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Abstract. Human anctivity recognition systems from static images or
video sequences are becoming more and more present in our life. Most
computer vision applications such as human-computer interaction, vir-
tual reality, public security, smart home monitoring, or autonomous
robotics, to name a few, highly rely on human anctivity recognition.
Of course, basic human activities, such as ”walking” and ”running”, are
relatively easy to recognize. On the other hand, identifying more com-
plex activities is still a challenging task that could be solved by retrieving
contextual information from the scene, such as objects, events, or con-
cepts. Indeed, a careful analysis of the scene can help to recognize human
activities taking place. In this work, we address a holistic video under-
standing task to provide a complete semantic level description of the
scene. Our solution can bring significant improvements in human anc-
tivity recognition tasks. Besides, it may allow equipping a robotic and
autonomous system with contextual knowledge of the environment. In
particular, we want to show how this vision module can be integrated
into a social robot to build a more natural and realistic context-based
Human-Robot Interaction. We think that social robots must be aware of
the surrounding environment to react in a proper and socially acceptable
way, according to the different scenarios.

Keywords: human anctivity recognition - holistic video understanding
- Human-Robot Interaction.

1 Introduction

Human anctivity recognition (HAR) has the aim of identifying human actions
from the most simple ones such as gestures or atomic actions like ”walking” or
7sitting” to the most complex ones like behaviors or events, using sensory data
information.

On the field of robotics and human-robot interaction, especially when elderly
people are involved, HAR can represent an important moment that produces a
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feeling of comfort and reassurance. This can in turn: reduce the risk factors
connected to the feeling of being ”useless” and ”incapable”, increasing, instead,
the positive feelings of self-efficacy, since the person can feel dependent on other
humans. Moreover also a sense of empowerment can follow and allow the el-
derly person to feel more understood and at the same time less dependent on
caregivers. On some occasions this interaction can also constitute a moment per-
ceived as ”company” that can reduce the feeling of loneliness, real or fantasized,
which often accompanies the elderly person’s experience.

HAR from static images or video sequences has experienced significant growth
over the last decade in the scientific areas of computer vision. As a consequence, a
lot of applications in a wide spectrum of domains greatly rely on HAR, systems.
Few examples are human-computer interaction, augmented reality, intelligent
home monitoring, or also video assistance and surveillance in public security,
where crowds’ movements are tracked to detect violent or criminal situations.
More complex applications also concern advanced robotics, including mobile
robot navigation or human-robot cooperation, and it also touches the medical
environment to ensure surgical operations or continuous patient monitoring.

Of course basic human activities, such as ”walking” and ”"running,” are quite
easy to recognize, but identifying more complex activities is still a challenging
task, due to intraclass and interclass similarities problems. Namely, the same ac-
tion can be expressed differently by diverse body movements of different users,
and on the contrary different types of actions may show the same information or
very similar features. Other common problems when dealing with HAR tasks are
also related to complex background, lightness, scaling, and point of view that
may represent significant limitations as well. In all these cases, only the con-
textual information extracted from the background and the detection of objects
in the same scene may help to better understand the ongoing event and then
the ongoing human activity. For this reason, in this work, we want to address a
holistic video understanding (HVU) task, which is a multi-label and multi-task
learning problem introduced in [1].

First of all, Holism is a theoretical position according to which the properties
of a system cannot be explained just by its singular components, but capturing
also their relative overall connections. It is a very common theory and widely
used approach when we need to describe real-world phenomena, just look at
the fundamental sciences of medicine or physics. Following this new current of
thought, the aim of the holistic video understanding is not only to recognize
specific and individual actions but also to provide a semantic level description of
the scene describing the higher level connections among objects. Of course, the
HVU task we propose includes human anctivity recognition and, at the same
time, it provides valuable information on other multiple semantic categories. To
naturally capture contextual information from dynamic real-world scenarios it’s
reasonable to use objects, scenes, attributes, concepts, actions, and events. First
of all, the fact that we can identify together multiple semantic categories from
the scene may be very useful for the recognition of specific and advanced ac-
tions, even in complex or cluttered background, or in a crowded environment
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Fig. 1. An example of Human Action Recognition (HAR) vs holistic scene understand-
ing.

with multiple subjects and actions, that is one of the biggest challenges in HAR.
At the same time, this new holistic approach will allow capturing the contex-
tual knowledge of the environment, not only to acquire information about the
ongoing action but also to know where, why, and how that particular action is
performed. In this way, for example, a robot could infer also the reasons and
causes, which are hidden inside the scene, that led to perform a specific action,
as shown in figure 1. The ability to fast recognizing contextual information is a
very strong and highly desirable feature for any intelligent robotic system that
needs to react online to the dynamic situation evolving in time. Particularly,
for social and assisting robots in public and private environments, the use of
contextual knowledge can be a key factor for achieving higher flexibility and
adaptability to environmental conditions.

