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Abstract 
Adult-onset autoimmune diabetes pathophysiology starts with immune changes, followed by 

dysglycaemia and overt disease. Adult-onset autoimmune diabetes can occur as classic type 1 

diabetes when associated with severe loss of insulin secretion. More frequently, it is diagnosed as 

latent autoimmune diabetes in adults, a slow-progressing form with late onset, a long period not 

requiring insulin, and often misdiagnosed as type 2 diabetes. As its clinical presentation varies 

remarkably and immune markers often lack specificity, it is challenging to classify each case ad hoc, 

especially when insulin treatment is not required at diagnosis. Proper care of adult-onset autoimmune 

diabetes aims to prevent complications, and to improve quality and life expectancy. To achieve these 

goals, attention should be paid to lifestyle factors, with the aid of pharmacological therapies properly 

tailored to each individual clinical setting. Given the heterogeneity of the disease, choosing the right 

therapy for adult-onset autoimmune diabetes is challenging. Most of the trials testing disease-

modifying therapies for autoimmune diabetes are conducted in people with a childhood onset, 

whereas non-insulin diabetes therapies have mostly been studied in the larger population with type 2 

diabetes. More randomized controlled trials of therapeutic agents in adult-onset autoimmune diabetes 

are needed.   
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[H1] Introduction 
Diabetes mellitus is a disease characterized by high blood glucose levels. When the disease is 

associated with severe loss of insulin secretion, it is referred to as insulin-dependent, as affected 

individuals need insulin therapy to survive. Conversely, if the disease is caused by a less severe 

insulin deficiency, affected patients are not dependent on insulin. Disease forms in which certain 

immune signatures are present, such as peripheral blood islet-specific autoantibodies,  are classified 

as autoimmune diabetes, that is, Type 1 diabetes mellitus (T1DM) or, more accurately, Type 1A 

diabetes to distinguish it from idiopathic Type 1B diabetes1. In broad terms, individuals presenting in 

childhood usually have insulin dependent T1DM, but may also be affected by monogenic diabetes, 

known as maturity-onset diabetes of youth (MODY), or even Type 2 diabetes (T2DM). Conversely, 

those presenting in adulthood usually have non-insulin dependent T2DM, but cases of adult-onset 

autoimmune (AOA) diabetes are also frequent. Adult-onset diabetes has been suggested to encompass 

5 different phenotypic groups in which those phenotypes presenting with islet-specific autoantibodies 

are classified together as severe autoimmune diabetes (SAID)2. The distinction between severe 

insulin deficiency, requiring insulin treatment, and more modest insulin deficiency, treatable by other 

means, is not always clear, especially in adult-onset diabetes3.  

Many of the issues surrounding adult-onset diabetes relate to the relationship between T1DM and 

T2DM in the context of age at onset, blood glucose levels and insulin deficiency, with lack of clear 

boundaries that define these major types of diabetes (FIG. 1). For example, although most cases of 

childhood-onset diabetes are autoimmune diabetes, most cases of autoimmune diabetes, in actual 

numbers, develop in adulthood. AOA diabetes is much more heterogeneous than young-onset 

autoimmune diabetes, as the rate of β cell destruction is highly variable, probably due to differential 

presence of genetic factors and differing severity of the individual autoimmune process4,5. 

Epidemiological studies have highlighted that most patients with AOA diabetes do not require insulin 

treatment at diagnosis6,7, and these patients are commonly defined as having latent autoimmune 

diabetes in adults (LADA). In 2022, LADA has been included under the category of T1DM in the 

diabetes classification proposed by the American Diabetes Association (ADA), although the term 

retains its own identity, being defined as common and acceptable in everyday clinical practice, raising 

awareness of individuals at risk of progressing towards requiring insulin therapy1. As most studies in 

AOA diabetes referred to 'people with LADA', we retain the term LADA in this Primer when 

appropriate. The inherent conundrum has implications for this interface between the two major types 

of diabetes, that is T1DM and T2DM, and how they should be treated in clinical practice.  
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In this Primer, we discuss the epidemiology, pathogenesis, clinical presentation, diagnosis and 

management of AOA diabetes, providing a perspective on our current understanding and suggestions 

for future priorities of AOA diabetes, which is too often misdiagnosed. 

[H1] Epidemiology 
[H2] Prevalence and incidence  

The prevalence of T1DM and T2DM has been increasing, with the  International Diabetes Federation 

counting more than 500 million people worldwide living with diabetes in 20218. The global 

prevalence of T1DM is ~0.1%, likely a marked underestimate given that only classic insulin-

dependent T1DM cases were considered and that adults with autoimmune diabetes not requiring 

insulin at diagnosis. i.e. those with LADA, can be initially misclassified as having T2DM. In contrast 

to the epidemiology of well characterised childhood onset T1DM, incidence and prevalence data for 

AOA diabetes are sparse. Furthermore, only few of the available data derive from population-level 

studies and they are often limited by small sample sizes and biased by a high risk of misclassification 

between T1DM and T2DM9. Nonetheless, current projections show that most new cases of 

autoimmune diabetes are diagnosed during adulthood6,10. A study in China estimated that adults aged 

>20 years at diagnosis comprise 65% of all new T1DM cases and there are probably more than 6 

million such cases in China11. Overall, the incidence of adulthood-onset T1DM is higher in Europe, 

especially in Nordic countries, than in Asia or Africa, and T1DM more prevalent in men than in 

women10. These differences are likely, in part, genetic given the increased frequency of high-risk 

disease variants in northern Europe. However, heterogeneity of the distribution of T1DM within 

countries and data from migration studies indicate that non-genetic factors, including industrialisation 

associated factors such as pollution and overcrowding, might have a role12. 

A study in a European adult-onset diabetes cohort suggests that non-insulin requiring T1DM, that is 

LADA, can be up to three-fold more prevalent than insulin-dependent T1DM: 9.7% of patients had 

autoimmune diabetes and most of these (odds ratio 3.3) were initially non-insulin dependent6. Other 

epidemiological studies have shown that the autoimmune diabetes markers islet-specific 

autoantibodies can be found in the peripheral blood of people with an initial diagnosis of T2DM2,6,7 . 

These individuals, reclassified as having LADA, account for 2-11% of the whole population with 

T2DM, with frequencies varying by region (FIG.2).  

Two factors constrain the epidemiological data available . First, the error to assume that those 

presenting with diabetic ketoacidosis (Box 1) have T1DM might be as high as 50% and can especially 

occur in adult-onset cases13,14. Second, immune markers of T1DM lack specificity. For example, 
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using glutamic acid decarboxylase (GAD) serum autoantibody (GADA) detection essays with 99% 

specificity in a cohort with adult-onset diabetes in whom the likelihood of T1DM is ~10%, would 

have a certain rate of false positivity15. The more specific the assay, the lower the false positive rate 

and various approaches have sought to reduce that false positive rate by modifying the antigen, e.g. 

