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Abstract—In this study, the potential of electromagnetic scat-

tering models to retrieve quantitative parameters of sea oil spills 

is investigated using an artificial intelligence-based approach. The 

backscattering coefficient of a slick-covered sea surface is pre-

dicted using the advanced integral equation model augmented 

with the model of local balance, an effective dielectric constant 

model and a composite medium model to include the effect of an 

oil slick. Damping ratios, predicted for different oil parameters 

(namely the oil thickness and seawater volume fraction), are used 

to train and test a four-layer neural network. Once successfully 

tested, the neural network is applied to an uninhabited aerial ve-

hicle synthetic aperture radar image collected during the Deep-

Water Horizon oil spill accident to retrieve the oil slick thickness 

and volume fraction of seawater in the oil layer.  

The inversion results show that the thicker (i. e., 2 – 4 mm) 

emulsions are located in the south and west of the slick and they 

are surrounded by thinner (i. e., < 1 mm) oil films. In addition, the 

seawater volume fraction in the oil slick is found to be about 20% 

- 30%. Results are contrasted with optical data and previous stud-

ies of the same accidental oil spill, showing qualitatively good 

agreement. 

 

Index Terms—ANN, DWH, oil spill, parameter inversion, SAR, 

scattering model 

 

I. INTRODUCTION 

HE Synthetic Aperture Radar (SAR) is unanimously rec-

ognized as a key operational remote sensing instrument for 

oil spill surveillance and damage assessment owing to its all-

day and almost all-weather observation ability together with its 

fine spatial resolution. Although SAR sea oil slick surveillance 

is a mature enough application [1], the estimation of ancillary 

information as the oil thickness and fractional volume of sea-

water is still a challenging task [2]. After a crude oil is spilled 

into the marine environment, it spreads over the sea surface and, 

under the action of wind and waves, typically start to mix with 

seawater giving rise to an emulsion layer underneath the oil 

film [3]. Thick layers can be formed for fresh-spilled crude oils 

or emulsions with their thickness ranging from micrometer to 

millimeter and even centimeter in the case of low sea state [4]. 

The spatial extent of the oil and its thickness distribution are 

pivotal parameters for remediation purposes that drive the 

choice of the more suitable response method and the spatial 

allocation of response resources. Thick or emulsified oil which 

need to be contained, dispersed, burned or recovered for clean-

up work or prosecution has the thickness of 0.5 – 10 mm [5, 6]. 

In these cases, the knowledge of thickness and volume fraction 

of oil into the water column is required to target the thickest oil 

layer or the water area with the highest oil concentration [7]. 

However, the accurate and reliable estimation of the oil  

thickness and the percentage of oil dispersed into the seawater 

remain difficult tasks [8]. In fact, nowadays, operational oil 

thickness estimation is performed by trained personnel who 

visually inspect the oil slick with the aid of optical cameras. 

Empirical relationships between the visual appearance of an oil 

slick and its thickness have been proposed, among which the 

most extensively adopted is the one included in the Bonn 

Agreement [9]. Nevertheless, the visual estimation of the oil 

film thickness depends on subjective and environmental fac-

tors. In addition: (a) the estimation approach included in the 

Bonn Agreement saturates when oil slicks are thicker than 0.1 

mm, which is the case that includes the emulsified oils requir-

ing clean-up operations [10]; (b) the range of oil thickness vis-

ually inspected is orders of magnitude below the relevant thick-

ness ranges needed for oil spill countermeasures to work cor-

rectly [2]; (c) water-in-oil emulsions may differ from non-

emulsified oils in both appearance and physical properties 

leading to incorrect oil thickness estimations [6]. All this mat-

ter suggests that the existing operational methodology to esti-

mate oil thickness is not mature enough and there is still large 

room for improvements [2].  

Recent studies demonstrate the potential of SAR imagery to 

provide information about the physical properties of oil slicks, 

namely thickness and water-in-oil fraction [11, 12]. In the SAR 

image plane, oil slicks are detected as dark spots since they 

have lower brightness compared to slick-free sea surfaces. This 

is due to both geometrical and dielectric effects of the oil slick 

which, one on side, damps the short-gravity and capillary sea 
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waves resulting in a lower backscattered signal and, on the 

other side, if thick or emulsified slicks are in place, the dielec-

tric properties of the upper sea surface can be altered in a way 

that can be observed at microwave frequencies [8]. To extract 

information about the oil slick from SAR imagery while limit-

ing effects of sea state conditions and incidence angle, the 

damping ratio (DR), i.e., the slick-free to slick-covered 

backscattering ratio, has been widely adopted [7, 11, 13-19]. It 

has been shown that thick crude oils or emulsified oils may 

give rise to larger DR values than those of thinner oils. In [20], 

the DR is estimated over heavy and light fuel oils and it is 

shown to be largest for heavy fuel oils and it increases with the 

thickness of the oil layer. In [21], a significant reduction of the 

backscatter signal is observed in the thickest part of the oil slick. 

In [11], the DR is exploited as a proxy of oil slick thickness, 

with larger DR values being related with thicker oil layers. The 

DR metric is also used to infer the percentage of oil-in-water. 

In [15, 16], DR values obtained from L-band Uninhabited Aer-

ial Vehicle SAR (UAVSAR) data collected over the Deep-

water Horizon (DWH) polluted area are analyzed to estimate 

the oil/water mixing ratio. Experimental results show that the 

oil volume fraction is about 65% – 90%. Accordingly, different 

DR-based metrics are proposed to determine the relative oil 

slick thickness [7]. In [22], the DR evaluated using co-polar-

ized TerraSAR-X measurements is shown to well-correlate 

with the oil volume released on the seawater oil under low-to 

moderate wind speed. Despite of automatic or semi-automatic 

methods to evaluate the DR of an oil slick [23, 24], SAR-based 

oil thickness estimation is still far from being a mature appli-

cation using DR [25]. 

