, for weak to moderate disorder our val-
ues of σ1(ω → 0) are subject to errors due to finite-size
effects. Nonetheless, at V/t = 0.5–0.7 the numerical σ0 com-
pares well with its expected thermodynamic value within
the uncertainty of the calculation [denoted by the gray area
in Figs. 1(a) and 1(b)]. In addition, our calculations indi-
cate a low-energy increase of σ1(ω), i.e., the tendency for
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approaching the universal value σ0. At strong disorder, where
our results for ω → 0 become reliable, we obtain a somehow
larger universal conductivity than what is estimated from the
perturbative scheme of Ref. [53], which is expected to fail
in this strong-disorder limit. Our calculations also indicate
a slight downturn upon approaching ω → 0, which in the
strongly disordered regime [54] develops towards a peak at
ω ∼ 1/τ . In the regime 2�τ < 1 we also observed the forma-
tion of SC islands, similar to the case of strongly disordered
s-wave SCs [42–47].

Panels (b), (d), (f), and (h) of Fig. 1 report ωσ2(ω) =
−〈tx〉 + χ1(ω) for the various disorder levels. At large fre-
quencies (larger than the bandwidth) χ1(ω) ∼ 1/ω, so that
−〈tx〉 identifies the large-frequency behavior of ωσ2(ω). In
addition, since −〈tx〉 has very small changes when going from
the normal to the SC state, the asymptotic values are pretty
much similar in the two cases, as one can see by compar-
ing solid blue and dashed red lines. In contrast, in the limit
ω → 0 this quantity corresponds to the superfluid stiffness
Ds ≡ limω→0 ωσ2(ω), which is finite in the SC case but van-
ishes in the metallic state. In general the stiffness is reduced
with increasing disorder from its clean value −〈tx〉 due to the
paramagnetic current response χ1(ω = 0). At strong disorder
the superfluid stiffness is almost completely suppressed [see
panel (h)], consistent with the observation of a large fraction
of uncondensed spectral weight in σ1(ω) [see panel (g)].

Our results can be compared with experiments on over-
doped LSCO films [31], which are in the range 0.31 � 2�τ �
2.45, and overdoped LSCO films, which have been addition-
ally exposed to ion irradiation [32] leading to even smaller
values of 2�τ . These measurements of σ1(ω) have revealed
that a large fraction of the carriers remains uncondensed in a
wide Drude-type feature at low temperatures which resembles
the σ1(ω) in panels, e.g., of Fig. 1. A similar residual σ1(ω →
0) at low temperatures has also been observed in Bi2212 thin
films [55].

To better quantify this effect we follow the same procedure
adopted in the experiments [31,32], by reporting the SC frac-
tion Ssc, found in the SC state as a δ-like peak in σ1 at ω = 0,
of the total normal-state optical spectral weight Sn. By the
so-called f -sum rule Sn = ∫ ∞

0 dω σ1(ω) = −π/2〈tx〉, while
Ssc can be derived from Eqs. (19) and (20), as given by

Ssc = π

2
[〈tα〉 + χ1(0)] = π

2
lim
ω→0

ωσ2(ω). (21)

The ratio Ssc/Ssn is plotted as a function of 1/(2�τ ) in Fig. 2,
together with the corresponding data from Refs. [31,32].
Given the uncertainty in determining the various quantities
(e.g., in Ref. [32] the SC gap has been estimated by means
of the weak-coupling expression [56] for the ratio �/Tc) the
agreement is rather remarkable. One could speculate that our
model of Anderson-type impurities, where at each lattice site
the local potential is taken from a random distribution, is more
appropriate for the irradiated samples where the ions affect the
electronic structure of the CuO2 planes on a local scale. On
the other hand, the disorder from the “unirradiated” data [31]
is presumably mainly due to out-of plane dopant ions which
impose a potential with a finite range on the in-plane charge
carriers [57]. In view of these considerations it is interesting
that the stiffness obtained in Refs. [31,32] follows nonetheless
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FIG. 2. Disorder dependence of the ratio Ssc/Sn between the su-
perfluid δ-like peak in σ1(ω) and the total optical spectral weight Sn

in the SC state. Our numerical estimates (black dots) are compared
with the experimental results from Refs. [31,32].

a similar disorder dependence, which is well captured by our
model.