GAD N-terminal truncation, or using high affinity assays, e.g. electrochemiluminescence and 

bridging-type ELISA16-18. Clinicians should be aware of these issues and additional biomarkers are 

needed to classify cases (see also section “Classification and diagnosis”). In this regard, the presence 

of other organ autoimmune disease might help in identifying people with diabetes with higher 

probability of presenting with pancreatic autoimmunity. In particular, organ-specific endocrine 

autoimmunity (such as thyroid or adrenal autoimmunity) and other autoimmune disorders (such as 

celiac disease and autoimmune gastritis) develop more frequently in T1DM than in T2DM19, which 

has also been confirmed in LADA20,21.  

[H2] Risk factors for LADA 

About half of inheritable childhood-onset T1DM is attributed to variation in human leukocyte antigen 

(HLA) alleles but, in adult-onset cases, that heritability is much lower with lower twin concordance 

rates, lower high-risk HLA heterozygosity, lower HLA Class I risk and higher frequency of protective 

HLA alleles5,22. As a result, although genetic risk scores have been developed to aid the 

discrimination between T1DM and T2DM23, the altered and reduced genetic risk in adult-onset 

T1DM has not been shown to be predictive24. Thus, genetic risk scores are not widely used in clinical 

practice in this setting. Genetic susceptibility remains relatively constant in stable populations over a 

couple of generations, yet, the incidence of T1DM and T2DM has increased substantially. By 

implication, non-genetic factors may be common to both forms of diabetes25,26. A Norwegian study 

indicated a strong effect of a family history of diabetes as a risk factor for LADA25. The presentation 

of LADA was associated with increased bodyweight, physical inactivity, smoking and low birth 

weight followed by adult overweight, similar to the risk factors for T2DM development. Of note, the 

risk of overweight was most prominent in individuals with a family history of diabetes27,28. Metabolic 

syndrome, a proxy for insulin insensitivity and overweight, can be identified in ~85% of cases with 

T2DM and in ~40% of those with adult-onset T1DM29. Potential links between childhood adiposity 

and diabetes risk likely reflect stress on insulin secretory networks that maintain glucose homeostasis 

and glucose disposition and could be, in part, genetic, even for T1DM, given that childhood adiposity 

genetic variants were positively and causally associated with T1DM risk30.  

A potential beneficial effect on the autoimmune process by consumption of fatty fish and by moderate 

alcohol consumption was also seen27,28,  and processed red meat was associated with increased risk 

of LADA, whereas no association was found for unprocessed red meat25,28,31-33 [. 
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In addition, in one study, a healthy lifestyle (BMI <25 kg/m², moderate-to-high physical activity, a 

healthy diet, no smoking and moderate alcohol consumption) was found to have a possibly positive 

effect on the risk of LADA development as well as on T2DM presentation; BMI <25 kg/m² conferred 

the largest risk reduction for both LADA  and T2DM28. These important observations may potentially 

provide guidance for preventive measures in future interventional trials. 

 

 [[H1] Mechanisms/pathophysiology 
 
The pancreas comprises an exocrine portion consisting of acinar cells, which secrete digestive 

enzymes (amylase, digesting starch, trypsinogen and chymotrypsinogen). Together with ducts they 

make up 98-99% of the pancreatic tissue. Hormone-secreting endocrine cells found in the Islets of 

Langerhans make up the remaining 1-2% of the pancreas34. These islands comprise 70% of β-cells, 

which secrete insulin and amylin, glucagon-secreting α-cells,), somatostatin-secreting δ-cells, 

ghrelin-secreting ε-cells and PP cells, which secrete pancreatic polypeptide. 

 In addition to active insulin, β-cells secrete C-peptide, a peptide that is cleaved from the larger 

molecule pro-insulin and used to measure endogenous production of insulin. In autoimmune diabetes, 

β-cells are the predominantly affected cell type, undergoing damage by the immune system, although 

other endocrine and exocrine cells may also be affected35. 

 

[H2] Development of autoimmune diabetes 
 
Autoimmune diabetes develops over a period of months and years before the onset of symptomatic 

disease. Accordingly, a suggested staging model for T1DM may apply to both those who have LADA 

and those who have a slower onset of symptomatic diabetes in adulthood36. This model, (FIG. 3) 

suggests that there are long pre-symptomatic, normoglycaemic periods in which detectable immune 

changes occur, which include the generation of anti-islet autoantibodies and autoreactive T 

lymphocytes. These immune changes occur in individuals who have a genetic predisposition, which 

interact with environmental factors, but the precise contribution of the components of this interaction, 

and the nature of this interaction is not fully understood.  This period is followed by dysglycaemia 

and finally symptomatic diabetes, when β-cell function is insufficient to maintain glucose 

metabolism, leading to symptoms of diabetes. In this model, relating to staging of autoimmune 

diabetes36, it is conceivable that the presence of fewer predisposing genetic variants for T1DM and 

more predisposing genetic variants for T2DM may lead to a flattening of the curve in stage 1 and 

stage 2 of the autoimmune diabetes model, for example in those who have phenotypic manifestations 
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of diabetes later in life. The possibility then arises not only that immunological changes manifest later 

but also that the condition progresses more slowly. This heterogeneity would then be explained by 

different risk factors leading to a continuum of risk, rather than a precise cut off that would be 

designated T1DM. 

 

[H2] Islet pathology  
In individuals with either T1DM or T2DM, pancreatic mass is reduced37. As the cells that produce 

insulin and glucagon account for a very small proportion of the total pancreatic mass, it is surprising 

that the total organ mass has been found to be reduced. In a meta-analysis37, the I2 measure of 

heterogeneity between studies assessing pancreatic volume by ultrasonography, CT and MRI is large, 

and quantification of the reduction varies between studies, as it depends on the parameter measured 

and the method of analysis. A Chinese study in individuals aged 30-75 years revealed by CT that 

pancreatic volume was reduced in those with LADA (55.5+2.5 cm3), compared with control 

individuals (69.6+2.2 cm3). However, this reduction was less than in individuals with classic adult-

onset T1DM (47.7+2.7 cm3)38 . A post mortem study of pancreas pathology in individuals diagnosed 

with T2DM  found reduced β cell mass in those positive for islet autoantibodies or HLA genotypes 

HLADR3 or HLADR4 (high risk for autoimmune diabetes) compared with those negative for 

autoantibodies39. These observations suggest a loss of both exocrine and endocrine tissue in those 

with pancreatic autoimmunity. A feature of autoimmune diabetes, not generally seen in T2DM, is the 

presence of insulitis. Insulitis is defined as lesions  with ≥15 CD45+ cells, indicating the presence of 

haematopoietic cells and inflammation, immediately adjacent to islet endocrine cells in a minimum 

of 3 islets40. Insulitis is uncommon in people presenting with AOA diabetes and was reported in only 

