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This paper examines the impact of applying dynamic traffic assignment (DTA) and quasi-dynamic traffic assignment (QDTA)
models, which apply different route choice approaches (shortest paths based on current travel times, User Equilibrium: UE, and
system optimum: SO), on the accuracy of the solution of the offline dynamic demand estimation problem. The evaluation scheme
is based on the adoption of a bilevel approach, where the upper level consists of the adjustment of a starting demand using
traffic measures and the lower level of the solution of the traffic network assignment problem. The SPSA AD-PI (Simultaneous
Perturbation Stochastic Approximation Asymmetric Design Polynomial Interpolation) is adopted as a solution algorithm. A
comparative analysis is conducted on a test network and the results highlight the importance of route choicemodel and information
for the stability and the quality of the offline dynamic demand estimations.

1. Introduction

Dynamic Traffic Assignment (DTA) models are among the
most effective tools for analysis and prediction of traffic
conditions, especially in congested road networks. To provide
accurate and reliable estimates, DTA models need infor-
mation on the distribution of the trips in space and time
(dynamic demandmatrices) that are assigned to the network.
It is straightforward that a better estimation of the dynamic
demand matrices leads to a better estimation and prediction
of traffic conditions.

This paper considers the offline estimation of the dynamic
origin-destination (O-D) demandmatrices as a starting point
that can be upgraded to deal with real-time information
for online demand estimation. The offline estimate of the
dynamic demand matrices assumes a starting demand value
to be known based on the available information on traffic
conditions on the network. This is a highly undetermined,
nonlinear, nonconvex problem, which was the object of a
relevant research effort in the last years [1].

The offline dynamic estimation problem is usually
approached as a bilevel problem. The upper-level problem
consists of the adjustment of a starting demand using traffic
measures, which are in turn linked to the dynamic demand.
This link is generated from the dynamic traffic network
assignment problem at the lower level, solved by using a
dynamic traffic assignment (DTA) model.

Cascetta et al. [2] approached the dynamic O–D matrix
estimation problem by introducing two different estimators:
simultaneous and sequential. The former estimates all the
matrices for all time slices using thewhole set of traffic counts;
the latter estimates at each step the matrix for a given time
slice expressed as a function of the traffic counts within the
same time slice and the already estimated previous demand
matrices. The simultaneous estimator is more robust and
provides better estimates than the sequential one. However, it
requires knowledge of the dynamic assignmentmatrix, which
has huge dimensions in real networks, and is computationally
very expensive. On the other hand,Marzano et al. [3] pointed
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out that the highly indeterminacy of the problem is often
cause of poor performances of the solution.

The research effort was directed mainly to improve the
efficiency and the effectiveness of the solution methods, by
following different research lines [4]: (i) introducing some
approximation to the optimization method to reduce the
computational effort; (ii) including more variables exploiting
all available sources of information on traffic performances;
(iii) assuming some simplification into the traffic assignment
model.

As far as the first line, Yang [5] provided two heuristic
solution approaches: iterative estimation-assignment and
sensitivity-analysis based algorithms. The iterative approach
does not guarantee the convergence to the solution. The
iterative approach is theoretically not fully satisfactory,
because the upper-level problem neglects the dependence of
link flows on O–D matrix. On the other hand, sensitivity-
analysis algorithm needs to approximate the derivatives
through simulation for each O–D pair and each time
interval at every iteration. Balakrishna and Koutsopoulos
[6] introduced gradient approximation methods within a
simultaneous perturbation stochastic approximation (SPSA)
framework in order to reduce the number of simulation
runs when calculating numerical derivatives or gradients.
Cipriani et al. [7] proposed some modifications of the basic
SPSA, introducing the Asymmetric Design (AD) for gradient
computation and the Polynomial Interpolation (PI) of the
objective function along the gradient direction. One of the
recent contributions, related to the bilevel approach, is to
try to jointly solve the offline demand estimation with the
user equilibrium (UE) DTA problem [8]. In the same year,
Djukic et al. [9] applied the principal component analysis
method to reduce the O–D demand variables. Then, Can-
telmo et al. [11] extended the SPSA AD-PI method to a
second-order approximation by applying a Quasi-Newton
method. In addition, they proposed an adaptive approach
that computes, at each iteration, the weights in the gradient
computation according to the relevance of any O–D pair
as computed. Lu et al. [12] introduced an enhanced SPSA
algorithm, which incorporates spatial and temporal correla-
tion between parameters and measurements to minimize the
noise generated by uncorrelated measurements and reduce
the gradient approximation error. While in the original SPSA
the objective function is a single scalar, in the weighted SPSA
it is a vector, whose gradient components are weighed by a
matrix that expresses the correlations between parameters
and measurements. Numerical tests to a small size and a
real-size road network highlighted that the enhancedmethod
improved the efficiency and the accuracy of the original SPSA
estimation method.

As far as the second research line, considerable attention
has been given to the role of different trafficmeasures adopted
inside the O–D estimation procedure, for offline and online
applications in addition to the usually adopted link counts,
specifically speed and link occupancy [7, 8, 13], probe data
from vehicle equipped byAVI tags [14–21]; aggregate demand
data, such as traffic emissions and attractions by zones [7, 22,
23]; measure link speeds and path travel times [24].

As far as the third research line, Frederix et al. [25]
provided a linear approximation of the relationship between
O–D flows and link flows, based on a marginal computation
method that performs a perturbation analysis using the
kinematic wave theory. Lu et al. [26] presented a single-
level nonlinear path flow-based optimization model, which
does not require explicit dynamic link-path incidences and
applies aDynamicNetwork Loadingmodel based onNewell’s
simplified kinematic wave theory in the DUE assignment
process. Cascetta et al. [27] proposed a “quasi-dynamic”
framework for estimation of O–D flows, in which O–D
shares are assumed constant across a reference period, while
total flows leaving each origin are assumed varying for each
subperiod within the reference period. Cipriani et al. [28]
applied a quasi-dynamic traffic assignment model (QDTA
[29]) that approximates the dynamic traffic model by steady-
state intervals and applies approximate performance func-
tions in order to reduce the computational burden to solve
the estimation problem. Cantelmo et al. (2016) proposed a
utility-based formulation for the demand estimation,which is
able to incorporate activity duration and to consider different
activity patterns. The building block of this methodology is
to adopt a utility-based departure time choice model in the
DTA and to exploit thismodel to derive the demand temporal
distribution.

