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Abstract
Let S be the first degeneracy locus of a morphism of vector bundles corresponding to a 
general matrix of linear forms in ℙs . We prove that, under certain positivity conditions, its 
Hilbert square Hilb2(S) is isomorphic to the zero locus of a global section of an irreducible 
homogeneous vector bundle on a product of Grassmannians. Our construction involves a 
naturally associated Fano variety, and an explicit description of the isomorphism.
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1 Introduction

The Hilbert scheme of 2 points Hilb2(S) on a smooth variety S, called the Hilbert square 
of S, is an interesting smooth variety, whose geometry is incredibly rich, and yet not fully 
understood. An intriguing problem consists in finding a projective embedding of Hilb2(S) , 
for example by either writing down equations or realising it as the zero locus of a section 
of some vector bundle. An archetypical example is when Sg is a K3 surface of genus g, in 
which case Hilb2(Sg) is a hyperkähler fourfold, and a projective embedding is known in a 
bunch of cases, including g = 3, 5, 7, 8, 12—the last one only up to deformations, see [1, 3, 
10, 11, 16]. A few other cases are known, including the recent case of ℙ2 , see [15].

In this paper, we focus on the special case where S ⊂ ℙ
s arises as the first degeneracy 

locus of a general morphism of vector bundles
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The case s = 3, n = 3,m = 0 coincides with the quartic determinantal K3 surface studied 
by Iliev and Manivel in [16]. Letting s, n, m vary, we find many examples of interesting 
varieties, including surfaces of general type.

Our idea is to study Hilb2(S) via an auxiliary hypersurface Y ⊂ ℙ
s × ℙ

n+m−1 × ℙ
n−1 nat-

urally associated to S, and defined explicitly in Eq.  2.2. The variety Y is always a Fano 
variety, whose study was one of the initial motivations for our project. Via a modular-type 
construction we then pass from Y to Z, defined as

where � is a tri-tensor naturally attached to � . As explained in Sect. 2.1, Z is the zero locus 
of a section of an irreducible, globally generated, homogeneous vector bundle naturally 
associated to Y.

Our main result proves that, in a certain infinite range, the variety Z and the Hil-
bert square Hilb2(S) of the variety we started with are isomorphic. Namely, we have the 
following.

Theorem A (Theorem  6.2) Let n ≥ 3 , m ≥ 0 , s ∈ {m + 2,… , 2m + 3} . Assume 
n > 2s − 2m − 3 . Then, there is an isomorphism of schemes � ∶ Z→̃Hilb2(S).

Our proof goes via the explicit construction of the morphism � . In principle, it says 
nothing on the cases n ≤ 2s − 2m − 3 . However, we show that for low values of m these 
two varieties are not even deformation equivalent—indeed, their topological Euler char-
acteristics are different. This observation leads us to conjecture that, in fact, our bound is 
optimal, see Conjecture 7.6.

In Sects.  2–3 we explain the geometric setup and the main motivating ideas behind 
this paper; we also explicitly describe various examples in which our result applies. Sec-
tions 4–5 are the technical core of this paper: first we describe in full detail the geometry 
of Z (cf. Theorem 4.7) independently upon the choice of s, n, m, then we explain how the 
cases in which our main result does not work are related to the presence of some special 
lines contained in S (cf. Theorem 5.2 and Theorem 5.3). Our main result, Theorem A, is 
proved in Sect. 6 (cf. Theorem 6.2), whereas Sect. 7 is devoted to the study of the geom-
etry of some interesting varieties arising as the limit cases for which our method fails, but 
enjoying a beautiful and rich geometry. Among these examples we include generalised 
Bordiga scrolls (cf.  Example 7.3), higher dimensional White varieties (cf. Example 7.4), 
and also certain varieties containing a finite number of special lines (cf. Example 7.5 and 
Conjecture 7.6).

1.1  Notation

We work over the field of complex numbers ℂ . For an arbitrary positive integer d we let Vd 
be a d-dimensional ℂ-vector space, which we also identify with the d-dimensional affine 
space �d.

We denote by Gr(k, n) the Grassmannian of k-dimensional subspaces in Vn . We denote 
with U the rank k tautological vector bundle over it, with anti-ample determinant. We write 
X = (G,F) to denote the zero locus X = V(𝜎) ⊂ G , for a general section � ∈ H0(G,F) of a 

𝜑 ∶ O
⊕n+m
ℙs → O

ℙs (1)⊕n.

Z = V(�) ↪ Gr(2, n) × Gr(2, s + 1) × Gr(n + m − 2, n + m),
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vector bundle F  on a variety G. Sometimes we will need to work with a specific � , and we 
will specify it accordingly.

2  Setup, motivation and some toy cases

2.1  Degeneracy loci, Fano varieties, and Hilbert schemes

We start by considering a very simple construction from linear algebra. We consider a gen-
eral n × (n + m) matrix of homogeneous linear forms

on an ambient projective space ℙs = ℙ(Vs+1) . If we ask M to have non-maximal rank, we 
have to consider the locus where all the 

(
n+m

n

)
 maximal minors vanish. This is of course 

equivalent to the existence of some linear relations between the rows of M. We can there-
fore consider two strictly related loci: the first one is Sn,s,m ⊂ ℙ

s,
given by the vanishing of the maximal minors of M—i.e.  the first degener-

acy locus Dn−1(�)—where we implicitly identify the matrix with the morphism 
𝜑 ∶ O

⊕n+m
ℙs → O

ℙs (1)⊕n defining it. Sometimes we will shorten Sn,s,m with S, when the sub-
scripts are clear from the context. In other words,

where Mv ∈ ���n,n+m(ℂ) is the evaluation of M at v ∈ Vs+1.
The second relevant locus is a subvariety Xn,s,m ⊂ ℙ

s × ℙ
n+m−1 , given by n bihomogene-

ous linear polynomials of bi-degree (1, 1), i.e. by a section of O(1, 1)⊕n.
What is the relation between S and X? First of all, assume S to be smooth with 

dim(S) > 0 . Under our generality assumption, this will be equivalent to requiring 
m + 2 ≤ s ≤ 2m + 3 , where the second inequality ensures that the further degeneracy loci 
will be empty.

Now, Xn,s,m is constructed in a tautological way as follows: if y1,… , yn+m are chosen 
coordinates on ℙn+m−1 , and Fi = (f i

1
,… , f i

n+m
) is the i-th row of our matrix M, we will have

Using our notation,

The fibres of the projection � ∶ Xn,s,m ↪ ℙ
s × ℙ

n+m−1
→ ℙ

s are generically cut out by n 
linear equations, or n − 1 exactly where there is a linear dependence relation in M (and 
that is all that can happen, since by hypothesis there are no further degenerations): in other 
words, we have proved the following lemma.

Lemma 2.1 In the setup above, � ∶ Xn,s,m → ℙ
s is generically a ℙm−1-bundle jumping to a 

ℙ
m-bundle exactly over Sn,s,m.

M =

⎛
⎜⎜⎜⎝

f 1
1

… f 1
n+m

f 2
1

… f 2
n+m

⋮ ⋱ ⋮

f n
1

… f n
n+m

⎞⎟⎟⎟⎠

Sn,s,m =
{
[v] ∈ ℙ

s |rank(Mv) ≤ n − 1
}
,

Xn,s,m = V(F1 ⋅ y,… ,Fn ⋅ y) ⊂ ℙs × ℙn+m−1.

(2.1)Xn,s,m =
(
ℙ
s × ℙ

n+m−1,O(1, 1)⊕n
)
.
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We call X = Xn,s,m a generalised (m − 1,m) blow up of S = Sn,s,m . This construction is 
sometimes referred to as Cayley trick. This is in fact a generalisation of the blow up formula, 
and it implies that the vanishing cohomologies of X and S are isomorphic, and also that Db(X) , 
the bounded derived category of coherent sheaves over X, contains a copy of Db(S) . Refer-
ences for this fact can be found in [18, Theorem 2.4] and [4, Proposition 46].

We could have built yet another natural variety starting from the matrix M (or bet-
ter, its transpose). If we take the transpose Mt of the matrix M, and we apply it to a vector 
z = (z1,… , zn)

t we can consider the locus Γn,s,m ⊂ ℙ
s × ℙ

n−1 , given by Mt ⋅ z = 0 . In other 
words, if we write Ft

i
= (f 1

i
,… , f n

i
) , we have then

and again, in our notation,

Consider, this time, the restricted projection Γn,s,m ↪ ℙ
s × ℙ

n−1
→ ℙ

s . This time the fibre 
is generically empty, and it becomes a point exactly where the rank drops, i.e.  on S. In 
other words, one has the following lemma.

Lemma 2.2 The projection ℙs × ℙ
n−1

→ ℙ
s restricts to an isomorphism Γn,s,m →̃ Sn,s,m.

This implies that the Picard group of Sn,s,m is ℤ2 (at least generically), and the line bundles 
O(1, 1) and O(1, 0) (restricted from ℙs × ℙ

n−1 ) are both very ample. In what follows, we will 
study as well the morphism induced by O(0, 1) , showing that it will be very ample in a certain 
range (namely n > 2s − 2m − 3 ) as well.

Consider now two triples (n1, s1,m1) and (n2, s2,m2) : if we set 
n2 = s1 + 1, s2 = n1 − 1,m2 = n1 + m1 − s1 − 1 , then Γn1,s1,m1

 and Γn2,s2,m2
 are both (n1 + m1)

-codimensional linear sections of ℙs1 × ℙ
n1−1 , with the role of the two projective spaces 

exchanged, hence they belong to the same deformation family. When the triples satisfy such a 
relation, we call them associated.

If we are in the correct range for the first triple, i.e.  m1 + 2 ≤ s1 ≤ 2m1 + 3 , n1 ≥ 3 
and n1 > 2s1 − 2m1 − 3 , then the second triple will be in the correct range as well (in fact 
n2 > 2s2 − 2m2 − 3 reduces exactly to s1 ≤ 2m1 + 3).