The present calculations of the linear optical response do
not include fluctuations effects that have been shown to be
relevant in the strongly disordered regime for s-wave su-
perconductors [25,44,52]. As it is well known [58], phase
fluctuations are crucial to restore the gauge invariance vio-
lated by the BCS approximation of the response functions.
However, in the clean limit they do not affect the value of the
superfluid stiffness, since their correction is purely longitu-
dinal. In the disordered case the longitudinal and transverse
response become mixed and a full gauge-invariant calculation
of the stiffness [44] in the disordered s-wave case has shown
that phase fluctuations lead to a further suppression of Ds

as compared to the BCS suppression, along with a pileup
of additional finite-frequency optical absorption below the
optical gap [52], analogous to the one shown in Fig. 1. While a
full computation of σ (ω) adding fluctuations effects is numer-
ically challenging for the large lattice sizes used so far, we can
nonetheless analyze the static limit of the fluctuations-induced
suppression of Ds, following an approach analogous to the one
employed in Ref. [44]. We thus add a small O(10−3) vector
potential in the Hamiltonian Eq. (2) via the Peierls substitution
and we compute Ds by taking the ratio between the total
current and the vector potential. To this aim, in order to guar-
antee the conservation of the total (dia- plus paramagnetic)
current at each node, one has to introduce a complex value
of the local order parameter. Indeed, one finds that not only
are the local amplitudes |�i,δ| affected, but more importantly
the local phases are needed to guarantee locally the continuity
equation, that is instead violated by the (non-gauge-invariant)
BCS approximation, corresponding to the evaluation in the
absence of local-phase relaxation; see Ref. [44].

Figure 3 compares the stiffness, obtained via this gauge-
invariant approach, with the corresponding BCS result on a
logarithmic (main panel) and linear (inset) scale. We find that
for the present parameters fluctuation corrections up to V0/t =
0.7 are small (∼5% at V0/t = 0.7), whereas at V0/t = 1.0 the
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FIG. 3. Superfluid stiffness Ssc as a function of disorder from
Eq. (21) evaluated in the BCS (black) and gauge-invariant (red)
approach.

BCS stiffness overestimates the gauge-invariant result by a
factor ∼2.

We point out that a reduction of Ds due to fluctuation
effects has a significantly stronger impact on the optical con-
ductivity for the isotropic s-wave case rather than for the
d-wave symmetry. Indeed, the f -sum rule dictates that the
decrease in Ds, entering the Sn spectral weight of Eq. (21),
has to be compensated by an increase in σ1(ω). In a fully
gapped s-wave superconductor with a hard gap at 2� col-
lective excitations occur mainly below 2�. These can induce
a subgap absorption below the gap as described in [52]. On
the other hand, in a d-wave superconductor quasiparticle ex-
citations already contribute considerably to absorption below
2�, so that the collective-mode contribution only results in
a minor redistribution of the finite spectral weight at low
energies.

It should be noted that at strong disorder V0/t = 1.0 and
upon including fluctuations our calculations reveal a negative
stiffness for a significant number of disorder realizations.
Such samples have been then excluded from the average
procedure leading to the results shown in Fig. 3. A value
Ds < 0 in principle means that the considered solution does
not correspond to the true ground state since the free energy
as a function of the vector potential would have a nega-
tive curvature. In fact, for smaller systems, where an RPA
analysis is possible, samples with a negative stiffness also
lack a well-defined zero energy Goldstone mode. The latter
instead is replaced by a strongly overdamped feature indicat-
ing that the iteration of the BdG equations has converged to
an unstable solution. In principle, the instability could also
arise from the fact that we have restricted to real valued
order parameters which excludes solutions such as circular
currents [35,48]. Although preliminary investigations have
not provided any evidence for the existence of such currents
within our model, we cannot exclude that there may exist so-
lutions with lower energy which are made from complex BdG
amplitudes.

FIG. 4. Diamagnetic (left column) and paramagnetic (right col-
umn) contributions to the third-harmonic current at various disorder
levels obtained from averages over different lattice sizes from 52×52
to 68×68. The variance with regard to the different lattice sizes is
indicated by the gray shaded areas. Solid black and blue dashed
lines refer to the response for a field applied along the [10] and [11]
direction, respectively. In panel (a) we also report for comparison
the analytical results (22) of the [10] clean case, obtained for an
infinite-size system. Parameter values are the same as in Fig. 1.