The research illustrated in this paper finds its starting
motivations just in the results obtained by the contribution of
Cipriani et al. [28], where the approximation of the DTAwith
the QDTA model to solve the O-D estimation problem was
able to generate interesting results in terms of trafficmeasures
reproduction. Specifically, the SPSA AD-PI algorithm was
adopted in conjunction with the QDTA on a subnetwork of
the city of Rome, consisting of 113 traffic zones, 757 links,
and 335 nodes, where the traffic measures, in order to adjust
the starting value of the demand, were true data of flows
and speeds on 41 links of the network. These true data have
been derived by Floating Car Data (FCD) collected during a
national project (Pegasus Project) for the whole metropolitan
area of Rome: a fleet of 103,000 floating vehicles, travelling
9 million trips, provided 104 million records containing
positions and speeds during one month (May 2010). About
80,000 vehicles of these 103,000 floating vehicles crossed the
study area, thus generating a huge amount of data with high
disaggregation. Simulated link data, at the end of the O-D
estimation, resulted in a high correspondence with the true
data, obtaining improvement of approximately 65% in terms
of relative mean error with respect to the starting conditions.

Thus, on one hand these results seem to show that
there is the challenge to approximate DTA models, reducing
both the calibration efforts and the computation time and
laying the foundation for applications to time-dependent O-
D estimation problems on real-size networks; on the other
hand, there is a question worth of investigation, that is, the
degree of approximation that can be introduced by using the
QDTA to simulate the user’s behaviours.

Such considerations have to be integrated into a recent
analysis of a large dataset of FCD collected in Rome that
highlights that usersmoving from the same origin at the same
time interval (or with quite close departure times) choose
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multiple routes with different observed travel times to reach
the same destination [30, 31]. The finding of different actual
route travel times experienced by drivers within the same
time interval raises some issues related to the concept of
equilibrium in the dynamic traffic assignment phase.

The first issue concerns the realism of the behavioural
assumptions underlying the dynamic assignment models:
dynamic equilibrium traffic models provide detailed infor-
mation regarding the temporal profile of performance met-
rics (travel times, speeds, and densities), extend the equi-
librium concept introduced in the static model, and then
assume the same assumptions that drivers are rational and
have perfect information onnetwork conditions theywill face
approaching their destinations.Whether the real route choice
mechanism should be based on instantaneous rather than
on experienced travel times (or a combination of them) is
still an open research topic [32]. Even if dynamic equilibrium
principles are often referred to experienced travel times,
loading vehicles on the network according to instantaneous
travel times reflects the fact that either drivers choose their
shortest routes on the basis of an instantaneous picture of
the network (conditions) taken at their departure time, as
more and more frequently now happens, through websites
visited at home (pretrip information), or they adjust their
route while travelling, on the basis of information received
on real-time updated mobile devices while on the route (en
route information).

The dispute between instantaneous and experienced
travel times is strongly related to the second issue that raises
from FCD observations: the convergence of assignment pro-
cedures. As it is well known, the procedure is considered to
have converged, approaching equilibrium conditions, when
no simulated driver can improve his travel time by shifting
to an alternative route; thus, no change in experienced travel
times can be detected and no change in traffic pattern occurs
on the network, even if running additional iterations. This
implies that the network has reached a condition of stability,
which is the third issue, one of the major interests for
this study and has motivated the present paper. Stability
of the equilibrium condition is reflected by the algorithm
progression as the condition of detecting no change (or
negligible change) in network conditions when running
additional iterations after the equilibrium has been reached.
This condition can be alternatively seen from the supply side
by producing a minor change to the network features, for
instance, by changing the speed limit on a link and detecting
only local changes of traffic conditions or, from the demand
side, by slightly changing the demand, for instance, adding
one vehicle to an O–D pair, and detecting only negligible
changes of traffic flow patterns.

The latter example is of great relevance in the present
paper because it affects the shape of the objective function
being minimized in the demand estimation problem: if the
traffic assignment is not stable then the objective function is
very noisy and, moreover, may exhibit no descent direction
towards the real demand matrix.

Such observations have motivated the investigation of
the paper, which is to solve the demand estimation problem
under different traffic assignment conditions and criteria,

also adopting approximation of DTA models, thus investi-
gating the impact of different route choice modeling on the
convergence and the accuracy of the estimation. The offline
dynamic demand estimation problem has been solved on a
test network with the adoption of a bilevel approach based
on the SPSA AD-PI algorithm. Traffic assignments required
at the lower level have been performed by using the QDTA
model [29] and different route choice options given by the
Dynasmart model [33–37].

The paper is organized in four sections including this
introduction. Section 2 deals with the offline dynamic O-
D matrices estimation (DODME) problem: it describes the
main concepts behind the DTA models adopted in the study
and the solution approach based on the SPSAAD-PImethod.
Section 3 presents the results of numerical tests carried
out by applying the solution method to a test network in
combination with different kinds of traffic measurements
and different assignment models. Conclusions follow, in
Section 4.

2. Problem Formulation

This formulation considers a network consisting of a set of
arcs (A), a set of nodes (N), and a set of routes (R). Given the
period of analysis𝑇, divided into𝐻 intervals, a subset of links
L = {𝑎1, 𝑎2, . . . , 𝑎L} ⊂ A and nodes Q = {𝑛1, 𝑛2, . . . , 𝑛Q} ⊂
N equipped with sensors, a subset of monitored routes
P = {𝑟1, 𝑟2, . . . , 𝑟P} ⊂ R, and a set of centroids C ={𝑐1, 𝑐2, . . . , 𝑐D}, where the demand is assumed to have origin
and destination, the problemof offline simultaneous dynamic
demand estimation with multiple sources of information can
be formulated as follows:

(d∗1 , . . . , d∗𝐻) = argmin
(x1 ,...,x𝐻)

[𝑓1 (x1, . . . , x𝐻, d1, . . . , d𝐻)
+∑
𝑙

𝑓𝑙2 (y1, . . . , y𝐻, ŷ1, . . . , ŷ𝐻)
+∑
𝑞

𝑓𝑞3 (z1, . . . , z𝐻, ẑ1, . . . , ẑ𝐻)

+∑
𝑝

𝑓𝑝4 (w1, . . . ,w𝐻, ŵ1, . . . , ŵ𝐻)] ,

(1)

where

x𝑖 = estimatedO–Dmatrix for departing time interval𝑖, 𝑖 = 1 ⋅ ⋅ ⋅ 𝐻;
d𝑖 = seed O–D matrix for departing time interval 𝑖,𝑖 = 1 ⋅ ⋅ ⋅ 𝐻;
y𝑖 = simulated values on subset of links L in the time
interval 𝑖, 𝑖 = 1 ⋅ ⋅ ⋅ 𝐻;
ŷ𝑖 = collectedmeasures on subset of linksL in the time
interval 𝑖, 𝑖 = 1 ⋅ ⋅ ⋅ 𝐻;
l = type of collected measures on links L;
z𝑖 = simulated values on subset of nodesQ in the time
interval 𝑖, 𝑖 = 1 ⋅ ⋅ ⋅ 𝐻;
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Figure 1: Dynasmart modeling framework [40].

