
SoftwareX 20 (2022) 101219

S

t
s
p
i
(
b
i
a

a
t
a
i
c
t

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

SENinja: A symbolic execution plugin for Binary Ninja
Luca Borzacchiello ∗, Emilio Coppa, Camil Demetrescu
apienza University of Rome, Italy

a r t i c l e i n f o

Article history:
Received 5 October 2020
Received in revised form 16 December 2021
Accepted 26 September 2022

Keywords:
Reverse engineering
Symbolic execution
Cybersecurity

a b s t r a c t

Symbolic execution is a program analysis technique that aims to automatically identify interesting
inputs for an application, using them to generate program executions covering different parts of the
code. It is widely used in the context of vulnerability discovery and reverse engineering. In this paper
we present SENinja, a symbolic execution plugin for the BinaryNinja disassembler. The tool allows
the user to perform symbolic execution analyses directly within the user interface of the disassembler,
and can be used to support a variety of reverse engineering tasks.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v0.2
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-20-00062
Code Ocean compute capsule none
Legal Code License BSD-2-Clause
Code versioning system used git
Software code languages, tools, and services used BinaryNinja

Python
Compilation requirements, operating environments & dependencies BinaryNinja v2.1.0 or higher Z3 v4.4.1 or higher (with Python bindings)
If available Link to developer documentation/manual https://github.com/borzacchiello/seninja/wiki
Support email for questions lucaborza@gmail.com

1. Motivation and significance

Software reverse engineering is the process of reconstructing
he operation, the design, and the architecture of a piece of
oftware, starting from an end product, e.g., a compiled binary
rogram. The process is typically hard since it involves analyz-
ng thousands of lines of code, written in low-level languages
e.g., assembly), without documentation and often obfuscated to
e harder to analyze. Despite the difficulties, reverse engineer-
ng is crucial in several circumstances: for example, in malware
nalysis and security assessment of proprietary software.
While reverse engineering is mostly a manual task, researchers

nd developers have built tools and techniques that can help
o speed up the process. Disassemblers are essential tools for
nalyzing compiled binary programs. The job of a disassembler
s to translate a compiled binary into human-readable assembly
ode, arranging it in a Control-Flow Graph (CFG) that highlights
he structure of the code. There are several available disassem-

∗ Corresponding author.
E-mail address: borzacchiello@diag.uniroma1.it (Luca Borzacchiello).

blers [1–4], and among them, BinaryNinja [5] is one of the most
used by the cybersecurity community. In addition to the normal
tasks of a disassembler, it implements other types of analyses
and exposes them in a complete and well-documented set of
APIs. For example, BinaryNinja performs code lifting, which is the
translation of assembly code of a given architecture to a higher-
level intermediate language (IL). Examples of such languages are
LLVM IR [6] and VEX [7]. Lifting simplifies program analysis as it:
(a) reduces the number of different (often redundant) instructions
that need to be handled by an analysis and (b) favors portability
since any architecture supported by the lifter will be also han-
dled by the analysis. BinaryNinja lifts instructions of the most
common architectures (e.g., x86, x86_64, ARM, MIPS) to LLIL (Low
Level IL): Fig. 1(b) shows on the right the LLIL generated by
BinaryNinja when lifting the x86_64 code shown on left.

Symbolic execution is a widely popular technique in the con-
text of bug detection and reverse engineering [8–14] that can au-
tomatically generate inputs for a program. The goal is achieved by
constructing expressions over symbolic inputs and using a satisfi-
ability modulo theory (SMT) solver (e.g., Z3 [15], FuzzySAT [16])

to reason over them. As an example, consider Fig. 1(a). On the

ttps://doi.org/10.1016/j.softx.2022.101219
352-7110/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101219
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101219&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00062
https://github.com/borzacchiello/seninja/wiki
mailto:lucaborza@gmail.com
mailto:borzacchiello@diag.uniroma1.it
https://doi.org/10.1016/j.softx.2022.101219
http://creativecommons.org/licenses/by/4.0/


Luca Borzacchiello, Emilio Coppa and Camil Demetrescu SoftwareX 20 (2022) 101219
Fig. 1. Example: function authenticate.