In this range both projections to ℙs1 and ℙn1−1 are embeddings when restricted to Γ (this fol-
lows from Theorem 5.2): in other words,

yields another presentation for Sn1,s1,m1
 , with a different embedding. We will see these phe-

nomena in detail when dealing with two presentations of determinantal quartic K3 surfaces 
(abstractly but not projectively isomorphic), and of a quintic determinantal surface embed-
ded as a codimension 2 degeneracy locus, see Sect. 2.3.

Let us now get back to X = Xn,s,m , and perform once again a Cayley trick. In fact, we can 
associate to Xn,s,m another variety

defined tautologically starting from the equations of X. This will be simply given by

Γn,s,m = V(Ft
1
⋅ z,… ,Ft

n+m
⋅ z) ⊂ ℙ

s × ℙ
n−1

Γn,s,m = (ℙs × ℙ
n−1,O(1, 1)⊕n+m).

Sn2,s2,m2
≅ Ss1+1,n1−1,n1+m1−s1−1

(2.2)Yn,s,m = (ℙs × ℙ
n+m−1 × ℙ

n−1,O(1, 1, 1)),
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Of course, the projection ℙn−1 × ℙ
s × ℙ

n+m−1
→ ℙ

s × ℙ
n+m−1 restricted to Y is generically 

a ℙn−2-bundle, with special fibres the whole ℙn−1 over X.
Notice that Y = Yn,s,m is a Fano variety, simply by adjunction: on the other hand this is 

not the case in general for X or S: as a matter of fact, we will work only under certain (at 
least) non-negativity assumption for the canonical bundle of S.

In a certain sense, the main character of the whole story is precisely the Fano variety Y: 
we can see it as the universal variety associated to a tri-tensor 𝜔 ∈ V∨

s+1
⊗ V∨

n+m
⊗ V∨

n
 sim-

ply given by � =
∑

1≤i≤n zi(Fi ⋅ y).
The geometry of a tri-tensor is an old and fascinating topic, with one of the first ref-

erences being [6]. See also, [26, 30] for a modern account. The degeneracy locus S, the 
rational variety X and all the other characters appearing in this picture can be seen to be 
induced by Y via the obvious projections.

Finally, we associate to Yn,s,m one last variety Zn,s,m , which is far from being a Fano vari-
ety. Denote by

then define the vanishing locus Zn,s,m = V(𝜔) ⊂ Gn,s,m . In our notation,

The reason for this apparently arbitrary choice is that by Borel–Bott–Weil

Notice that this holds true for any product Gr (k3, n) × Gr (k1, s + 1) × Gr (k2, n + m) . 
However, with this particular choice of ambient spaces, we have that the dimension of Z is 
equal to 2(s − m − 1) , i.e. dimZ = 2 ⋅ dim S.

This is not a coincidence: in fact the purpose of this paper is to show that as long as the 
triple (n, s, m) satisfies the constraints

one has an isomorphism of schemes

We stress that the condition n > 2s − 2m − 3 is not necessary. In fact our proof goes via 
the explicit construction of a morphism to the Hilbert scheme, which exists and happens to 
be an isomorphism in that range. This a priori says nothing on the other cases. However, 
we show that for e.g. m = 0, 1 our bound is optimal, see Examples 7.2 and 7.5 where we 
explicitly compute the Hodge numbers of Z and Hilb 2(S) in the range n ≤ 2s − 2m − 3 , 
confirming that they are different.

Yn,s,m = V

(
n∑
i=1

zi(Fi ⋅ y)

)
.

(2.3)Gn,s,m∶=Gr (2, n) × Gr (2, s + 1) × Gr (n + m − 2, n + m),

(2.4)Zn,s,m = (Gn,s,m U
∨ ⊠ U

∨ ⊠ U
∨).

H0(ℙn−1 × ℙ
s × ℙ

n+m−1,O(1, 1, 1)) ≅ H0
(
Gn,s,m , U∨ ⊠ U

∨ ⊠ U
∨
)
.

m + 2 ≤ s ≤ 2m + 3, n > 2s − 2m − 3,

Zn,s,m ≅ Hilb 2(Sn,s,m).
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2.2  A conjectural relation with the Hilbert scheme of the Fano variety Y

Before discussing some examples, we mention one more relation between Z and the Hilbert 
scheme, that we leave for future research to explore. More precisely, we conjecture that Z 
can be realised as a Hilbert scheme onY as well. In fact, if we call ℙ1,1,n−3∶=ℙ

1 × ℙ
1 × ℙ

n−3 
contained fibre-wise in ℙn,s,m∶=ℙ

n−1 × ℙ
s × ℙ

n+m−1 , we can consider the incidence variety

with Gn,s,m as in (2.3).
Notice that F can be described as the zero locus

where the first two bundles are the pullback of the ample line bundles from ℙn−1 and ℙs , and 
the last is the pullback of the rank 2 quotient bundle in Gr (n + m − 2, n + m) . This implies 
that the projection p from F to Y is a ℙn−2 × ℙ

s−1 × ℙ
n+m−2-bundle, while the projection q 

from F to Gn,s,m is a ℙn+m−3 ∪ ℙ
n+m−3 generically, degenerating to a ℙ1 × ℙ

1 × ℙ
n+m−3 over 

Z. Our Hodge theoretic intuition suggests that one should also have an isomorphism

with the induced isomorphism in cohomology realised by the classical Abel-Jacobi type 
p∗q∗-map. However, we have not been able to prove this for the time being, and we hope to 
return to it in the future.

2.3  Toy case I: determinantal

As a first special sub-case, it is worth mentioning the case m = 0 , in which case S is a 
determinantal hypersurface in ℙs . Also, we need s ≤ 3 , since from threefolds onwards S 
will in fact be singular.

With s = 3 , the last case excluded by Theorem A, n = 3 , is the one of a cubic surface, 
and we can immediately show that Z and Hilb 2(S) are not isomorphic: as a matter of fact, 
etop( Hilb

2(S)) = etop(Z) + 21 , where the discrepancy by 21 should be accounted for by the 
6 exceptional lines plus the other 15 which are strict transforms of lines passing through 
two of the six points. This will be also discussed right after Conjecture 7.6.

If we consider n = 4 , we have that X ≅ Γ ≅ S , and with three different representations. 
In this case the isomorphism was already known to be true from [16, Proposition 1]. In fact 
S is a determinantal quartic K3 surface, presented with three different models, hence Z is a 
hyperkähler fourfold. This construction is very classical, starting from [6], and the relations 
between the three models have been recently explored in [12, 24, 31].

Another interesting case which is covered by our theorem is the one of a determinantal 
quintic surface, which we will explore in detail in Sect. 3.2.

2.4  Toy case II: sub‑determinantal

Another relevant case is the sub-determinantal case, i.e.  for m = 1 . In this case we can 
borrow some results from [19, §2.2] and [5, Proposition 3.6] to readily compute the invari-
ants of S. We remark that our smoothness condition forces 3 ≤ s ≤ 5 . In fact, the k-th 

F = {(p,ℙ1,1,n−3) ⊂ ℙn,s,m × Gn,s,m| p ∈ ℙ1,1,n−3},

F = ( Fl (1, 2, n) × Fl (1, 2, s + 1) × Fl (n + m − 3, n + m − 2, n + m),O(1, 0)⊗O(1, 0)⊗Q2) ,

Z ≅ Hilb
ℙ1,1,n−3

(Y)
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degeneracy locus Dn−k(�) has expected codimension k(m + k) in the ambient space ℙs . 
Hence for m = 1 , k = 2 , it has expected codimension 6, i.e. Dn−2(�) = �.

Notice how in this case the map X → ℙ
s is particularly simple, indeed it agrees with the 

blow up map X = Bl Sℙ
s
→ ℙ

s.
The structure sheaf of S = Dn−1(�) admits a resolution by the so-called Eagon–North-

cott complex, which has this form every time that we have a morphism of globally gener-
ated vector bundles E,F  of rank (n + 1, n) : In this case, it takes the form:

In our case it will suffices to take E ≅ O
⊕n+1
ℙs  and F ≅ O

ℙs (1)⊕n.
One can use suitably twisted versions of this complex to compute some invariants 

of S, as shown in the next examples. Of course one could have worked directly on Γ as 
well, or on X, applying the blow up formula.

Proposition 2.3 Fix s = 3 and n > 1 . Let 𝜑 ∶ O
⊕n+1

ℙ3
→ O

ℙ3 (1)⊕n be a general morphism. 
Consider the smooth curve Sn∶=Sn,3,1 = Dn−1(𝜑) ⊂ ℙ

3 . Then

Proof Consider the Eagon–Northcott resolution of OSn
 from (2.5). Twisting back, we have

We have that

i.e.

In order to compute the degree, it suffices to check the Hilbert polynomial, which for a 
curve we know to be equal to pSn (t) = dt + 1 − g , where d is the degree. Since in general 
pSn (t) = at + b , we have of course �(OSn

) = pSn (0) = 1 − g and

where we used as before the sequence (2.5). It follows that

which simplifies to a =

(
n + 1

2

)
 . The result follows.   ◻

Proposition 2.4 Fix s ∈ {3, 4} and n > 1 . Let 𝜑 ∶ O
⊕n+1
ℙs → O

ℙs (1)⊕n be a general mor-
phism. Then the smooth subvariety Ss,n∶=Sn,s,1 = Dn−1(𝜑) ⊂ ℙ

s , of codimension 2, has top-
ological Euler characteristic

(2.5)0 → F
∨
→ E

∨
→ det(E∨)⊗ det(F) → (det(E∨)⊗ det(F))|Dn−1(𝜑)

→ 0.

g(Sn) = n

(
n

3

)
− (n + 1)

(
n − 1

3

)
, deg(S) =

(
n + 1

2

)
.

0 → O
ℙ3 (−n − 1)⊕n

→ O
ℙ3 (−n)⊕n+1

→ O
ℙ3 → OSn

→ 0.

𝜒(OSn
) = 𝜒(O

ℙ3 ) + 𝜒(O
ℙ3 (−n − 1)⊕n) − 𝜒(O

ℙ3 (−n)⊕n+1),

1 − g(Sn) = 1 − n

(
n

3

)
+ (n + 1)

(
n − 1

3

)
.