ẑ𝑖 = collected measures on subset of nodes Q in the
time interval 𝑖, 𝑖 = 1 ⋅ ⋅ ⋅ 𝐻;
q = type of collected measures on nodesQ;
w𝑖 = simulated values on subset of routes P for
departing time interval 𝑖, 𝑖 = 1 ⋅ ⋅ ⋅ 𝐻;
ŵ𝑖 = collected measures on subset of routes P for
departing time interval 𝑖, 𝑖 = 1 ⋅ ⋅ ⋅ 𝐻;
𝑝 = type of collected measures on routes P.

Functions 𝑓1, 𝑓𝑙2, 𝑓𝑞3 , and 𝑓𝑝4 are goodness of fit functions
related to different kinds of information about demand
and traffic patterns that in general may be available. If a
reliable prior O–D matrix (called “seed matrix”) is avail-
able, the objective function to be minimized can suitably
include function 𝑓𝑑 as the distance with respect to the seed
matrix.This specification of the estimation problem is usually
referred to as demand adjustment in literature. Moreover,
the formulation reported in (1) permits the introduction of
different types of data collected on the network in order to
better reproduce the demand in space and time. Examples of
such types of data are as follows: (i) measures on links as flow,
speed, occupancy, queue length, and density; (ii) measures
on nodes, for example, turning movements; (iii) measures on
routes as travel time, distance travelled, or path flow fractions.
In a dynamic framework, the relationship between the values
of the measured variables and the demand is captured by
simulation is presented as

y1, . . . , y𝐻 = Γ (x1, . . . , x𝐻) ∀𝑙
z1, . . . , z𝐻 = Γ (x1, . . . , x𝐻) ∀𝑞
w1, . . . ,w𝐻 = Γ (x1, . . . , x𝐻) ∀𝑝.

(2)

Operator Γ is a generic traffic assignment model able to
represent, given a dynamic demand as an input, the time
variation of the measures along the different elements of
the network. Generally Γ is reported in previous works as a
Dynamic User Equilibrium Traffic Assignment (DTA-DUE);
however similar approaches in literature adopt also Dynamic
Network Loading (DTA-DNL), usually when there is no need
for route choice [10, 38]. Nonequilibrium approaches, such
as system optimum approach (DTA-SO) or quasi-dynamic
traffic assignment (QDTA), can be also adopted. It is easy to
assume that the choice of Γ can influence the results of the
demand estimation, which is the focus of this paper.

To apply different assignment strategies and simulate
different behavioural assumptions on route choice, the state-
of-the-art DTA software Dynasmart (DYnamic Network
Assignment Simulation Model for Advanced Road Telem-
atics) is used [39]. This is a simulation assignment model
that integrates traffic flow models, path processing method-
ologies, behavioural rules, and information supply strategies.
The traffic model is a mesoscopic simulation model, which
applies a macroscopic concept for moving the vehicles on
the links. For the movement of vehicles at intersections,
Dynasmart adopts a microscopic simulation concept. The
modeling framework for Dynasmart is presented in Figure 1.
The path selection process may apply any of the following
rules: pretrip information, en route real-time information,
Dynamic User Equilibrium (DUE), and system optimum
(SO).

Drivers’ behaviour in response to en route real-time infor-
mation is simulated according to the bounded rationality
approach, which assumes that drivers will change their path
according to travel time information received only if the new
path yields travel time savings greater than given thresholds.



Journal of Advanced Transportation 5

About the possibility of approximating the DTA, the
QDTA approach by Fusco et al. [29] has been adopted. The
QDTA model assumes that steady-state conditions holding
in each time slice in which the simulation interval is divided.
The great advantage of this strong assumption is that it
exploits link-cost functions used in static equilibriummodels
that are applied in the most practical applications. Thus, the
calibration effort is much lower than that required by the
more complex dynamic traffic assignment models; however,
a validation performed on a large set of Floating Car Data
provided error statistics close to those obtained in one of the
most advanced applications of a dynamic simulation traffic
assignment model reported in literature.

The dynamics of traffic is introduced in the network load-
ing process, which simulates the progression of all packets
of flow in each time interval by moving them, according
to the value of speed corresponding to the link flow, up to
the position on the network reached in the time interval.
Because of the link-cost functions used, the model does not
simulate the processes of queue progression and clearance but
computes anyway the traffic congestion in terms of link travel
time.

It is assumed that users do not modify their route choice
during the travel; thus, at each iteration, routes are computed
only for the new users that enter the network. However,
because of the time-dependent interaction of flows on the
network, origin-destination (O-D) flows starting at a generic
time interval may be affected by flows starting at a successive
time interval and overlapping their route (consequently
changing their travel time).

Since Dynasmart is assumed as term of reference in this
laboratory application, the QDTA model has been calibrated
by applying a Particle Swarm Optimization algorithm to
determine the parameters of volume-delay functions that
better approximate the results provided by Dynasmart on the
test network used in this experiment.

2.1. Solution Approach. In the following, the main principles
of SPSA AD-PI, adopted in this paper as the solutionmethod
for the offline simultaneous dynamic demand estimation, are
summarized. SPSA AD-PI was firstly proposed by Cipriani
et al. in 2010 and it is based on the path search optimization
method of Spall, [41, 42]. It works with a gradient approxima-
tion, thus limiting the computational resources required for
the calculation of a standard numerical gradient.

Considering the generic iteration 𝑘 + 1 of the algorithm,
the dynamic O-D matrix x𝑘+1 can be computed as

x𝑘+1 = x𝑘 − 𝑎𝑘ĝ (x𝑘) , (3)

where

x𝑘 = estimated dynamic O-D matrix for iteration 𝑘;
𝑎𝑘 = gain sequence at iteration 𝑘 of the O–D estima-
tion algorithm;

ĝ(x𝑘) = average approximated gradient at iteration 𝑘.

The average approximated gradient ĝ(x𝑘) is calculated as
the average of𝑚 gradient approximations at iteration 𝑘:

ĝ (x𝑘) = average𝑚 (ĝ𝑚 (x𝑘)) . (4)
Each gradient approximation ĝ𝑚(x𝑘) is based on a simul-

taneous perturbation of each component of x𝑘; thus, all
elements of x𝑘 are randomly perturbed together adopting
a random perturbation vector Δ𝑚 to obtain one additional
point with respect to x𝑘 (Asymmetric Design: AD) for which
the objective function 𝑧 is evaluated:

ĝ𝑚 ((x1 ⋅ ⋅ ⋅ xnh
)
𝑘
)

= 𝑧 ((x1 ⋅ ⋅ ⋅ xnh
)
𝑘
+ 𝑐𝑘Δ𝑚) − 𝑧 ((x1 ⋅ ⋅ ⋅ xnh

)
𝑘
)

𝑐𝑘

⋅ [[[
[

(Δ1𝑚)−1.
(Δ𝑛V𝑚)−1

]]]
]

(5)

with
𝑧 = objective function (OF) as defined in (1), where
the simulated traffic measurements are obtained
directly by performing the assignment process with
Dynasmart (i.e., it is an assignment matrix free
method).
Δ𝑚 = 𝑛V-dimensional random perturbation vector
(with 𝑛V = 𝐻 × 𝐷2); the distribution of Δ has to
comply the condition that the {Δ𝑗𝑚} elements of the
perturbation vector are independent and symmetri-
cally distributed around0with finite inversemoments𝐸(|Δ𝑗𝑚|−1) for all𝑚, 𝑗.
𝑐𝑘 = the step to compute the approximated gradient.