IV. THIRD HARMONIC GENERATION

As it has been widely discussed in previous work both for
clean [17,19,20,24] and disordered [21–23,25,27,28] super-
conductors, the THG can be computed within a diagrammatic
approach or within a density-matrix formalism by computing
all third-order processes arising from paramagneticlike or dia-
magneticlike coupling terms between the gauge field A and the
fermions, the former being linear and the latter quadratic in
A. In full analogy, as detailed in Appendix A, we decompose
the third-harmonic current in a diamagnetic and paramagnetic
contribution jdia/para(3ω), both computed at finite gauge field
and retaining up to third order in A. Since we are interested
in the THG measured experimentally with a multicycle pump
field, we study the nonlinear response to a harmonic vector
potential A(t ) = A0 cos(ωt ). In Fig. 4 we report the magnitude
of both responses | jdia/para(3ω)/A3

0| for the various disorder
levels. We found that these responses are only finite, within
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our numerical accuracy, in the SC state. As for the optical
conductivity, we have analyzed finite-size effects which are
mainly relevant for the third-harmonic paramagnetic response
in the limit of weak to moderate disorder and low frequencies
[cf. panel (b), where the variance is indicated by the gray
region].

In the clean limit the third-harmonic paramagnetic current
in response to a monochromatic field at ω vanishes [19,20]
and THG is only controlled by the diamagnetic response,

j (3)
dia,clean(3ω)/A3

0 = 1

N

∑
k

�2
k

Ek

4
(
t x
k

)2

4ω2 − 4E2
k

, (22)

whose value in the limit N → ∞ is also plotted for compari-
son with a red dashed line in Fig. 4. The j (3)

dia,clean corresponds
to a densitylike correlation function with a diamagnetic vertex
[19]. We consider the response along the [10] direction (≡x)
so that the vertex is determined by the derivatives of the
kinetic energy [i.e., the Fourier transform of the hopping term
in Eq. (2)] along the x direction t x

k = ∂2εk/∂k2
x [19,24].

In the d-wave case the logarithmic singularity of j (3)
dia,clean at

ω = � in Eq. (22) is responsible for the strong enhancement
of the THG when ω = �, in full analogy with the result of
the clean s-wave case [19]. A strong enhancement is still
retained by the diamagnetic response at weak disorder, even
though, similar to the isotropic s-wave case [25], it broadens
and decreases with increasing disorder. Also in analogy with
the isotropic s-wave case the diamagnetic current displays a
strong orientational dependence. In Fig. 4 the blue dashed
(black solid) line corresponds to jdia along the [11] ([10])
direction with the field applied along the same orientation.
The suppression of the response along the [11] direction is
most pronounced for weak disorder: For 2�τ = 11.9 one
finds a factor of ≈6 between the currents along the [10] and
[11] direction. In the case of 2�τ = 0.46 this value is reduced
to ≈1.5.

The paramagnetic current [Figs. 4(b), 4(d), 4(f), and 4(h)],
absent in the clean case for the same mechanism valid for
s-wave superconductors [19,24], becomes finite as soon as
even a weak disorder is included. However, in sharp contrast
with the disordered s-wave case [21–23,25], it does not retain
any resonant behavior around the gap maximum ω = �, but it
shows instead a finite value below ω ≈ �, with a continuous
increase toward lower energies. Once more, due to finite-size
effects we cannot explore the limit ω → 0 at weak to moder-
ate disorder. However, the general trend of our results shows
an increase of the paramagnetic response with disorder up to
2�τ ≈ 1, which then is followed by a decrease in the limit
of strong disorder. In contrast to the diamagnetic current the
orientational dependence of jpara is weak at any disorder level,
with almost no dependence within the range of the numerical
error. This results is also consistent with previous work for the
same band structure and s-wave pairing [28], suggesting that
the pairing symmetry plays a minor role in determining the
polarization dependence of the THG response.