�(OSn
(1)) = pSn (1) = 4 − n

(
n − 1

3

)
+ (n + 1)

(
n − 2

3

)
,

a = 3 + n

((
n

3

)
−

(
n − 1

3

))
− (n + 1)

((
n − 1

3

)
−

(
n − 2

3

))
,
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Proof See Appendix 1.   ◻

Lemma 2.5 Fix s = 4 . Then the smooth surface Sn,4,1 ⊂ ℙ
4 has irregularity q = 0 , and geo-

metric genus

Proof The Euler characteristic of the structure sheaf �(OSn
) is computed as in Proposi-

tion 2.3, using the sequence (2.5) on ℙ4 . We have in particular that

Moreover, Sn is connected and q = 0 . The first statement can be proven as in the curve 
case. The second follows from the isomorphism Γ ≅ Sn . On the other hand, we know that 
Γ = (ℙ4 × ℙ

n−1,O(1, 1)⊕n+1) . Hence, by Lefschetz hyperplane section theorem, the only 
weight where the cohomology of Γ has non-zero level is the middle one; therefore, q = 0 .  
 ◻

Remark 2.6 From the above lemma one immediately deduces that pg = q = 0 as long as 
n < 4 . Moreover the same argument tells us that for a threefold which is a degeneracy 
locus in ℙ5 , h1(OSn

) = h2(OSn
) = 0 and h1,1(Sn) = 2.

A nice observation is that the sub-determinantal case n = 4, s = 4,m = 1 and the deter-
minantal case n = 5, s = 3,m = 0 both give rise to a determinantal quintic, since Γ in both 
cases is given by

albeit the role of ℙ3 and ℙ4 is exchanged.

3  Some examples

In this section, we collect some examples that do fall within the ‘good range’ prescribed by 
Theorem A, and that therefore realise the desired isomorphism Hilb 2(S) ≅ Z . For the sake 
of completeness, we write down the Hodge numbers of the varieties involved, which can be 
computed using the methods detailed in [9, §3.2].

etop(Ss,n) =

⎧⎪⎨⎪⎩

4n2 − 2n3 + (3n − 4)

�
n

2

�
−

�
n

3

�
if s = 3

n2(10 − 10n + 3n2) +

�
n

2

�
(−10 + 15n − 6n2) +

�
n

3

�
(4n − 5) −

�
n

4

�
if s = 4

pg(Sn,4,1) = n

(
n

4

)
− (n + 1)

(
n − 1

4

)
.

�(OSn
) = 1 + n

(
n

4

)
− (n + 1)

(
n − 1

4

)
.

Γ = (ℙ3 × ℙ
4,O(1, 1)⊕5),
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3.1  The cases n = 3, s = 3,m = 1 and n = 4, s = 2,m = 0

We discuss first an example which is quite classical. Let us consider S ⊂ ℙ
3 , where S is a 

degree 6, genus 3 space curve given by the intersection of four cubics (i.e.  the maximal 
minors of a 4 × 3 matrix of linear forms).

In the notation of the previous section, according to (2.1) in the case (n, s,m) = (3, 3, 1) 
we have X ⊂ ℙ

3 × ℙ
3 , given as the complete intersection of three divisors of bi-degree 

(1, 1), i.e. X = (ℙ3 × ℙ
3,O(1, 1)⊕3) . This variety X is the Fano threefold 2–12 in the origi-

nal Mori–Mukai notation, see [2, 9, 21].
Following the discussion of the previous section, X is identified with the blow up Bl Sℙ3 , 

see also [8, 2-12]. One can immediately compute the Hodge numbers of X, these being

The rational map � ∶ ℙ
3
⤏ ℙ

3 induced by this construction is the cubo-cubic Cremona 
transformation of ℙ3 already known to Max Noether, see [22, 28] and it is the only non-
trivial Cremona transformation of ℙ3 that is resolved by just one blow up along a smooth 
curve, see [17].

The second variety in the picture is Y = (ℙ3 × ℙ
3 × ℙ

2,O(1, 1, 1)) . This is a Fano sev-
enfold, with anti-canonical class equal to −KY ≅ OY (3, 3, 2) . We can apply the Cayley trick 
from Y to X to determine the Hodge numbers of Y, which can be also computed using the 
standard Koszul resolution. These are:

Finally, we consider the variety Z = (Gr (2, 4) × Gr (2, 4) × Gr (2, 3),U∨ ⊠ U
∨ ⊠ U

∨) . By 
our theorem, Z ≅ Hilb 2(S) ≅ Sym 2(S) . We can check that KZ ≅ OZ(0, 0, 1) and that its 
Hodge numbers are the expected ones, namely

Finally, notice that, using the notation of the previous section, the associated triple to 
(3, 3, 1) is (4, 2, 0). In this case S4,2,0 ⊂ ℙ

2 is a plane quartic curve, and Z describes its 
symmetric square as well.

3.2  The case n = 5, s = 3,m = 0 and n = 4, s = 4,m = 1

As before, these two cases define the same surface, in two different presentations. In fact, 
the first triple of invariants immediately identifies S5,3,0 ⊂ ℙ

3 as a quintic determinantal 

0 3 3 0

0 2 0

0 0

1

0 0 0 3 3 0 0 0

0 0 0 9 0 0 0

0 0 0 0 0 0

0 0 6 0 0

0 0 0 0

0 3 0

0 0

1

3 10 3

3 3

1
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surface, which has Picard rank 2 in general. On the other hand S4,4,1 ⊂ ℙ
4 is a codimension 

2 surface defined by 5 quartic equations. However, thanks to Lemma 2.2 they are both iso-
morphic to the same Γ , which is

The Hodge numbers of S (of course regardless of the presentation) are as follows:

We can consider the associated Z = (Gr (2, 5) × Gr (3, 5) × Gr (2, 4),U∨ ⊠ U
∨ ⊠ U

∨) , 
which is of course the same in both cases. The Hodge numbers of Z ≅ Hilb 2(S) (see also 
Appendix 2) are:

3.3  The case n = 6, s = 5,m = 1

If for m ∈ {0, 1} in the surface case our condition n > 2s − 2m − 3 corresponded essentially 
to a non-negative Kodaira dimension, for (m, s) = (1, 5) , the limit case which is not covered 
by Theorem A, is a threefold of general type: we are going to show in Example 7.5 that Z and 
Hilb 2(S) are not isomorphic. In fact, the first case with m = 1, s = 5 which is covered by our 
Theorem is for n = 6 . In this case, the associated triple to (6, 5, 1) is again (6, 5, 1).

Our threefold S6,5,1 ⊂ ℙ
5 is defined by 7 minors (of degree 6): it is isomorphic to 

Γ = (ℙ5 × ℙ
5,O(1, 1)⊕7).

We can compute the Hodge numbers of S5,6,1 , these being:

The Hodge numbers of Hilb 2(S) ≅ Z ⊂ Gr (2, 6) × Gr (2, 6) × Gr (5, 7) are

Notice that the Euler characteristic etop(Z) = 593502 coincides with etop( Hilb
2(S)) , which 

is computed in Appendix 2.2.

Γ = (ℙ3 × ℙ
4,O(1, 1)⊕5).

4 45 4

0 0

1

10 184 1097 184 10

0 0 0 0

4 46 4

0 0

1

29 520 520 29

0 2 0

0 0

1

406 15080 150020 271250 150020 15080 406

0 87 1560 1560 87 0

0 0 8 0 0

29 520 520 29

0 3 0

0 0

1
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3.4  The cases n = 4, s = 5,m = 2 and n = 6, s = 3,m = 0

These two associated cases describe two different presentations for S, as a smooth 
determinantal sextic and as a codimension 3 surface in ℙ5 . Here Γ can be described as 
Γ = (ℙ5 × ℙ

3,O(1, 1)⊕6) . The Hodge numbers for S are:

We can compute the Hodge numbers of Hilb 2(S) ≅ Z ⊂ Gr (2, 6) × Gr (2, 4) × Gr (4, 6) , 
which are:

4  Key construction and preparation lemmas

In this more technical section we explain the key constructions that will allow us to prove 
Theorem 6.2. For the reader convenience we begin by briefly recalling the notations needed. 
As above, we fix integers n ≥ 3 , m ≥ 0 , and s ∈ {m + 2 ,… , 2m + 3} ; we shall consider a 
general map of vector bundles

along with the associated (m + 1)-codimensional, smooth degeneracy locus

Indeed, by the genericity of � , each degeneracy locus 
Dk(𝜑) = {p ∈ ℙ

s| rank (𝜑(p)) ≤ k} ⊂ ℙ
s has codimension in ℙs equal to the expected one, 

namely (n − k)(n + m − k) . In the range s ∈ {m + 2,… , 2m + 3} , we have dimDn−1(𝜑) > 0 , 
and the singularities are exactly in Dn−2(�) = � , whence the smoothness.

As already outlined in the previous sections, � can be understood from an algebraic point 
of view as a matrix

of linear forms f i
j
 depending on s + 1 variables. We shall switch from � to M freely in what 

follows.
Working in the affine setup, one is led to consider the locus

10 86 10

0 0

1

55 870 3928 870 55

0 0 0 0

10 87 10

0 0

1

(4.1)𝜑 ∶ O
⊕n+m
ℙs → O

ℙs (1)⊕n

S = Sn,s,m = Dn−1(�) ↪ ℙ
s.

M =

⎛
⎜⎜⎜⎝

f 1
1

… f 1
n+m

f 2
1

… f 2
n+m

⋮ ⋱ ⋮

f n
1

… f n
n+m

⎞
⎟⎟⎟⎠
∈ ���n,n+m

�
H0(ℙs,O

ℙs (1))
�

�S =
{
v ∈ Vs+1 | rank (Mv) = n − 1

}
⊂ Vs+1,
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where Mv ∈ ���n,n+m(ℂ) denotes the matrix M evaluated at the point v ∈ Vs+1 . By the lin-
earity of f i

j
 , the subvariety �S ⊂ Vs+1 descends to a subvariety S ↪ ℙ

s = ℙ(Vs+1) , in such a 
way that Ŝ ∪ {0} is the affine cone over S ↪ ℙ

s . We shall use the notation [v] to denote a 
point in projective space, to emphasise that we take the projective point of view.