left, we have a function authenticate1, while on the right we have
the symbolic tree that represents the result of the symbolic explo-
ration on this function. A symbolic execution engine evaluates the
code of a function as an interpreter, initializing input variables as
symbols (in the example, variable a is initialized with symbol α
which can assume initially any value in the interval [0, 232

− 1]),
and building symbolic expressions instead of performing compu-
tations on concrete values. A state is the abstract object that holds
the memory and the constraints accumulated in an execution
path. When the execution hits a branch, if the condition involves
symbolic values, the execution forks, i.e., the symbolic engine
splits the current state into two states. The two states model the
outcomes of the two branch directions (in the example, line 3
generates two states to model when α ⊕ 170 ̸= 187 is true and
false, respectively). The execution can continue on the two states
separately. At any time during the exploration, the constraints
collected in a state can be used to generate, with the help of an
SMT solver, an input that would have driven a concrete execution
along the same path of the state. In Fig. 1(a), the two final states
in the execution tree can be reproduced using input values equal
to α = 0 and α = 17, respectively. Notice that it is very unlikely
that a brute-force approach would generate an input that covers
line 6, since the search space has 232 values.

Symbolic execution has proven to be a fundamental ingredient
for finding bugs and vulnerabilities. For instance, it was used
during the development of Windows 7, finding almost one-third
of the bugs revealed with fuzzing techniques [17]. Moreover, it
has been also a pivotal component for most systems playing in

1 The function is written in C for simplicity; SENinja targets binary code.

the Cyber Grand Challenge [18], a two-year competition run by
DARPA seeking to create automated tools for finding, exploiting,
and patching software vulnerabilities

2. Software description

In this article, we present SENinja, a tool that implements a
symbolic execution engine as a plugin of BinaryNinja. SENinja
evaluates the Low Level IL (LLIL) generated by BinaryNinja and
is integrated into the BinaryNinja user interface (UI), allowing
users to perform symbolic execution without switching to other
tools. Fig. 4 gives a visual overview of the plugin.

2.1. Software architecture

Fig. 2 shows the architecture of SENinja. The main software
component of the tool is the Executor . It is a high-level interface
that is in charge of holding the generated states and of executing
instructions symbolically on the current active state. It interacts
with BinaryNinja to obtain crucial information about a binary,
such as the LLIL representation and the memory layout. The
commands exposed by SENinja, that are accessible through the
UI of BinaryNinja, are constructed using this high-level interface.

In the next sections, we describe in more detail the inner com-
ponents of the Executor , explaining some of the design choices
that we made.

2.1.1. State
A state represents a snapshot of the execution for a path.

Looking at the right-hand side of Fig. 1(a), every node in the
2



Luca Borzacchiello, Emilio Coppa and Camil Demetrescu SoftwareX 20 (2022) 101219

t
p
f

e
i
e
a
a
c

d
t
d
d

i
s

Fig. 2. Architecture of SENinja.

Fig. 3. Experimental results on a benchmark involving a symbolic computation of a CRC32 checksum [19].

ree represents a state. In SENinja, a state holds the instruction
ointer, the memory content, the value of registers, the opened
iles, and the path constraints.

A well-known problem [20] in symbolic execution is state
xplosion2. While SENinja cannot solve this problem in general,
t can at least minimize the overhead of keeping track of differ-
nt but similar states generated during the exploration. To this
im, we have designed every component of the state to have
Copy-on-Write (CoW) behavior in order to reduce resource

onsumption when forking a state.
Another common problem in symbolic execution is the han-

ling of symbolic memory accesses [21,22], i.e., reasoning on
he effects of a memory operation when the memory address
epends on the value of the program inputs. SENinja supports
ifferent memory models for handling memory accesses:

Fully symbolic. Symbolic memory accesses are handled by
considering every memory cell that can be accessed [23].
While this is the slowest mode, it is also the most accurate.
Fully concrete. This model concretizes the expression of the
address to a single concrete value [17]. This is the fastest
mode, but also the less accurate.
Partially symbolic. This model falls in the middle of the pre-
vious approaches. It uses a fully symbolic approach, but only
if the number of possible values that the symbolic address
can assume is sufficiently small [24], otherwise the address
is concretized. When the symbolic address is unconstrained
(i.e., it can span the entire address space), the access is con-
cretized to a newly allocated page and any other symbolic
address referring it as a base address is handled accurately
within the allocated page [25]. This is the default memory
model in SENinja.

