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Abstract: The disposal of end-of-life (EOL) photovoltaic solar panels has become a relevant environ-
mental issue as they are considered to be a hazardous electronic waste. On the other hand, enormous
benefits are achieved from recovering valuable metals and materials from such waste. Eventually,
physical and chemical processing will become the most important stages during the recycling process.
A physical treatment including crushing, grinding, and screening was achieved, and it was observed
that a fine fraction of −0.25 mm had the maximum percentage of the required materials. Moreover,
the optimum chemical treatment conditions were adjusted to reach the maximum recovery of silver,
aluminum, and silicon. The synthesis of silicon oxide, silver oxide, alunite, and K-Alum from leachant
solution was performed through a simple route. The structural and morphological properties of the
prepared materials were defined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS),
and field emission scanning electron microscopy (FESEM).
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1. Introduction

Recently, two major problems facing developing countries, especially in the industrial
sector, are electronic solid waste management and the need for more valuable materials due
to their enormous consumption [1–3]. One of the overgrown industries is the renewable en-
ergy sector; the generation of global photovoltaic panel (PV) electricity reached 855.7 TWh
in 2020, while the installation capacity reached around 707.5 GW and is expected to reach
14.5 TW by 2050 [4]. Moreover, the global production of photovoltaic panels is expected to
multiply [5]. Furthermore, for analysis, PV solar panels are grouped according to the PV
module type: silicon-based “c-Si PV modules,” thin film-based “compound PV modules,”
and third-generation “other PV modules (e.g., organic solar cells, dye-sensitized solar
cells, perovskite solar cells). Therefore, the recycling of such modules has been identified
according to the targeted recovery materials [6] displayed in Table 1.

On the other hand, solar panels’ lifetime is 25 to 30 years [7,8]. This indicates that the
amount of end-of-life (EOL) solar panels will be huge; it is expected to reach 1.7–8 million
tons by 2030, and its growth will reach 60–77 million tons by 2050 [9]. It will need a proper
management method as it is considered hazardous electronic waste [10]. However, solar
panels contain toxic metals, mainly lead [11,12]; EOL solar panels are considered rich waste
because they have valuable metals, e.g., silver, aluminum, copper, tin, and silicon [13]. The
recovery of such valuable metals or materials has positive impacts on both environmental
and economic view points, and energy saving will be achieved, thus solving the problem of
electronic waste management, and the availability of valuable materials will be realized [14].
Nowadays, crystalline silicon solar panels represent 90% of the panels market; this is due to
the low prices and mature manufacturing technology [15]. The main components of such
panels are: (1) an aluminum frame, (2) glass, (3) encapsulated layers (ethylene vinyl acetate
(EVA) binding the solar cells together), a back sheet, and a junction box.
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Table 1. End-of-life management of PV solar panels.

Type of PVs Module Type Recovered Materials

First-generation
“c-Si PV module”

Monocrystalline silicon
Polycrystalline silicon Si, Al, Cu, Ag, Sn, Pb

Second-generation
“Compound PV module”

Cadmium telluride,
copper, indium, gallium,

Selenide
Silicon thin film (amorphous silicon)

Multijunction cells

Te, Cd, Si, Cu, Se with ZnO and InO

Third-generation
“Others”

Perovskite solar cells
Dye-sensitized solar

cells (DSSC)
Organic/polymer solar cells

Glass
Semiconductor material

The most reverent method used to manage EOL solar panels is recycling aluminum
frames, as separating them is easy. Additionally, some studies have recycled glass using
a mechanical treatment which can separate aluminum frames efficiently from solar pan-
els [16], while thermal treatment separates glass easily [17]. Nevertheless, few researchers
have studied the recovery of the valuable metals present in EOL solar panels, while most
researchers recover aluminum and then stop at this stage.

The purpose of this research is to develop a simple integrated method for EOL solar
panels treatment and to recover valuable materials such as silicon oxide (SiO2), silver/silver
oxide (Ag2O), and aluminum oxide compounds (Al2O3) from such hazardous waste using
the chemical route. The study provides a detailed treatment process, followed by a deep
characterization of the recovered materials, and, finally, an approximated cost analysis was
performed to prove the study’s economic benefits.