The dramatic increase of the response at low energies
together with the absence of a clear resonance in the paramag-
netic response represents a marked qualitative difference with
respect to the s-wave case, where instead the paramagnetic
current follows the diamagnetic response and is enhanced

around ω = � [21,25]. This theoretical result is in agree-
ment with the experimental observation on, e.g., conventional
s-wave superconductors such as NbN [5] and MgB2 [8,9],
where the presence of a frequency maximum in the non-
linear kernel χ (3) can be traced back to an enhancement of
the THG measurements at the temperature where the pump
frequency ω matches the SC gap �(T ). Interestingly, such a
maximum has not been reported so far in most measurements
on d-wave cuprate superconductors [11,12,14–16]. One pos-
sible interpretation for the lack of a temperature resonance
is that in cuprates the SC gap is significantly larger than in
conventional superconductors (� ∼ 30–40 meV) [49]. Thus
multicycle pulses with central frequency ranging from ω =
0.5 to ω = 0.7 THz, as the ones used so far, allow one to
fulfill the resonance condition only very near to Tc, where
the SC response is suppressed. On the other hand, the present
calculations showing a rather featureless paramagnetic con-
tribution can explain why for d-wave superconductors the
nonlinear response loses a clear trace of the SC gap value,
in contrast to what is found for s-wave superconductors. For
example, the experimental data from Ref. [59] indicate a dis-
order level 2�τ ≈ 1.2, where our results [cf. Fig. 4, panel
(f)] show a continuously increasing paramagnetic response
towards lower energy dominating over the diamagnetic one.
Translated into a temperature dependent response via �(T ),
one would then expect a continuously decreasing THG which
vanishes close to Tc, which is in agreement with the THG data
of Refs. [11,14,15].

Our theoretical findings are also in excellent agreement
with the mild polarization dependence of the THG sig-
nal measured experimentally in cuprate superconductors
[11,12,14,15]. Previous work [28] already showed that the
inclusion of a next-nearest-neighbor hopping t ′ into the band
structure already enhances the isotropy even for s-wave pair-
ing. Here the effect is even stronger and from Fig. 4 it is
evident that for a d-wave superconductor an orientational
dependence is only expected for the diamagnetic response.
However, at small frequencies and in the presence of dis-
order the diamagnetic response is completely exceeded by
the paramagnetic current, which is almost isotropic. Figure 5
summarizes our results showing the nonlinear current inten-
sity at two frequency values � = � [panel (a)] and � = �/2
[panel (b)]. Whereas in the former case dia- and paramagnetic
contributions to the THG are comparable, also in strong con-
trast to the s-wave case [25], it is apparent that for smaller
frequencies and 1/(2�τ ) ≈ 1/2 the orientational-dependent
diamagnetic current gives only a minor contribution to the re-
sponse. Since for cuprates one is well below the gap maximum
for a wide temperature range, our results are pretty much con-
sistent with an isotropic THG signal increasing monotonically
below Tc. Interestingly, despite the lack of a clear signature
of the gap maximum in the THG intensity as a function of
frequency, preliminary investigations of the phase of the THG
response suggest that this quantity could still be sensitive to
the crossing at the ω = � condition. The investigation of this
issue will be left for future work.

V. CONCLUSIONS

In the present manuscript we performed a detailed analysis
of the linear and nonlinear optical response for a model system
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FIG. 5. Disorder dependence of the diamagnetic (circles) and
paramagnetic (squares) response at two fixed frequencies ω = �0

(top) and ω = �0/2 (bottom). For the diamagnetic response we
report the nonlinear current in the field direction for a field applied
along the (11) (blue) and (10) (red) direction. For the paramagnetic
current the value is the same within the numerical accuracy.

of d-wave superconductors, intended to reproduce the main
features of cuprate superconductors in the SC state. Since
strong correlation effects have not been explicitly included,
our analysis is more appropriate for optimally and overdoped
samples, even though general aspects concerning symmetry
and disorder also apply to underdoped systems.