The remainder of this paper is structured as follows. Section 2 analyzes exist-
ing literature and discusses the state-of-the-art in human anctivity recognition,
holistic video understanding, and context-aware robots. Section 3 reviews some
of the most influential HAR datasets over the last decade. Section 4 formalizes
the problem statement. Section 5 explains our proposed system architecture and
methodology with particular attention to Convolutional Neural Networks and
Recurrent Neural Networks. Section 6 presents experiments, implementation de-
tails, and their relative results. Section 7 shows how this vision-based holistic
scene understanding module can be integrated to build an efficient context-aware
human-robot interaction and possible application scenarios. Finally, in Section
8, we discuss conclusions and future directions.
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2 Related Work

Human anctivity recognition has been widely explored in the last decade, given
the growing technological progress in the field. Several methods and approaches
have been studied in literature starting from a multi-modal human action analy-
sis from gestures poses, facial expressions, and audio signals [2]. More advanced
human anctivity recognition systems use depth cameras to create a more infor-
mative 3D representation of the human body as in [3], [4] or also human body
parts motion analysis from skeletal poses as in [5], [6].

Only in the very recent years, research has focused on how HAR tasks can be
expanded from single-label classification problems towards a more comprehensive
understanding of image and video sequences. A first attempt was provided with
the SOA dataset (Scene-Object-Actions) in [7], that first analyzed the possibility
of applying the information learned from one task to improve the others. Only
the last year, the authors of [1] provided a public available multi-label and multi-
task video dataset intending to promote new research ideas and further works
in the field of the holistic video understanding (HVU). This dataset strongly
differs from the most influential ones in the HAR field, since it provides a signif-
icant increase both in the number of semantic categories (Scene-Object-Actions-
Attribute-Concept-Event) and both in the corresponding number of labels per
category. Indeed, the most common HAR video datasets, from the earliest ones
such as UCF101 [8] and HMDB [21] to more recent and largest works such as Ac-
tivityNet [9] and Kinetics [10] are targeting human action or sport recognition in
non complex background which makes them non-applicable in real-world appli-
cations. HVU dataset, instead, contains about 572K videos with approximately
9 million annotations spanning over 3142 labels among 6 different semantic cat-
egories. Given the significant improvements and the great potential of this very
innovative dataset, the main goal of this work is to contribute and enlarge re-
search in the holistic video understanding field by proposing a new model able
to capture the whole information of a video. Our work is based on the idea pro-
posed in [1] but it differentiates by introducing a new spatio-temporal network
architecture: a Convolutional Neural Network (CNN) is used to acquire spatial
information, combined with a Recurrent Neural Network (RNN) for captur-
ing temporal relationships. Moreover, differently from previous works that just
analyze possible solutions for recognizing human activities or the whole video
content, our project wants to show how the holistic video understanding task
can be successfully exploited to build a more natural context-aware human-robot
interaction. Indeed it is another area that still needs to be explored to let many
intelligent and robotic systems be operational in many advanced application
domains.

The necessity of having complementary holistic learning is also validated in
[11], in which the authors show the substantial importance of having contex-
tual knowledge as ”the information that surrounds a situation of interest in the
world”, as anticipated in [12]. They identified 3 main benefits an intelligent sys-
tem can acquire from the ability to quickly recognize the context: (%) robustness
to complete the required tasks, namely the performance of the systems, as well
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as its sake of applicability (i7) adaptability to multiple operational conditions
and application domains (i) flexibility in tackling the main goal of a robot.

In the last years, many approaches have just proven the benefits of using
contextual information for solving robot navigation problems. For example, the
authors of [24] develop an intelligent mobile robot system that understands the
semantics of human environments and the spatial relationships with and between
humans. Context-awareness for person following is considered in [25], while in
[26] the robot’s speed is adjusted when it is in a hallway setting. To the best of
our knowledge, instead, very few experiments have been conducted in the field of
context-aware human-robot interaction [27]. Even fewer works have shown how
crucial contextual information can be leveraged to make the robot aware of the
environment, and also reactive to various situations when interacting with real
people. For this reason, the main goal of our work is not only to promote new
ideas in the field of human anctivity recognition and holistic video understanding
but also to demonstrate how they can be exploited to provide key information for
the development of active and assistive social robots. This will allow not only
to make the robot operative in variable conditions but also to avoid prefixed
models that may result in non-natural robot behaviors and interactions, since
models that are based solely on predefined user scenarios and action scripts may
not be able to take into account the uncertainty introduced by variations in the
environment or unclear expectations from the user [27].