2 For instance, a branch within a loop can easily lead to state explosion as
t may generate an exponential number of states when the loop condition is
ymbolic.

To evaluate the impact of the symbolic memory models and
the CoW strategy, we consider a benchmark [26] involving a
symbolic computation of a CRC32 checksum, which was proposed
by a recent paper [19]. The left chart of Fig. 3 shows the run-
ning time of different symbolic executors when computing the
checksum on an increasing number of symbolic bytes (from 1 to
1024 bytes). The benchmark is characterized by several symbolic
accesses, whose result is crucial to compute the input that when
processed should generate an expected CRC value. We consider:
(a) Klee [10], a source-based symbolic executor, (b) angr [8], a
binary symbolic framework, enabling the support for symbolic
accesses, (c) SENinja (fully concrete), which uses the fully con-
crete memory model, and (d) SENinja (partially symbolic), which
uses the partially symbolic memory model. We do not consider
the fully symbolic memory model in this benchmark since the
memory accesses are restricted within a few memory pages, thus
generating the same behavior as the partially symbolic memory
model.

SENinja (fully concrete) is very efficient but very inaccurate:
it fails (cross markers in the chart) to derive the input for most
checksum sizes. angr scales only for small checksum sizes (up
to 16 bytes), as then it takes more than 1 hour (which was
the timeout during our experiment). Klee is very efficient, how-
ever, it exploits knowledge derived from the source code (in
particular, the size of an array accessed by the benchmark). SEN-
inja (partially symbolic) can correctly reason on the checksum
computation up to 512 bytes, being faster than Klee for several
checksum sizes. Recently proposed array optimizations [27] could
be integrated into SENinja to further improve its scalability.

The middle and right charts of Fig. 3 show the resource con-
sumption of SENinja (partially symbolic) with and without the
CoW strategy. During these experiments, we have disabled the
solver to focus on the resource consumption due to state ex-
ploration, which is what is impacted by the CoW strategy. The
benefits resulting from the CoW strategy can be clearly seen in
terms of running time and memory consumption.
3



Luca Borzacchiello, Emilio Coppa and Camil Demetrescu SoftwareX 20 (2022) 101219

Z

c
s
i

Fig. 4. The BinaryNinja interface with the SENinja plugin. The active state is at the address in green (1). Deferred states are marked in red (2), showing a comment
to indicate the number of states at the same address. The memory and registers of the active state can be viewed using widgets (3) and (4). Symbolic buffers can
be viewed and created using (5). Commands are accessible through the right-click menu (6). The CLI can be accessed using the Python console (7).

2.1.2. Symbolic expressions
SENinja represents symbolic expressions using the theory of

bitvectors [28], which models the semantics of fixed-size bitvec-
tors arithmetic. In particular, SENinja uses a custom Abstract
Syntax Tree class to wrap bitvector objects from the Z3 SMT
solver. It does not use directly the AST of Z3 for mainly two
reasons: (a) concrete computations can be performed more effi-
ciently and (b) SENinja can be easily ported to other SMT solvers
by updating the wrapper class. Additionally, SENinja enriches
the AST representing an expression with a range interval, that
provides an over-approximation on the possible values that an
expression can assume in a state. For instance, SENinja com-
putes the interval range [256, 512] given the expression 256 +
eroExtend(α, 32), which represents a 32-bit addition of the

constant 256 to a zero-extended 8-bit input value α. Interval anal-
ysis is extremely valuable in the presence of symbolic memory
accesses as it may allow SENinja to evaluate which memory pages
ould be modified during the execution without querying an SMT
olver. The current implementation does not yet support strided
ntervals and in case of wrap-around returns the range [0, 2n

−1],
where n is the number of bits in the expression.

2.1.3. Instruction handlers
SENinja is built as an interpreter of the LLIL representation

from BinaryNinja. Since it works on an intermediate language,
the majority of its code is architecture-agnostic, and the support
for a new architecture can be added with minimal effort (as
long as BinaryNinja supports the target architecture). Currently,
SENinja supports x86, x86_64, and ARMv8.

Since LLIL instructions are internally represented as AST ob-
jects, SENinja uses a visitor class to parse the ASTs, implementing
a handler for the vast majority of LLIL nodes. The job of the
handlers is to modify the current state according to the semantics
of the instruction, possibly generating new states (e.g., for branch
instructions).