The linear optimization in (3) is solved using a Polynomial
Interpolation (PI) of the objective function: from the solution
x𝑘 at iteration 𝑘, other three possible dynamic demand
matrices (x𝑘1, x𝑘2, x𝑘3) are computed along the descendent
direction founded by the average approximated gradient
(Figure 2(a)).Then, the corresponding values of the objective
function (OFs) are evaluated and the third-degree poly-
nomial function interpolating these points is analytically
derived (Figure 2(b)).Theminimum point of the Polynomial
Interpolation is finally computed and considered as the
suboptimal solution of the problem.

About the computational times of SPSA AD-PI, these
are function of the number of traffic assignments. Each
time the SPSA computes a gradient approximation (5), there
is the need to run an assignment by Dynasmart. Since 𝑚
computations of the gradient approximation are required at
each iteration of SPSA (4), the parameter 𝑚 strongly affects
the computational times. It is demonstrated that the increase
in the value of𝑚 could permit a higher efficiency in terms of
iterations of the algorithm; however, this added value is not
always able to compensate for the longer computational times
per iteration. A value of 𝑚 equal to 10 ÷ 15% of the number
of variables can be a good compromise between reliability of
the solution and computational times [11].
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3. Numerical Experiments

Several experiments have been conducted on a test network
consisting of 22 nodes (14 are signalized intersections), 68
links (composed by highway links, freeway links, onramp,
and offramp links), 6 traffic zones, and a whole planning
horizon of 35 minutes discretized into 5 minutes intervals
(Figure 3), generating a total value of 252 O-D variables to
be estimated.

In total, 12 links are monitored and monitoring sections
are located between the following pairs of nodes: {(2, 3); (5, 6);(7, 8); (13, 14); (16, 18); (19, 17); (18, 20); (21, 19)}.

All the experiments start from a traffic demand supposed
as the “true” demand, which is assigned on the network in
order to procure the measures to be included in the OF
(ground truth conditions). Then, the “true” demand has
been perturbed in order to obtain a “seed” demand, which
is the starting point for the optimization. The OF in (1)
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Table 1: Experiment design.

Experiments Type of DTA Measures inside the OF for each type of DTA
Set I DUE OF1: link volume

OF2: link volume + speed
OF3: link volume + density

OF4: link volume + queue length
OF5: link volume + speed + density

OF6: link volume + speed + queue length
OF7: link volume + density + queue length

OF8: link volume + density + speed + queue length

Set II SO
Set III DNL
Set IV 50% DUE – 50% SO
Set V DNL + fixed DUE paths
Set VI DNL + fixed DUE paths (highest O–D flows)
Set VII DUE + fixed DUE paths (highest O–D flows)

Set VIII QDTA

O.F.1: link volume
O.F.2: link volume + speed
O.F.3: link volume + density

O.F.5: link volume + speed + density

is expressed by the Normalized Root Mean Square Error
statistic (NRMSE) as goodness of fit between simulated values
and traffic measures.

Specifically, only collected measures on links have been
adopted inside theOF (link volume, speed, density, and queue
length). Various combinations of types of information are
assumed in the different tests, as reported in Table 1.

It is worth noting that no term containing information
on prior O–Dmatrix has been included in any OF in order to
exploit network measurements in the estimation procedure
as much as possible, avoiding anchoring it to the initial
estimate. Thus, the goal of the experiments is to investigate
the influence of different components of information and
different assignment models on the O-D matrix estimation.
In fact, strong differences are imposed, both in the total value
of the trips (12,638 seed versus 18,900 true) and in the O–D
distribution between true and seed.

Different Γ operators in (2) have been applied in the
different sets of experiments in order to represent different
network conditions as resulting from different combinations
of user route choices; these are reported in Table 1 by type of
DTA: other than the well-known DTA-DNL, DUE, and SO
criteria, a set of experiments has been conducted considering
one-half of users following the User Equilibrium criterion
and the remaining a system optimum criterion (Set IV: 50%
DUE + 50% SO). From Set V to Set VII, the usually adopted
DNL or DUE approaches have been mixed with fixed route
choices for a subset of O–D pairs: in Set V some fixed paths
(specifically, 28 paths) have been randomly selected from the
paths used under DUE conditions. In Sets VI and VII, the
fixed paths still belong to the DUE paths but they are selected
among the set of O–D pairs with the highest flows in order to
cover at least the 33% of the total demand. Finally, in Set VIII,
the QDTA has been applied.

As a whole, eight sets of experiments have been con-
ducted, each set following a specific DTA approach and
containing a total number of eight types of analyzed OF for
the first seven types of DTA criteria and four types of OF for
the last QDTA criteria.

All the parameters to be defined for the application of
SPSA AD-PI have been chosen according to the directions
given in Cantelmo et al. [11]: in particular, parameter 𝑠𝑘 of (5)

Table 2: Efficacy of the O–D estimation method in terms of OF
reduction.

Experiments OF reduction [%] Standard deviation
[%]

Set I −99.58 0.19
Set II −92.20 21
Set III - -
Set IV −96.12 8
Set V −67.53 30
Set VI −75.88 28
Set VII −90.97 24
Set VIII −73.17 14

has been set equal to 2% from the analysis of the OFs in the
neighborhood of the seed matrix.

3.1. Evaluation of SPSA AD-PI and Traffic Measures Repro-
duction. First comments on the results are related to the
efficacy of the SPSA AD-PI in terms of the average OF
reduction achieved in each set of tests and the related
standard deviation of OF reduction obtained by applying
different OFs specifications (Table 2). Results show that the
dynamic O–D estimation method is able to work on the
different OFs with very high improvement with respect to
the starting point. In fact, reductions range from −67.53%
to −99.58% and smaller reductions, although important, are
obtained for Set V and Set VI (resp., −67.53% and −75.88%,
Table 2), that is, when there is a mix between DNL and fixed
DUE paths. Results obtained introducing the QDTA (Set
VIII) are comparable with that obtained by using Dynasmart
with DNLmixed with fixed DUE paths (Set VI), since QDTA
applies a probabilistic statistic network loading. Only Set III
of tests, in which the assignment criterion assumedwas DNL,
produced no OF reduction. The reason for that is explained
in the following.