4.1  Constructing points in the triple Grassmannian

Consider the set-theoretic map

where [�v] is determined by the 1-dimensional ℂ-vector space

Of course, if M is the n × (n + m) matrix of linear forms corresponding to the morphism � , 
then �v ∈ Vn is defined (up to scalar multiplication) by Mt

v
⋅ �v = 0.

Lemma 4.1 The association [v] ↦ [�v] defines an algebraic morphism � ∶ S → ℙ
n−1.

Proof As already mentioned, since � is general, one has Dn−2(�) = � , and thus �[v] has 
rank precisely n − 1 for every [v] ∈ S . Therefore the sheaf L = coker(�)|S is a locally free 
sheaf of rank 1, and moreover it is globally generated by n sections �1,… , �n , arising from 
the linear dependence relations

where Fi
[v]

 denotes the i-th row of the matrix associated to �[v] = Mv . The data 
(L, �1,… , �n) defines the sought after algebraic morphism � ∶ S → ℙ

n−1 .   ◻

Our key construction starts now. Let [v], [w] ∈ S be distinct points and consider the 
space

The following lemma aims to explain the geometric role of �v,w just defined.

Lemma 4.2 Let [v], [w] be two distinct points in S. Then: 

(1) dim�v,w = 0 if and only if the line �v,w joining [v], [w] is entirely contained in S, and 
�(�v,w) reduces to a point in ℙn−1.

(2) dim�v,w = 1 if and only if the line �v,w joining [v], [w] is entirely contained in S, and 
�(�v,w) is a line in ℙn−1.

(3) dim�v,w = 2 if and and only if 𝜓(�v,w) ⊂ ℙ
n−1 intersects the line between [�v] and [�w] 

in precisely two points.

Proof We proceed case by case. 

� ∶ S → ℙ
n−1, [v] ↦ [�v],

ker

(
O

ℙs (−1)||⊕n

[v]

𝜑t
[v]

�������������→ O
ℙs
||⊕n+m

[v]

)
⊂ O

ℙs (−1)||⊕n

[v]
= Vn = ℂ

n.

�1
[v]
F1
[v]

+⋯ + �n
[v]
Fn
[v]

= 0, [v] ∈ S,

(4.2)𝜋v,w = ⟨Mt
v
⋅ 𝛼w,M

t
w
⋅ 𝛼v⟩ ⊂ Vn+m.
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(1) ⟨�v⟩ = ⟨�w⟩ if and only if Mt
v
⋅ �w = Mt

w
⋅ �v = 0 ; therefore dim�v,w = 0 if and only if 

dim⟨�v, �w⟩ = 1 and the statement follows by 

 for every �,� ∈ ℂ.
(2) If dim�v,w = 1 then there exist �1, �2 ∈ ℂ such that �1Mt

w
⋅ �v + �2M

t
v
⋅ �w = 0 . 

Therefore  Mt
�v+�w

(��1�v + ��2�w) = ��
(
�2M

t
v
⋅ �w + �1M

t
w
⋅ �v

)
= 0  ,  so  that 

[�v + �w] ∈ S for every �,� ∈ ℂ and the kernels of the transpose matrices are 
aligned in ℙn−1 . For the converse, first notice that dim�v,w ≠ 0 . Moreover, if there 
exists another point [u] ∈ �v,w ∩ S with �u = �1�v + �2�w , and u = �v + �w . Then 
��2M

t
v
⋅ �w + ��1M

t
w
⋅ �v = 0 , so that dim�v,w = 1.

(3) By contradiction, suppose there exists a third point [u] ∈ �v,w ∩ S with �u = �1�v + �2�w , 
and u = �v + �w . Then ��2Mt

v
⋅ �w + ��1M

t
w
⋅ �v = Mt

u
⋅ �u = 0 , so that dim�v,w ≤ 1 . 

Viceversa, if dim�v,w ≤ 1 then �v,w ⊂ S by the above items so that �(�v,w) intersects 
the line between [�v], [�w] either in one point or in infinite points.

  ◻

Definition 4.3 We shall use the shorthand notation

and we shall denote with the same letter U the tautological (sub)bundle on each Grass-
mannian. There is a natural section 𝜔 ∈ H0(Gn,s,m,U

∨ ⊠ U
∨ ⊠ U

∨) associated to M, defined 
by

We denote by Z = V(𝜔) ⊂ Gn,s,m its zero scheme.

We note that there is an identity

where, if P = (�1, �2, �3) , then �|P ≡ 0 means that �(a, u, b) = 0 for every a ∈ �1 , u ∈ �2 , 
b ∈ �3.

Definition 4.4 To any pair of distinct points [v], [w] ∈ S such that dim�v,w = 2 we can 
associate the point

where �v,w is as defined in Equation 4.2.

Remark 4.5 By Lemma 4.2, there is an immersion

where H = {[v] + [w] ∈ Sym 2(S) | [v] ≠ [w] and dim𝜋v,w = 2} ⊂ Sym 2(S).

Lemma 4.6 Let P[v],[w] be as in Definition 4.4, then P[v],[w] ∈ Z.

Mt
�v+�w

⋅ �v = Mt
�v
⋅ �v +Mt

�w
⋅ �v = 0

Gn,s,m = Gr (2, n) × Gr (2, s + 1) × Gr (n + m − 2, n + m),

𝜔 ∶ Vn ⊗ Vs+1 ⊗ Vn+m ⟶ ℂ, (a, u, b) ↦ at ⋅Mu ⋅ b.

Z =
{
P ∈ Gn,s,m ∶ �||P ≡ 0

}

P[v],[w] =
�
⟨�v , �w⟩ , ⟨v,w⟩ , �⟂

v,w

�
∈ Gn,s,m,

H → Gn,s,m, [v] + [w] ↦ P[v],[w],
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Proof We need to prove that �|P[v],[w]
≡ 0 . Let a = h1�v + h2�w and u = �v + �w . Then

  ◻

4.2  Main technical result

In the following, given � ∈ Gr (2, k) we shall denote by [𝜌] ⊂ ℙ
k−1 the projective line 

defined by � . Also, given two distinct points [v] and [w] in ℙs , we shall denote by 
�v,w ⊂ ℙ

s the line connecting them.
The following is the main technical result of the paper.

Theorem 4.7 Let P = (�1 , �2 , �3) ∈ Z . Then one of the following holds: 

a.  there exist two (and only two) distinct points [v], [w] ∈ S ∩ [�2] such that P = P[v],[w],
b.  [𝜌2] ⊂ S and �([�2]) reduces to a point in [𝜌1] ⊂ ℙ

n−1,
c.  there exists exactly one point [v] ∈ S where [�2] is tangent and such that [�v] ∈ [�1].
d.  [𝜌2] ⊂ S and [𝜌1] = 𝜓(�v,w) ⊂ ℙ

n−1.

Proof Consider the linear subspace

Now, since (�1, �2, �3) ∈ Z , we have W(𝜌1,𝜌2)
⊂ 𝜌⟂

3
 so that dimW(�1,�2)

≤ 2 . Let us proceed 
case by case.

• Suppose dimW(�1,�2)
= 0 first. This means that Mt

u
⋅ a = 0 for every u ∈ �2 and 

for every a ∈ �1 . This is impossible since it would imply dim ker(Mt
u
) ≥ 2 , 

i.e. rank (Mu) < n − 1 . But this is in contradiction with the generality assumption on 
M.

• Next, let us suppose dimW(�1,�2)
= 1 . This means that we can find a basis {Mt

u1
⋅ a1} for 

W(�1,�2)
 . We can complete to bases {a1, a2} ⊂ 𝜌1 and {u1, u2} ⊂ 𝜌2 , in such a way that 

 In fact, if {a1, a�2} is any basis for �1 , then Mt
u1
⋅ (ha1 + a�

2
) = 0 for some h ∈ ℂ . Hence 

it is sufficient to choose a2 = ha1 + a�
2
 . A similar argument provides the required choice 

of u2 ∈ �2 . In particular, [u1], [u2] ∈ S and by assumption Mt
u1
⋅ a1 +Mt

u2
⋅ a2 = 0 (up to 

a possible rescale of a2 ). Therefore 

 so that [𝜌2] ⊂ S and [𝜌1] = 𝜓(�v,w) ⊂ ℙ
n−1 . This is the case d in the statement.

�(a, u, b) = (h1�
t
v
+ h2�

t
w
) ⋅M�v+�w ⋅ b

= h1� (�t
v
⋅Mw) ⋅ b + h2� (�

t
w
⋅Mv) ⋅ b

= 0.

W(𝜌1,𝜌2)
=
{
Mt

u
⋅ a | a ∈ 𝜌1, u ∈ 𝜌2

}
⊂ Vn+m.

Mt
u1
⋅ a2 = Mt

u2
⋅ a1 = 0 .

Mt
�u1+�u2

⋅ (�a1 + �a2) = ��(Mt
u1
⋅ a1 +Mt

u2
⋅ a2) = 0 ,
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• Finally, let us suppose dimW(�1,�2)
= 2 , which means W(�1,�2)

= �⟂
3
 . Choose bases 

{a1, a2} ⊂ 𝜌1 and {u1, u2} ⊂ 𝜌2 , define 

 Now, if dim⟨�1,1 , �2,1⟩ = 1 then there exist �1, �2 ∈ ℂ such that �1�1,1 + �2�2,1 = 0 . It 
follows that Mt

�1u1+�2u2
⋅ a1 = 0 so that [�1u1 + �2u2] ∈ S . Now if �1 ≠ 0 we define 

u�
1
= �1u1 + �2u2 and we replace the basis {u1, u2} with {u�

1
, u2} . Since dimW(�1,�2)

= 2 
there exist �1, �2, �3 ∈ ℂ such that 

 Therefore, if �3 ≠ 0 we have two distinct points in S ( u′
1
 and �2u�1 + �3u2 ) so that the 

statement follows by Lemma 4.2 (being one of the cases a , b , d ). On the other hand, if 
�3 = 0 we may assume 

 which gives item c of the statement. One can argue in a similar way for the case 
dim⟨�1,2 , �2,2⟩ = 1 simply reordering the basis {a1, a2} . We are only left with the case 

 Hence there exists a matrix Φ ∈ ���2,2(ℂ) realising a coordinate change 

 where we adopted the notation 
(
�1,j �2,j

)
 to denote the (n + m) × 2 matrix whose col-

umns are �1,j and �2,j . Our aim is now to study vectors v ∈ �2 corresponding to points 
[v] ∈ S with the additional property that [�v] ∈ [�1] . Such a point is given by the choice 
of a nonzero vector 

 together with scalars �1, �2 ∈ ℂ , not both vanishing, such that 

 In particular, it is not restrictive to assume �2 ≠ 0 since dim⟨�1,1 , �2,1⟩ = 2 . Rename 
� = �1�

−1
2

∈ ℂ and consider the following equalities: 

�i,j = Mt
ui
⋅ aj, i, j ∈ {1, 2} .