A key issue that limits the development of robust and effec-

tive methodologies to retrieve oil thickness from SAR imagery 

is the lack of field measurements and validation data [2]. In [3, 

26], the DR is used to estimate the concentration of oil within 

an oil-in-water emulsion. Numerical predictions, performed 

using the Universal Weighted Curvature Approximation 

(UWCA) surface scattering model, are contrasted with high 

quality (i. e., high Signal-to-Noise Ratio (SNR)) L-band SAR 

measurements collected during an oil spill clean-up exercise. 

Although no ground info was available, the estimated thickness 

is shown to be consistent with the expected behavior of the re-

leased oil. In [15, 16], the DR is used to evaluate the oil con-

centration in the DWH slick based on the tilted Bragg scatter-

ing model. The spilled oil is estimated to be a mixture of ap-

proximately 20% seawater and 80% oil whose thickness is at 

least a few millimeters. These studies open new perspectives 

for quantitative monitoring of marine oil slicks by dual-polari-

zation SAR imagery [3]. In literature, to the best of our 

knowledge, there is no study addressing a simultaneous quan-

titative retrieval of oil thickness and seawater (or oil) volume 

fraction in the oil slick using the DR metric ingested in an arti-

ficial neural network (ANN) processing, i.e. using a model-

based ANN approach.  

Recently, Artificial Intelligence (AI) technology has been 

widely trialed for ability to perform flexible input–output non-

linear mappings between remotely sensed data and geophysi-

cal parameters, which has been applied, among all, to retrieve 

ocean water depth [27] and soil moisture [28] and to predict 

precipitation [29] and agricultural yield [30]. It has been found 

great potential for revolutionizing data analysis and application  

in the field of quantitative remote sensing [31, 32]. In [33], the 

thickness of DWH oil spill has been retrieved utilizing ANN, 

which reveals the thickness distribution of the oil slick present 

on the SAR image. Nevertheless, since the spilled oil appeared 

highly emulsified characteristics, more information about the 

emulsion oil is desired to be obtained from SAR measurements. 

In this paper, an inversion method is proposed to retrieve oil 

parameters, i.e., oil thickness and fractional volume of sea-

water simultaneously, from SAR measurements by exploiting 

an AI strategy. The rationale consists of overcoming the lack 

of ground information using a forward scattering model. Hence, 

first the backscattered signals from slick-free and oil-covered 

sea surface are predicted using a forward scattering model spe-

cialized to the case of thick oil emulsion [34] and, then, they 

are combined according to the DR metric. The inversion of oil 

parameters is carried out by the AI technique that is trained and 

validated on simulated data obtained from the forward model. 

Finally, the inversion method is verified using UAVSAR data 

collected during the DWH oil accident to demonstrate the ef-

fectiveness of the proposed approach to estimate oil thickness 

and water-in-oil volume fraction. Inversion results are qualita-

tively compared with optical camera images acquired during 

the DWH accident and visually inspected by trained personnel. 

The remainder of the paper is organized as follows: the for-

ward model used to predict sea surface scattering with and 

without thick emulsified oil slicks is introduced in Section II; 

while the AI-based inversion methodology is outlined in Sec-

tion III. The UAVSAR and ancillary data collected during the 

DWH oil spill accident are introduced in Section IV; while the 

experimental results relevant to the inversion of oil parameters 

are presented in Section V. Conclusions are drawn in Section 

VI. 

II. FORWARD SCATTERING MODEL 

Several scattering models have been proposed in literature 

to predict the microwave signal scattered off a randomly rough 

surface. Those methods can be either numerical or analytical, 

with the former being typically computational demanding in 

 

Fig. 1. Flowchart of the Forward Scattering Model for predicting the 

backscattering from oil-covered sea surfaces. 
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case of large scattering media. Hence, a good trade-off between 

accuracy and computer-time effectiveness is provided by ana-

lytical methods. Among the latter class, the Advanced Integral 

Equation Method (AIEM), i.e., an improved version of the 

well-known Integral Equation Method (IEM), has been exten-

sively used to deal with sea surface scattering with and without 

surfactant in both monostatic and bistatic geometries [12, 34-

36].  

In this study, the Forward Scattering Model (FSM), depicted 

in the schematic of Fig. 1, employs the AIEM augmented with 

a damping model and a model to deal with the effective dielec-

tric constant of the oil/water layer and its effects on the Fresnel 

reflection coefficients Those models are described in the fol-

lowing subsections.  

A. Rough surface scattering model: AIEM 

For multi-scale roughness surfaces – e.g., the sea surface -, the 

family of two-scale models is largely adopted to include in the 

predicted Normalized Radar Cross Section (NRCS) the effects 

of both large- and small-wave structures. Among these models, 

the AIEM has been largely employed since it does not rely 

splitting the roughness spectrum into different parts [37, 38]. 

The AIEM integrates the classical Kirchhoff Approximation 

(KA) - used to describe the scattering contributions resulting 

from large-scale roughness - with the Small Perturbation 

Model (SPM) -adopted to describe the scattering contributions 

resulting from small-scale roughness. The AIEM includes KA 

and SPM as special cases achieved in the low and the high fre-

quency regions of the sea surface roughness spectrum, respec-

tively. By bridging the gap between KA and SPM, the AIEM 

can be used to predict the NRCS of a sea surface calling for a 

broad range of roughness. According to the AIEM, the surface 

field consists of the sum of a Kirchhoff term and a complemen-

tary field term. in this way, the NRCS can be obtained as the 

sum of the Kirchhoff term 𝜎𝑝𝑞
𝑘 , the complementary term 𝜎𝑝𝑞

𝑐  

and the cross term 𝜎𝑝𝑞
𝑘𝑐 [37] 

 𝜎𝑝𝑞
0 = 𝜎𝑝𝑞

𝑘 + 𝜎𝑝𝑞
𝑐 + 𝜎𝑝𝑞

𝑘𝑐 (1) 

where the subscripts 𝑝 and 𝑞  denote the transmitted and re-

ceived polarization of the microwave signal, respectively. 