3 Datasets

The most popular and commonly used video datasets in the field of human an-
ctivity recognition are strictly targeting highly specific human actions or sports
recognition. As shown in table 1 early datasets in the HAR field like Hollywood
[13] and UCF101 [8] were simple and were completely scripted datasets filmed
in very ideal and fully controlled conditions. Moreover, they include very little
variation in the ambiance parameters such as lighting, occlusion, and viewpoints.
In most cases, the non-complex backgrounds and the non-intraclass variations
in human movements make these datasets non-applicable for real-world applica-
tions.

More recent datasets like Something-Something [14], ActvityNet [9] and Ki-
netics [10] typically consider unconstrained videos, which emulate real environ-
ments. Concurrently, being datasets with million-scale samples, they provide a
great increase in the number of labels and videos. However, they are always
limited to a single semantic category, allowing to recognize human actions only,
while leaving a significant gap towards describing the overall content of a video.

Table 1 shows as research has turned over the years towards a more global
and comprehensive video dataset that can understand all the multiple aspects of
reality including not only human activities but also different classes as object or
scene. This holistic spirit is first observable in the SOA dataset [7] and YouTube-
8M [15] that is the largest multi-label video classification dataset, composed of ~
8 million videos to recognize several visual concepts. Above all, the HVU dataset
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Table 1. Recent evolution of modern datasets for human anctivity recognition.

Dataset Year #Videos Total Focus

Labels
Hollywood [13] 2008 663 101 Basic Human Actions
HMDB [21] 2011 7K 51 Facial and Body Actions
UCF101 [8] 2012 13K 101 Sports
Sports1M [22] 2014 1 million 487 Sports
ActivityNet [9] 2015 20K 203 Complex Human Activities

Charades [23] 2016 10K 157 Person—Object Actions
Something Some- 2017 108K 174 Person—Object Actions

thing [14]

Kinetics600 [10] 2017500K 600 Group Action, Person—Object
Actions

SOA [7] 2018562K 553 Scenes, Objects, Action

YouTube-8M [15] 2018 7 million 4716 Scenes, Objects, Actions,
Events

HVU [1] 2020 572K 3142 Scenes, Objects, Actions,

Events, Concept, Attribute

[1] has brought in last year more attention to holistic video understanding as
a comprehensive and multi-faceted problem, as it encompasses the largest and
most comprehensive list of semantic categories. HVU consists of 572k real-world
trimmed video clips whose duration can vary from a minimum of 2s length to
a maximum of 10s. Each video sample is associated with a set of labels (or
tags). Each one of the tags can belong to 6 main semantic categories: scene,
object, action, event, attribute, and concept, that are able to naturally capture
real-world scenarios. There are in total 3142 labels with, on average, ~ 2112
annotations per label between training, validation, and test set. The dataset is
not manually annotated since it would require a vast amount of time due to the
considerable number of labels and videos. The automatic annotation mechanism
uses the Google Vision API [17] and Sensifai Video Tagging API [16], providing
relatively coarse and approximate results and allowing to select exactly 30 tags
for each video. Then the tags are adjusted and arranged manually to remove
amiss labels. For a better understanding of the dataset, an example of a training
data sample is shown in figure 2.

4 Problem statement

We model the problem of HAR as a Supervised Learning (SL) classification
task over the labels of different categories C; with i € [1,6], more precisely, C' €
{object, action, concept, scene, attribute, event}. For each category i, we assume
there is a set of binary labels L; with a cardinality that is category-dependent.
In particular, a value y € L;, i € [1,6], is equal to 1 if the corresponding label
appears in the video, 0 otherwise.
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fun,games,dance,girl,performing_arts,team,leisure_centre,
recreation,sport,entertainment,indoor_games_and_sports,youth,
leisure,performance,choreography,sport_venue,competition

Fig. 2. Video frame sample from HVU datset with corresponding set of tags from
different semantic categories.