�1M
t
u2
⋅ a1 + �2M

t

u�
1

⋅ u2 + �3M
t
u2
⋅ a2 = 0 so that Mt

�2u
�
1
+�3u2

⋅ (�1a1 + �3a2) = 0 .

�1,1 = 0, �1,2 = �2,1, W(�1,�2)
= ⟨�1,2 , �2,2⟩ ,

W(�1,�2)
= ⟨�1,1, �2,1⟩ = ⟨�1,2, �2,2⟩ .

(
�1,2 �2,2

)
= −

(
�1,1 �2,1

)
⋅Φ,

(
�
�

)
∈ ℂ

2

Mt
�u1+�u2

⋅ (�1a1 + �2a2) = 0.
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 Now, since dim⟨�1,1, �2,1⟩ = 2 the last line vanishes if and only if � is an eigenvalue of 
Φ and 

(
� �

)t is an eigenvector relative to � . Since ℂ is algebraically closed, we con-
clude that the line [𝜌2] ⊂ ℙ

s always intersects S in (at least) one point [v] = [�u1 + �u2] 
satisfying [�v] ∈ [�1] . More precisely we have the following three possibilities.

a.  The matrix Φ admits two different eigenvalues � and � . In this case we have two (inde-
pendent) eigenvectors 

 and the above discussion provides two distinct points 

 Notice that by Lemma 4.2 either we are in case d of the statement or the points 
[v], [w] ∈ S ∩ [�2] are the only ones satisfying the additional property [�v], [�w] ∈ [�1] . 
Clearly, in this last case �1 = ⟨�v, �w⟩ , �2 = ⟨v,w⟩ , and W(�1,�2)

= ⟨Mt
v
�w,M

t
w
�v⟩ = �v,w ; 

therefore (�1, �2, �3) = P[v],[w] . This is item a in the statement.

b.  The matrix Φ admits one eigenvalue � whose eigenspace is 2-dimensional. In this case 
every non-trivial 

(
� �

)t
∈ ℂ

2 is an eigenvector so that the line defined by [�2] in ℙs 
is entirely contained in S. On the other hand the matrix Mt

v
 admits the same kernel 

�a1 + a2 ∈ �1 for every v ∈ �2 . This is item b in the statement.
c.  The matrix Φ admits only one eigenvalue � whose eigenspace is 1-dimensional. In 

this case any eigenvector 
(
� �

)t corresponds to the same point [v] = [�u1 + �u2] ∈ S . 
Hence [v] is the only point in the intersection [�2] ∩ S such that [�v] ∈ [�1] . Moreover, 
in this case the algebraic multiplicity of � is 2; i.e. the multiplicity of the intersection 
[�2] ∩ S is 2 at [v]. This is item c in the statement.

 The proof is now complete.   ◻

5  Existence of special lines

As in the previous section, we fix integers n ≥ 3 , m ≥ 0 , s ∈ {m + 2,… , 2m + 3} and a 
general map of vector bundles � as in (4.1). Moreover, we shall use the following terminol-
ogy: a line � ⊂ S = Dn−1(𝜑) ⊂ ℙ

s is said to be of type b (resp. of type d ) if it arises from a 
point P ∈ Z satisfying condition b (resp. condition d ) in Theorem 4.7.

Mt
�u1+�u2

⋅ (�a1 + a2) = ��Mt
u1
⋅ a1 + ��Mt

u2
⋅ a1 + �Mt

u1
⋅ a2 + �Mt

u2
⋅ a2

= ���1,1 + ���2,1 + ��1,2 + ��2,2

=
(
�1,1 �2,1

)
⋅

(
��
��

)
+
(
�1,2 �2,2

)
⋅

(
�
�

)

=
(
�1,1 �2,1

)
⋅

(
��
��

)
−
(
�1,1 �2,1

)
⋅Φ ⋅

(
�
�

)

=
(
�1,1 �2,1

)
⋅ {� ⋅ id − Φ} ⋅

(
�
�

)
.

(
��
��

)
,

(
��
��

)

[v] = [��u1 + ��u2] ∈ S ∩ [�2],

[w] = [��u1 + ��u2] ∈ S ∩ [�2].
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5.1  Excluding lines of type b

The first aim of this section is to understand the fibres of the map � , and we will be par-
ticularly interested in the existence of points [�] ∈ ℙ

n−1 whose fibre �−1([�]) is a line in S.
Fix [�] ∈ ℙ

n−1 and observe that

is nothing but the solutions set of a linear system of n + m equations in s + 1 variables, 
namely an intersection of n + m hyperplanes in ℙs . Therefore the fibre (5.1) is always lin-
ear. Moreover, it can be described by means of a matrix A� ∈ ���n+m,s+1(ℂ) , and by the 
linearity with respect to � we get an immersion

Remark 5.1 Notice that an additional condition s ≤ n + m is essential in order to obtain 
0-dimensional fibres of � , and similarly s ≤ n + m + 1 is necessary in order to obtain 
1-dimensional fibres, as well as s ≤ n + m + 2 for 2-dimensional fibres.

Let us denote by Nk ⊂ ℙ the subvariety of matrices of rank at most k. We can easily 
compute the codimension of Nk in ℙ as

so that in particular assuming s ≤ n + m one finds

Theorem 5.2 Let � ∶ S → ℙ
n−1 and f ∶ ℙ

n−1
↪ ℙ be the maps defined by Lemma 4.1 and 

(5.2) respectively. Fix integers n ≥ 3 , m ≥ 0 , s ∈ {m + 2,… , 2m + 3} . 

(i)  Assume s = n + m . Then 

  (1)  � is surjective and its generic fibre is a point.
 (2)  f◦� admits 1-dimensional fibres precisely over Im(f ) ∩ Ns−1.
(ii)  Assume s < n + m . Then 

  (1)  � is a closed immersion if and only if n > 2s − 2m − 3 , 
in which case the image of the composition f◦� is 
Im(f ) ∩ Ns ⊂ ℙ,

(5.1)𝜓−1([𝛼]) =
{
[v] ∈ S |Mt

v
⋅ 𝛼 = 0

}
⊂ S

(5.2)f ∶ ℙ
n−1

↪ ℙ = ℙ
(
𝖬𝖺𝗍n+m,s+1(ℂ)

)
, [�] ↦ [A�].

codim (Nk) = (n + m − k)(s + 1 − k),

codim (Ns) = n + m − s ≥ 0

codim (Ns−1) = 2(n + m − s + 1) ≥ 2

codim (Ns−2) = 3(n + m − s + 2) ≥ 6.
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 (2)  f◦� admits 1-dimensional fibres if and only if 
n ≤ 2s − 2m − 3 , and such fibres arise precisely over 
Im(f ) ∩ Ns−1,

 (3)  f◦� admits 2-dimensional fibres if and only if 
n ≤

1

2
(3s − 3m − 7) , and such fibres arise precisely over 

Im(f ) ∩ Ns−2,

Proof Let us proceed by steps. 

 (i) First suppose that s = n + m . As already observed the fibre �−1([�]) is cut by n + m 
hyperplanes in ℙs , hence the generic fibre reduces to a point. Moreover, the fibre is 
1-dimensional at those [�] such that f ([𝛼]) ∈ Im(f ) ∩ Ns−1 ⊂ ℙ , which has dimension 
(n − 1) − 2 = n − 3 ≥ 0.

 (ii) Now assume s < n + m . Then the fibre �−1([�]) is a point (respectively a line) pre-
cisely at those [�] such that f ([𝛼]) ∈ Im(f ) ∩ Nk ⊂ ℙ with k = s < n + m (respec-
tively k = s − 1 < n + m ). Therefore the image of � describes a subvariety of ℙn−1 
of dimension 

 while the 1-dimensional fibres of � (if they exist) are mapped onto a locus of 
dimension 

 The condition n > 2s − 2m − 3 is the same as 
codim (Ns−1) = 2(n + m − s + 1) > n − 1 , which in turn is equivalent to require that 
Ns−1 is empty; here we are using the genericity of the original matrix M (hence 
of the form � ) from which it follows the genericity of the immersion of ℙn−1 in 
ℙ through f. Hence the fibres of the map consist of at most one point if and only 
if n > 2s − 2m − 3 , in which case � is a closed immersion, as wanted. Finally, 
the fibres of dimension at least 2 arise over Im(f ) ∩ Ns−2 , for which the expected 
dimension is 

 This number is non-negative if and only if n ≤
1

2
(3s − 3m − 7) , as required.

  ◻

5.2  Excluding lines of type d

The next aim of this section is to show that the lines described by item d of Theorem 4.7 
do not occur whenever n > 2s − 3m − 2 . Recall that these are the lines � ⊂ S such that the 
image �� = �(�) remains a line in ℙn−1.

Theorem 5.3 Let n ≥ 3 , m ≥ 0 and s ∈ {m + 2,… , 2m + 3}.

• If n > 2s − 3m − 1 then the composition

dim�(S) = (n − 1) − codim (Ns) = (n − 1) − (n + m − s) = s − m − 1 = dim(S) ,

(n − 1) − codim (Ns−1) = (n − 1) − 2(n + m − s + 1) = 2s − n − 2m − 3 .

(n − 1) − codim (Ns−2) = (n − 1) − 3(n + m − s + 2) = 3s − 2n − 3m − 7.
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 is injective, where � is the natural inclusion and pr12 is the natural projection.
• A line � ⊂ S ⊂ ℙ

s such that �� = �(�) remains a line in ℙn−1 exists if and only if the 
map �Z admits an (n + m − 2)-dimensional linear fibre.