Given small slopes of typical sea surfaces, the multiple scatter-

ing can be neglected and the NRCS of the sea surface predicted 

by AIEM is given by  

 𝜎𝑝𝑞
0 =

𝑘2

2
𝑒−𝜎2(𝑘𝑠𝑧

2 +𝑘𝑖𝑧
2 ) ∑

𝜎2𝑛

𝑛!
|𝐼𝑝𝑞

𝑛 |
2

𝑊𝑛∞
𝑛=1  (2) 

where 𝑘 is the wavenumber of the electromagnetic wave with 

𝑘𝑠𝑧 and 𝑘𝑖𝑧 being the projection of the scattering wave and in-

cident wave on the normal direction. For backscattering con-

figuration, since the scattering angle 𝜃𝑖 is identical to the inci-

dence angle 𝜃𝑠 , 𝑘𝑠𝑧  equals 𝑘𝑖𝑧 . 𝐼𝑝𝑞
𝑛  denotes the surface field 

function which can be referred to [37] for details. Roughness 

parameters of the sea surface includes: 1) 𝜎, the root-mean-

square (rms) height, and 2) 𝑊𝑛, the 𝑛-fold convolution of the 

sea surface spectrum, which is also the Fourier transform in the 

spatial domain of the nth power of the autocovariance function 

𝜌(𝑟, 𝜑). For sea surfaces, 𝜎 can be calculated from the omni-

directional sea spectrum 𝑆(𝐾) as 

 𝜎2 = ∫ 𝑆(𝐾)𝑑𝐾
∞

0
 (3) 

with 𝐾 being the wavenumber of sea waves. The functions 

𝜌(𝑟, 𝜑)  and 𝑊𝑛  can be calculated from the directional sea 

spectrum 𝑆(𝐾, ϕ) as 

 𝜌(𝑟, 𝜑) =
1

𝜎2 ∫ ∫ 𝑆(𝐾, 𝜙)exp(𝑗𝐾𝑟 𝑐𝑜𝑠(𝜑 − 𝜙))𝐾𝑑𝐾𝑑𝜙
2𝜋

0

∞

0
 (4) 

 𝑊𝑛(𝐾, 𝜙) =
1

2𝜋
∫ ∫ 𝜌𝑛(𝑟, 𝜑)exp(𝑗𝐾𝑟 𝑐𝑜𝑠(𝜑 − 𝜙))𝑟𝑑𝑟𝑑𝜑

2𝜋

0

∞

0
 (5) 

with 𝜙 being the wind direction with respect to incident direc-

tion of radar. Note that the directional sea surface spectrum 

𝑆(𝐾, 𝜙) is factorized into the product of 𝑆(𝐾) and the Angular 

Spreading Function 𝛷(𝐾, 𝜙) as 

 𝑆(𝐾, 𝜙) = 𝑆(𝐾) ⋅ 𝛷(𝐾, 𝜙) (6) 

 In this study, 𝑆(𝐾) and 𝛷(𝐾, 𝜙) are the ones described in 

Elfouhaily et al. [39]. 

To predict the scattering from an oil-covered sea surface, the 

slick-free sea surface AIEM scattering model should be aug-

mented to describe two oil-related effects: i) the damping of 

small scale wind-induced surface waves and ii) the reduction 

of the sea surface dielectric constant when a thick or emulsified 

oil is in place [16]. The two effects are described and modelled 

in subsections B and C. The backscattered signal and, therefore 

information retrieval process, also depends on the penetration 

depth of the radar signal into the mixture that is given by [40]:  

 𝛿 =
1

𝑘|ℑ(√𝜀𝑒𝑓𝑓)|
 (7) 

where ℑ(∙) stands for imaginary part, 𝜀𝑒𝑓𝑓 is the dielectric con-

stant of the oil/water mixture. The oil - in the microwave range 

of the spectrum - calls for a dielectric constant which is rela-

tively much lower than the (typical) sea surface one. According 

to [40], the intensity of the radar signal reduces to about 37% 

of its value at the upper boundary of the layer at δ meters within 

the scattering layer. This means that, from an electromagnetic 

viewpoint, two factors play a key role in the radar sensitivity 

to oil thickness: the damping and the modification of the die-

lectric constant: 

 A thin film (thickness lower than roughly δ⁄10 [8]) only mar-

ginally affects the dielectric constant of the underlying water 

and, therefore, it does not have any “measurable” effect on the 

effective dielectric constant of the scattering surface. In this 

case, the “measurable” effect relies on the attenuation of the 

NRCS due to the damping of the small-scale Bragg-resonant 

roughness. 

 A thicker layer (thickness larger than roughly δ⁄10) the radar 

signal interacts with the medium composed by oil and sea wa-

ter and, therefore, at least in principle the backscattered wave 

carries out information about oil thickness. 

The above-mentioned theoretical rationale suggests that the ra-

dar ability to provide information about the thickness of the 

mixture layer depends on the radar frequency (according to (7) 

the higher is the frequency, the lower is the penetration depth), 

the dissipation term (i. e., the imaginary part of the dielectric 

constant), with the larger being the dissipation term the lower 

is the penetration depth. In addition, the retrieval performance 

significantly relies on the SAR figure of merit – among them, 

the Noise Equivalent Sigma Zero (NESZ) plays a key role and 

on sea state conditions [41, 42]. 

  

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3369023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 IEEE 4 

B. Damping of sea surface roughness 

The oil slick damps capillary and short-gravity waves through 

the reduction of wind friction velocity and surface tension, 

which both suppress wave growth and increase wave viscous 

dissipation [43]. In addition, the longer wave part can be also 

affected through nonlinear wave-wave interaction [44]. To in-

clude these aspects comprehensively, the Model of Local Bal-

ance (MLB) is adopted which is based on the action balance 

equation. Accordingly, the damping of sea waves by an oil 

slick is given by [34] 

 𝑦MLB(𝑢∗,𝑠 , 𝑦vis[𝑑, 𝜈𝑠], ∆𝛼, 𝐾) =
𝛽(𝑢∗,𝑠)−2(∆∙𝑦vis)𝑐𝑔+(𝛼+∆𝛼)

𝛽(𝑢∗)−2∆𝑐𝑔+𝛼
 (8) 

where 𝛽 denotes the wind growth rate that depends on the wind 

friction velocity 𝑢∗. In case of the slick-covered sea surface, 

the friction velocity is reduced with respect to the slick-free 

one by a damping factor 𝜇 ≈ 0.7 − 0.8. Hence, 𝑢∗,s = 𝜇 ∙ 𝑢∗. 