In addition to LLIL handlers, SENinja defines also custom han-
dlers that exploit knowledge of the underlying architecture. Two
main reasons behind this design choice:

- The lifter of BinaryNinja does not support every instruction

not supported), hence SENinja has to handle them in an
ad-hoc manner.

- Custom handlers can help to mitigate state explosion. For
instance, the x86 instruction setcc would be represented
as a branch in LLIL, while it could be beneficial to model it
using an if-then-else expression without forking the state.

2.1.4. OS and function models
To handle system calls and invocations to functions from

dynamic libraries, SENinja devises models [8] that describe the
effects of external code on the current state. Currently, SEN-
inja provides models for the most common C library functions
(e.g., memcmp, memset), and the most used Linux system calls. The
models are written in Python, and new models can be added with
a few lines of code [29]. However, to reduce the need of writing
OS models from scratch, SENinja offers preliminary support for a
compatibility layer that allows it to reuse models available for the
well-known symbolic executor angr [8].

Finally, SENinja supports custom hooks [30]. They allow mod-
eling a small part of the functionalities of an external piece of
code, which is sufficient in several reverse engineering tasks and
can be used to overcome the lack of some models.

2.2. Tool functionalities

Fig. 4 shows an overview of the interface of SENinja. We now
review the main functionalities, highlighting how they can be
accessed directly through the UI of BinaryNinja.

Symbolic state construction and initialization. The sym-
bolic execution can start at any point in the program. SENinja
initializes a state using the memory content obtained from Bi-
naryNinja. It also exploits the Value Set Analysis [31] performed
by BinaryNinja to detect, e.g., constant registers. By default,
unknown data is marked as symbolic, however a user can choose
other policies (e.g., zero-initialization).

Debugger-like step functions. In SENinja only a single state
can be active at any time. Symbolic execution can be performed
on the current active state using commands that are inspired by
debuggers. The commands are: single step, continue until address
of every architecture (e.g., the cpuid x86_64 instruction is and continue until branch. Hence, through the UI, the user can

4



Luca Borzacchiello, Emilio Coppa and Camil Demetrescu SoftwareX 20 (2022) 101219

c
o

r
b
e
r

i

i
m
g
t

m
m
d
t

t
r
m

Fig. 5. Code snippets of the Flare-On challenge [32].

hange the current active state and start a new exploration using
ne of the previous commands.
Since the symbolic exploration may take a long time to, e.g.,

each a specific address, the user can bound the exploration time
y setting a timeout (through the panel settings), or stop the
xploration at any time using a dedicated command from the
ight-click menu.

After an exploration, SENinja can highlight in the CFG which
nstructions have been executed by a state during the exploration.

State merging. If two or more states are executing the same
nstruction, the user can decide to merge them [33]. While state
erging can reduce memory consumption, the solver may strug-
le in reasoning on formulas derived from a merged state, since
hey can be more complex.

The merging algorithm is inspired by the strategy imple-
ented in the source-based symbolic executor Klee [10]. Before
erging two states, SENinja checks their successors: if they are
ifferent, i.e., the two states would take different directions, then
he merging operation is aborted.

Automatic searchers. In addition to executing a single state,
SENinja devises automatic searchers that can be used to search
hrough the paths of the program in order to find an input that
eaches a certain program point. The user, through the right-click
enu, can set an address as the target of the search and can mark

a set of addresses to be avoided during the search. Then the user
can start the searching process using a DFS or BFS algorithm.

Memory, register and buffer view. The memory and the reg-
isters of the current active state can be viewed using the SENinja
widgets (see (3) and (4) in Fig. 4). The widgets can be used
to view and modify concrete data, view symbolic expressions,
evaluate expressions using the solver, or inject new symbols.
When evaluating an expression, the user can generate up to k
solutions, where k is a user-defined value. Symbolic buffers can
be created and constrained using a dedicated widget (see (5) in
Fig. 4).

Command line interface. Complex operations can be per-
formed using the command-line interface. BinaryNinja has an
embedded Python console, which can be used to invoke the
command-line API of SENinja. For example, the user can set
specific constraints over an input, or can define a custom hook
for a library function. A detailed description of the command-line
API can be found in the project wiki.