In the training phase, the vision-based system receives, as input, an unordered
set of N videos {v, })_, of dimension [HxWxC], with C fixed to 3 as we work
with RGB data and H, W, the height and width of the videos, respectively.
The length of the videos can be variable and depends on the specific dataset.
Assigning a set of binary labels for each video and setting L = Z?:o L;, we can

write the dataset as D = {(vy, Ln)::[:()}. In the test phase, given a set of videos,
we want to classify each video with its labels accordingly.

Finally, the vision module is exploited in a HRI setting to detect which
scenario is more plausible in a real-world designed application and how the robot
should act in line with the visual context.

5 Methodology

In this section, we first introduce the concept of Convolutional Neural Networks
(CNNs) and how they work with data of different dimensionality. Next, we pro-
ceed by explaining the idea behind Recurrent Neural Networks (RNNs) and by
reviewing the state of the art of this class of Artificial Neural Networks (ANNs).
Finally, our model architecture is introduced to tackle the problem of classifica-
tion while satisfying its requirements.

5.1 Convolutional Neural Network

Convolutional Neural Network is a deep learning model for processing image
data in grid-shape matrices, with the primary goal of identifying features and
extracting specific and even complex patterns from an image. A CNN can suc-
cessfully capture the pixel spatial dependencies and recognize more sophisticated
feature schemes to achieve effective results in classification and object recogni-
tion tasks than a simple feed-forward network. A CNN architecture comprises
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multiple convolution layers, followed by pooling layers and fully connected layers.
This connectivity structure reduces the size of the image and thus the number
of parameters to be optimized during the training process, still keeping salient
features crucial to accomplish the intended visual task. The core layer of a CNN
is the convolutional one. In order to capture salient information, the image, i.e.,
a tensor, is convolved with a set of learnable filters, also known as kernels or
weights. The filters are stacked together as multiple stages of feature extractor:
earlier stages compute basic features, higher stages focus on more global and
invariant features.

Given an input image I of dimension H x W, and a squared filter K of
dimension F' x F', a 2D convolution operation can be mathematically formalized
as:

Oli,jl= > > K[m,n]-I[i—m,j—n] (1)

m=—0o0 Nn=—0o0

where O is the output feature map, and each pixel location Oz, j] is computed
as the weighted sum of the original pixel and the eight nearby ones.

5.2 Recurrent Neural Network

Recurrent Neural Network (RNN) is introduced in [28]. This type of neural
network is commonly used to process sequential data that show a temporal
correlation. Its functioning consists of maintaining internal memory states, called
hidden states, while handling data sequences of variable length, just like videos.
The process of a Recurrent Neural Network carrying memory can be written as:

ht = ¢(th + Thtfl) (2)

The formula states that the hidden state at time ¢ depends on the previous
hidden state at ¢ — 1 multiplied by a transition matrix 7" and the input at time
step t multiplied by a weight matrix K. This sum is then given as input to an
activation function ¢ that is typical tanh or ReLU. Equation 2 can be seen as
a loop in which each hidden state h; maintain the memory of the state up to
t — 1, as long as this can be traced. Indeed, some of the drawbacks of RNNs are
the vanishing and exploding gradient problems, resulting in major difficulties in
keeping track of long-term dependencies.

Most of the RNN disadvantages have been solved with the introduction of a
variation called Long Short-Term Memory (LSTM) [29]. This neural network, in
fact, is capable of capturing long-term dependencies. LSTMs present a different
and more sophisticated structure, starting from the addition of the cell states
C; as shown in figure 3. Moreover, an LSTM regulate its information flow using
three different gates:

— Input gate

= (J'(‘/Vz [ht—h l‘t] + bl)ét = tcmh(Wc [ht—la xt] + bc) (3)
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— Forget gate
fr=oWy [hiy, 2] +by) (4)

— Output gate
Ct = ft Ct—l + it étOt = O'(Wo [ht_l,xt] + bo)ht = O t(ZTLh(Ct) (5)

These gates together completely solve the vanishing gradient problem that oc-
curs in the vanilla RNNs. While LSTMs are well suited for capturing temporal
correlations along an input sequence, they require much memory and may take
longer to train.

In the last years, a new class of RNN has been introduced in [30], namely,
Gated Recurrent Unit (GRU). GRUs inherits LSTMs structure with the differ-
ence that the output gate is discarded. Indeed, the hidden state is completely
exposed, without any control, while the cell state C' is not used anymore. In this
way, the structure of GRUs results less complex and so computationally more
efficient than LSTMs. Another note in favor of GRUs is that they perform better
on smaller datasets and almost equal to LSTMs on bigger amounts of data [31].