The linear response that has been widely studied in the past
with various analytical and numerical approaches [34–36]
provides a benchmark to test the accuracy of our results.
Indeed, for a d-wave superconductor the vanishing of the
gap along the nodal directions that is the origin [37] of
the so-called universal value σ0 of the optical conductivity
in the limit ω → 0 makes it challenging to provide a reli-
able estimate of the zero-frequency limit at small disorder.
Nonetheless, we show that our approach, based on the nu-
merical solution of the self-consistent BdG equations and on
a perturbative expansion in the applied gauge field, allows
us to reproduce with good accuracy the expected value of
σ0 and the persistence of a large uncondensed fraction of
optical spectral weight at larger disorder, recently reported in
overdoped samples [31,32].

For what concerns the nonlinear optical response we fo-
cused on the third-harmonic current generated in response to a
monochromatic gauge field that has been recently experimen-
tally studied by different groups in various families of cuprates
[11,14–16]. In analogy with previous work for s-wave
superconductors [25], we show that even for small dis-
order the THG response is strongly enhanced, thanks to
the emergence of a nonlinear coupling to light mediated
by paramagneticlike processes that are absent in the clean
case. However, in contrast to the s-wave case, the paramag-
netic response, which rapidly dominates over the diamagnetic
one already for relatively small disorder as appropriate for
cuprates, completely loses any resonance in frequency at the
scale set by the SC gap maximum �. When the system is

probed at a fixed pump frequency with varying temperature,
this result would imply a lack of any THG resonance in tem-
perature when cooling below Tc. Our finding, along with the
marked isotropy of the THG found in our calculations, bears
a strong resemblance to the experimental data in cuprates,
where no clear resonance in temperature of the THG has been
reported [11,14–16].

So far, we only computed the BCS response due to quasi-
particle excitations. Indeed, the large system sizes needed
to correctly deal with the zero-frequency limit make it nu-
merically challenging computing also the collective-mode
response, as was done for the s-wave case [25]. It then remains
a main open question regarding the fate of the Higgs mode,
which in the strongly disordered s-wave case has been found
to give a significant (but not predominant at intermediate
disorder) contribution to the THG. So far, the analogy with the
s-wave case led many authors to interpret also the THG data
in cuprates as a signature of the Higgs mode [11,12,14,15],
using as a main argument the isotropy of the signal as a func-
tion of the polarization dependence of the pump. However,
the present calculations show clearly, as already anticipated
for the same band structure and s-wave pairing [28], that
for disorder values consistent with the available experimental
results the paramagnetic response due to BCS quasiparticles
correctly reproduces the measured isotropy of the THG. In
addition, as discussed above, the lack of a resonance in the
d-wave paramagnetic response could also explain the lack of
a temperature maximum in the THG measured so far, showing
that for the relatively clean underdoped and optimally doped
samples the BCS response could very well explain the ex-
periments. For what concerns the temperature dependence,
a remarkable exception is provided by recent measurements
in an optimally doped YBCO sample [14], where a broad
maximum in THG is actually reported near Tc. Interestingly,
for the same sample the time trace of the nonlinear current
also shows a marked beating effect that seems to be ascribed to
an interference effect between two well-defined sharp modes,
in analogy with what observed, e.g., in NbSe2 [60], where
the Higgs mode coexists with a CDW amplitude mode. A
possible interpretation of these results could be that, along
with a featureless BCS paramagnetic response, also a sublead-
ing resonant Higgs contribution arises that becomes visible
only when the resonance condition ω ≈ � is reached near Tc.
Indeed, one could expect that at least for moderate disorder
the main effect of impurities is to enhance the overall coupling
of the Higgs mode to light, preserving its frequency structure
with the same broad resonance at 2� found in the clean case
[24]. In this view, even if subleading the Higgs mode could
manifest whenever the matching condition with the pump
frequency or with a coupled resonance makes it overcome the
overall BCS signal. If confirmed, such a view could finally
open the way to a detection mechanism able to disentangle
the Higgs response from the BCS quasiparticle one and to
investigate its role on the long-sought unconventional pairing
mechanism at play in cuprate superconductors.
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APPENDIX A: POWER SERIES EXPANSION
FOR THE DENSITY MATRIX

In Sec. II B we have outlined a “real space scheme” to
evaluate the deviation of the density matrix from its equilib-
rium result when the system is perturbed by the coupling to a
time dependent vector potential. This approach is based on
the equation of motion of the density matrix which allows
for the evaluation of linear and nonlinear current responses
for large lattices. We restrict the formalism to the BCS limit,
i.e., keeping the local densities and order parameter values
constant upon perturbing the system. In the following we give
the explicit expressions for the nth order contributions to the
density matrix R(n) with n = 1, 2, 3 from which the para-
and diamagnetic currents jx,(n)

para/dia of the same order can be
computed according to Eqs. (16) and (17). Inserting these
currents into Eq. (18) yields the full third harmonic current
response.