3. Illustrative example: analyzing virtual machine obfuscation

In this section, we present one case study in which we use
SENinja for reverse engineering of obfuscated code.
5



Luca Borzacchiello, Emilio Coppa and Camil Demetrescu SoftwareX 20 (2022) 101219

a

3

T
(
a
o
c
a
p
f
a
i
0
a
o
t

3

c

Fig. 6. SENinja widgets: (1) handling symbolic buffers, (2) setup of command-line arguments, (3) and (4) obtaining a concrete assignment for a symbolic buffer.

Obfuscation is the act of producing code that is difficult to
understand by a human. Developers obfuscate code in order
to make the reverse engineering process more difficult, e.g., to
protect a license checker or a proprietary algorithm. Obfuscation
is also widespread among malware writers.

Virtual machine obfuscation is one of the most used and
effective obfuscation techniques [34]: it translates the code to ob-
fuscate into a custom bytecode and then replaces the original code
in the binary with the bytecode and a custom virtual machine that
at runtime is able to reproduce the behavior of the original code
when interpreting with custom opcode handlers the generated
bytecode.

As an example of obfuscated code, we consider the 11th chal-
lenge [32] from the reverse competition Flare-On 6 [35]. The
program is a 64-bit PE that uses virtual machine obfuscation
to protect a function that checks several conditions on user-
provided inputs. Hence, this function could be seen as a license
key checker and we use SENinja to automatically find inputs that
re accepted by this checker.

.1. Preliminary analysis

We begin by manually analyzing the binary using BinaryNinja.
he main function can be identified at address 0x140001220
see Fig. 5). This function considers two input strings (obtained
s command-line arguments), where the second string has a size
f 32 bytes. It then calls vm_loop: this function is the virtual ma-
hine dispatcher loop, i.e., the routine that fetches the bytecode
nd calls the proper handlers to perform the obfuscated com-
utation. After running the obfuscated code, main calls function
inal_checks, which checks that the first string is FLARE2019
nd validates the output of the obfuscated computation, execut-
ng the code at 0x14000169d in case of success or the code at
x14000178a in case of failure. Since the first input is known
fter this preliminary analysis, the main goal is to find the value
f the second input without spending hours manually reversing
he obfuscated computation.

.2. Finding a valid input

After obtaining a general idea of the structure of the binary, we
an use SENinja to automatically identify a value for the second

input able to satisfy the check. We first create an initial state at
beginning of main (right-click, Start symbolic execution), then we
use the buffers widget to create a new symbolic buffer of 32 bytes
(step 1 in Fig. 6). We then set up the command-line arguments
using the Setup argv command from the SENinja toolbar (step 2),
setting the string FLARE2019 as the first argument and the buffer
that we just created as the second argument.

After defining the symbolic inputs and creating an initial state,
we define address 0x14000169d as the target point (right-click,
Set target) in the code that we want to reach during the sym-
bolic exploration and address 0x14000178a as an avoid point
(right-click, Set avoid) in the code that is not interesting for our
exploration. Finally, we can start the execution exploiting the DFS
searcher (right-click, run DFS).

After a few seconds, SENinja is able to generate a state reach-
ing the target point. Using the buffers widget (steps 3 and 4 in
Fig. 6), we can obtain the concrete input that passes the check:
cHCyrAHSXmEKpyqoCByGGuhFyCmy86Ee.

4. Comparison with other tools

A few previous works [36,37] have explored solutions for
integrating symbolic execution into graphical reverse engineering
tools.

For instance, Ponce [36] integrates the dynamic symbolic exe-
cution engine Triton [38] into the commercial disassembler and
debugger IDA Pro. A crucial design difference with SENinja is that
Ponce cannot analyze code statically, which is a common require-
ment in presence of binaries for non-standard architectures, or
non-executable memory dumps.

Another interesting solution is IDAngr [37], which combines
the symbolic framework angr [8] with IDA Pro. Unfortunately,
this plugin is not actively maintained anymore and the integra-
tion with the UI of IDA Pro is quite limited.