2. Materials and Methods
2.1. Material

An EOL solar panel was supplied by the municipality of Celano (L’Aquila, Italy),
where Europe’s largest photovoltaic park owned by a public administration is installed,
where the aluminum frame was removed, as present in Figure 1. The used chemicals
were of a lab grade without any further purification, including nitric acid (HNO3), sulfuric
acid (H2SO4), hydrogen peroxide (H2O2), potassium hydroxide (KOH), sodium hydroxide
(NaOH), and polyvinylpyrrolidone (PVP). Moreover, the water used during the experiment
was deionized.
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Figure 1. The received EOL solar panels used in the current study.

The procedure was performed in several stages: firstly, a physical treatment was
conducted to achieve the beneficiation and concentration of valuable materials in specific
fractions; secondly, chemical leaching was conducted in different steps to achieve the
dissolution of the required materials; and finally, the precipitation method was conducted
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to synthesis the final products, followed by a characterization stage to prove the purity of
the synthesized materials.

2.2. Physical Treatment

The EOL solar panels were cut into regular homogenous pieces of around a size of
5 × 8 cm2 and then crushed into small particles by a jaw crusher. This stage was followed
by screening using a series of sieves of different sizes from 5.6 mm to 0.25 mm. The sample
was separated into different fractions according to their particle size.

2.3. Chemical Leaching

The sample of particle size of −0.25 mm was mixed and divided manually to equal
parts to ensure its homogeneity. For silver dissolution, 10 g of the sample was dissolved
in 200 mL of 5 M HNO3 for 1 h at room temperature by stirring at 400 rpm using a
hotplate; after that, the solution was filtrated using filter paper, and the filtrate, which
was mainly silver nitrate, was saved for silver oxide precipitation. At the same time,
the solid part, which was primarily rich in aluminum and silicon, was washed carefully
with distillate water for further leaching with potassium hydroxide to achieve complete
aluminum dissolution, where 5 g of the HNO3-treated sample was dissolved in 100 mL of
4M KOH at 80 ◦C for 2 h by stirring at 400 rpm using a hotplate, followed by a filtration
stage and filtrate, which was mainly rich in aluminum, and this was saved for aluminum
compound (potassium alum and alunite) precipitation. In contrast, the remaining residue
was washed several times with 300 mL of hot distillate water and then dried at 60 ◦C
overnight for the characterization of silicon compound.

2.4. Precipitation Method

The co-precipitation method was used as it is the most simple and economical method.
For silver oxide precipitation, the following procedure was illustrated: 10 mL of 1:1 (w/v %)
PVP was added gradually to 100 mL of silver nitrate filtrate while stirring, then 2 M of
NaOH was added until the pH adjusted to 10; finally, 10 mL of H2O2 was added, where
the brown precipitate of silver oxide started to appear, we continued stirring for 1 h, and
then silver oxide was separated using a centrifuge, where it was washed several times and
then dried at 60 ◦C overnight for a further characterization. For aluminum compound
(potassium alum and alunite) precipitation: 50% of sulfuric acid solution was added to
100 mL of aluminum-rich filtrate till neutralization of the solution occurred; we continued
stirring the mixture until no more white precipitate appeared, then the formed precipitate
was separated using a centrifuge, where it was washed several times and then dried at
60 ◦C overnight, followed by calcination at 600 ◦C for 5 h for a further characterization. For
amorphous silicon, the residue remains washed carefully to remove any remaining salts or
impurities and dried for a further characterization.

2.5. Characterization

The chemical composition of the −0.25 mm physical treated sample was charac-
terized by XRF (X-ray fluorescence, Axios Advanced WDXRFP analytical, Almelo, The
Netherlands), while the phase of the synthesized materials was identified by XRD (X-ray
diffract-meter, BrukerAXS-D8, Mannheim, Germany), and their morphology was examined
by SEM (field emission scanning electron microscope; Quantafeg 250, Eindhoven, The
Netherlands), and, finally, their surface structure were recorded by XPS.