1. First order

The first order current contribution, relevant for the evalu-
ation of the optical conductivity, is given by

j (1)
x = jx,(1)

para + A0 jx,(0)
dia , (A1)

which requires evaluation of the density matrix up to order
n = 1.

By selecting all terms ∼A0 in the equation of motion
Eq. (10) one obtains

iṘ
(1) = [R(1), H (0)] + f (t )[R(0),V ], (A2)

with

V =
(

v 0

0 v

)
(A3)

and

vnm = −it[δm,n+x − δm,n−x]

− it ′[δm,n+x+y − δm,n−x−y]

− it ′[δm,n+x−y − δm,n−x+y]. (A4)

The nonperturbed Hamiltonian H (0) (i.e., for A0 = 0) can
be diagonalized

H̃
(0) = T −1H (0)T

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−EN . . . 0 0 . . . 0

...
. . . 0

... . . .
...

0 . . . −E1 0 . . . 0

0 . . . 0 E1 . . . 0

...
...

...
. . .

...

0 . . . 0 0 . . . EN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the same transformation also diagonalizes the nonper-
turbed density matrix

R̃
(0) = T −1R(0)T

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 0 0 . . . 0

...
. . . 0

... . . .
...

0 . . . 1 0 . . . 0

0 . . . 0 0 . . . 0

...
...

...
. . .

...

0 . . . 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

With this transformation Eq. (A2) can be written as

i ˙̃R(1)
nm = (Emm − Enn)R̃1

nm + (
R̃0

nn − R̃0
mm

)
Ṽnm f (t ), (A5)

where Ṽ denotes the transformed matrix Eq. (A3).
Consider now a harmonic vector potential f (t ) = cos �t .

Then the Fourier transformed correction

R̃1
nm(ω) =

∫
dt eiωt R̃1

nm(t ) (A6)

is given by

R̃1
nm(ω) = R̃0

nn − R̃0
mm

ω − Emm + Enn
Ṽnmπ [δ(ω − �) + δ(ω + �)]

≡ χ̃nm(ω)Ṽnmπ [δ(ω − �) + δ(ω + �)], (A7)

which can be transformed back to yield the first order
perturbation R(1)

i j to the density matrix in the original site
representation. For the presentation of the results in Sec. III,
χ̃nm(ω → ω − iη) has been computed with a small imaginary
part in order to avoid singularities.

2. Second order

We proceed by evaluating the diamagnetic contribution to
the third harmonic current A0 jx,(2)

dia ; cf. Eq. (18). Collecting all
terms ∼A2

0 we find for the correction to the density matrix in
second order

iṘ
(2)(t ) = [R(2)(t ), H (0)] + [R(1)(t ),V ] f (t )

+ 1
2 [R(0),C] f 2(t ), (A8)

where we have defined the matrix

C =
(

c 0

0 −c

)
(A9)

and

cnm = t[δm,n+x + δm,n−x] + t ′[δm,n+x+y + δm,n−x−y]

+ t ′[δm,n+x−y + δm,n−x+y]. (A10)

Fourier transformation yields

ωR(2)(ω) = [R(2)(ω), H (0)]+1

2
[R(1)(ω+�)+R(1)(ω−�),V ]

+ [R(0),C]
π

2

{
δ(ω)+1

2
[δ(ω+2�)+δ(ω−2�)]

}
,

(A11)
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which upon inserting Eq. (A7) and diagonalizing can be
solved for the second order contribution to the density
matrix as

R̃2
nm(ω) = π

2
χ̃nm(ω)C̃nm

{
δ(ω)+1

2
[δ(ω + 2�) + δ(�−2�)]

}

+ π

2

1

ω − Emm + Enn
[δ(ω + 2�) + δ(ω)]

× [χ̃ (ω + �)Ṽ , Ṽ ]nm + π

2

1

ω − Emm + Enn

× [δ(ω − 2�) + δ(ω)][χ̃ (ω − �)Ṽ , Ṽ ]nm (A12)

and [χ̃ (ω)Ṽ ]nm has to be understood as χ̃nm(ω)Ṽnm.