Figure 4 shows why the DNL assignment criterion affects
O–D matrix estimation negatively. In the figure, a mono-
dimensional scan of the OF1 (i.e., the specification of the
OF having only the link volume term) is performed using a
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Figure 4: OF1 scan for DTA-DNL between the seed matrix (alpha = 0) and the true matrix (alpha = 1).
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Figure 5: OF1 scan for DTA-DUE.

convex combination between the seed matrix (𝛼 = 0 in the
figure) and the true matrix (𝛼 = 1 in the figure) and assuming
the DNL assignment criterion.

A similar picture is shown in Figure 5, where the DTA-
DUE criterion adopted for Set I is applied.

It is clear that the DNL (Set III) prevents the algorithm
from finding a descent direction for the dynamic O–D
estimation problem, thus making the SPSA ineffective. This
is due to the strong variations of the route choice generated
by the dynamic shortest path algorithm when changing
the demand matrix. However, scanning the OF1 when the
DTA-DUE criterion is applied clearly individuates a descent
direction, although with some noise. Similar OF trends can
be recorded also for DTA-SO or mixing DUE and SO (resp.,
Set II and IV).

The reductions of the OFs have a direct impact on the
reproduction of the traffic measures: Table 3 reports the
average reduction of the difference between link measures
and simulated ones obtained from the starting point (seed

matrix) to the final point (estimatedmatrix) and the standard
deviations resulting from different OFs, that is, different
assignment criteria. In the case of the Dynasmart simulator,
not only the measures adopted inside the OFs are reported in
the table (i.e., link volume, speed, density, and queue length)
but also the other measures that are never used during the
O–D estimation, as the outflow and the left-turn movements
from each monitored link. These measures, although achiev-
able as the output of the simulation with Dynasmart, have
been excluded in the process of OFs definition, since they
generate a strong noise of the OF as shown, for example, in
Figure 6.

The experiments show good results in terms of traffic
measure reproduction, both directly (when measures are
inside the OF) and indirectly (when measures are not con-
sidered in the OF), except for the left-turn movements. For
thismeasure, improvements with respect to the starting point
are quite limited (at most about 47%, Set IV, Table 3); in some
cases, specifically when fixing theDUE paths with the highest
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Table 3: Efficacy of the O–D estimation method in terms of reduction of the errors in measures reproductions.

Experiments Link volume Speed Density Outflow Left-turn movements Queue length
Set I

Average reduction [%] −99.58 −93.42 −99.49 −68.45 −3.03 −96.86
St.dev. [%] 0.52 6.69 0.50 16.16 81.63 3.23

Set II
Average reduction [%] −92.32 −89.25 −92.24 −79.06 −29.96 −89.85
st.dev. [%] 20.97 23.74 20.50 22.71 66.86 23.50

Set IV
Average reduction [%] −96.61 −90.55 −96.44 −59.21 −47.45 −92.67
St.dev. [%] 7.02 12.41 8.50 37.34 34.77 13.23

Set V
Average reduction [%] −67.79 −65.98 −66.44 −37.92 −8.38 −66.72
st.dev. [%] 29.76 29.72 20.50 35.37 119.26 30.05

Set VI
Average reduction [%] −76.18 −74.28 −76.04 −63.54 128.45 −74.36
St.dev. [%] 27.55 27.96 25.40 29.16 130.96 28.16

Set VII
Average reduction [%] −91.21 −90.38 −90.24 −82.24 568.03 −90.31
St.dev. [%] 24.27 23.14 22.45 15.99 446.03 21.72

Set VIII
Average reduction [%] −73.59 −78.85 −71.03 - - -
St.dev. [%] 14.81 12.48 15.30 - - -
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Figure 6: Left-turn error index scan for DTA-DUE.

OD flows, also strong deterioration can be detected. It is clear
that a measure of this type can be strongly influenced by the
impact of traffic signals on the network. This is true also for
othermeasures such as the outflows. Further, changes in route
choices can strongly affect the correspondence of the left-turn
movements with the respective measures. The detail of the
correspondences betweenmeasured and simulated values for
the different variables, before and after the O–D estimation
process, is reported in the scatter plots of Figure 7. For all
variables, except left turning, the correspondence with the

measured values is increased by the O–D estimation process.
The best correspondence is achieved for the link queue: the
regression coefficient is 97.7%; the regression slope is near
one (1.01); the intercept is close to the origin (−1.19), while
the highest improvement is obtained for the link speed (the
regression coefficient increases from 86.0% to 94.7%; the
regression slope passes from 1.077 to 1.010; the intercept from−5.24 to −0.53).

Summarizing, the solution of the dynamic O-D estima-
tion in combination with different assignment criteria seems
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Figure 7: Scatter plots between traffic measures and simulated measures obtained from the seed matrix (a) and from the final estimated
matrix (b).
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Table 4: Evaluation of the estimated demand as the Euclidean distance from the true O–D matrix and the total number of trips.

Reference values
Euclidean distance

seed-true
459

Total trips
seed matrix

12,638

Total trips
true matrix

18,900

Experiments Euclidean distance
seed-estimated

Euclidean distance
true-estimated

Total trips
estimated demand

Set I
Average value 826.17 820.07 17,230
St.dev. 144.04 125.74 1,714

Set II
Average value 817.15 786.86 17,786
St.dev. 92.47 83.58 2.648

Set IV
Average value 782.41 770.05 17,379
St.dev. 153.42 91.24 2,641

Set V
Average value 437.04 548.82 15,256
St.dev. 218.20 102.33 2,115

Set VI
Average value 414.52 527.81 15,183
St.dev. 199.09 80.78 1,496

Set VII
Average value 775.20 760.26 17,403
St.dev. 212.36 152.68 2,062

Set VIII
Average value 192.48 465.05 13,307
St.dev. 63.46 12.11 466

to underline the efficacy of the adopted algorithm. Also when
the QDTA is applied, as an approximation of the DTA, the
solutions founded confirm the trend of the other assignment
criteria and the results obtained in previous studies: the
reproduction of traffic measures is good and when link
volumes are considered together with speeds and densities,
the improvements are comparable with those obtained in the
Dynasmart case by adopting an iterative dynamic assignment
approach.

Some problems can be detected in case of instability of
route choice to change in the demand, that is to say, when
a DNL criteria is followed. This instability can be reduced
working on the selected paths, as synthetically made in the
experiments with fixed paths, assuming these paths as those
selected by road users in real world.

However, the reduction of the OF and the correct
measures reproduction could not be sufficient to appreciate
the goodness of the solution. In fact, the aim of the O-D
estimation is to find a really reliable demand matrix in order
to use it for traffic management and planning applications.
For this reason, in the following paragraph, the results have
been analyzed as for the capability ofO–D estimationmethod
to reproduce the true O–D matrix. This usually cannot be
done, unless for laboratory experiments (this is the case), in
which the true demand is known.