3. Results and Discussion
3.1. Purification of EOL Solar Panels and Metal Separation

As discussed in the previous section, the received EOL solar panels were free from an
aluminum frame; after achieving the physical treatment as discussed, different fractions
were separated according to their particle size. Figure 2 shows different particle size
samples, where the fraction of −0.25 mm was chosen for a further treatment. The XRF
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characterization of the selected fraction is explained in Table 2, where it can be observed
that the required materials, including silicon, aluminum, and silver, are 70.25% (in weight)
of the sample. In comparison, the other is only 29.75% (in weight).
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Figure 2. Crushed and screened sample divided into different fractions according to particle size,
(A) fraction of +5.6 mm, (B) fraction of +2 mm, (C) fraction of +0.5 mm, (D) fraction of +0.25 mm, (E)
fraction of −0.25 mm.

Table 2. XRF for sample of EOL solar panels used in study.

Compound Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 Cr2O3 NiO

Percentage % 7.508 1.492 7.90 61.90 0.616 0.50 0.089 15.40 0.234 0.22 0.061

Compound Fe2O3 Ag2O CuO ZnO As2O3 SnO2 Sb2O3 BaO PbO Bi2O3 SrO

Percentage % 0.87 0.45 0.11 0.038 0.052 0.259 0.887 0.946 0.22 0.065 0.21

3.2. Characterization of the Products
Structural Characterization

A typical XRD pattern of the synthesized silver/silver oxide nanoparticles is shown in
Figure 3a; peaks in the XRD pattern can be indexed as a face-centered cubic (fcc) structure
(JCPDS, file no. 4-0783) as reported by many studies [18,19], while other peaks correspond
to the presence of silver oxide nanoparticles, as mentioned by K.T. Sullivan et al. [20]. While
for synthesized aluminum compounds, alunite/K-alum nanoparticle, it can be observed
from Figure 3b, has most of its peaks represent the presence of alunite (KAl3(SO4)2(OH)6)
and K-alum (KAl(SO4)2·12H2O), which matched with the results obtained from the re-
search carried out by Lucejko et al. [21]. In contrast, the other peaks correspond to the
presence of either aluminum oxide or aluminum hydroxide. In addition, as mentioned in
Figure 3c, it represents the XRD pattern for amorphous silica, where it was observed that
the peak of amorphous silica location shifted from 2θ = 21◦, which is due to the alkali–silica
reaction [22], as silica is subjected to a reaction with potassium hydroxide for 2 h at 80 ◦C
during the aluminum leaching stage.
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Figure 3. X-ray diffraction patterns of synthesized materials: (a) for Ag/Ag2O mixture, (b) for
alunite/K-alum mixture, and (c) for amorphous silica.

To further understand the surface chemical composition and elemental states of the
recovered materials, XPS measurements were performed. Figure 4 depicts the presence of Si,
Al, K, S, Ag, and O elements attributed to the mentioned materials with no other impurities
found in the samples. The HR-XPS of Si 2p, Al 2p, K 2p, S 2p, Ag 3d, and O 1s are illustrated
in Figure 4a–h. Typically, as shown in Figure 4a,b, for the high-resolution Ag 3d core level
spectrum, the peaks at 367.86 and 373.79 eV correspond to the oxide (Ag–O) [23–25]. The
most intense peak of the O 1s spectrum at 532.68, as shown in Figure 4 h, characterizes the
formation of Ag2O. For the Alunite/K-alum mixture, the high-resolution Al 2p and O 1s
XPS spectra (Figure 4c,d), show two peaks located at 75.139 eV for Al and 533.05 eV for
O, which is within the range of the alumina binding energy [26,27]. Moreover, the sharp
peaks at 296.99 and 294.1 eV are characteristic of K 2p2/3 and 2p1/2, respectively. The two
peaks centered at 170.03 and 167.76 eV are also characteristics of S 2p2/3 and 2p1/2 [28],
respectively (see Figure 4e,f), suggesting the presence of alunite/K-alum mixture [29]. In
addition to this, as displayed in Figure 4g, for Si 2p core-level spectrum with two peaks
centered at 103.24 and 102.31 eV and O 1s spectra with BEs of 531 and 532.7 eV, which
demonstrate that there SiO2 states, as well as Si−OH, forms on the surface of SiO2 [30].
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3.3. Morphological Properties