5.3 CNN + RNN Architecture

While CNNs are powerful feed-forward artificial neural networks suitable for
spatial data, on the other side, sequential data like videos represent temporal
information of arbitrary length which is better handled by Recurrent Neural
Networks. However, the authors of [1] show how Convolutional Neural Networks
that work in 3 dimensions (3D CNNs), in combination with 2D CNNs, can cap-
ture both spatial and temporal details from sequential data. Moreover, previous
works like [32] and [33], already proposed the use of 3D ConvNets in HAR achiev-
ing promising outcomes. This simple architecture consists of expanding the 2D
Convolution explained in section 5.1 with a third dimension that represents the
time steps. In this way, videos can be processed as a series of 3D volumes. Fur-
thermore, recent works have reached state-of-the-art results combining 3D CNNs
with RRNs ([34], [35], [36]) in human anctivity recognition and prediction tasks.
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Fig. 4. Illustration of our model architecture. The annotations under the layers repre-
sent the number of filters, units or, kernel size, depending on layer type.

Although higher dimension ConvNets help to catch richer motion information,
they bring a substantial number of parameters that make the computation more
complex. In addition, the purpose of this work is to design a robotics application
that most likely has limited computational resources which are in contrast with
3D CNNs characteristics.

A reasonable architecture that meets the requirements of our application
can be a simple concatenation of 2D Convolutional layers with an RNN module.
In particular, as mentioned in section 5.2, GRUs are, in terms of performance,
comparable to LSTMs while also exploiting a much lighter structure. For this
reason, we propose the use of a CNN-GRU architecture to solve the first task of
video labels classification problem.

As shown in figure 4, our model architecture is composed of several layers.
The input of the network is a batch of videos that can be seen as a set of images
(frames) sequences or, formally, as a tensor of dimension (b, ¢, h, w, ¢) where:

— b: batch size

— t: time steps (frames in the video)
— h: height of the images

w: width of the images

— c: images channels

Input data flows into a CNN block made of groups of 2D Convolutional layers and
2D Max Pooling operations. As explained in subsection 5.1, this process reduces
input size while expanding its depth in terms of feature extraction. Afterward,
the data tensor dimension is reduced using a 2D Global Max Pooling operation
and its shape becomes (b, ¢, f) with f the final number of features, in this case,
64. The three-dimension CNN output is straightly given as input to the GRU
block. This latter looks for temporal correlations in the features of the videos
and returns a matrix of dimension (b,u) which are the hidden states of each
video at their last timestep. In fact, u is the number of units of the GRU which
also corresponds to hidden states length. A set of fully-connected layers is then
placed after the recurrent action. In particular, we use a Sigmoid activation
function for the very last Dense layer, in order to predict a set of probabilities
in the [0,1] range for each label in all categories. Therefore, the number of units
of this last layer depends on the total number of labels in the dataset.
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6 Experiments

The model architecture introduced in the previous section is evaluated with a
subset of the HVU [1] dataset. We first introduce how we select a portion of the
data and which metrics are used to carry out this task. We proceed by listing
some of the implementation details of our work. In the end, we analyze and
discuss the training and test phases of our model.

6.1 Dataset

We collected part of the data from the Large Scale holistic video understanding
dataset instead of using it entirely. Indeed, two strong reasons led us not to
use the entire dataset. The first motivation is that the HVU dataset has more
than 3k labels and not all of them might be of interest in designing an HRI
application. Selecting a subset of labels, consequently, reduces the number of
annotations, and so videos. The second reason is that a large dataset of 572k
videos requires a model with many parameters and, in consequence, a huge
number of computational resources.