3.2. Evaluation of the Estimated Demand. Results reported in
Table 4 show that the total value of the estimated demand
moved in the right direction, passing from the 12,638 trips
of the seed matrix to values around 17,000/18,000 trips, the
true being 18,900; only when the DNL is at stake (Sets V and
VI), or when the QDTA is applied, does the O–D estimation
procedure stand at lower values of the total demand (about
15,000 trips in the first case and 13,000 trips in the second
case).

The distribution in space and time of each O-D has been
evaluated measuring the Euclidean Distance (ED) between
the estimated matrix and both the true and the seed. Then,
these statistics are compared with the reference values of
Table 4.The ED between seed and estimated demand exceeds
the value of 770, for Sets I, II, IV, and VII. Moreover, the
ED between true and estimated demand is also higher than
the ED between seed and true (value of 459). This means
that even in the cases where the total value of the estimated
demand is very close to the true value, its distribution in
space and time is completely different (on average) from the
true demand pattern. Then, the estimation method provides
different matrices, even very far from the true one, which
generate very good matches with the traffic performances
measured on the network, as it is possible in such an unde-
termined problem. This result underlines the importance of
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Figure 8: Correlation founded when using DUE, SO, and their combination.

a reliable prior estimate of the O–Dmatrix to ensure that the
solutionmethod does not distort the true demand pattern. To
go more in depth into this issue, the correlations between the
ED seed-estimated and true-estimated have been analyzed
and reported in Figure 8; specifically, it seems that the two
EDs vary directly proportional to each other; that is, if the
prior estimate is poor, also the final is poor. Single results
shown in the figure reveal that although on average the
estimated matrix is farther from the true than the seed one;
in many cases the procedure improves the initial estimation.
Moreover, a correlation can be noticed between the two
previous EDs and the total value of the estimated demand:
with the increase of the total value of the estimated demand,
a reduction of the ED true-final with respect to the ED seed-
final is detected (Figure 8).

In the cases of Sets V and VI, as shown in Table 4, the
ED between seed and estimated matrices is not higher than
the ED between seed and true. Also the ED between true and
estimated is quite low (about 500). Then, it seems that some
better result has been obtainedwith respect to the caseswhere
DUE, SO, and their combination are adopted. Effectively, the
introduction of fixed DUE paths other than the DNL (Sets
V and VI) has permitted reduction of the noise of the OF
(Figure 9).

This noise reduction becomes stronger when the highest
O–D flows are intercepted (see Set VI, Table 5). Nonetheless,
this results in a greater difficulty while leaving the starting
point during the O–D estimation and explains the too low
value of the total demand (about 15,000 trips).

In case of adoption of the QDTA model (Set VIII), the
optimization algorithm does not find the need to move so far
from the starting matrix as it does in Dynasmart simulations
in order to reproduce the traffic measures. In consequence,
the total value of the estimated demand is quite far from the
true one (about 13,000 trips with respect to 18,900). However,
the O–D demand pattern is much closer to the true one
than that estimated by applying Dynasmart; in all tests the
EuclideanDistance from the true demand is comparable with
the corresponding value between starting and true matrix
(approximately 459).

In Set VII, the DUE route choice approach, which
exhibited the highest convergence capability, has been mixed

Table 5: Evaluation of the OF noise (average absolute difference of
two following OF values for amono-dimensional scan between seed
and true demand).

Experiments OF noise evaluation
Set I 32.19
Set II 29.18
Set III 29.62
Set IV 55.30
Set V 12.20
Set VI 10.94
Set VII 32.33

with the approach that fixes some UE paths with the highest
O–D flows, which showed the best capacity of mitigating
the OF noise. However, this experiment resulted in noise
comparable with the basic DUE case (Table 5) and did not
introduce significant improvements with respect to matching
the true demand (Table 4).

The reason for these results can be explained considering
that when adding such fixed DUE paths to the DNL, the
route choice variation generated by the dynamic shortest path
according to a change in travel demand is strongly limited.

Previous results showed in general a high difficulty in
finding the right spatial and temporal distribution of the true
demand, even though the total right level can be reached;
however there is a need to understand if the problem is in
the spatial or in the temporal correlation between O-Ds.

It is worth noting that the test designed was very chal-
lenging, since the seed matrix was very different from the
true one (ED = 459, average difference between O-Ds =
25, maximum difference between O-Ds = 60, and standard
deviation between O-Ds = 39) and the time resolution for
O–D estimation (5 minutes) was much smaller than that
usually adopted in dynamic traffic assignment problems
(15–20 minutes).

Table 6 reports that the ED values computed summing
with respect to the time variable, thus capturing the only
space correlation.

In such a case, an improvement with the estimated
demand is always obtained and this improvement is higher
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Figure 9: OF1 scan for DNL + fixed UE paths (Set V).

Table 6: Evaluation of the estimated demand in terms of O–D distribution in space.

Reference values [ref.]
Euclidean distance

seed-true
1,206

Experiments Euclidean distance
seed-estimated

Difference with respect
to ref. [%]

Euclidean distance
true-estimated

Difference with respect
to ref. [%]

Set I 750 −38 1,107 −8
Set II 825 −32 1,122 −7
Set IV 1,075 −11 1,095 −10
Set V 518 −57 1,015 −16
Set VI 512 −58 957 −21
Set VII 936 −22 924 −23
Set VIII 192 −84 1,124 −7

when fixed paths are adopted: fixed paths are able to simplify
the route choice, thus reaching improvement of about 20%
on O-D spatial distribution. In some tests, specifically when
they are combined with DNL also improvement of about 30%
has been recorded.The improvement decreases to 10% if fixed
paths are not adopted.

In theQDTAcase (SetVIII), the new computedEDvalues
emphasize the difficulty ofmoving away from the seedmatrix
and this results in an insufficient ability to reproduce the
space distribution of O-Ds (only 7% of improvement respect
to the starting conditions).

To complete the analysis of the results in terms of
estimated demand, the ED values are computed aggregating
four-time intervals at time by adopting a rolling horizon
average method (Table 7), thus resulting in four values
covering all the estimated horizon. It is worth mentioning
that each experiment tries to estimate a dynamic demand on
a full horizon of 35 minutes divided into subintervals of 5
minutes each: thus, the partition of the demand on such a
small time interval increases the complexity of the problem.
Hence, the estimation needs to be verified on higher time
interval, that is, as reported in Table 7.

This last analysis highlights a difficulty in the estimation
as time advances, that is, as more demands come through
the network and as congestion increases. This is also due to
the number of measurements used for the estimation of the
demand in any time interval: the demand of the initial time
interval which estimated using measurements from the 1st
to the 7th interval, the demand of the second-time interval
using measurements from the 2nd to the 7th time interval,
and so on up to using only one time interval measurements
for the estimation of the demand of the last time interval.
This difficulty results in worsening the ED for the last two
intervals. Again, when fixed paths are introduced, a slight
improvement is reported also for these two intervals, where
the best result is obtained for Set VI.