Proof Let us proceed by steps.

• The fibre of �Z over (�1, �2) ∈ Gr (2, n) × Gr (2, s + 1) can be easily described as 

 where W(𝜌1,𝜌2)
= ⟨Mt

u
⋅ a � a ∈ 𝜌1, u ∈ 𝜌2⟩ ⊂ Vn+m . Notice that 

 where {a1, a2} and {u1, u2} are arbitrary bases for �1 and �2 respectively. In particular, 
dimW(�1,�2)

≤ 4 . Since �3 ∈ Gr (n + m − 2, n + m) , we deduce 

 Notice that dimW(�1,�2)
≠ 0 , otherwise we would have points u ∈ Vs+1 satisfy-

ing rankMu = n − 2 and this is excluded since Dn−2(�) = � . In particular, for 
dimW(�1,�2)

= 1 we have 

 On the other hand Z cannot contain an (n + m − 2)-dimensional subspace whenever 
dim(Z) = 2(s − m − 1) < n + m − 2 , i.e.  when n > 2s − 3m . Moreover, in the case 
n = 2s − 3m , the irreducibility of Z together with the non injectivity of the map �Z 
would imply Z ≅ ℙ

n+m−2 , which is impossible because otherwise the map �Z would 
be constant so that S would reduce to a line S = [𝜌2] ≅ ℙ

1 ⊂ ℙ
s . Of course this is false 

being n ≥ 3.
• We claim that the existence of a line � ⊂ S such that �� = �(�) remains a line in ℙn−1 

is equivalent to the existence of a (n + m − 2)-dimensional fibre of the map �Z . In 
fact, by Lemma 4.2 the existence of such a line � is equivalent to a point 

 with [�1] = �� and [�2] = � , that moreover satisfies dimW(�1,�2)
= 1 . As shown in the 

first item this is equivalent to the condition dim�−1
Z
(�1, �2) = n + m − 2.

  ◻

In Corollary 5.5 we will be able to give a better bound than the one in Theorem 5.3 in 
the cases m = 0 and m = 1.

𝜋−1
Z
(𝜌1, 𝜌2) =

{
(𝜌1, 𝜌2, 𝜌3) ∈ Gn,s,m

||| 𝜌3 ⊂ W⟂

(𝜌1,𝜌2)

}

W(�1,�2)
= ⟨Mt

ui
⋅ aj � 1 ≤ i, j ≤ 2⟩

�−1
Z
(�1, �2) =

⎧⎪⎨⎪⎩

� if dimW(�1,�2)
≥ 3�

�1, �2,W
⟂

(�1,�2)

�
if dimW(�1,�2)

= 2

Gr
�
n + m − 2,W⟂

(�1,�2)

�
if dimW(�1,�2)

= 1

Gr
(
n + m − 2,W⟂

(�1,�2)

)
≅ ℙ

n+m−2.

(�1, �2) ∈ Gr (2, n) × Gr (2, s + 1)
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Remark 5.4 Notice that for large values of m, the bound n > 2s − 2m − 3 obtained in Theo-
rem 5.2 is stronger than the one obtained in Theorem 5.3. More precisely,

as soon as m ≥ 2.

5.3  Conclusions

We now summarise the main results of this section in the following corollary.

Corollary 5.5 Let n ≥ 3 , m ≥ 0 and s ∈ {m + 2,… , 2m + 3} . Assume n > 2s − 2m − 3 and 
let (�1 , �2 , �3) ∈ Z.

Then one of the following holds: 

(1) there exist two (and only two) distinct points [v], [w] ∈ S ∩ [�2] such that P = P[v],[w],
(2) there exists exactly one point [v] ∈ S where [�2] is tangent and such that [�v] ∈ [�1].

Proof If m ≥ 2 , then by Remark 5.4 the statement is an immediate consequence of Theo-
rem 4.7, Theorem 5.2, Theorem 5.3.

For m = 1 our assumption becomes n > 2s − 5 , so that the hypothesis of Theorem 5.2 
are satisfied while Theorem 5.3 works as soon as n > 2s − 4 . Let us prove by hand that 
choosing m = 1 and n = 2s − 4 the map

is still injective. Here � is the natural inclusion and � is the natural projection. The idea 
is to exclude high dimensional fibres following the proof of Theorem 5.3. 

(A) Set s = 5, n = 6,m = 1 . We have to exclude the existence of a ℙ5 ⊂ Z . However, in 
this case Z is a sixfold with h2,0 = h0,2 = 0 and h1,1 = 3 , which in this case is equal to 
the Picard rank. In fact, Pic(Z) is generated by the restrictions of the three Plücker line 
bundles from the ambient Grassmannians. Hence, by degree reasons, since Z is smooth 
and of degree > 1 , it cannot contain a ℙ5.

(B) Set s = 4, n = 4,m = 1 . We have to exclude the existence of a ℙ3 ⊂ Z . This time, 
we know that Pic(S) is only generically of rank 2, and the same holds for Z (in fact 
h2,0(Z) = 4 ). For the same reasons above, we can therefore exclude the existence of a 
ℙ
3 for a general Z. But this is enough, since we started by hypothesis from a general 

matrix, and S - which is a isomorphic to a determinantal quintic hypersurface also 
described as a complete intersection in ℙ4 × ℙ

3 - in this case the Picard group will be 
ℤ

2 and generated by the two hyperplane classes of ℙ4 and ℙ3 , and will not even con-
tain lines by a Noether–Lefschetz type argument, see [20] and also [7, Theorem 1.2]. 
Similarly Z won’t contain a copy of ℙ3.

n > 2s − 2m − 3 ⟹ n > 2s − 3m − 1
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Hence the statement is proven for every m ≥ 1 . We are only left with the case m = 0 . In 
this case our assumption becomes n > 2s − 3 , so that the hypothesis of Theorem 5.2 are 
satisfied while Theorem 5.3 works as soon as n > 2s − 1 . Hence we only need to check 
the following cases, where m = 0 and either n = 2s − 1 or n = 2s − 2 . 

(C) Set s = 2, n = 3,m = 0 . Just observe that in this case S is a curve of genus g ≠ 0 , so that 
in particular it does not contain lines and the conclusion follows by the second item in 
Theorem 5.3.

(D) Set s = 3, n = 5,m = 0 . We have to exclude the existence of ℙ3 ⊂ Z . To this aim, it is 
sufficient to run exactly the same argument as in case (B).

(E) Set s = 3, n = 4,m = 0 . In this case S and �(S) in ℙ3 are precisely the K3 surfaces 
studied by Oguiso in [23, 24]. Notice that a generic determinantal K3 surface does not 
contain lines, since the Picard lattice is 

 and the square of every other element is divisible by 4. Therefore we do not have 
(−2)-curves in general. Hence the second item in Theorem 5.3 implies the injectivity 
of the map �Z ∶ Z → Gr (2, 4) × Gr (2, 4) as required.

  ◻

6  Hilbert squares of degeneracy loci

In this section we finally prove our main theorem, namely Theorem A.
We denote by Fl (1, 2, n) and by Fl (1, 2, s + 1) the appropriate flag varieties. Moreover, 

we denote by

the graph of the morphism � of Lemma 4.1.
In the category of ℂ-schemes, we consider the limit V of the following diagram of solid 

arrows

Notice that, set-theoretically, V can be described as

and via the natural isomorphism Γ� →̃ S we make the identification

(
4 6

6 4

)

Γ𝜓 ⊂ ℙ
n−1 × S ⊂ ℙ

n−1 × ℙ
s

V =
{(

[v],�([v]), (�1, �2, �3)
)
∈ Γ� × Z | [v] ∈ [�2],�([v]) ∈ [�1]

}
↪ Γ� × Z
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Composing with the projection S × Z → Z , we obtain a morphism

We now show that this morphism defines a modular map Z → Hilb 2(S).

Lemma 6.1 Let n ≥ 3 , m ≥ 0 , s ∈ {m + 2,… , 2m + 3} . Assume n > 2s − 2m − 3 . Then the 
natural morphism

is a flat family of length 2 subschemes of S.

Proof Since Z is smooth, in particular reduced, it is enough to prove that the fibre over any 
closed point is a finite subscheme of length 2. Flatness is then automatic.

In fact, the fibre �−1(�1, �2, �3) over a point P = (�1, �2, �3) ∈ Z is of the form

By Corollary 5.5, this is a length 2 subscheme of S × {P} if n > 2s − 2m − 3 , which we are 
assuming.   ◻

In particular, if n > 2s − 2m − 3 , the morphism � gives rise, via the universal property 
of the Hilbert scheme, to a morphism

Theorem  6.2 Let n ≥ 3 , m ≥ 0 , s ∈ {m + 2,… , 2m + 3} . Assume n > 2s − 2m − 3 . Then 
the morphism � ∶ Z → Hilb 2(S) is an isomorphism.

Proof To prove � is an isomorphism, by Zariski’s Main Theorem it is enough to prove it 
is bijective, since both source and target are smooth ℂ-varieties of the same dimension 
2(s − m − 1).

On ℂ-valued points, the morphism � is defined by

By the uniqueness conditions spelled out in Corollary 5.5, the map � is injective. By the 
same argument, one can see that �(B) is an injective map of sets for every ℂ-scheme B. 
Thus � is a proper monomorphism, i.e. a closed immersion.

Since source and target are smooth of the same dimension, � is an lci morphism of codi-
mension 0, hence the tangent map TZ → �∗THilb 2(S) is an isomorphism, in particular � is 
étale. Thus it is an open and closed map to a connected scheme, hence it is surjective.  
 ◻

V =
{(

[v], (�1, �2, �3)
) | [v] ∈ [�2],�([v]) ∈ [�1]

}
↪ S × Z.

� ∶ V ↪ S × Z → Z.

� ∶ V ↪ S × Z → Z

�−1(P) = {([v],P)|[v] ∈ S ∩ [�2], [�v] ∈ [�1]}.

� ∶ Z → Hilb 2(S).