29% of those aged 15-40, studied within a month of diabetes onset34. Even in younger individuals 

presenting with T1DM, the pathological manifestation of insulitis is heterogeneous and there is a 

distinct difference in both frequency and type of CD45+ immune cells found in the islets of individuals 

<7 years of age presenting with T1DM compared with older individuals. The CD45+ immune cells in 

those with T1DM are CD8+ cytotoxic T cells and CD20+ B cells, although other immune cell types, 

such as macrophages, dendritic cells and CD4+ T cells, have also been observed. CD8+ T cell 

cytotoxicity can take a number of forms, including direct damage of insulin-producing cells and 

indirect damage due to the production of inflammatory cytokines, which include IFN-g, TNF-a, IFN-

 a and IL1-b,  and induction of apoptosis; however, it is not clear in humans which mode of death is 

most prominent. The role of the CD20+ B cells is even less clear, as antibodies produced by B cells 

are not thought to be directly pathogenic. However, B cells also produce cytokines, can present 

antigens to T cells and seem to be an important part of the immune pathogenesis of T1DM. There are 
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also greater numbers of insulin-deficient islets41 in those presenting at <7 years of age compared with 

those > 13 years of age, who generally have more insulin-containing islets and less insulitis. However, 

even for those who have had T1DM for many years, some islets may not be affected. This 

heterogeneity, where there may be greater numbers of insulin-containing islets and also fewer islet 

that display insulitis  is more pronounced in older individuals.  The presence of insulitis and greater 

loss of insulin within the islets occurs suggests immune destruction of the b cells, and seems to be 

part of the spectrum of autoimmune diabetes that has a more aggressive immune pathogenesis in the 

islets in the young. High-resolution analysis, using single-cell RNA sequencing, has provided new 

insights into immune cell types involved in insulitis35and demonstrates not only that β-cells show 

activation of genes that are associated with stress and autophagy but also that ductal cells upregulate 

genes involved in apoptotic, metabolic and immune responses, indicating the involvement of ductal 

cells in the immune pathogenesis. 

Pancreatic scintigraphy using interleukin 2 (IL-2) radiolabeled with technetium-99m (99mTc) 

confirmed that activated T cells infiltrate the pancreas in those with LADA, indicating the presence 

of insulitis in both T1DM and LADA42. In addition, heterogeneous islet infiltration with 

predominantly CD8+ T cells and macrophages was observed in pancreas samples of individuals with 

LADA, similar to individuals with older age onset T1DM43. Of note, a T cell response may also occur 

in the absence of the classic islet autoantibody markers of pancreatic autoimmunity44. This condition, 

termed T-LADA, seems to be characterized by a more rapid β-cell functional decline than T2DM, 

despite the absence of known islet autoantibodies45. Indeed, although LADA is routinely diagnosed 

by detecting islet autoantibodies, these are markers of immune activity only and not the effectors of 

β-cell destruction, which is mainly caused by islet antigen-specific CD4+ and CD8+ T cells. 

In addition, pancreatic tissue from individuals with T1DM shows evidence of enteroviral 

infection46,47, as well as increased expression of MDA5, a viral sensor in α-cells and β-cells of the 

pancreas48. Given the lag between initiation of autoimmunity and the diagnosis of T1DM, it is not 

currently possible to prove a causative role. These findings have not been specifically observed in 

people who had a diagnosis of LADA. 

[H2] Autoantibodies 
 
Islet autoantibodies act as immune activity markers and their detection can help to distinguish an 

autoimmune from a non-autoimmune type of diabetes. Islet autoantibodies detected with standardized 

assays include GAD autoantibodies (GADA), tyrosine phosphatase IA2 antibodies (IA2-A), zinc 

transporter isoform 8 autoantibody (Znt8A), and insulin autoantibody (IAA)1. Individuals with higher 

levels of GADA show a greater loss of insulin secretory capacity and present with clinical features 

similar to childhood T1DM, such as a higher prevalence of other autoimmune disorders49-51. In 
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addition to GADA levels, the specific GAD epitope recognized by autoantibodies may differ between 

patients and is related to different clinical features. In studies measuring GADA recognising middle 

and COOH-terminal GAD epitopes, people who have LADA were found to be younger, have lower 

serum C-peptide levels (indicating lower endogenous insulin production), increased risk of thyroid 

autoimmunity, higher GADA levels, and are more likely to be insulin treated compared with those 

with only NH2-terminal reactive GADA52. Similarly, immunoreactivities against different IA2 

protein domains characterize distinct LADA phenotypes: IA2-A directed against the intracellular 

epitopes is associated with lower waist circumference, healthier lipid profile (higher HDL cholesterol 

and lower triglycerides), lower prevalence of hypertension and higher prevalence of other 

autoimmune disorders53. 

 

[H2] T lymphocytes 

In addition to autoantibodies, other immune manifestations of LADA include the identification of 

autoreactive T cells, which are reactive to pancreatic autoantigens. Autoreactive CD8+ cytotoxic cells 

are a major subset of T cells that can damage islet β cells, recognising a number of target antigens 

within the islet β cells that include proinsulin and GAD (Fig. 4). Autoreactive T cells are deleted in 

the thymus via central tolerance processes, as they recognise self-antigens that are strongly presented 

in the thymus, which trigger T cell apoptosis54. However, if T cells recognise the self-antigens poorly, 

they may not be deleted but released to the periphery. Many autoreactive T cells are weakly reactive 

to self-antigens, and are not deleted, but when encountering their target antigens, presented by MHC 

molecules, they can become activated and cause damage54.  Furthermore, autoreactive T cells may 

respond to post-translationally modified self-antigens, representing neoantigens that are not presented 

in the thymus.  T cells may recognise these neoantigens as foreign and become activated, possibly 

causing autoimmunity. These post-translational modifications are potentially linked to β cell stress55. 

This has been shown for forms of T1DM with a rapid onset and might also occur in slower-onset 

autoimmune process. However, in addition to CD8+ cytotoxic cells, regulatory T (Treg) cells also 

have a role in the regulation of pathogenic cells, and the balance between pathogenic and regulatory 

cells contributes to the development of autoimmunity. In T1DM, the heterogeneous group Treg cells 

have been intensively studied, as many T1DM susceptibility loci that include IL2, CTLA4, IL10, 

PTPN2 and IL2RA could influence effector T cells as well as Treg cells56-58. In one subset of 

CD25hiCD4+ Treg cells originating in the thymus, the transcription factor FOXP3 is used as a marker 

of CD4+ Tregs. Using multiparameter flow cytometric analysis to define Tregs, there is no clear 

evidence that Treg frequency is changed in T1DM59. Rather, the evidence suggests that Treg function 

is reduced59, and that effector T cells are also less suppressible60. Fewer studies have been done in 
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individuals classified as having LADA. In a Swedish study, people with LADA treated with diet and 

oral hypoglycaemic agents had increased peripheral blood CD4+ T cells expressing various levels of 

CD25 and the activation marker CD69, together with FOXP361. This finding contrasts with an earlier 

small study indicating downregulation of FOXP3, shown by qPCR62. However, function of these 

cells has not been tested, and caution should be applied to conclusions drawn when studying 

individuals treated with metformin and dipeptidyl-peptidase 4 (DPP4) inhibitors, as these may affect 

T cells.  This was shown in a study using sitagliptin in individuals with LADA who demonstrated a 

reduction in T-bet (TH1) and RORC (TH17), both transcription factors in inflammatory cells63. 