The viscous dissipation term 2∆ ∙ 𝑐𝑔, with 𝑐𝑔 being the group 

velocity of sea waves and ∆ being the clean sea surface damp-

ing coefficient, is enhanced in case of slick-covered surface by 

the viscous damping coefficient 𝑦vis. 

In case of the thick emulsified oil, the two-layer fluid model 

is here adopted which relates the viscous damping coefficient 

𝑦vis with the thickness 𝑑, oil viscosity 𝜈𝑠 and other physical pa-

rameters of the finite layer covered on the sea surface [45]. Ex-

perimental results have proved that the viscous damping of 

emulsions (with a thickness spanning from several tenths to ten 

millimeters) can be well described by 𝑦vis [46]. The reduction 

of the wind input energy 𝛽(𝑢∗,𝑠) and the increasing of viscous 

dissipation 2(∆ ∙ 𝑦vis)𝑐𝑔 in the capillary and the short gravity 

wave regions of the sea spectrum make the energy transfers 

from the longer to the shorter wave part to maintain the equi-

librium of the sea surface. This is accounted for using the non-

linear wave-wave interactions rate 𝛼 that is increased with a 

factor ∆𝛼. Further details about MLB are provided in [34]. 

The sea surface geometry is described by the roughness 

spectrum 𝑆(𝐾, 𝑢∗), i. e., the Fourier transform of the autocor-

relation sea surface function. Hence, the slick-covered sea 

roughness spectrum, 𝑆𝑠(𝐾, 𝑢∗,𝑠), is described by applying the 

MLB coefficient to the Elfouhaily sea spectrum [39] 

 𝑆𝑠(𝐾, 𝑢∗,𝑠, 𝑑, 𝜈𝑠) =
𝑆(𝐾,𝑢∗)

𝑦MLB(𝐾,𝑢∗,𝑠,𝑑,𝜈𝑠)
 (9) 

The roughness parameter required for the scattering predic-

tion using (2), namely 𝜎 and 𝑊𝑛 , are, therefore, both obtained 

by the slick-covered sea roughness spectrum 𝑆𝑠(𝐾, 𝑢∗,𝑠, 𝑑, 𝜈𝑠). 

C. Reduction of dielectric constant for oil emulsion 

In the microwave region, the dielectric constant of seawater 

(e. g., 𝜀𝑟 ≈ 72 − 𝑗73 at L-band) calls for both real and imagi-

nary parts larger than the corresponding crude oil one (which 

is roughly equal to 𝜀𝑜 = 2.3 − 𝑗0.02). However, the mixing of 

seawater and oil, namely the oil-in-water emulsion, lead to sig-

nificant variations in the sea surface dielectric properties. The 

effective dielectric constant of an oil emulsion can be described 

by the Bruggeman mixing formula [47] 

             𝜀𝑒𝑓𝑓(𝑓𝑣) =
𝜀𝑒

4
− (1 − 3𝑓𝑣)(𝜀𝑖 − 𝜀𝑒) + √[𝜀𝑒 − (1 − 3𝑓𝑣)(𝜀𝑖 − 𝜀𝑒)]2 + 8𝜀𝑖𝜀𝑒 (10) 

where 𝑓𝑣 stands for the fraction of volume that contains homo-

geneous spherical inclusions, whose dielectric constant is 𝜀𝑖; 

while 𝜀𝑒 denotes the dielectric constant of the host homogene-

ous environment. In this study, water-in-oil (W/O) emulsions 

are considered, where seawater droplets (i.e., the inclusions) 

are surrounded by the oil. In this way, 𝑓𝑣 is the seawater vol-

ume fraction of the emulsion oil, when 𝑓𝑣 = 0 (1) the pure 

crude oil (pure seawater) case is in place. 

In addition, the emulsion-covered sea surface is modeled as 

a composite medium which consists of three layers: air, finite 

oil layer and semi-infinite seawater. The effective reflection 

coefficient 𝑅̃ can be calculated based on the layered medium 

model 

 𝑅̃(𝑑, 𝜀𝑒𝑓𝑓) =
𝑅01+𝑅12 𝑒−2𝛾1𝑑 𝑐𝑜𝑠𝜃1

1+𝑅01𝑅12 𝑒−2𝛾1𝑑 𝑐𝑜𝑠𝜃1
 (11) 

where 𝑅01 and 𝑅12 are the reflection coefficients at the air-oil 

and the oil-water interfaces, which are both related to the ef-

fective dielectric properties of the oil layer 𝜀𝑒𝑓𝑓, and, theferore, 

they depend on the fraction of seawater in the oil, 𝑓𝑣. 𝛾1 and 𝜃1 

are the propagation constant and the refraction angle of the 

electromagnetic wave in the oil layer, respectively, which are 

both refer to [48]. Note that 𝑅01 and 𝑅12 are both related to the 

permittivity of the oil layer, namely, 𝜀𝑒𝑓𝑓. The composite re-

flection coefficient is derived from the reflection and transmis-

sion of incident waves in the air-oil surface and oil-seawater 

interface and thus suitable for the oil layer with arbitrarily 

thickness. 