3. Third order

Finally, we evaluate the paramagnetic contribution to the
third harmonic current jx,(3)

para . Collecting all terms ∼A3
0 in the

equation of motion Eq. (10) results in the following equation
for the third order correction to the density matrix:

iṘ
(3)(t ) = [R(3)(t ), H (0)] + [R(2)(t ),V ] f (t )

+ 1
2 [R(1),C] f 2(t ) − 1

6 [R(0)(t ),V ] f 3(t ). (A13)

The solution for the contribution at ω = 3� is then given
by

R̃3
nm(3�) = − π

24
χ̃nm(3�)Ṽnm

+ π

8

1

3� − Emm + Enn
[χ̃ (2�)C̃, Ṽ ]nm

+ π

8

1

3� − Emm + Enn
[χ̃ (�)Ṽ , C̃]nm

+ π

4

1

3� − Emm + Enn

×
[

1

2� − Emm + Enn
[χ̃ (2�)Ṽ , Ṽ ], Ṽ

]
nm

.

(A14)

Not that in case of an isotropic s-wave SC with minimum
energies En = ±�, Eq. (A14) has contributions at frequencies
3� = 2� and 2� = 2� in agreement with Ref. [21].

APPENDIX B: AVERAGING OVER FINITE SIZE EFFECTS

On finite lattices the SC gap is strongly influenced by the
number of k points, in particular for d-wave systems where
the gap vanishes along the nodal direction. This is shown
in Fig. 6, where the minimum energy Emin is shown for a
homogeneous L × L system and parameters used in the main
paper, with L ranging from 40 to 80. As one can see, Emin

reveals an “oscillatory” behavior as a function of L, due to the
fact that the minimum gap depends on the “closeness” of a k
point to the intersection of the underlying Fermi surface with
the zone diagonal. In all cases the maximum spectral gap is
≈0.6t . For a 60 × 60 lattice one finds a minimum SC gap of
≈0.08t , while for a 68 × 68 lattice one has k points closer
to the intersection between the Fermi surface and the zone
diagonal, so that the minimum gap Emin is smaller (≈0.004t).

FIG. 6. Minimum SC gap in a homogeneous d-wave supercon-
ductor on a L × L lattice. J/t = 1, n = 0.875, and t ′/t = −0.2.

Despite such an oscillatory behavior, for the lattice sites
shown in Fig. 6 the set of k points which is sampled within
such a period constitutes a mesh in momentum space dense
enough to be representative of the behavior on a much larger
lattice. This is demonstrated in Fig. 7. Here we show the
comparison between the DOS of a large (L = 800) system
and the DOS obtained as an average of the one computed over
one period of oscillations for Emin in Fig. 6. More specifically,
the average red curve is obtained by averaging the single DOS
obtained for L ranging from 52 to 68, which are also shown for
comparison in the inset. Here one sees that, while the individ-
ual densities still retain large oscillations for energies within
the maximum SC gap, the averaged DOS is very close to the
one obtained for the large L = 800 lattice, while some residual
finite-size oscillations only survive for energies larger than the
maximum gap. To minimize the effects of the finite lattice size
we employed the same approach also for the computation of
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FIG. 7. Main panel: Density of states of a d-wave superconduc-
tor on a 800×800 lattice (black) compared to the average of spectral
functions on L × L lattices with 52 � L � 68 (red dashed). Inset:
DOS from the individual finite lattices in the gap region. J/t = 1,
n = 0.875, and t ′/t = −0.2.
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FIG. 8. Memory function for different disorder levels as ex-
tracted from the conductivities. J/t = 1, n = 0.875, and t ′/t = −0.2.

the results in the inhomogeneous case, performing not only an
average over disorder but also an average over different lattice
sites.