The first metric we adopt to lighten the dataset is to re-order the labels of
each category by the number of their annotations in the videos. In this way, we
have a clear view of the most frequent labels. Next, we pick a subset of labels
for each category from the ordered list. Moreover, we manually add some labels
which we think to be helpful in an HRI scenario. These two actions lead us
to a total number of 80 selected labels, about 13 per category. After an initial
screening of the labels, we select the videos to be used in the training and test
steps. To accomplish the task, we use an effective metric, which we name discard
factor (dy). This parameter has the task of discarding videos that contain a
low number of activations, i.e., the number of 1s in the binary vector of labels
describing the video, as explained in section 4. Given a video, we compare the
discard factor with the ratio between the number of labels present in the video
that belong to our 80 selected labels and the number of its total annotations. If
this ratio is below dy then the video is discarded. Next, we drop from the video
the labels different from the selected ones and ensure each video to have at least
3 activations. In this manner, we get many samples with multiple labels present
at the same time, ensuring the model recognizes multiple entities together. This
is also done to increase as much as possible the ratio between 1s and 0s in the
binary vectors of labels. Indeed, using a really small number of non-weighted
activations could lead the model to always predict zeros. The other important
reason we use the discard factor is to obtain a set of videos that don’t refer to
an excessively complex context that differs too much from the background areas
described by the selected labels. In terms of our implementation, we have set
dy=0.68. Finally, we further limit the number of annotations for each of the 80
selected labels to be 4000. In this manner, we reduce the imbalance of video
annotations among the selected labels, avoiding too many activations for a set
of them. In particular, given the annotations of a video, if a label has reached
its limit and is among them, we discard the entire video.
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We prefer to have a balanced number of labels for each category instead of
an equal number of annotations for each label. In this way, we show the model’s
fair ability to recognize different labels from different categories. An alternative
would be to balance both things setting this up an optimization problem. This,
however, could result in a long and complex procedure. This problem can be
resumed as a choice between innovation and performance. In the first case, we
push the model to recognize diverse categories of entities. In the second, we
aim at a balanced number of annotations and so enough data for each label not
to compromise the model’s capability while renouncing on recognizing different
context areas.

After these preprocessing steps, we obtain a dataset of ~ 10k videos. Since the
original HVU dataset is composed of videos of different aspect ratios, including
vertical videos, we decide to apply a center cropping to obtain a fixed aspect
ratio. During the experiments, this operation doesn’t show notable disadvantages
in model performance. In particular, we use 0.66 as aspect ratio and resize the
videos to be (vid,,, vidy, vid.) = (150,100, 3). Finally, we discard videos having
less than 60 frames, which corresponds to 2 seconds if the video is recorded at
30 fps (like the majority of the videos from the HVU dataset), because during
training each sample is clipped at 60 frames from the start in order to have
sequences with the same length inside a batch. Thereby, we obtain a final dataset
of 8k videos.

6.2 Implementation Details

For the implementation, we highly rely on TensorFlow 2.4 framework. In par-
ticular, we build an efficient data pipeline to process videos as a set of images
using TFRecords format [18] and tf.data API [19]. This significantly increases
performance during the training process.

We train the network from scratch using mini-batch gradient descent with a
batch size of b=32. We normalize the dataset dividing each video frame by 255 to
transform values in [0,1] range and help the convergence of the model. Moreover,
we cut videos from the start to have exactly 60 frames and process simultaneously
multiple batches (batch, frames, height, width, channels). However, we would like
to point out that, at inference time, the model is still capable of classifying videos
of variable length. The validation set is composed of the 20% of the dataset, and
we use Adam optimizer with learning rate Ir = le-4, and decay equal to 0.9.
We decide to fix the number of GRU units to 64 and use a dropout value of
0.2 to prevent overfitting. All these values come from a fine-tuning procedure.
For the loss, we use binary cross-entropy (BCE) since our ground truth labels
are either zeros or ones. In particular, we implement a modified version of BCE,
which weighs the values 1 in the labels 2.5 times more than the zeros. In this
way, we adjust the balance of annotations in the videos. The evaluation metrics
that we use are binary accuracy, precision, and recall, all with a threshold of 0.5.
Our network has 11 layers for a total number of 77k parameters, which makes
it pretty light.



Vision-based holistic scene understanding 13

trainoss || 0.9 _,u_....,..--.,......Lu-...-..
0.60 == valid loss <
| 0.8
0.55 - 0.7 1
=.
0.50 14 0.6 1
'._ 05_:“.’:._ oyt T bk
0.45 1 ' // ’ —— train accurscy
) 04 o
0.40 - B "";’-.‘," i wus val‘\d precision
1 0.3 = val vl
0.35 t T 1
0 25 50 75 100 0 25 50 75 100
Epochs Epochs

Fig.5. (Left) Training and validation curves for weighted binary cross-entropy loss.
(Right) Training and validation curves for accuracy, precision, and recall.

To accomplish our experiments we make use of an NVIDIA RTX 3060 12GB
GPU, while the mean training time for one epoch (validation step included) is
about 270 sec.

6.3 Result analysis

The performance results of our model on the parsed dataset are shown in figure
5. We do not report HATNet [1] as a baseline since no source code has been
made available by the authors. Moreover, not enough implementation details
were provided to reproduce the network and use it on our dataset.