The morphological properties, as well as the microstructure of the synthesized ma-
terials, can be carried out using the FE-SEM technique. To begin with, Ag2O, as shown
in Figure 5a, indicates that the sample mainly consists of nanoparticles with an average
particle size of 20 nm. Additionally, as shown in Figure 5b for the alunite/K-alum mixture,
micrographs depict a fascinating porous structure of alunite/K-alum with a uniform struc-
ture of the agglomerated particles. As shown in Figure 5c, an SEM image of amorphous
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silica is composed of aggregates of 700 nm with an average size of primary particles of
30 to 50 nm.
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The previous characterization proved the purity and homogeneity of the recovered
materials from EOL solar panels; these results demonstrate the beneficiation of such
hazardous waste to be used as an advanced material source that can be used further in
advanced applications [31].

4. Approximated Cost Analysis for the Recovery Process

The recovery of EOL photovoltaics has an appositive significant effect on the economic
sector, where each component can be recycled and either reused or recovered in the form of a
valuable material. Silver, aluminum, and silicon represent nearly 20% of EOL photovoltaics,
but these materials have the highest proportion of EOL photovoltaics recovery benefits,
representing nearly 90% of the total benefits. Thus, this study focused mainly on the
beneficiation of a certain fraction of size −0.25 mm that represented almost 10% of the
EOL photovoltaics; more than 70% of this fraction contains mainly silver, aluminum, and
silicon [32]. Based on this study, 97% of silver, 100% of aluminum, and 100% of silicon were
recovered from the EOL photovoltaic sample a fraction of the size at −0.25 mm, while the
other component in different fractions will be recovered further in other studies. According
to the cost of the recovered materials, the chemicals used during the process, and the
approximated operating cost for one ton of EOL photovoltaic equivalent to 100 kg of a
working fraction size of the −0.25 mm treatment process, an approximated cost analysis
was calculated as represented in Table 3.
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Table 3. Cost analysis treatment of one ton of EOL solar on a laboratory scale.

Type Classification Quantity Prices Cost Total Cost

Waste material EOL solar panels 1000 kg
Equivalent to 0.0053 USD/kg USD 5.3 USD 5.3

Chemicals

Nitric acid 325 mL 60 USD/L USD 19.2

USD 28.52

Peroxide 100 mL = 142.2 g 6 USD/kg USD 0.8532

Sodium hydroxide 10 gm 100 USD/kg USD 1

Potassium oxide 220 gm 1 USD/kg USD 0.22

Sulfuric acid 50 mL 125 USD/L USD 6.25

polyvinylpyrrolidone 1 gm 1000 USD/kg USD 1

Operation cost

Collection USD 120

USD 460
Transportation USD 140

Labors USD 100

Electricity and water USD 100

Recovered materials

Silver oxide 0.423 kg 1000 USD/kg USD 423

USD 802.5Aluminum oxide 7.9 kg 0.894 USD/kg USD 7.062

Solar grade silicon 61.9 kg 6.0172 USD/kg USD 372.46

Net approximated Profit Evaluation of {(recovered materials) − (waste material + chemicals + operation)} 308.7 USD/ton

Approximated prices are calculated according to updated market prices.

5. Conclusions

The traditional disposal of EOL photovoltlic solar panels has a negative impact on the
environment, while the proposed method in this study permits the recovery of valuable
materials. A simple method was performed in several stages: firstly, a physical treatment
including crushing, grinding, and screening was conducted to achieve the beneficiation
and concentration of valuable materials in −0.25 fractions; secondly, chemical leaching
was conducted in a continuous sequence using nitric acid, then potassium hydroxide was
used to achieve the dissolution of the required materials; and finally, the recovery of more
than one valuable material, mainly silicon oxide (SiO2), silver/silver oxide (Ag2O), and
aluminum oxide compounds, was achieved using a co-preciptation method. The recovered
materials were totally characterized using different analytical methods (XRD, SEM, and
XPS) that show their purity and morphology. Moreover, an approximated cost analysis was
calculated, and this process proved to be profitable. Using the proposed method, the main
concept of sustainability has been achieved. The current study represents a simple solution
for the problems faced, such as hazardous waste, demonstrating that EOL solar panels can
be beneficial from both economic and environmental points of view.
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