       
(a)                                 (b)                                 (c) 

Fig. 2. (a) Predicted L-band VV (blue) and HH (red) DR values (decibel scale is adopted) versus oil thickness and seawater volume fraction. An incidence angle 

of 30° and a wind speed of 5 ms-1 are considered. (b) Predicted DR values versus oil thickness for 𝑓𝑣 = 50%. (c) Predicted DR values versus seawater volume 

fraction when 𝑑 = 2 mm. 
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 In this way, the roughness damping effect of oil slicks is 

embodied through (9) and thus alters 𝜎 and 𝑊𝑛 in (2), which 

is mainly depends on 𝑑. And the effect of dielectric reduction 

modifies 𝐼𝑝𝑞
𝑛  in (2) by (10) and (11) which involves both 𝑑 and 

𝑓𝑣. By augmenting the AIEM slick-free scattering model in-

cluding the damping effect and dielectric properties of the oil 

slick, the NRCS of a slick-covered sea surface, 𝜎𝑝𝑞
0,𝑠

, can be 

predicted. Accordingly, the DR can be predicted as follows [49] 

 𝐷𝑅𝑝𝑞 =
𝜎𝑝𝑞

0

𝜎𝑝𝑞
0,𝑠 (12) 

Fig. 2 shows the L-band DR values predicted at HH (hori-

zontal transmit – horizontal receive) and VV (vertical transmit 

– vertical receive) polarizations with respect to oil thickness (in 

mm) and volume seawater fraction (in percentage) at the inci-

dence angle of 30°, under a moderate wind speed of 5 ms-1. 

Panel (a) shows that the VV-polarized DR is slightly larger 

than the HH one (less than 0.5 dB), which is consistent with 

[16, 50]. Panels (b) and (c), show that the DR increases mono-

tonically with the oil layer thickness while it calls for a non-

monotonic trend with respect to the water content. In addition, 

the DR exhibits the largest sensitivity to 𝑓𝑣 at higher 𝑑 values, 

while the largest sensitivity to 𝑑 is at 𝑓𝑣 values around 50%. 

Note that the non-zero DR values for the largest 𝑓𝑣 seawater 

volume fraction are due to the presence of the non-emulsified 

oil layer. 

It is also worth noting that the DR, which can be measured 

according to (12), carries on key information about both die-

lectric (which, at once, depend directly on the W/O volume 

fraction and indirectly on oil thickness), and geometrical (i.e., 

the surface roughness) properties of the oil slick.  

III. ANN-BASED RETRIEVAL APPROACH  

The theoretical model and the sensitivity analysis provided in 

Section II have shown the non-linear and implicit relationship 

between the quantitative parameters of oil slicks and SAR 

backscattering signals, which requires the inversion method to 

fulfil the non-linear modeling capability. ANN’s non-linear, 

sample-based and model-free architecture allow it to solve the 

highly non-linear multi-parameter relationship between oil pa-

rameters and backscattering signals. Therefore, in this section, 

the retrieval of the oil layer thickness and seawater volume 

fraction is addressed using an ANN-based inversion scheme 

which is applied to simulated SAR measurements.  

The proposed retrieval approach consists of three steps: (a) 

simulating the training dataset using the forward electromag-

netic scattering model; (b) training the neural network to opti-

mize its structure and parameter settings; (c) testing the neural 

network using an independent simulated test dataset. These 

steps will be detailed in the following. 

In this study, the Forward Scattering Model – Artificial 

Neural Network (FSM-ANN) technique is implemented to 

simulate DR values under different incidence angles and oil 

parameters. The need for using simulated data is due to the 

lack of consistent and reliable in-situ NRCS measurements 

over slick-covered sea surface. The multi-layer perceptron 

(MLP) is here adopted since, among ANN-based approaches, 

it is found to be one of the best solutions for non-linear regres-

sion of remotely sensed measurements [51]. The MLP consists 

of multiple layers whose basic units are known as neurons. The 

first layer, i.e., the input layer, is separated by the last layer, 

i.e., the output one and by hidden layers. 

The neural network is trained using the slick-free and slick-

covered NRCSs predicted using the above-mentioned forward 

scattering model. The weights and bias of the ANN are itera-

tively adjusted during the training process to minimize the er-

ror between the network and forward model output. Finally, 

the trained ANN is validated by an independent set of model-

predicted data. 

A. Training dataset simulated by the FSM 

To fully train and test the inversion model, the FSM is used to 

generate a large data set of simulated DRs. In this study, the 

goal is to show the ability of the proposed approach to retrieve 

oil parameters by SAR imagery. Hence, a well-known oil spill 

is considered, i.e., the DWH accident, and, therefore, the exter-

nal environmental parameters (wind speed 𝑢∗ and wind direc-

tion 𝜑𝑤) and rheological properties of oil slicks (viscosity 𝜈𝑠, 

surface tension, etc.) are given as fixed input parameters. The 

  

                  (a)                                                                    (b)                                                                        (c) 

Fig. 3. (a) Sketch of the ANN structure with blue and red dashed boxed denoted NN and NN+, respectively. (b) Density plot of predicted versus modelled oil 

thickness values. (c) Density plot of predicted versus modelled W/O seawater volume fraction. The colormap in (b) and (c) represents the estimated Gaussian 

kernel density of the testing dataset multiplied by the number of testing samples with red color denoting much greater density of testing samples and blue color 

denoting the opposite. 
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values assigned to the oil variables 𝑑 and 𝑓𝑣, as well as the in-

cidence angle 𝜃𝑖, are randomly generated based on the uniform 

and independent distribution. N = 6000 sets of input variables 

are generated and the corresponding co-polarized DRs are pre-

dicted by the FSM. In this study, the simulated dataset is ran-

domly split into training (3600 sets, 60%) and validation (2400 

sets, 40%) data sets. To improve the reliability of the oil pa-

rameter retrieval, the oil thickness is constrained in the range 

of 1 – 5 mm. The statistics of the FSM simulated dataset are 

listed in Table I.  