Alterations in Treg function have not been tested to understand whether this is different in individuals 

who have slower onset autoimmunity compared with individuals who have T1DM. 

 

[H2] Gut microbiota 
Various studies have examined gut microbiota in different types of diabetes, revealing differences in 

gut microbiota species in different geographical areas64  Focusing on the functions of bacteria rather 

than their identity might, therefore, provide more useful insights. Analysis of gut microbiota in 

Chinese individuals diagnosed as having LADA, as distinct from those with T1DM and T2DM, 

revealed differences in the structure and composition of the gut microbiota65. Specifically, 

metagenomic analysis, the study of the structure and function of the genetic material of bacteria, 

indicated a number of enterobacterial coabundance groups in the gut microbiota which differ among 

diabetes types.  The investigators also studied sequences of the bacteria. They demonstrated that there 

were different abundances of these groups of the microbiota, and also that there were differences in 

the biochemical and metabolic pathways used.  These included downregulation of amino acid (valine, 

leucine and isoleucine) degredation, as well as downregulated fatty acid biosynthesis in individuals 

with LADA, compared with healthy control individuals.  Furthermore, other metabolic pathways for 

amino acid, cofactors and vitamins were downregulated in LADA compared with T2DM. However, 

the presence or absence of GADA and varying medication regimens were also associated with the 

microbial differences. A decrease in bacteria that produce short chain fatty acids (SCFA) was noted 

in LADA individuals, even more than found in people with T1DM and T2DM65. These SCFA reduce 

chronic inflammation, pancreatic autoimmunity, strengthen gut barriers and alter intestinal hormones; 

notably, they also improve glucose metabolism and insulin sensitivity66. Although these data show 

correlative rather than causative associations, these observations confirm findings from studies 

focused on the development of T1DM, that have mainly been performed in children in which it has 

been possible to identify individuals at high-genetic risk and follow birth cohorts67. Much additional 

information has been obtained from The Environmental Determinants of Diabetes in the Young 
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(TEDDY) samples, in which high-risk individuals from 6 geographical regions were followed from 

3 months of age, collecting monthly stool samples together with information on diet, medications, 

childhood illnesses, and other aspects of life experience, in order to document environmental, genetic 

microbial, immunological contributors to T1DM develepment67. Weak associations were observed 

for some bacteria. However, more important were the loss of functionally protective properties, also 

relating to fermentation and synthesis of SCFA in the commensal gut flora, which were lost in those 

at risk of T1DM who seroconverted to anti-islet autoantibodies. In Chinese individuals with T2DM, 

a wide range of functional characteristics of the gut microbiome included increased markers of 

membrane transport of sugars and branched chain amino acids among others, but a decrease in 

bacterial chemotaxis, biosynthesis of the SCFA butyrate and metabolism of cofactors and vitamins68. 

A study of European women who had T2DM, impaired or normal glucose tolerance  indicated broadly 

similar results of microbial functions, and included enrichment for bacteria involved in glycerolipid 

metabolism and synthesis of fatty acids69. Thus, despite the noted differences, reduction or loss of 

SCFA-synthesizing bacteria was common in all groups, which may be a key environmental feature 

influencing both metabolism and immunity. 

 

[H2] Immunotherapy-related autoimmune diabetes  

Considerable improvement in clinical outcomes in cancer patients have been observed with immune 

checkpoint inhibitors that include programmed cell death protein-1 (PD-1) inhibitors (such as 

Nivolumab or Pembrolizumab), programmed death-ligand 1 (PD-L1) inhibitors (such as 

Atezolizumab, Avelumab or Durvalumab), and cytotoxic T cell-associated protein 4 (CTLA-4)  

inhibitors (such as Ipilimumab). However, an increase in immune-mediated adverse events has 

occurred, including diabetes associated with PD-1 or PD-L1 inhibitor use70. The presentation of 

diabetes includes fulminant T1DM and diabetic ketoacidosis, occurring with life-threatening illness 

and deaths71. Of note, the fact that these phenomena have been observed in older individuals might 

be due to these medications being used for cancers in older patients72. It is not clear why these 

immune-related adverse events only occur in some patients but underlying genetic susceptibility to 

autoimmune diseaseand the composition of the host microbiota may be contributory73. Although 

some instances of diabetes development have occurred in individuals with pre-existing islet 

autoantibodies, in others, autoantibodies developed only after treatment or autoantibodies have not 

been found at all73. Rather than a new type of diabetes, these instances may represent an extreme 

alteration of the regulatory immune cell balance in individuals who have a predisposition to 

autoimmunity. 
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[H1] Diagnosis, screening and prevention  
 

[H2] Clinical features 
The clinical presentation of AOA diabetes varies depending on insulin dependence at clinical onset 

of disease and β-cell loss rate over time (rapid vs slowly progressive autoimmune diabetes). 

Anthropometric indices reported in individuals with LADA vary between ethnic groups and specific 

clinical features, such as overweight and obesity, 74. In most studies, people with LADA have a lower 

prevalence of metabolic syndrome components (overweight or obesity, waist-to-hip ratio, 

hypertension and dyslipidaemia) than those with classic T2DM, but higher than in T1DM patients 
6,7,75,76. An intermediate level of β-cell dysfunction has been found in LADA compared with those 

who have T1DM, T2DM and/or MODY76-79 (FIG 1). This intermediate clinical status was evident in 

European cohorts and confirmed in a large study from the United Arab Emirates 6,7,77,80,81. However, 

differences between adults with diabetes testing positive or negative for GADA were less pronounced 

in other studies including different cohorts, such as drug-naïve individuals or Asian populations.82,83. 