�(P) = [�−1(P)] ∈ Hilb 2(S).
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7  Geometric examples

Our aim is to list some interesting examples of varieties arising as degeneracy loci that can 
be described by Theorem 5.2.

Example 7.1 Let us study in more detail the case m = 1 . Recall that we are only interested 
in applications with n ≥ 3 and s ∈ {3, 4, 5} . Theorem 5.2 above proves that the map � does 
not contract lines inside S precisely when one of the following conditions is satisfied:

• n ≥ 3 for curves in ℙ3 (we excluded the case of the twisted cubic obtained for n = 2),
• n ≥ 4 for surfaces in ℙ4,
• n ≥ 6 for threefolds in ℙ5.

Moreover, again by Theorem 5.2, under the assumption n ≥ 3 the map � does not admit 
2-dimensional fibres.
Example 7.2 (White surfaces) Fix m ≥ 0 and choose s = m + 3 and n = s − m = 3 . 
Now, the degeneracy locus �m is a surface in ℙm+3 . Moreover, by Theorem 5.2 the map 
� ∶ 𝖲m → ℙ

2 is surjective and generically injective. The exceptional divisor (i.e. the union 
of the 1-dimensional fibres) arises over a 0-dimensional locus so that �m is the blow up of 
ℙ
2 at c points. Again by Theorem 5.2, c can be easily computed as the degree of Ns−1 in 

ℙ(���s,s+1(ℂ)) , namely

We also observe the following:

• For m = 0 we obtain the determinantal cubic surface �0 ⊂ ℙ
3 realised as the blow up 

of ℙ2 in 6 points.
• For m = 1 we recover the classical construction of the Bordiga surface �1 ⊂ ℙ

4 real-
ised as the blow up of ℙ2 in 10 points, see e.g. [26]. In this case etop(Z) = 94 , with 
h1,1 = 12 , h2,2 = 68 and the other relevant Hodge numbers being 0. On the other 
hand, Hilb 2(�1) has topological Euler characteristic 104, with h2,2 = 78.

In the general case �m ⊂ ℙ
m+3 is nothing but the (m + 3)-th White surface named after F. 

Puryer White, see [32].
Example 7.3 (Generalised Bordiga scrolls over ℙ2 ) Fix m ≥ 1 and choose s = m + 4 and 
n = s − m − 1 = 3 . Notice that the condition m ≥ 1 ensures that s ∈ {m + 2,… , 2m + 3} . 
In this case the degeneracy locus �m is a threefold in ℙm+4 . Since the fibre of the map 
� ∶ 𝖡m → ℙ

2 is cut by n + m = s − 1 equations, the generic fibre of � is 1-dimensional. 
On the other hand, following the same argument of the proof of Theorem 5.2 it is immedi-
ate to see that 2-dimensional fibres of f◦� may only arise over Im(f ) ∩ Ns−3 = � , being 
codim (Ns−3) = 8 . Hence the map � is surjective and realises �m ⊂ ℙ

m+4 as a ℙ1-bundle 
over ℙ2 , so that �m is the projectivisation of a rank 2 vector bundle over ℙ2.

In particular, for m = 1 we recover the classical construction of the Bordiga scroll 
�1 ⊂ ℙ

5 , i.e.  the (rational, non Fano) variety described by ℙ
ℙ2 (E) , with E a rank 2 stable 

bundle with c1(E) = 4 , c2(E) = 10 , see e.g. [25].

c =
(s + 1)!

(s − 1)!2!
=

(
m + 4

2

)
.
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We were not able to find a precise reference for the threefolds described in Example 
7.3, so that we decided to call these threefolds generalised Bordiga scrolls, in analogy 
with the classical Bordiga scroll, see e.g. [25].

Example 7.4 (White varieties) Choose m ≥ 0 , and 3 ≤ n ≤ m + 3 . Fix 
s = n + m ∈ {m + 3,… , 2m + 3} . Denote by �m,n = Dn−1(�) the usual degeneracy locus. 
Then by Theorem 5.2 the map � ∶ 𝖶m,n → ℙ

n−1 is surjective and generically injective. In 
particular, dim�m,n = n − 1 . Moreover, 1-dimensional fibres arise over an (n − 3)-dimen-
sional locus.

We also observe the following:

• For any m ≥ 0 , �m,3 is nothing but the (m + 3)-th White surface denoted by �m in 
Example 7.2.

• For any m ≥ 1 , �m,4 ⊂ ℙ
m+4 is a threefold that contains a ℙ1-scroll over a curve 

�
′
m,4

⊂ ℙ
3 . We can also compute the degree and the genus of �′

m,4
 as 

 as proved in Proposition 2.3.

We were not able to find a precise reference for the construction spelled out in Exam-
ple 7.4, so we decided to call these (n − 1)-folds White varieties, in analogy with the 
usual White surfaces described in Example 7.2.

Apart from the limit case of White varieties ( s = n + m ) we provide examples for 
which s ≤ n + m but Z need not to be isomorphic to Hilb 2(S) . More precisely, it may be 
interesting to investigate the limit case when n = 2s − 2m − 3 . Notice that, given m ≥ 0 , 
assuming s ∈ {m + 2,… , 2m + 3} the system

implies s ≥ m + 3 and n ≤ 2m + 3.

Example 7.5 (n = 2s − 2m − 3 ) Fix m ≥ 0 , s ∈ {m + 3,… , 2m + 3} , and choose 
n = 2s − 2m − 3 . By Theorem 5.2 the map � maps the degeneracy locus �m,s ⊂ ℙ

s onto 
a certain variety ��

m,s
⊂ ℙ

n−1 of dimension s − m − 1 , having a finite number c of special 
points over which the fibres are 1-dimensional. Notice that it is easy to compute c, since it 
equals the degree of Ns−1 inside ℙ(���n+m , s+1(ℂ)) , which is given by the formula [26]

deg(��
m,4

) = deg(Nm+3) =

(
m + 5

2

)

g(��
m,4

) = (m + 4)

(
m + 4

3

)
− (m + 5)

(
m + 3

3

)
,

{
s ≤ n + m

n = 2s − 2m − 3 ≥ 3

c = deg(Ns−1) =

1∏
i=0

(n + i + m)! i!

(s + i − 1)! (n + m − s + i + 1)!

=
1

s

(
2s − m − 2

s − 1

)(
2s − m − 3

s − 1

)
.
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Remarkably, the same proof of Theorem 5.3 excludes lines of type d as soon as m ≥ 3 . 
Notice that the choice s = m + 3 implies n = 3 , so that in particular we recover the White 
surfaces described in Example 7.2, i.e. �m,m+3 = �m . 

m = 0  In this case we only have the White surface �0,3 = �0 ⊂ ℙ
3.

m = 1  In this case, apart from the Bordiga surface �1,4 = �1 already discussed in Exam-
ple 7.2, we may only choose s = n = 5 . Then �1,5 is a threefold in ℙ5 . By the 
above formula there are c = 105 fibres of dimension 1 and the image of �1,5 inside 
ℙ
4 is a determinantal threefold ��

1,5
= f −1(Im(f ) ∩ N5) of degree 6, whose singular 

locus consists exactly of these 105 points. In fact, �1,5 is a small resolution of �′
1,5

 . 
Notice how in this case etop(Z) = 46158 and etop( Hilb

2(S1,5)) = 46053 by Appen-
dix 2.2. Their difference is exactly 105 so that in particular Z ≇ Hilb 2(�1,5).

m = 2  In this case, apart from the White surface �2,5 = �2 , we may choose s = 6 and 
n = 5 or s = n = 7 . Now, by Theorem 5.2, �2,6 ⊂ ℙ

6 is a threefold, and the map � 

contracts c = 1

6

(
8

5

)(
7

5

)
= 196 lines. On the other hand �2,7 ⊂ ℙ

6 is a four-

fold, and the map � contracts c = 1

7

(
10

6

)(
9

6

)
= 2520 lines.

Example 7.5 leads us to formulate the following conjecture.

Conjecture 7.6 Fix m ≥ 1 , s ∈ {m + 3,… , 2m + 3} , and choose n = 2s − 2m − 3 . Then

Notice that in Examples 7.2 and 7.5 we have shown that the above conjecture holds true 
for m = 1 . We also did the computation for White surfaces taking higher values of m con-
firming the prediction of Conjecture 7.6.

On the other hand we excluded the case m = 0 , for which the conjecture is easily seen 
to fail. However, this can be justified by noticing that �0,3 = �0 contains 15 lines of type d 
(arising as birational transforms of lines in ℙ2 passing through 2 out of the 6 points of ℙ2 ), 
and indeed we compute the difference to be

As already remarked in Example 7.5 it is immediate to see that for m ≥ 3 the varieties �m,s 
do not admit lines of type d , and actually we do not expect this to happen even in the cases 
m = 1 and m = 2.

We are particularly interested in Conjecture 7.6 since it would imply for instance that 
the bound provided by Theorem 6.2 is optimal.