The presented results refer to a training procedure of 110 epochs. The left
plot shows the loss curve, which is a weighted binary cross-entropy. As evidenced
by the trend, the network presents minor issues of underfitting in the first part
caused by the small dropout in the GRU layer. In the end, there is a small gap
of overfitting between the training and validation losses. Instead, the accuracy
on the right plot presents a stable and slowly-growing behavior and reaches, at
the last epoch, a score of 0.89. Conversely, the precision reaches a lower value
of ~ 0.55 while also showing no overfitting tendency. The highlighted difference
between accuracy and precision could be due to the unbalanced distribution
of the labels’ video annotations. The recall, instead, reaches a value of ~ 0.68
both for training and validation. In figure 6, we show some video frames from
the test set and their relative output labels predicted by the network. In the
first frame, the model perfectly recognizes all the featured labels. In the second
example, it is possible to see a missing label, i.e., infant, from the predicted ones.
Moreover, one may notice that some of the predicted labels (in light red) agree
with the context of the frame while not being included in the ground truth.
This occurs because, as explained in section 3, the HVU dataset uses APIs for
automatic annotation of the videos and, just partially, human verification to add
correct labels and remove wrong ones. The third video frame also demonstrates
that some labels, which are considered false positives, are instead present in the
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Ground truth labels:
ball_game, sports_training, sport, games,
indoor_games_and_sports, team_sport, sport_venue,
leisure_centre, leisure, competition, tournament

Predicted:

ball_game, sports_training, sport, games,
indoor_games_and_sports, team_sport, sport_venue,
leisure_centre, leisure, competition, tournament

Not predicted:
/

Ground truth labels:
hand, finger, arm, girl, child, mouth, infant, fun

Predicted:

hand, finger, arm, girl, child, mouth, fun,
joint, human_leg, human, sitting, darkness,
black_hair
Not predicted:

infant

Ground truth labels:

hand, finger, arm, girl, human_leg, human, sitting,
fun, darkness

Predicted:

hand, finger, arm, girl, human_leg, human,
sitting, fun, joint, child, mouth

Not predicted:

darkness

Fig. 6. Model predictions on some test video frames. We report well predicted (green),
not predicted (dark red), and false-positive (light red) labels.

video and would become true positives in a more accurately annotated dataset.
Thus, while HVU videos might be poorly noted, we show that the model can
learn labels’ features and predict them even when the ground truth is wrong.
On the other hand, wrong ground truth data penalizes the network’s learning
process and shows performance results different from reality.

In summary, the network can recognize the labels in the video and perceive
many true positives. Instead, it suffers from false positives due to the missing
labels of the HVU dataset. This can also be noticed by the recall being higher
than the precision. These results confirm that the model can capture the spatial

and temporal information in the videos and predict in a good way ground truth
labels.

7 Context-aware human-robot interaction

In this chapter, we discuss and analyze a possible HRI application that exploits
the holistic scene understanding vision module. The aim is to elaborate on how
the robot’s interaction performance can be improved when contextual knowledge
is provided to the embedding system. Indeed, human-robot interaction can take
several advantages from being context-aware [27]. First of all, the ability to
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Dialogue

Gestures

Navigation

Context acquisition
Context reasoning
Action planning

I

Exteroceptive sensors

, Actions
Home emergency scenario :
gency dialog:
object: man,woman,human,skin,face - "Is everything ok?"

action: crying,falling off chair - "Do you need help?"
concept: emergency,medical 4 .

scene: home,floor,room
attribute: elder

event: disaster

no_responses:
- Call an ambulance

Fig. 7. (Up) A robot framework in an HRI setting. (Down) Example of context sce-
nario.

be operative and deployable in different application domains, and adaptable to
multiple operational conditions, which is a key factor for achieving precision
and robustness when accomplishing the desired task. Secondly, the information
extracted from the context can be extremely useful to control the interaction
so that it appears much more natural according to the particular situation.
Moreover, this induced behavior could also be an important milestone in terms
of the robot’s social acceptance.

We propose a complete architectural framework for developing a context-
based human-robot interaction. It includes three main components: (¢) a vision-
based context acquisition module with the aim of extracting contextual infor-
mation labels from the environment by using a holistic scene understanding; (i%)
a context reasoning module for translating contextual knowledge into agent’s
behaviors; (i74) an action planner module to control the interaction employing
motion, gestures, communication, and other means. A complete sketch of the
framework is shown in the upper part of figure 7.