B. Architecture and training of the ANN  

In this study, it is found that a multi-layer feed-forward neural 

network with three hidden layers, each including 10 nodes, is 

the best architecture, i.e., it guarantees no overfitting in the re-

trieval of oil parameters from the simulated DRs. Note that the 

DR values ingested by the ANN are subject to data normaliza-

tion. The final ANN architecture is shown in Fig. 3, where the 

three input neurons (𝐷𝑅𝐻𝐻, 𝐷𝑅𝑉𝑉 and 𝜃𝑖) and the two output 

neurons (𝑑 and 𝑓𝑣) are shown. In this study, the ANN is trained 

for the retrieval of 𝑑 and 𝑓𝑣 simultaneously to exploit their cor-

relation. In fact, 𝑑  and 𝑓𝑣  are a joint effect on the predicted 

NRCS since they are both linked to the reflection properties of 

the composite sea surface. In addition, while 𝑑 also affects the 

oil damping. 

The training is carried out using the resilient back-propaga-

tion algorithm. To evaluate the ANN performance and to dis-

cuss its robustness, a set of simulation samples - independent 

from the training process - that consists of oil parameters and 

corresponding DRs, is considered as validation dataset. The 

early stopping is utilized to stop the training at the right time 

and to improve the training efficiency. Once the network is ad-

equately trained by random data generated using the FSM, the 

ANN is tested on the validation dataset, for which the same 

normalization applied for the training dataset is adopted. The 

ANN output is then subjected the inverse normalization. 

The retrieved 𝑑 and 𝑓𝑣 values are contrasted with the corre-

sponding modelled values from the test dataset, see the density 

plot of Fig. 3 (b) and (c), respectively, where the z-axis repre-

sents the variable density estimated using a Gaussian Kernel. 

The scores of the inversion scheme, i.e., the coefficient of de-

termination (R2), the mean absolute error (MAE) and the mean 

square error (MSE), are listed in Table II. The network that 

deals with the oil thickness retrieval, see Fig. 3 (b), has been 

accurately trained as can be observed by the distribution of 

ANN retrieved values that mostly concentrate along the 1:1 

line with the FSM modelled values. Quantitatively, R2 is equal 

to about 0.98 while MAE and MSE values which are about 

0.11 mm and 0.02 mm, respectively.  

The network that deals with the inversion of W/O volume frac-

tion is fed with the same inputs of the ANN used for oil thick-

ness retrieval (see Fig. 3 (a) denoted by blue dashed box). Re-

sults, depicted in Fig. 3 (c), show that the ANN results in vol-

ume fraction values which are less consistent with the FSM 

ones, especially when the latter are larger than 0.3 where val-

ues inverted from the network saturate. This is quantitatively 

confirmed by R2 that decreases to 0.59 with MAE about 

14.03%, see Table II. This means that the trained ANN does 

not work properly in the retrieval of 𝑓𝑣.  
To improve the retrieval of 𝑓𝑣, a new NN structure (NN+, 

see Fig. 3 (a) denoted by red dashed box) is designed where the 

previously retrieved 𝑑 is used as an input neuron. The perfor-

mance NN+ on the test data set is shown in Fig. 4 and Table II. 

Those results clearly demonstrate that NN+ significantly im-

proves all the scores of the former ANN and that the distribu-

tion of 𝑓𝑣 values retrieved by NN+ is much closer to the 1:1 

line with the FSM model values. By contrasting NN and NN+ 

density plots (see Fig. 3 (c) and 4), it can be noted that NN+ 

improves the retrieval performance at 𝑓𝑣  around 0.4 and 𝑓𝑣 

larger than 0.8 but overestimates 𝑓𝑣 values smaller than 0.4. 
 It must be pointed out that the ANN approach, to reduce the 

occurrence of multiple solutions of 𝑑 and 𝑓𝑣, adopts a strategy 

that consists of minimizing the error in training dataset. In this 

way, the underestimation of inversion results for 𝑓𝑣  in the 

range of 0-0.4 in Fig.4 may be at the expense of improvement 

of 𝑓𝑣 inversion around 0.4 and 0.8. 

TABLE II 

INVERSION SCHEME PERFORMANCE EVALUATED ON THE TEST DATASET 

Parameters R2 RMSE MAE MSE  

Oil thickness 

(mm) 
0.9830 0.1519 0.1148 0.0231 

Volume fraction 
(%) 

0.5867 2.7942 14.0300 3.4500 

Volume fraction 
(%) estimated us-

ing NN+ 

0.8528 0.1109 8.9400 1.1200 

 

TABLE I 

STATISTICS OF OIL PARAMETERS AND INCIDENCE ANGLE USED TO SIM-

ULATE THE DR USING THE FSM (N = 6000) 

Variable Mean Std Min Max 

𝑑 (mm) 2.99 1.16 1.00 5.00 

𝑓𝑣 (%) 49.79 28.85 0.00 99.99 

𝜃𝑖 (°) 49.85 7.45 37.24 63.03 

 

 

Fig. 4. Density plot of W/O seawater volume fraction retrieved by NN+ 

versus the one simulated with FSM. 
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IV.  EXPERIMENTS ON ACTUAL AIRBORNE SAR IMAGERY 

In this section, the proposed ANN-based retrieval approach is 

applied to actual polarimetric L-band airborne SAR measure-

ments. 

A. DWH oil spill 

The DWH oil spill in the northern part of Gulf of Mexico 

can be considered as the largest marine oil spill accident in the 

history. On 20 April 2010, the DWH drilling rig exploded 

causing human losses and casualties. The oil spillage has lasted 

for 87 days before the well was finally capped. An enormous 

disaster took place which can be roughly estimated to be 3.19 

million barrels (roughly 500,000 m3) of oil and several hundred 

thousand tons of hydrocarbon gases released into the ocean, 

which caused extensive damage to marine and coastal environ-

ment, as well as the wildlife habitat and ecosystem [52]. The 

enormous oil slicks that formed during the accident provide an 

unprecedented opportunity to study oil films, characterized by 

unique thickness variability and spatial extent features, using 

remotely sensed measurements, including the ones collected 

by SAR [53]. 