In this regard, the LADA China study indicated that clinical features varied less between islet cell 

antibody-negative individuals than between those who were antibody-positive83. Similarly, a study 

from Singapore including a transethnic comparator from Germany showed that, in contrast to Asians 

individuals, Europeans with diabetes, testing GADA- and/or IA2-A-positive, had a lower mean BMI 

compared with antibody‐negative participants84. Mixed phenotypic features have also been reported 

in a studys from Nigeria, West Africa85. Population-based studies reporting incident diabetes cases 

have better defined the phenotypic spectrum of people with AOA  diabetes, confirming that GADA-

positive individuals with incident diabetes have a higher frequency of acute symptoms, a lower BMI, 

a lower waist circumference and are younger at the time of diagnosis than GADA-negative 

patients86,87. C-peptide reserve was more compromised in people with LADA compared with those 

with T2DM, but people with LADA were less insulin resistant87. Studies from Scandinavia 

emphasized diabetogenic lifestyle factors, such as higher BMI, smoking, and lower level of physical 

activity, in association with LADA2,26,33,88. In addition, in a cross-sectional study from Germany, 

people with LADA had higher insulin sensitivity indices than matched patients with T2DM and 

presented with better β-cell functional parameters than patients with T1DM, independent of BMI 78. 

An enhanced rate of functional decline of β-cells is indeed a common clinical feature of LADA 

compared with T2DM, even though the high variability of the β-cell destruction in longitudinal 

studies was seen in conjunction with insulin resistance25,77,81,89,90. In a large, long-term, observational, 

population-based study (Genetics of Diabetes Audit and Research in Tayside Study (GoDARTS)), 

similar to the UK Prospective Diabetes Study (UKPDS), the rate of metabolic deterioration was found 
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to progress two times faster in GADA-positive than GADA-negative individuals with T2DM81,91. In 

addition, poorer glycaemic control with higher HbA1c levels was in LADA compared with  T2DM 

in the same cohort77,92,93. In the interventional Action to Control Cardiovascular Risk in Diabetes 

(ACCORD) study, aiming for intensive glycaemic control to lower cardiovascular disease  risk, lower 

levels of C-peptide and islet autoantibody positivity predicted the risk of severe hypoglycaemia 

during intensification of diabetes treatment, indicating glucose instability as an additional clinical 

feature of LADA94.  

Overall, individuals with LADA have a clinical phenotype differing from that observed in people 

with classic T2DM and young-onset as well as adult-onset T1DM and MODY (Table 1). However, 

the reported differences need to be carefully considered, as there may be potential bias in study 

designs, namely selection of more severe clinical cases in centre-based surveys versus individuals 

identified in population-based studies. In addition, these studies are often limited by small sample 

sizes. Consequently, generalizability of diabetes-variant specific anthropometric indices may not be 

helpful for clinical decision making81,92. Furthermore, time trends of specific features need to be taken 

into consideration, such as the obesity epidemic and the continuous change of lifestyle risk factors6,74. 

 

[H3] Interplay of immunological and clinical feature  
Clinical heterogeneity due to islet cell autoantibody levels  is also found in LADA. The NIRAD Study 

and others highlighted a bimodal distribution of GADA levels that identified two subpopulations, 

those with high and low GADA levels20,49,83,95. Compared with individuals with LADA who had low 

GADA levels, those with high levels had more prominent traits of insulin deficiency and a profile of 

more severe autoimmunity, higher levels of HbA1c, a lower BMI and a lower prevalence of metabolic 

syndrome. Differences in clinical and biochemical features were substantiated by genetic studies 

showing that the frequencies of HLA genotypes, in particular the DR3-DQ2 haplotype but not DR4-

DQ8, decreased linearly from high to low GADA concentrations49. Similarly, the PTPN22 risk 

genotype was also associated with high GADA concentrations in patients with LADA96. Conversely, 

the transcription factor 7 like 2 (TCF7L2) risk allele for T2DM was associated with low, rather than 

high, GADA levels90,97.  

Similarly, differences in clinical features associated with IA-2A recognized epitopes were observed. 

IA-2A directed against the construct IA-2 (256-760)98-100 are more frequently found in people with 

LADA testing negative for GADA and who show a phenotype resembling classic T2DM, with higher 

BMI and waist circumference, and lower rates of progression towards an insulin-dependent state. Of 

note, the simultaneous positivity to two or more autoantibodies (for example both GADA and IA-

2A) is associated with a more rapid progression towards insulin therapy and a clinical phenotype 
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more similar to younger onset T1DM, that is,[ low BMI and low prevalence of other cardiometabolic 

conditions, such as hypertension or dyslipidemia7. ZnT8As were more common and more persistent 

in patients with LADA compared with those with adult-onset T1DM, but their presence was not 

associated with specific clinical characteristics101. In addition, adult-onset diabetic patients positive 

for both GADA and IA-2A had lower waist circumference and higher fasting glucose levels than 

those positive for both GADA and ZnT8A102. 

 [H2] Classification and diagnosis 
 
Misclassification of the diagnosis of classic adult-onset T1DM is rare but, as it always requires insulin 

ab initio and frequently presents with metabolic acidosis, the diagnosis and classification of non-

insulin requiring autoimmune diabetes remains a matter of debate. To increase awareness and to 

harmonize diagnostic procedures, in 2005, the Immunology of Diabetes Society (IDS) established 

three main criteria of LADA including: adult age of onset (>30 years); presence of any islet cell 

autoantibody; and absence of insulin requirement for at least 6 months after diagnosis103. 

Other scientific societies have proposed different nomenclature and diagnostic criteria. For example, 

the Japan Diabetes Society considers “slowly progressive insulin-dependent (type 1) diabetes mellitus 

(SPIDDM)” for the condition in which the main diagnostic criteria are the presence of GADA and/or 

ICA at some time during the disease course, absence of ketosis at onset of DM, and no need for 

insulin treatment to correct hyperglycaemia in the first 3 months after diagnosis. Of note, age of 

disease onset is not used as a criterion104,105.  

In the WHO classification of diabetes from 2019, LADA has been described as a hybrid form of 

diabetes characterized as a “slowly evolving immune-mediated diabetes of adults” with often features 

of metabolic syndrome, presence of GADA as a single autoantibody and greater retained β-cell 

function106. However, the 2019 WHO classification did not provide conclusive criteria, due to the 

controversies around classification of LADA as a separate diabetes entity or as a subtype of T1DM.  

In 2020, a consensus statement from an international expert panel, confirmed the chief IDS criteria 

for LADA92. The panel selected additional measures, such as reduced frequency of metabolic 

syndrome features in LADA, in addition to lack of disease-specific cardiovascular outcomes 

compared with classic T2DM. The panel highlighted the quantification of C-peptide serum or [plasma 

levels at baseline and repeated measurements at 6-month intervals to reflect the functional β-cell 

reserve. According to the panel’s view, therapeutic response can be predicted by measuring 

autoantibody levels  to various islet cell autoantigens (GADA as the most sensitive marker; other 

ICA, IA-2A, ZnT8A, and tetraspanin 7 autoantibodies less frequent) and by evaluating β-cell 

function92. 
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, The most recent 2022 ADA recommendations for classification and diagnosis of diabetes includes 

LADA in T1DM, due to the autoimmune nature of β-cell destruction1. The ADA statement pinpoints 

a key role for C-peptide testing and its potential role in treatment choices. Overall, the definition of 

LADA remains a matter  of debate.  