AngryGhidra [39] and modality [40] are two recent projects
that expose the functionalities of angr in Ghidra [4] and
Radare2 [2], respectively. AngryGhidra is designed to obtain
some exploration parameters (e.g., the starting target) from the
user through the UI but then it starts angr using a fixed and pre-
defined script, leaving very limited opportunity for interactions.

modality instead embraces the spirit of Radare2 and exposes

6



Luca Borzacchiello, Emilio Coppa and Camil Demetrescu SoftwareX 20 (2022) 101219

s
f
l
w

s
n
I

5

o
b
t
h
h
r

D

c
t

A

o

R

everal new actions in its command-line interface. Several steps
rom Section 3 cannot be performed when using the current re-
eases of these two plugins, forcing the user to manually interact
ith angr or to face severe path explosion.
Finally, SymNav [41] devises a visual representation of the

ymbolic tree. Unfortunately, this viewer is a standalone compo-
ent that cannot be currently integrated into debuggers, such as
DA Pro or BinaryNinja.

. Impact and conclusions

SENinja is a symbolic execution plugin for BinaryNinja, a
commercial disassembler widely used by the cybersecurity com-
munity. SENinja extends the functionalities of the disassembler,
giving the user access to symbolic execution analysis directly
within BinaryNinja, possibly simplifying reverse engineering ac-
tivities. Furthermore, it is designed to be extensible, allowing
users to implement new features by typically adding a few lines
of Python code.

After the public release of SENinja on GitHub, the community
f BinaryNinja has shown a positive interest in it: SENinja has
een recently officially included in the community plugin reposi-
ory [42] of BinaryNinja. Moreover, a well-known security expert
as tried SENinja, positively mentioning it in a blog post [43]. We
ope that, in the next few years, SENinja can become one of the
eference tools for reverse engineers.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.softx.2022.101219.

eferences

[1] Hex-Rays. IDA pro. 2020, https://www.hex-rays.com/products/ida. [Online
Accessed 15 September 2020].

[2] Radare 2. 2020, https://rada.re. [Online Accessed 15 September 2020].
[3] Hopper. 2020, https://www.hopperapp.com. [Online Accessed 15 Septem-

ber 2020].
[4] NSA. Ghidra. 2016, https://ghidra-sre.org/. [Online Accessed 11 July 2020].
[5] Vector35. Binary ninja. 2020, https://binary.ninja. [Online Accessed 15

September 2020].
[6] Lattner C, Adve V. LLVM: A compilation framework for lifelong program

analysis & transformation. In: Proc. int. symp. on code generation and
optimization: Feedback-directed and runtime optimization. CGO 2004,
2004, p. 75–86.

[7] Nethercote N, Seward J. Valgrind: A framework for heavyweight dynamic
binary instrumentation. In: Proceedings of the 28th ACM SIGPLAN con-
ference on programming language design and implementation. PLDI 2007,
2007, p. 89–100.

[8] Shoshitaishvili Y, Wang R, Salls C, Stephens N, Polino M, Dutcher A, et al.
SOK: (State of) the art of war: Offensive techniques in binary analysis. In:
Proceedings of the 2016 IEEE symposium on security and privacy. SP 2016,
2016, p. 138–57.

[9] Poeplau S, Francillon A. Symbolic execution with SymCC: Don’t interpret,
compile!. In: Proceedings of the 29th USENIX security symposium. SEC
2020, 2020, p. 181–98.

[10] Cadar C, Dunbar D, Engler D. KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: Proceedings of the
8th USENIX conference on operating systems design and implementation.
OSDI 2008, 2008, p. 209–24.

[11] Chipounov V, Kuznetsov V, Candea G. The S2E platform: Design,
implementation, and applications. ACM Trans Comput Syst (TOCS)
2012;30(1):2:1–49.

[12] Borzacchiello L, Coppa E, D’Elia DC, Demetrescu C. Reconstructing C2
servers for remote access trojans with symbolic execution. In: Cyber
security cryptography and machine learning. CSCML 2019, 2019, p. 121–40.

[13] Borzacchiello L, Coppa E, Demetrescu C. Fuzzolic: mixing fuzzing and
concolic execution. Computers & Security 2021.

[14] Coppa E, Yin H, Demetrescu C. Symfusion: hybrid instrumentation for
concolic execution. In: Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering. ASE ’22, 2022.

[15] De Moura L, Bjørner N. Z3: An efficient SMT solver. In: Proceedings of
14th int. conf. on tools and algorithms for the construction and analysis
of systems. TACAS 2008/ETAPS 2008, 2008, p. 337–40.