7.1 Application

We present a proof of concept on a possible application that makes use of the
holistic scene understanding capabilities. In its general form, an HRI framework
should be able to perceive environmental information. In particular, we require
the robot to possess a vision system, such as an accessible low-resolution RGB
camera. For the moment, we exclude the use of advanced and expensive sensors
like LiDARs. Since we are in a HRI setting, the robot must have means of com-
munication, such as automatic speech recognition and Text-To-Speech (TTS).
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This is necessary to expose a realistic behavior to the user while not making him
disdain the technological capabilities of the robot. Another attribute of interest,
especially for social robots, is to be capable of gesturing and, eventually, to move
in the environment.

When a robot approaches a human, it needs to have some sort of context
reasoning and context representation. Specifically, when we refer to the con-
text we point out a set of high-level features that improve robots’ capability
to adapt in the real world while standing beside humans. In our application,
we use different categories labels from the real world as high-level features for
robots’ understanding. Once we have the representation of the context, we move
forward with the reasoning part. As a result, we introduce the concept of con-
text scenario which is defined as an unordered set of category labels that, put
together, refer to a particular situation. Scenarios are, in general, hand-crafted
and customizable by the final user. The aim of the context reasoning part in the
framework is to select the Most Likely Scenario (MLS) using the probabilities
of the labels extracted from the vision module. In this way, is possible to link
a set of actions to the various scenarios and let the robot plan an action, based
also on humans’ requests and needs. As shown in the bottom part of figure 7, we
provide an example of context scenario. In the first part, we select a set of the
proposed labels which comes divided into 6 categories. Subsequently, a group of
possible actions is linked to the scenario, letting the robot plan among them.
For this purpose many types of planning can be used, like the one based on user
interactions as proposed before.

Among the possible test cases, one of the most interesting that could happen
and has to be analyzed is when multiple scenarios occur. To solve this issue we
propose priority-level context scenarios. As said before, a scenario takes place
when it’s considered the most likely one. This imposes the check of scenario’s la-
bels probabilities and a threshold value that establishes when a particular situa-
tion is happening. However, this doesn’t guarantee the recognition of a single sce-
nario, especially in a wide multi-tasking environment. Apart from the likelihood,
we consider also a priority level which makes the difference in multiple-scenarios
settings. In this way, urgent scenarios can take place safely while same-priority
scenarios can be selected randomly when overlapping happens.

8 Conclusion and further work

In this work, we address the problem of Human Action Recognition (HAR)
and expand its horizon presenting holistic approach for video understanding in
Human-Robot Interaction (HRI). This new perspective consists of recognizing
human activities while also considering other key factors like the scene, the ob-
jects, or the concept. We propose a CNN-RNN architecture to solve the problem
of multi-labeled video classification. The results show that the proposed method-
ologies can be well suited to a medium-sized dataset. We further design an HRI
scenario-based application showing its possible benefits and test cases.
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In the future, we want to focus on different application fields suitable for
our conceptual HRI pipeline. In the first place, the development of a scenario-
based application in a social robot like Pepper from SoftBank Robotics [39].
This, together with human questionnaire analysis [38], would show the effects
of context acquisition on robot behaviors, which we think could be particularly
beneficial.

In certain circumstances, such as in a nursing home, the constant presence
of the operator is not always possible and this can result in possible episodes
or moments in which the elderly person remains alone when he decides to take
an action. The presence of the robot would therefore allow to offer a logistic
support and perform functions in order to help the elder. For example, when
an elder is alone and wants to reach an object far from his reach, the robot
recognizing the action of the person can help the elderly in carrying at the
end of his behavior aimed at a purpose. The same scenario can be applied for
youngsters and children, enforcing a list of allowed and forbidden objects to make
reachable. In facts, this same principle can be extended into other contexts where
there are different types of frailty. In this way the fragile individual could enjoy
a moment in which his request is listened to and welcomed, giving the child a
feeling of gratification and interaction.

A further improvement for the HRI system could also include more advanced
forms of automatic reasoning. As already done in [27] and [37], robot’s interac-
tion behaviors can be modeled using, specific to a given context, a Partially
Observable Markov Decision Process (POMDP). This will allow us to condition
on the observations, that is the contextual information, the future actions of the
robot.

Another possible direction of future work could explore a similar strategy
for developing a visual context-aware Automatic Speech Recognition system
(VC-ASR). The basic idea is exploiting visual signals and contextual knowl-
edge to improve the robustness and reliability of ASR, with particular attention
to grounding and re-ranking. Indeed, we can leverage the acquired visual context
to re-rank the lists of transcriptions, and to ground text hypothesis from the first
pass of ASR.
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