 

[H2] Differential diagnosis of adult-onset diabetes  
 
One of the complexities in the diagnostic process is the inherent uncertainty in diagnosing the various 

diabetes entities. This problem is not confined to LADA, but it is also true for other diabetes subtypes 

presenting in adulthood107. Usually, diabetes onset in adulthood is classified as T2DM, unless an 

overt insulinopenic phenotype is present, leading almost immediately to the diagnosis of T1DM. 

However, this diagnostic bias in people who present with adult-onset diabetes leads to a quite 

remarkable number of misdiagnoses92,107,108. Consequently, LADA and MODY are likewise 

misdiagnosed as different T2DM subtypes109,110. To stratify individuals with adult-onset diabetes, the 

following clinical parameters have been shown to be highly relevant: age at diabetes onset, presence 

of ketone bodies, HbA1c and glucose levels at onset, BMI, C-peptide measurements to quantify β-

cell reserve at diabetes onset as well as during follow-up, and presence or absence of the various islet-

cell autoantibodies. 

 

[H1] Management 

The overall aim of autoimmune diabetes care is to prevent acute and chronic complications, in 

particular ketoacidosis (Box 1), microangiopathy and macroangiopathy (Box 2), and to improve life 

expectancy and quality of life of people living with the disease. Clinical guidance for managing AOA 

diabetes has been provided by recent international consensus statements92,111, which detail the clinical 

recommendations for the complex, multidisciplinary and individualized approach needed for the 

successful treatment of the condition. This Primer provides an overview of the available data on the 

efficacy and safety of pharmacological and non-pharmacological strategies tested for the treatment 

of hyperglycaemia and of β-cell dysfunction in people with AOA diabetes.  

 

[H2] Dietary and lifestyle modifications  

The cornerstones of any diabetes therapy are following a healthy diet in terms of variety and amount 

of nutrients, which can be personalized based on individual preferences, and safely engaging in a 

combination of aerobic and resistance exercise, considering both acute and long-term beneficial 

effects on blood glucose levels 111. Both personalized medical nutrition therapy and physical activity 
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programs improve oxidative stress, glucose and lipid metabolism, and cardiac fitness, as well as act 

with many other pleiotropic effects on organs that are negatively affected by diabetes 112-114. Exercise 

in particular is associated with improvements in insulin sensitivity, which may lead to reduced insulin 

requirement, better lipid profile and better endothelial function, decreased inflammatory cytokines 

and improved cardiovascular health115-117. This translates, clinically, into improvements of blood 

glucose control, weight loss in overweight or obese individuals, reduction of cardiovascular risk 

factors, and decreased morbidity and mortality118,119. Nonetheless, literature on the effects of lifestyle 

modifications in AOA diabetes is limited. However, it can be reasonably hypothesized that avoiding 

risk factors, such as physical inactivity, overweight, sweetened (with caloric sweeteners) beverages, 

or low consumption of fatty fish, may help in the management of the disease111. Thus, it is 

recommended that all people with autoimmune diabetes should engage in physical exercise on most 

days and they should refer for individualized medical nutrition therapy provided by nutritionists with 

proven skills in providing diabetes-specific nutritional advice111.  

 

[H2] Insulin therapy 

Insulin therapy is the most straightforward therapeutic choice in patients with  AOA diabetes, as it 

augments low levels of endogenous insulin caused by the autoimmune destruction of pancreatic islets, 

with proven efficacy for controlling hyperglycaemia, preventing diabetic ketoacidosis and preserving 

β-cells111. However, the correct timing for starting insulin therapy may vary considerably depending 

on the natural course of the disease, as some people experience an absolute insulin deficiency from 

the clinical onset of the disease, whereas others maintain adequate β-cell function for decades 

(FIG.3)77,120. In the latter cases, some clinical features (GADA levels, presence of multiple pancreatic 

autoantibodies, age at onset and BMI) may help predict the progression towards an insulin-dependent 

state7,50. However, there is a lack of data from randomized, controlled trials with sufficient length of 

follow-up to draw conclusions about the optimal time for starting insulin therapy. In this regard, 

measurement of C-peptide concentration, which reflect endogenous insulin secretion capacity, may 

aid in the decision to start insulin in people with AOA diabetes (FIG.5)121. In the LADA expert 

consensus report, three broad categories of C-peptide levels were introduced by the panel to 

determine treatment recommendations: C-peptide levels <0.3 nmol/L, which should recommend a 

multiple-insulin regimen as for T1DM; C-peptide values in the 'grey area' ≥0.3 and ≤0.7 nmol/L, in 

which a modified ADA/EASD algorithm for T2DM is recommended considering insulin in 

combination with other therapies to modulate β-cell failure and limit diabetic complications; C-

peptide values >0.7 nmol/L, which may enable the use of a modified ADA/EASD algorithm as for 

T2DM but considering the potentially progressive nature of LADA by monitoring C-peptide to adjust 
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treatment 92. Importantly, a systematic review showed that insulin therapy provides better metabolic 

control than sulphonylurea treatment, a class of oral anti-diabetes drugs that stimulate insulin release 

from the pancreas by binding to and closing ATP-sensitive K+ channels on the cell membrane of β 

cells (mean HbA1c difference -1.3% (95% CI -2.4 to -0.1; P = 0.03)122. In addition, insulin was found 

to maintain pancreatic β-cell function better than sulphonylureas in most studies included in the 

systematic review122. Data from a post-hoc analysis of the UKPDS suggest that early intensive insulin 

therapy may be associated with early protection from cardiovascular death in LADA123, but these 

findings need to be confirmed in interventional randomized controlled trials. Overall, insulin, alone 

or in combination, currently remains the main pharmacological intervention for most people with 

LADA, with multiple daily injections (basal-bolus schemes) required for people with severe insulin 

deficiency (C-peptide levels <0.3 nmol/l)92. To date, no study has specifically investigated whether 

insulin dosing should differ between LADA and T2DM; thus, insulin titration strategies might follow 

those suggested in the ADA/EASD algorithm for T2DM, especially in people with C-peptide ≥0.3 

nmol/L92. 

The main adverse effects associated with insulin therapy are hypoglycemia, body weight gain and 

skin reactions, such as local inflammation and lipodystrophies. Hypoglycemia is the most worrisome 

adverse event of insulin therapy, associated with increased morbidity and mortality124. The risk of 

hypoglycemic events is particularly high in people with T1DM because α cell dysfunction often 

associates with β cell dysfunction, ultimately resulting in an impaired glucagon response to low blood 

glucose levels125. Thus, education of patients on managing insulin doses, correct insulin 

administration technique, strict self-monitoring of blood glucose values and efficacious correction of 

hypoglycemic events is a crucial component of insulin therapy. In this regard, adults with T1DM on 

insulin therapy may benefit from the implementation of carbohydrate counting, which may help to 

achieve better HbA1c values126,127. 