B.  UAVSAR data  

During the accident, many measurements were remotely 

sensed by airborne and satellite sensors over of the polluted 

area, including the airborne UAVSAR equipped on the Gulf-

stream-III aircraft operated by the US National Aeronautics 

and Space Administration (NASA). The UAVSAR is a quad-

polarimetric L-band sensor with wide range and high-quality 

imaging capabilities (incidence angle spanning from 22° up to 

65° from near to far range), i. e., a swath width of about 22 km, 

calling for a minimum NESZ of -54 dB [54]. During the DWH 

oil spill, UAVSAR acquired images of the main slick area on 

22-23 June [55].  
The image used in this study was collected on June 23 at 

20:45 UTC, flight ID 14010, where the UAVSAR overflew the 

DWH rig site at a heading of 140° (filename: 

gulfco_14010_10054100_100623). Pre-processing is carried 

out that consists of multi-looking (3 range × 12 azimuth looks) 

to get a pixel spacing of 5 m × 7.2 m in slant range and azimuth, 

respectively. Since the oil may have undergone weathering 

process including emulsion, evaporation and sedimentation, 

the characteristics of the slick exhibit significant variations 

from thin sheens to thicker layers of crude oil and oil emulsions. 

The bulk of the spilled oil imaged by the UAVSAR consists 

primarily of brown emulsified oil, ranging from red to brown 

in color, mixed with thinner (silver and rainbow) sheen layers. 

This analysis comes from collective observations and interpre-

tations by trained personnel of the properties of the oil from 

aerial photographs [16]. At the UAVSAR acquisition time, the 

sea surface conditions, obtained by both buoy data and Wa-

vewatch III model predictions, called for a wind speed between 

2.5 – 5 m/s with directions from 115° to 145°.  

In this study, quantitative analysis is performed on data col-

lected at intermediate incidence angles, i.e., from 37° to 63°, to 

sort out pixels whose backscattering is dominated by specular 

mechanism and pixels whose backscattering is corrupted by 

 

Fig. 5. VV-polarized UAVSAR image of DWH oil spill collected on June 

23, 2010 at 20:42 UTC. The green line indicates the slick-free sea surface 

range-oriented transect considered for the quantitative analysis.  

 

Fig. 7. Probability density function of DR values evaluated from HH (red) 

and VV (green) UAVSAR channels. 

 

Fig. 6. NRCS versus incidence angle measured over the slick-free sea surface 

(see green line highlighted in Fig. 5) at VV (blue) and HH (red) polarizations. 

Note that AIEM predictions are also annotated in black with circle (VV) and 

cross (HH) markers. 
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noise [47]. An excerpt of the VV-polarized SAR image that 

includes the oil slick is depicted, in graytones and dB scale, in 

Fig. 5, where several bright spots at the bottom of the slick are 

clearly visible that mostly refer to ships involved in cleaning-

up operations.  

C. Analysis on SAR measurements 

To verify the effectiveness of the FSM in predicting the 

NRCS related to sea surface, the statistics of the slick-free 

NRCS are evaluated over the samples belonging to the green 

line in Fig. 5. The mean and standard deviation values of the 

co-polarized NRCSs, evaluated binning the NRCS using 50 

pixels in the azimuth direction and 25 pixels in the range direc-

tion, are shown in Fig. 6 using the error bar format. Blue and 

red colors refer to VV- and HH-polarized NRCS. In addition, 

the VV- and HH-polarized NRCSs predicted using the AIEM 

are also annotated for reference purposes (see the black plots 

with circle and cross markers, respectively). It can be noted 

that measured and predicted NRCSs exhibit a fairly good 

agreement confirming the expected Bragg behavior in the con-

sidered incidence angle range and sea state conditions, i.e., the 

co-polarized NRCSs decrease with incidence angle and the VV 

channel results in larger backscattering than the HH one. How-

ever, model predictions deviate from measured NRCS values 

of about 2-3 (1-2) dB for VV (HH) polarization at incidence 

angle less than 45°.  

 

The empirical probability density distribution (pdf) of HH 

(red) and VV (green) DR evaluated from the UAVSAR image 

is depicted in Fig. 7. The oil mask is obtained by applying a 

Constant False Alarm Rate (CFAR) method to the VV-polar-

ized SAR image [56]. The Region of Interest (ROI) of the 

slick-free sea surface is selected manually and the sea clutter is 

assumed to be Rayleigh-distributed. The false-alarm rate is set 

as 10-2 and then the decent threshold to detect the oil slick can 

be obtained. To eliminate the effect of the model underestima-

tion, the NRCS of the clean sea surface (the numerator in (12)) 

is derived by applying polynomial fit to mean values of the 

transect line in Fig. 6. Both the pdfs can be well-approximated 

by a normal distribution at both polarizations, with the mean 

value about 5 (4) dB for VV (HH) polarization, with VV-po-

larized DR slightly stronger than that of HH-polarization as it 

was found in [16, 50].  

 

V. OIL PARAMETER RETRIEVAL FROM UAVSAR DATA  

In this section, DR evaluated from UAVSAR imagery to-

gether with the incidence angle map, are ingested in the trained 

ANN to retrieve the oil thickness 𝑑 and the volume fraction of 

seawater 𝑓𝑣.  

A. Oil thickness estimation 

The oil thickness estimated applying the ANN approach to the 

DWH oil slick imaged by UAVSAR is depicted in Fig. 8. The 

thicker part locates in the south and west parts of the oil slick, 

which is consistent with most of the thickness pattern discussed 

in [4]. The estimated thickness of the thicker oil layer ranges 

between about 2 mm and 4 mm. These results agree with the 

visual inspections of the adsorbent pad samples collected in 

proximity of the DWH wellhead during the SINTEF expedi-

tion that reported an oil thickness ranging approximately be-

tween 2 mm and 4 mm [57]. The light brown/orange/reddish 

appearance of emulsions suggested that the emulsified oil was 

more elastic and less prone to spread over the sea surface. This 

indicates that the oil slick had been heavily weathered [57]. In 

addition, NOAA aerial observations conducted over the emul-

sified oil showed that the latter calls for a thickness ranging 

from 0.2 mm up to 3 mm with a mean value of 1 mm. Thinner 

slicks, calling for thickness smaller than 1 mm, are also present 

in the north-eastern and south-western parts of the slick. 