[16] Borzacchiello L, Coppa E, Demetrescu C. Fuzzing symbolic expressions. In:
Proceedings of the 43rd International Conference on Software Engineering.
ICSE ’21, 2021.

[17] Godefroid P, Levin MY, Molnar DA. SAGE: Whitebox fuzzing for security
testing. Queue 2012;10(1):20:20–7.

[18] DARPA. Cyber grand challenge. 2016, https://www.darpa.mil/program/cyb
er-grand-challenge. [Online Accessed 15 September 2020].

[19] Sharma V, Emamdoost N, Kim S, McCamant S. It doesn’t have to be so
hard: Efficient symbolic reasoning for CRCs. In: 2020 Workshop on binary
analysis research. NDSS BAR 2020, 2020.

[20] Baldoni R, Coppa E, D’Elia DC, Demetrescu C, Finocchi I. A survey of
symbolic execution techniques. ACM Comput Surv 2018;51(3):50:1–39.

[21] Borzacchiello L, Coppa E, Cono D’Elia D, Demetrescu C. Memory models in
symbolic execution: Key ideas and new thoughts. Softw Test Verif Reliab
2019;29(8):e1722.

[22] Borzacchiello L, Coppa E, Demetrescu C. Handling memory-intensive op-
erations in symbolic execution. In: Proceedings of the 15th Innovations in
Software Engineering Conference. ISEC ’22, 2022.

[23] Falke S, Sinz C, Merz F. A theory of arrays with set and copy operations. In:
SMT 2012. 10th international workshop on satisfiability modulo theories.
SMT 2012, vol. 20, 2012, p. 98–108.

[24] Cha SK, Avgerinos T, Rebert A, Brumley D. Unleashing mayhem on binary
code. In: Proc. 2012 IEEE symp. on sec. and privacy. SP 2012, 2012, p.
380–94.

[25] Caselden D, Bazhanyuk A, Payer M, McCamant S, Song D. HI-CFG: Construc-
tion by binary analysis and application to attack polymorphism. In: 18th
European symposium on research in computer security. ESORICS 2013,
2013, p. 164–81.

[26] Borzacchiello L. CRC example. 2021, https://github.com/borzacchiello/seni
nja/wiki/Benchmarks.

[27] Shuai Z, Chen Z, Zhang Y, Sun J, Wang J. Type and interval aware array
constraint solving for symbolic execution. In: Proceedings of the 30th ACM
SIGSOFT international symposium on software testing and analysis. ISSTA
2021, 2021, http://dx.doi.org/10.1145/3460319.3464826.

[28] SMT-LIB. The satisfiability modulo theories library. 2018, http://smtlib.cs.
uiowa.edu/.

[29] Borzacchiello L. Adding new models in Seninja. 2020, https://github.com/
borzacchiello/seninja/wiki/Extend#add-a-new-model.

[30] Borzacchiello L. Defining custom hooks in Seninja. 2020, https://github.
com/borzacchiello/seninja/wiki#hooks.

[31] Balakrishnan G, Reps T. WYSINWYX: What you see is not what you
execute. ACM Trans Program Lang Syst 2010;32(6).

[32] FlareOn. 11Th challenge. 2020, https://www.fireeye.com/blog/threat-
research/2019/09/2019-flare-on-challenge-solutions.html. [Online
Accessed 15 September 2020].

[33] Kuznetsov V, Kinder J, Bucur S, Candea G. Efficient state merging in
symbolic execution. In: Proceedings of the 33rd ACM SIGPLAN conference
on programming language design and implementation. PLDI 2012, 2012,
p. 193–204.

[34] Fang H, Wu Y, Wang S, Huang Y. Multi-stage binary code obfuscation
using improved virtual machine. In: Information security. ISC 2011, 2011,
p. 168–81.

[35] FireEye. Flare-on. 2020, http://flare-on.com/. [Online Accessed 15 Septem-
ber 2020].

[36] Illera AG. Ponce. 2016, https://github.com/illera88/Ponce. [Online Accessed
15 September 2020].

[37] Fioraldi A. IDAngr. 2018, https://github.com/andreafioraldi/IDAngr. [Online
Accessed 15 September 2020].