 

[H2] Non-insulin pharmacological therapies 

Pharmacological therapy other than insulin may be used in people with LADA, either alone or in 

addition to insulin therapy, depending on the β cell reserve of the patient92. Although there is 

agreement about the importance of avoiding sulphonylureas in people with LADA due to an increased 

risk of hypoglycemia128 and worse metabolic control and acceleration of β-cell loss122, other agents 

may be considered, such as insulin-sensitizers, drugs acting on the incretin system, amylin analogs 

and gliflozins. Of note, formal regulatory approval for non-insulin therapy in autoimmune diabetes 

is lacking for many compounds and varies depending on country. Thus, the prescription of anti-
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hyperglycemic therapy other than insulin in people with LADA should be considered individually 

and will often be off-label prescriptions. 

 

[H3] Insulin sensitizers 

As the prevalence of overweight and obesity in people with autoimmune diabetes is increasing129, 

insulin resistance is also rapidly becoming an important issue. Insulin resistance has always been 

considered a key pathological finding among adults with LADA77,81. Metformin is the most 

commonly prescribed insulin-sensitizer worldwide and has been shown to improve insulin sensitivity 

also in youth with T1DM130. Although the mechanism of action of metformin has not been completely 

elucidated, it seems to address insulin-resistance mainly by inhibiting the mitochondrial respiratory 

chain in the liver and leading to activation of 5' adenosine monophosphate-activated protein kinase 

(AMPK)131. No trial has been conducted specifically in people with AOA diabetes, nor has metformin 

been approved by regulatory agencies for use in autoimmune diabetes. The good safety profile and 

low cost of metformin, as well as the need to address insulin resistance in an increasing proportion of 

patients have led to increasing off-label use of this drug as adjunctive therapy in adults with 

autoimmune diabetes. 

Thiazolidinediones, such as rosiglitazone and pioglitazone, are insulin-sensitizers working as 

peroxisome proliferator-activated receptor (PPAR) gamma agonists132. Two studies tested 

rosiglitazone in people with slowly progressive autoimmune diabetes, suggesting a potential benefit 

of thiazolidinediones in preserving β cell function133,134. However, this observation is limited by the 

small sample size of the available studies and should be balanced with potential risks of bone 

fractures, macular edema and weight gain, and with the known limited efficacy of thiazolidinediones 

in lean patients135. Another small study in ten patients with LADA showed a faster disease 

progression in those treated with pioglitazone alone compared with those treated with metformin 

alone136. 

 

[H3] Glucagon-like Peptide 1 Receptor Agonists 

Glucagon-like peptide 1 receptor agonists (GLP1-RAs) are pharmacological analogues of the incretin 

hormone GLP1 used for the treatment of T2DM. The relevance of this drug class in the therapeutic 

algorithm of T2DM has increased because of the strong evidence showing their metabolic and 

cardiovascular benefits137. As incretin hormones were shown to reduce apoptosis of human β cells in 

vitro138, GLP1-RAs were hypothesized to ameliorate or preserve endogenous insulin secretion in 

people with autoimmune diabetes. In a phase 2 trial in adults with new onset autoimmune diabetes 

and residual β cell function, liraglutide slowed β cell decline when used in combination with anti-IL-
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21, but no benefits were found with liraglutide alone139. In a randomized 52-week phase 2 trial using 

albiglutide in newly diagnosed AOA diabetes, no appreciable preservation of β cell function was 

observed140.  

Nonetheless, GLP1-RAs might still improve metabolic control in people with LADA, as suggested 

by a pooled post-hoc analysis of the AWARDS-2, -4 and -5 trials showing that dulaglutide was as 

effective in reducing HbA1c values in participants with adult-onset diabetes testing positive for 

GADA as in those testing negative141. Of note, insulin-treated patients were excluded from 

AWARDS-2 and -5, and patients on >3 daily insulin injections were excluded from AWARDS-4, 

suggesting that results of this post-hoc analysis are restricted to people with limited insulin deficiency. 

Indeed, a reduced glycemic response to liraglutide and exenatide was shown in a small sample of 

people with AOA diabetes (n=20), mostly with low C-peptide levels and on insulin treatment, 

compared with T2DM142. In summary, GLP1-RA may be an attractive opportunity for aiding the 

treatment of people affected by LADA, especially for those with a certain amount of residual βcell 

function. 

CD26/Dipeptidyl-peptidase 4 inhibitors (DPP4i)  

DPP4i (also known as gliptins) are oral compounds currently approved for the treatment of T2DM. 

DPP4i act on the incretin system by reducing the activity of DPP‑4, the enzyme responsible for the 

degradation of GLP1 and GIP143. Due to the potential effects of incretin hormones on β cell survival, 

gliptins have been tested in LADA with both the aims of preserving β cells and ameliorating glycemic 

control. Sitagliptin, saxagliptin and linagliptin are the three most studied DPP4i in people with 

LADA. Overall, studies conducted so far show that gliptins are generally well tolerated and, in some 

cases, effective in lowering blood glucose levels144-146. Data about a potential role for DPP4i in 

preserving β cell viability and function are conflicting. Small clinical trials from China suggest that 

sitagliptin may maintain β cell function over time147,148, altering the predominant phenotype and the 

balance of different T cell subsets63. Similarly, saxaglitpin was associated with improvements of 

markers of β cell function alone or in combination with Vitamin D3145,149. By contrast, sitagliptin did 

not result in better endogenous insulin secretion compared with insulin treatment in a Scandinavian 

21-month randomized trial in adults with recent-onset LADA without clinical need for insulin 

treatment150. 

 

[H3] Sodium-glucose Cotransporter 2 inhibitors (SGLT2i)  

SGLT2i (also known as gliflozins) improve blood glucose concentrations by inhibiting the 

reabsorption of glucose in the renal proximal tubule, which leads to increased glucose excretion in 
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the urine. Although approved for the treatment of T2DM, the insulin-independent mechanism of 

action has led to hypothesis that these drugs might help in ameliorating the metabolic control also in 

people with autoimmune diabetes. Since the DEPICT and the InTandem clinical trials program 

showed improvements of glycemic control associated with the use of dapagliflozin and sotagliflozin, 

respectively, in adjunct to insulin in adults with T1DM151-153, both drugs were approved by the EMA 

as adjunctive therapy in addition to insulin for the treatment of people with T1DM and a BMI ≥27 

Kg/m2 and uncontrolled blood glucose. The Pharmaceutical and Medical Devices Agency (PMDA) 

in Japan also approved dapagliflozin and ipragliflozin154 for the treatment of people with T1DM in 

adjunct to insulin. However, market authorization of SGLT2i for the treatment of autoimmune 

diabetes was rejected by the FDA because of an increased risk of diabetic ketoacidosis. In 2021, the 

EMA-approved indication of dapagliflozin in T1DM has also been withdrawn by the pharmaceutical 

company AstraZeneca because post-approval product information changes for dapagliflozin specific 

to T1DM were thought to cause confusion among physicians treating patients for other approved 

indications (T2DM, heart failure and chronic kidney disease), despite there being no new safety or 

efficacy concerns155. The risk-benefit ratio associated with the use of SGLT2i in people with T1D 

can be improved by careful patient selection and education, use of lower SGLT2i drug doses, 

avoiding drastic reduction of insulin doses and use in the subgroup of patients with BMI ≥27Kg/m2 

156,157. Thus, although no clinical trials have been specifically designed and conducted in LADA, 

gliflozins might be an attractive therapeutic option for people with this form of autoimmune diabetes, 

who often retain a certain number of functioning β cells and are more often affected by concomitant 

overweight or obesity.  