At this point, it can be stated that the introduction of
information on the followed paths can be a fundamental
element to substantially improve the O–D estimation in
terms of reproduction of the true demand value and of
its distribution in space and time: this is surely suggested
by the results obtained for Sets V and VI but it is also
underlined by the difficulties of the O–D estimation proce-
dure in reproducing indirectly some measurements as the
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Table 7: Evaluation of the estimated demand in terms of O–D aggregated distribution in time.

Reference values [ref.] Euclidean distance seed-true
Time interval (minutes)

0–20 5–25 10–30 15–35
700 700 693 682

Set I

Euclidean distance seed-estimated 505 505 617 571
[% diff. respect to Ref] [−28] [−28] [−11] [−16]

Euclidean distance true-estimated 675 662 737 736
[% diff. with respect to ref] [−4] [−5] [+6] [+8]

Set II

Euclidean distance seed-estimated 575 526 567 536
[% diff. with respect to ref.] [−18] [−25] [−18] [−21]

Euclidean distance true-estimated 670 667 751 709
[% diff. with respect to ref.] [−4] [−5] [+8] [+4]

Set IV

Euclidean distance seed-estimated 737 654 653 656
[% diff. with respect to ref.] [+5] [−7] [−6] [−4]

Euclidean distance true-estimated 707 663 681 718
[% diff. with respect to ref.] [+1] [−5] [−2] [+5]

Set V

Euclidean distance seed-estimated 391 342 337 351
[% diff. with respect to ref.] [−44] [−51] [−51] [−49]

Euclidean distance true-estimated 583 593 646 648
[% diff. with respect to ref.] [−17] [−15] [−7] [−5]

Set VI

Euclidean distance seed-estimated 376 384 332 286
[% diff. with respect to ref.] [−46] [−45] [−52] [−58]

Euclidean distance true-estimated 552 590 562 568
[% diff. with respect to ref.] [−21] [−16] [−19] [−17]

Set VII

Euclidean distance seed-estimated 642 627 576 579
[% diff. with respect to ref.] [−8] [−10] [−17] [−15]

Euclidean distance true-estimated 600 555 549 577
[% diff. with respect to ref.] [−14] [−21] [−21] [−15]

Set VIII

Euclidean distance seed-estimated 737 654 653 656
[% diff. with respect to ref.] [+5] [−7] [−6] [−4]

Euclidean distance true-estimated 638 684 676 667
[% diff. with respect to ref.] [−9] [−2] [−2] [−2]

left-turn movements. As already mentioned, the left-turn
movements are strongly related to the route choices. Since
many matrices can reproduce quite perfectly link measures
as volumes and speeds and also link queues and outflows,
without being the true demand, an effective way to reproduce
the true conditions on the traffic networks, even for short-
term planning and management operations, is to be able to
reproduce the correct path choices.

For this reason, some final experiments have been con-
ducted adding path choices information during the estima-
tion in terms of O-D travel times inside the OF.

3.3. Use of Path Choices Information during the Estimation
Procedure. Recent ICT enhancements provide increasing
deployment of identification sensors. In addition to tradi-
tional monitoring devices that collect information on the
whole traffic stream at fixed locations, identification sensors

allow tracking individual vehicles both at fixed locations
on the road and on the network ubiquitously. Examples of
fixed identification sensors are image recognition cameras
and radio sensors that can capture public information from
bluetooth andWi-Fi devices on board of vehicles. Ubiquitous
monitoring consists of sampling vehicles equipped with GPS
location devices and mobile cellular data transmitters along
their paths. The latter form of monitoring is particularly effi-
cient, because it uses the same devices to provide information
to drivers and get information by them, is very effective,
and provides information on origin-destination of individual
trips as well as on the routes travelled by the drivers.

This information is fundamental to get an accurate
knowledge of travel demand and achieve reliable, well-
calibrated road traffic models [43].

Today, Floating Car Data (FCD) provide a huge amount
of true-timeupdated datasets on vehicle positions and speeds,



Journal of Advanced Transportation 15

Table 8: Evaluation of the estimated demand as the Euclidean distance from the true O–Dmatrix and the total number of trips (adding O-D
travel times).

Reference values
Euclidean distance

seed-true
459

Total trips
seed matrix

12,638

Total trips
true matrix

18,900

Experiments Euclidean distance
seed-estimated

Euclidean distance
true-estimated

Total trips
estimated demand

Set I
Average value 654.62 578.86 18,635
St.dev. 158.46 70.58 2,662

Set VI
Average value 566.22 539.25 17,335
St.dev. 16.68 17.68 155

Set VIII
Average value 211.00 508.69 12,845
St.dev. 75.87 28.37 147

Table 9: Evaluation of the estimated demand in terms of O–D distribution in space (adding O-D travel times).

Reference values
[ref.]

Euclidean distance
seed-true
1,206

Experiments Euclidean distance
seed-estimated

Difference with
respect to ref. [%]

Euclidean distance
true-estimated

Difference with
respect to ref. [%]

Set I 893 −26 838 −31
Set VI 1,003 −17 891 −26
Set VIII 313 −74 1,184 −2

which allow estimating both travel times and routes followed
by vehicles tracked. They should be exploited to improve
demand estimation and modeling assumptions.

In this last section, O-D travel times by FCD have been
added inside the OF (1) next to link measurements.

These travel times have been practically obtained as a
result of the assignment of the true demand (with different
assignment criteria), as already done for the collected link
measurements in previous experiments.

The following sets have been analyzed through adding the
O-D travel times to (i) Set I, since it is based onDUEcriterion,
which theoretically represents the real user behaviour in
case of congested conditions; (ii) Set VI, where promising
results have been obtained in the previous experiments
including fixed paths; (iii) Set VIII, in order to continue the
investigation of approximating the DTA with the QDTA.

Tables 8, 9, and 10 report the analysis of the estimated
demand values for each set.

Previous experiments adopting the DUE (Set I), without
adding information on travel times, demonstrated the ability
to obtain the right level of total demand, but problems in
terms of reproducing its temporal distribution were detected.
The introduction of O-D travel times (Table 8, Set I), other
than the level of total demand that remains comparable with
the true value, generated a significant reduction of the ED
(from 820, Table 4, to 578, Table 8), which is comparable with
the ED values obtained when fixed paths are adopted.