B. Volume fraction of seawater estimation 

The estimated volume fraction of seawater in the oil layer is 

depicted in Fig. 9, which shows that most of the oil slick calls 

for 𝑓𝑣, ranging between 20% to 30%, with an average value of 

about 27%. The very right portion of the slick results in the  

 

Fig. 8. Oil thickness map obtained using the ANN inversion methodology. 

 

Fig. 9. Water content map obtained using the ANN inversion methodology. 
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largest 𝑓𝑣 , which may be due to the noise corrupting SAR 

measurements under high incidence angle and, therefore, mak-

ing the inversion results less trustable [16]. The estimates agree 

with results reported in [15] where the oil volume concentra-

tion estimated by the same UAVSAR ranges from 65% up to 

90% (i. e., 𝑓𝑣 ranging between 10% up to 35%) with a mean 

value of about 80% (𝑓𝑣 of seawater 20%) despite a little over-

estimation of the mean value of 𝑓𝑣. In addition, in [15] it is 

shown that most of the oil was mixed with seawater at least up 

to a depth of a few millimeters.  

C. Experimental results contrasted with aerial photographs 

and visual observations 

The locations of the aerial observations are annotated on the 

ANN-based oil thickness map in Fig. 10. The aerial observa-

tions acquired on June 23, 2010, include NOAA aerial and hel-

icopter imagery and observations labelled as “HELO” and En-

vironmental Protection Agency (EPA) oblique photos labelled 

as “OF”. According to their locations and the ANN-based in-

verted thickness, the aerial data are divided into three groups 

(see Fig. 10): thick area, marked with a red ellipse (“area A”), 

middle thick area, marked with an orange ellipse (area “B”) 

and thin area, marked with a white ellipse (area “C”). The pic-

tures related to aerial photos and observations in the areas A, 

B, and C are depicted in Fig. 11, 12 and 13, respectively. Fig. 

11 shows that the area A calls for emulsions with red or brown 

appearance. Fig. 12 shows that in the area B brown emulsions 

together with thin sheen oils can be observed. Fig. 13 shows 

that in the area “C” an oil-water mixing is in place with oil 

submerged into the seawater appearing as black stripes which 

may indicate emulsions with high water content or crude oil 

with no water content.  

VI. CONCLUSIONS 

This study is to show the feasibility of a model-based ANN 

approach to retrieve ancillary parameters (namely the thickness 

of the oil slick and the volume fraction of seawater) related to 

oil spills in SAR imagery. The benefit of the proposed ap-

proach is twofold: 

a) It paves the way to overcome the tremendous lack of trusta-

ble in situ measurements about oil parameters. This represents 

a drawback that significantly limits the use of ANN to estimate 

oil parameters. The approach we proposed, mitigated this 

drawback by train the network using a forward scattering 

model whose accuracy in predicting slick-free and slick-cov-

ered NRCS has been already discussed in literature.  

b) The resulting model-based ANN, trained and tested by using 

simulated measurements, is applied to actual L-band SAR im-

agery that include an oil-polluted area to retrieve the oil thick-

ness and the fraction of water into the oil maps. Results, con-

trasted with independent surveys and literature studies, con-

firm the accuracy of the proposed approach. 

In fact, by processing the L-band polarimetric radar imagery 

collected by the uninhabited aerial vehicle synthetic aperture 

radar during the DWH oil spill accident, we found that the 

thicker emulsified oil – with a thickness ranging from about 2 

to 4 mm - is located in the middle of the slick while thinner 

films (less than 1mm) are located at the north-eastern and 

south-western sides of the slick. In addition, it is found that the 

DWH slick is a water-in-oil mixture where the percentage of 

seawater ranges between about 20% to 30%. Those results 

agree with independent studies carried out in literature [15, 16, 

57] and with areal and helicopter photographs taken by NOAA. 

Although the model-based ANN showed very promising 

results, there is still room for improvements in both the NN 

architecture and the simulation of the parameters that will be 

addressed in a future work.  

 

(a) (b) (c) (d) 

Fig. 10. (a) ANN-based estimated oil map where ancillary photos and observations, highlighted in Figs. 10-12, are annotated. (b) Cropping of area A. (c) 

Cropping of area B. (d) Cropping of area C. 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3369023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 IEEE 10 

References 

[1] O. Garcia-Pineda, I. R. MacDonald, X. Li, C. R. Jackson, and W. G. 
Pichel, "Oil spill mapping and measurement in the Gulf of Mexico with 

textural classifier neural network algorithm (TCNNA)," IEEE J. Sel. Top. 

Appl. Earth Obs. Remote Sens., vol. 6, no. 6, pp. 2517-2525, 2013. 

[2] M. Fingas, "The challenges of remotely measuring oil slick thickness," 

Remote Sens., vol. 10, no. 2, p. 319, 2018. 

[3] O. Boisot, S. Angelliaume, and C.-A. Guérin, "Marine oil slicks 
quantification from L-band dual-polarization SAR imagery," IEEE 

Trans. Geosci. Remote Sens., vol. 57, no. 4, pp. 2187-2197, 2018. 
[4] M. Gade, H. Hühnerfuss, and G. Korenowski, Marine surface films. The 

Netherlands: Springer, 2006. 

 
(a) (b) (c) (d) 

Fig. 11. Aerial photos collected in the area A. The first row shows images collected during the EPA ASPECT overflight oblique photography 55-37: “OF 37” 

(a) and 55-38: “OF 38” (b) obtained at 16:28 UTC. The second row shows photograph collected during the RAT Helo overflight “HELO 431” obtained at 19:53 

UTC (c) and “HELO 453” obtained at 19:56 UTC (d). The third row shows photograph collected during the TAC OPS Helo overflight “HELO 09” collected at 

20:16 UTC. 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 
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