[38] Saudel F, Salwan J. Triton: A dynamic symbolic execution framework.
In: Symp. sur la sécurité des technologies de l’information et des
communications. SSTIC 2015, 2015, p. 31–54.

[39] Nalen98. AngryGhidra. 2020, https://github.com/Nalen98/AngryGhidra.
[40] Kanipe C. Modality. 2019, https://github.com/0xchase/modality.
[41] Angelini M, Blasilli G, Borzacchiello L, Coppa E, D’Elia DC, Lenti S, et al.

SymNav: Visually assisting symbolic execution. In: Proceedings of the 16th
IEEE symposium on visualization for cyber security. VizSec 2019, 2019, p.
1–11.

[42] Ninja B. Community plugins. 2020, https://github.com/Vector35/communi
ty-plugins. [Online Accessed 15 September 2020].

[43] Hankins J. Automated string de-gobfuscation. 2020, https://www.kryptoslo
gic.com/blog/2020/12/automated-string-de-gobfuscation/. [Online Accessed
30-Jul-2021].
7

https://doi.org/10.1016/j.softx.2022.101219
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://rada.re
https://rada.re
https://rada.re
https://rada.re
https://rada.re
https://rada.re
https://rada.re
https://rada.re
https://rada.re
https://rada.re
https://rada.re
https://rada.re
https://rada.re
https://rada.re
https://rada.re
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://www.hopperapp.com
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
https://binary.ninja
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb6
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb6
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb6
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb6
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb6
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb6
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb6
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb7
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb7
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb7
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb7
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb7
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb7
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb7
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb8
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb8
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb8
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb8
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb8
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb8
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb8
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb9
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb9
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb9
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb9
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb9
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb12
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb12
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb12
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb12
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb12
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb13
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb13
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb13
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb14
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb14
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb14
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb14
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb14
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb15
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb15
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb15
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb15
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb15
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb17
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb17
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb17
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb19
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb19
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb19
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb19
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb19
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb20
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb20
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb20
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb21
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb21
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb21
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb21
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb21
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb22
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb22
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb22
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb22
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb22
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb23
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb23
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb23
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb23
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb23
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb24
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb24
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb24
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb24
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb24
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb25
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb25
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb25
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb25
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb25
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb25
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb25
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
https://github.com/borzacchiello/seninja/wiki/Benchmarks
http://dx.doi.org/10.1145/3460319.3464826
http://smtlib.cs.uiowa.edu/
http://smtlib.cs.uiowa.edu/
http://smtlib.cs.uiowa.edu/
https://github.com/borzacchiello/seninja/wiki/Extend#add-a-new-model
https://github.com/borzacchiello/seninja/wiki/Extend#add-a-new-model
https://github.com/borzacchiello/seninja/wiki/Extend#add-a-new-model
https://github.com/borzacchiello/seninja/wiki#hooks
https://github.com/borzacchiello/seninja/wiki#hooks
https://github.com/borzacchiello/seninja/wiki#hooks
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb31
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb31
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb31
https://www.fireeye.com/blog/threat-research/2019/09/2019-flare-on-challenge-solutions.html
https://www.fireeye.com/blog/threat-research/2019/09/2019-flare-on-challenge-solutions.html
https://www.fireeye.com/blog/threat-research/2019/09/2019-flare-on-challenge-solutions.html
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb33
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb33
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb33
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb33
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb33
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb33
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb33
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb34
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb34
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb34
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb34
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb34
http://flare-on.com/
https://github.com/illera88/Ponce
https://github.com/andreafioraldi/IDAngr
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb38
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb38
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb38
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb38
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb38
https://github.com/Nalen98/AngryGhidra
https://github.com/0xchase/modality
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb41
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb41
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb41
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb41
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb41
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb41
http://refhub.elsevier.com/S2352-7110(22)00137-6/sb41
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://github.com/Vector35/community-plugins
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/

	SENinja: A symbolic execution plugin for Binary Ninja
	Motivation and significance
	Software description
	Software architecture
	State
	Symbolic expressions
	Instruction handlers
	OS and function models

	Tool functionalities

	Illustrative example: analyzing virtual machine obfuscation
	Preliminary analysis
	Finding a valid input

	Comparison with other tools
	Impact and conclusions
	Declaration of competing interest
	Appendix A. Supplementary data
	References