APPENDIX C: UNIVERSAL CONDUCTIVITY
OF d-WAVE SUPERCONDUCTORS

Within a Boltzmann-type approach, the dc conductivity of
a disordered superconductor can be written as [53]

σxx = e2NF v2
FTxx, (C1)

where NF is the normal-state DOS at the Fermi energy and Txx

plays the role of an effective transport time that is defined by
the equation

Txx = γ 2

v2
F

〈
v2

F,x(φ)√
�2(φ) + γ 2

3

〉
. (C2)

Here 〈. . . 〉 denotes the average over the Fermi surface, v2
F ≡

〈v2
F,x(φ)〉, and γ is the width of the impurity band determined

from

1 = �imp

〈
1√

γ 2+�2(φ)

〉
C2 + 〈

γ√
γ 2+�2(φ)

〉2 . (C3)

�imp is proportional to the impurity concentration and C de-
notes the cotangent of the scattering phase shift. We solve
Eqs. (C1) and (C2) for the homogeneous model Eq. (2) and
parameters defined in Sec. II which yield a DOS of NF =
0.3051/t . As a result we obtain σ0 = 2.38[e2/h̄] in the limit
of vanishing disorder (equivalent to C → ∞ and γ → 0) and
σ0 = 0.6[e2/h̄] in the strong-disorder unitary limit (equivalent
to C = 0).

(a)

(b)

(c)

(d)

FIG. 9. Real part of the normal state conductivity (circles) at
different disorder levels together with the fit from Eq. (D4) with the
memory function Eq. (D5). J/t = 1, n = 0.875, and t ′/t = −0.2.

APPENDIX D: DETERMINATION OF THE SCATTERING
TIME IN THE NORMAL STATE

In order to extract the scattering time τ one could in
principle fit the low-energy numerical normal state optical
conductivity to the bare Drude form

σ (ω) = ε0ω
2
p

−iω + 1
τ

, (D1)

where ωp denotes the plasma frequency. However, it is
more convenient to start from a frequency-dependent optical
conductivity represented in terms of a memory function
M(ω) [61]

σ (ω) = iε0ω
2
p

ω + M(ω)
, (D2)

which allows us to fit the numerical result over a larger
frequency range and therefore yields a more robust value
for τ .

Equation (D2) can be rewritten in a Drude-like form

σ (ω) = ε0ω
2
p

g(ω)

−iω + 1
τ (ω)

, (D3)
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with

g(ω) = 1

1 + M1(ω)
ω

,
1

τ (ω)
= g(ω)M2(ω),

so that the real part σ1(ω) can be obtained from

σ1(ω) = ε0ω
2
p

g(ω)τ (ω)

1 + ω2τ 2(ω)
. (D4)

Figure 8 shows the real M1 and imaginary M2 part of the
memory function for three different disorder levels. We can
approximately fit M(ω) with the formula

ω + M(ω) ≈ A ln
B + ω

B − ω
+ iA�(B − |ω|). (D5)

This approximation reproduces the linear behavior of
M1(ω) ∼ ω for small frequencies (approximately below
ω/t � 0.5) and replaces the imaginary part M2(ω) by a con-
stant value above a threshold scale B. Such an approximation
can be used to extrapolate M2 at small frequencies in the
regime where finite-size uncertainties set in. From Eq. (D5)

the frequency-dependent scattering time reads

τ (ω) = 1

ω
ln

B + ω

B − ω
, (D6)

with the zero frequency limit τ ≡ τ (0) = 2/B. Figure 9 shows
that Eq. (D5) provides a good fit to the low-frequency con-
ductivity. The corresponding zero-frequency scattering times
derived from the above formula at each disorder level are
reported in the panels.

We briefly comment on an alternative possibility, namely
determining the scattering rate from the imaginary part σ2(ω)
in the normal state; cf. red dashed curves in the right panels of
Fig. 1. From a conventional Drude picture one would expect

ωσ2(ω) = σ0

τ

ω2τ 2

1 + ω2τ 2
,

so that at ωτ = 1 the value of ωσ2 should be half the value at
ω → ∞. Estimating the relaxation time from this approach
yields slightly larger values than from the fitting of σ1(ω)
within the scheme outlined above, e.g., τ = 4/t instead of
τ = 3/t for V/t = 0.7. In fact, fitting the memory function
results in a more accurate description of the conductivity at
low energies so that we consider these values of τ as more
reliable.
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