Appendix 1: Euler characteristic of Hilbert squares

The goal of this appendix is to give a detailed proof of Proposition 2.4. We shall exploit 
a nontrivial Chern class calculation on (smooth) degeneracy loci following Pragacz [27].

etop( Hilb
2(�m,s)) − etop

(
Zn,s,m

)
= (−1)dim(�m,s)

1

s

(
2s − m − 2

s − 1

)(
2s − m − 3

s − 1

)
.

etop( Hilb
2(�0,3)) − etop(Z3,3,0) = 6 + 15 .
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Fix m = 1 throughout this section. Let s ∈ {3, 4} , and consider, as ever, a general map 
� ∶ F → E between vector bundles F = O

⊕n+1
ℙs  and E = O

ℙs (1)⊕n . The k-th degeneracy 
locus of � is the closed subscheme Dk(𝜑) ⊂ ℙ

s defined by the condition rank (�) ≤ k , 
which is (locally) equivalent to the vanishing of the (k + 1)-minors of � . We are interested 
in the case k = n − 1 , which leads to Dn−2(�) of expected codimension 6, and Dn−1(�) of 
expected codimension 2. Since � is general, we have Dn−2(�) = � , so that Dn−1(𝜑) ⊂ ℙ

s 
is a smooth subvariety of codimension 2. In the case s = 4 , we shall denote it by Sn ⊂ ℙ

4 , 
whereas in the case s = 3 we shall denote it by Cn ⊂ ℙ

3.
We start assuming s = 4 , the case s = 3 being essentially a truncation of the case s = 4 . 

Let H ∈ A1(ℙ4) denote the first Chern class of O
ℙ4 (1) . The ordinary Segre class of E is the 

class

with s̃i(E) ∈ Ai(ℙ4) = ℤ[Hi] sitting in codimension i. Inverting the Chern class

we find

We set si = (−1)is̃i(E) for 0 ≤ i ≤ 4 . Then, unraveling [27, Example 5.8 (ii)], we have, for 
the smooth surface Sn ⊂ ℙ

4 , an identity

given the Schur polynomials

Expanding, we obtain

s̃(E) =
∑
0≤i≤4

s̃i(E) = (1 + H)−n,

c(E) = 1 + nH +

(
n

2

)
H2 +

(
n

3

)
H3 +

(
n

4

)
H4

s̃1(E) = −c1(E) = −nH

s̃2(E) = s1(E)
2 − c2(E) =

[
n2 −

(
n

2

)]
H2

s̃3(E) = −s1(E)c2(E) − s2(E)c1(E) − c3(E) =

[
−n3 −

(
n

3

)
+ 2n

(
n

2

)]
H3

s̃4(E) = −s1(E)c3(E) − s2(E)c2(E) − s3(E)c1(E) − c4(E)

=

[
n4 + 2n

(
n

3

)
− 3n2

(
n

2

)
+

(
n

2

)2

−

(
n

4

)]
H4.

(7.1)etop(Sn) = s2c2(ℙ
4) −

[
s(2,1) + 2s3

]
c1(ℙ

4) + s(2,1,1) + 3s(3,1) + 3s4,

s(2,1) =
||||
s2 s3
s0 s1

|||| =
||||
s2 s3
1 s1

|||| = s2s1 − s3

s(3,1) =
||||
s3 s4
s0 s1

|||| =
||||
s3 s4
1 s1

|||| = s3s1 − s4

s(2,1,1) =

||||||

s2 s3 s4
s0 s1 s2
0 s0 s1

||||||
=

||||||

s2 s3 s4
1 s1 s2
0 1 s1

||||||
= s2(s

2
1
− s2) − (s1s3 − s4).
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Formula (7.1) then yields

In the case of a smooth determinantal curve Cn ⊂ ℙ
3 , i.e. when we set s = 3 , we only need 

to use

In this case, [27, Example 5.8 (i)] gives

The formulas for etop(Sn) and etop(Cn) prove Proposition 2.4.

Appendix 2: Hodge–Deligne polynomial of Hilbert squares

We again set m = 1 throughout this section. We shall consider once more smooth (sub-deter-
minantal) degeneracy loci S = Dn−1(𝜑) ⊂ ℙ

s (of dimension 2 or 3), and we shall compute the 
Hodge–Deligne polynomial

via standard motivic techniques, exploiting the power structure on the Grothendieck ring of 
varieties K0( Var ℂ) [14], as well as our knowledge of the Hodge numbers of S (cf. Sect. 3).

s2c2(ℙ
4) = 10n2 − 10

(
n

2

)

[
s(2,1) + 2s3

]
c1(ℙ

4) = 5(s2s1 + s3)H = 10n3 − 15n

(
n

2

)
+ 5

(
n

3

)

s(2,1,1) = n

(
n

3

)
−

(
n

4

)

3s(3,1) =

(
n

2

)[
3n2 − 3

(
n

2

)]
− 3n

(
n

3

)
+ 3

(
n

4

)

3s4 = 3n4 + 6n

(
n

3

)
− 9n2

(
n

2

)
+ 3

(
n

2

)2

− 3

(
n

4

)
.

etop(Sn) = n2(10 − 10n + 3n2) +

(
n

2

)
(−10 + 15n − 6n2) +

(
n

3

)
(4n − 5) −

(
n

4

)
.

s0 = 1, s1 = nH, s2 =

[
n2 −

(
n

2

)]
H2, s3 =

[
n3 +

(
n

3

)
− 2n

(
n

2

)]
H3.

etop(Cn) = s2c1(ℙ
3) − s(2,1) − 2s3 = 4Hs2 − (s2s1 − s3) − 2s3 = 4Hs2 − s2s1 − s3

= 4n2 − 4

(
n

2

)
− n3 + n

(
n

2

)
− n3 −

(
n

3

)
+ 2n

(
n

2

)

= 4n2 − 2n3 + (3n − 4)

(
n

2

)
−

(
n

3

)
.

E( Hilb 2(S);u, v) =
∑
p,q≥0

hp,q( Hilb 2(S))(−u)p(−v)q ∈ ℤ[u, v]
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2.1. Surface case: (s, n,m) = (4, 4, 1)

Let us consider the smooth determinantal surface S4 = D3(𝜑) ⊂ ℙ
4 . By Göttsche’s formula 

[13] for the motive of the Hilbert scheme of points on a surface, combined with the main 
result of [14], there is an identity

in K0( Var ℂ)[[q]] , where exponentiation is to be thought of in the language of power struc-
tures. The Hodge–Deligne polynomial of a smooth projective ℂ-variety Y is the polynomial

We have, on ℤ[u, v] , the power structure defined by the identity

if f (u, v) =
∑

i,j piju
ivj . Looking at the Hodge diamond depicted in Sect. 3.2, we deduce

and since E(−) defines a morphism K0( Var ℂ) → ℤ[u, v] of rings with power structure 
sending � ↦ uv , we have an identity

where the substitution q ↦ un−1vn−1qn is possible thanks to the properties of a power 
structure.

Expanding and isolating the coefficient of q2 gives

in full agreement with the Hodge diamond depicted in Sect. 3.2.

2.2. Threefold case: (s, n,m) = (5, 5, 1)

In the case (s, n,m) = (5, 5, 1) , we obtain a smooth threefold S5,5,1 ⊂ ℙ
5 outside the ‘good 

range’ of Theorem A, cf. Example 7.5. There is an identity [14, 29]

∑
n≥0

[
Hilb n(S4)

]
qn =

∏
n>0

(
1 − �

n−1qn
)−[S4]

E(Y;u, v) =
∑
p,q≥0

hp,q(Y)(−u)p(−v)q ∈ ℤ[u, v].

(1 − q)−f (u,v) =
∏
i,j

(
1 − uivjq

)−pij

E(S4;u, v) = 1 + 4u2 + 45uv + 4v2 + u2v2,

∑
n≥0

E( Hilb n(S4);u, v)q
n =

∏
n>0

(
1 − un−1vn−1qn

)−E(S4;u,v)

=
∏
n>0

(1 − q)−E(S4;u,v)||q↦un−1vn−1qn

=
∏
n>0

(
1 − un−1vn−1qn

)−1(
1 − un+1vn−1qn

)−4
⋅

⋅ (1 − unvnqn)−45
(
1 − un−1vn+1qn

)−4(
1 − un+1vn+1qn

)−1

E( Hilb 2(S4);u, v) =1 + 46uv + 4(u2 + v2) + 1097u2v2 + 184(uv3 + u3v)
+ 10(u4 + v4) + 46u3v3 + 4(u4v2 + u2v4) + u4v4,
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in K0( Var ℂ)[[q]] , where Hilb n(�3)0 denotes the punctual Hilbert scheme, namely the sub-
scheme of Hilb n(�3) parametrising subschemes entirely supported at the origin 0 ∈ �

3 . 
Let us define classes Ωn ∈ K0( Var ℂ) via the relation

Since Hilb 1(𝔸3)0 = Specℂ and Hilb 2(𝔸3)0 = ℙ
2 , one can easily compute Ω1 = 1 and 

Ω2 = � + �
2 . Therefore

which implies

One can compute the Hodge–Deligne polynomial of S5,5,1 to be

so that extracting the coefficient of q2 from (B.1), one obtains

In particular, the topological Euler characteristic is

B.3. Threefold case: (s, n,m) = (5, 6, 1)

In the case (s, n,m) = (5, 6, 1) , we get a smooth threefold S5,6,1 ⊂ ℙ
5 . Using the Hodge dia-

mond depicted in Sect. 3.3, one has

Formula (B.1) applied to this case yields

In particular,

�S5,5,1
(q) =

∑
n≥0

[
Hilb n(S5,5,1)

]
qn =

(∑
n≥0

[
Hilb n(�3)0

]
qn

)[S5,5,1]

∑
n≥0

[
Hilb n(�3)0

]
qn = Exp

(∑
n>0

Ωnq
n

)
=
∏
n>0

(1 − qn)−Ωn .

�S5,5,1
(q) =

∏
n>0

(1 − qn)−Ωn[S5,5,1],

(B.1)
∑
n≥0

E( Hilb n(S5,5,1);u, v)q
n =

∏
n>0

(1 − qn)−E(Ωn;u,v)E(S5,5,1;u,v).

E(S5,5,1;u, v) = 1 + 2uv + 2u2v2 + u3v3 − (5u3 + 151u2v + 151uv2 + 5v3),

E( Hilb 2(S5,5,1);u, v) =

[
(1 − u3q)5(1 − v3q)5(1 − uv2q)151(1 − u2vq)151

(1 − q)(1 − uvq)2(1 − u2v2q)2(1 − u3v3q)

]

q2

+(uv + u2v2)E(S5,5,1;u, v).

etop( Hilb
2(S5,5,1)) = E( Hilb 2(S5,5,1);1, 1) = 46053 = etop(Z5,5,1) − 105.

E(S5,6,1;u, v) = 1 + 2uv + 2u2v2 + u3v3 − (29u3 + 520u2v + 520uv2 + 29v3).

E( Hilb 2(S5,6,1);u, v) =

[
(1 − u3q)29(1 − v3q)29(1 − uv2q)520(1 − u2vq)520

(1 − q)(1 − uvq)2(1 − u2v2q)2(1 − u3v3q)

]

q2

+(uv + u2v2)E(S5,6,1;u, v).
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in complete agreement with what one gets out of the Hodge diamond for Z depicted in 
Sect. 3.3.
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