A detailed analysis of the results in Set I derives the fact
that the adoption of the new information on travel times
in the objective function enables the estimation procedure
to reproduce the correct path choices. In fact, not only
improvements on link measures are as high as those already
obtained in previous tests (without O-D travel times) for
volumes, speeds, and densities (higher than 95%), but, in
addition, outflows (80% of improvement), queue length
(99%) and, more importantly, left-turn movements (73%)
are now properly estimated. Such occurrence indicates that
with O-D travel time information the estimation procedure
can simulate the correct traffic regime and the correct route
choices. This is demonstrated also by the values reported in
Tables 9 and 10, Set I reporting a substantial improvement
both in the spatial and temporal distribution of the O-D
variables, with respect to the “no travel times” case. This is
verified only when DUE criteria are adopted. These results
are in accordance with other recent research contributions
[30] which demonstrated that link measurements alone are
not able to define the real traffic pattern on a road network.
Instead, if information on route choices on the road network
is available (and this is becoming increasingly easier with
the large development of advanced monitoring systems), this
may guarantee a very refined solution in terms of estimated
demand.

In case of Set VI, the O-D travel times allowed us to
obtain the correct quantity of total demand with respect
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Table 10: Evaluation of the estimated demand in terms of O–D aggregated distribution in time (adding O-D travel times).

Reference values
[ref.] Euclidean distance seed-true 700 700 693 682

Set I

Euclidean distance seed-estimated 607 593 481 516
[% diff. with respect to ref.] [−13] [−15] [−31] [−24]

Euclidean distance true-estimated 545 519 515 576
[% diff. with respect to ref.] [−22] [−26] [−26] [−16]

Set VI

Euclidean distance seed-estimated 596 607 637 627
[% diff. with respect to ref.] [−15] [−13] [−8] [−8]

Euclidean distance true-estimated 557 580 569 544
[% diff. with respect to ref.] [−20] [−17] [−18] [−20]

Set VIII

Euclidean distance seed-estimated 259 254 178 171
[% diff. with respect to ref.] [−63] [−64] [−74] [−75]

Euclidean distance true-estimated 716 691 676 649
[% diff. with respect to ref.] [+2] [−1] [−2] [−5]

to the underestimation of the previous tests. Instead, the
ED between real and estimated demand is almost the same
(compare Set VI, Tables 8 and 4). In previous experiments
without O-D travel times, the right total level of demand has
been obtained only when DUE or SO criteria have been used.
Improvements can be recorded not only in terms of total
demand value, but also in terms of spatial distribution (26%of
improvementwith respect to the starting point, Table 9).Neg-
ligible is the improvement of the temporal distribution which
is very close to what was already obtained without travel
times (Table 10). This proves that adding O-D travel times
to Set VI, where path information was somehow already
included (fixed paths), enforces the estimation procedure in
reproducing the right demand level rather than refining the
simulated route choices.

Finally, adopting the QDTA (Set VIII), the O-D travel
times do not seem to add further information during the
estimation procedure. Results are quite similar to those
obtained without travel times; indeed it seems to get worse
as the solution moves away from the seed matrix.

4. Conclusions and Further Research

The paper has dealt with the impact of introducing different
sources of information and different route choice criteria
in the O–D demand estimation problem, solved by the
Simultaneous Perturbation Stochastic Approximation with
Asymmetric Design and Polynomial Interpolation (SPSA
AD-PI) method. A systematic analysis, performed on a test
network, has showed that the estimation procedure is charac-
terized by good or excellent convergence properties in all the
cases examined other than when Dynamic Network Loading
(DNL) method is adopted for performing assignment phase;
in this case, the assignment criteria prevent the estimation
algorithm from converging to a solution.

Nevertheless, the estimated O–D matrix in most cases is
not satisfactory when properly compared to the true solution
and may be even farther from it than the initial seed O-D
matrix.

This is not surprising, provided that the problem is highly
undetermined and highly nonconvex and that the distance
from the initial matrix was not included into the objective
function nor the was search limited by any constraint. This
result highlights the importance of including a good initial
estimate of the O–D matrix in the estimation process.

Among the different variables examined, themost impor-
tant contribution to demand estimation has been, in most
cases, achieved by using measurements of traffic counts, link
speed, and queue length.

Apart from the various performance measures, the anal-
ysis has shown that the route choice is a main factor, since it
affects the spatial correlation between link performances and
O–D flows.

Indeed, when some routes are fixed, the performances
of the method are improved. Specifically, better results are
obtained when only some routes are fixed for some given
O–D pairs and the other routes can change over time, as in
the case in which DNL is applied. Worse results are obtained
when the other routes can change over both the time and the
space (as in the case in which DUE is applied).

The paper has dealt with the research line concerning
the way to improve the effectiveness of the estimation
method introducing information on route choices observed
from Floating Car Data (FCD) collected in the field; this
research line, still ongoing, seems to be a promising approach.
Achieving direct information on drivers’ route choices and
the related experienced route travel times opens promising
perspectives also for a joint calibration of the O–D demand
and the traffic assignment model and is expected to provide
new insights into the real existence of dynamic equilibria
[44]. This is confirmed by experiments carried out adding
O-D travel times measurements in the estimation procedure
that demonstrated the importance and the need to provide
information on paths and not only on links, in order to
properly estimate the temporal demand; besides, results
indicate that this type of information enables the procedure
to simulate the correct traffic conditions on the network and
the real user route choices; this is verified mainly when the
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DUE criterion is applied, since route travel times directly
affect link performances; this is not the case of DNL where
the reproduction of the correct route choices is not assured.
The approximation of DTA with QDTA, although capable
of reproducing the common traffic measures adopted in the
O-D estimation problem (mainly flows and speeds), does
not seem currently able to exploit additional information
on paths. In fact, QDTA assumes pretrip information and
performs a probabilistic network loading according to the
travel times computed in the previous time interval, so that
the relationship between O–D flows and route travel times
is less straightforward than in DUE model. The relevance
of this research line is confirmed by recent research efforts
that evaluate the effectiveness of information at network level,
such as travel times and route choice probabilities derived
from FCD, in the dynamic demand estimation process for
real network cases [30].

A second research line, which will require further study
with respect to the results here obtained, concerns the
suitable degree of approximation for the dynamic O–D
estimation problem. While the availability of many sources
of information makes it possible to better appreciate the
contribution of sophisticated models, it also enlarges the
problem of dimensions and requires longer computation
times. On the other hand, approximate traffic assignment
models, such as quasi-dynamic assignment models, reduce
both the calibration efforts and the computation time and
might result in more advantageous for applications to time-
dependent O–D estimation problems, where approximate
algorithms are introduced to solve the problem on real-size
networks. A question worth of investigation is the degree of
approximation that can be introduced in the different steps
of the estimation method, that is, the SPSA algorithm, which
provides some numerical approximation of the gradient
method; QDTA model, which approximates the dynamic
model by steady-state intervals and applies approximate
performance functions; a priori hypotheses on the time-space
structure of the demand, assuming some correlations as fixed,
as done by Cascetta et al. [27].

Finally, a third research line, which refers to the con-
tents analyzed in this paper, concerns the structure of the
objective function and specifically the investigation of the
performances of SPSA AD-PI solution method when applied
to the vector formulation recently introduced by Lu et al. [12],
which showed to improve the efficiency of traditional SPSA
method significantly.
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