 

[H3] Pramlintide  

The amylin analog pramlintide suppresses glucagon secretion and delays gastric emptying, resulting 

in benefits on glycemic control and body weight158. The drug is FDA approved for patients with 

T1DM and T2DM who receive insulin therapy. As its efficacy has not been separately reported in 

LADA, no specific recommendations for this group of patients can be made.  

 

[H2] Immune modulatory drugs 

Several immune-modulatory drugs, including non-antigen-specific immunomodulators (such as 

CTLA‑4 immunoglobulin, IL‑1 and IL-6 receptor antagonist, anti-TNF-alpha, anti-CD20 and anti-

CD3 monoclonal antibodies, tyrosine kinase inhibitors) and antigen-specific immunotherapies (such 

as the alum-formulated recombinant GAD, GAD-alum) alone or in combination with other agents, 

have been tested to improve immune dysregulation and to induce immune tolerance in T1DM159,160. 
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Most results from immune-intervention trials did not show long–term efficacy in T1DM and, to date, 

no immunotherapy is available to cure autoimmune diabetes.  

The milder rate of β cell loss and the higher prevalence of residual endogenous insulin production 

often seen in people with adult-onset, compared to young-onset, autoimmune diabetes could make 

AOA diabetes an attractive setting for immune-modulatory drugs. In a small phase 2 placebo-

controlled immune-intervention trial conducted in individuals with LADA, GAD-alum was used to 

induce immune-tolerance in GADA-positive non–insulin requiring patients, showing a good safety 

profile with evidence of a beneficial effect on β cell function161. Another phase 2 trial suggests that 

the tyrosine kinase inhibitor imatinib could help in preserving βcell function in adults with recent 

onset T1DM, although questions related to the ideal dose, duration of therapy and safety remain to 

be resolved162. 

 

[H1] Quality of life 
 
Health Related Quality of Life (QoL) attempts to capture subjective perception and assessment of the 

individual’s health and well-being. To date, QoL assessments in AOA diabetes have been limited. 

Fortunately, QoL instruments are increasingly being included in new trials evaluating diabetes 

interventions as they may be used in healthcare policy and coverage decisions. Tools that have been 

applied to the adult-onset population include the Audit of Diabetes-Dependent Quality of Life 

(ADDQoL-19) questionnaire and the Diabetes Treatment Satisfaction Questionnaire (DTSQ)163,164. 

QoL in all forms of diabetes may depend on many sociodemographic and clinical factors. 

Complications related to the disease, treatment modalities, in particular insulin use, and the co-

occurrence of obesity may considerably lower the QoL in patients with diabetes165,166. Multiple 

studies in broad T1DM populations, including paediatric T1DM, have observed that QoL and 

treatment satisfaction are lower with increasing age, female sex, lower education level, insulin 

treatment and obesity, presence of diabetic comorbidities, poorer glycemic control and lower 

socioeconomic status165-167.  

Important in understanding QoL is treatment satisfaction, a subjective measure that assesses one’s 

experience of treatment including ease of use, adverse effects, and efficacy. Treatment satisfaction is 

also influenced by demographic characteristics, such as age, educational level, and income168. In 

those characterized as having LADA, hypertension, longer disease duration and a larger waist 

circumference have been associated with lower diabetes-specific treatment satisfaction QoL168. 

Individuals with insulin-treated LADA have a worse average weighted impact score compared with 

corresponding non-insulin-treated T2DM patients. To determine the average weighted impact score, 
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the impact of diabetes on each domain is weighted according to the importance of the domain to the 

patient's QoL. The presence of diabetic retinopathy, longer disease duration, lower education level 

(less than a primary education) and former smoking also had a negative effect on the average 

weighted impact score168.  

People with LADA, diabetic retinopathy and insulin treatment had a lower QoL than any other 

combination of diabetes type, retinopathy status and insulin treatment. Furthermore, insulin-treated 

LADA patients who did not have diabetic retinopathy had a lower QoL than non-insulin-treated 

T2DM patients168. Perception of increased hyperglycemia frequency was found to be higher in the 

LADA group (87.5%) than in the T2DM group (53.9%) and, surprisingly, the T1DM group too (71%; 

p < 0.001 and p=0.039, respectively). Comparing insulin-treated subgroups, people with LADA 

treated with insulin had a higher hyperglycemia frequency perception than those who had T1DM 

(p=0.04) and those who had insulin-treated T2DM (p=0.05) 168. The higher blood glucose values 

often translate to an increased risk of complications, especially microvascular169,170, which in turn 

may have QoL implications (Box 2).  

 

 [H1] Outlook 
 

AOA diabetes likely encompasses different endotypes with phenotypes ranging from classic rapidly 

progressing T1DM with onset in adult life to LADA. There are many gaps in our understanding of 

AOA diabetes and the selection of optimal treatment approaches (FIG.6).  The absence of 

unambiguous, standardized definitions of subtypes such as LADA is one of the most vexing 

problems. Although the ADA does not formally recognize LADA as a specific type of diabetes, but 

instead includes all forms of diabetes mediated by autoimmune β-cell destruction under the category 

T1DM, other societies propose different definitions to reflect the slower disease progression often 

observed in AOA diabetes106,171. In fact, the 2020 international consensus on LADA found it 

challenging to define categorical immunogenetic and phenotypic features of LADA92. With different 

definitions used in the literature, defining potentially different subgroups makes it difficult to compare 

the results of various studies of adult-onset diabetes due to the differences in inclusion criteria and 

the heterogeneity of the phenotypes of those enrolled.  

The measurement of only one autoantibody, using assays with low specificity in populations with 

low prevalence of autoimmune diabetes, can lead to false-positive T2DM patients being grouped with 

those who have true autoimmune diabetes This could result in misleading findings of an intermediate 

phenotype by combining two populations with very different phenotypes rather than the existence of 

a true intermediate phenotype15. Findings for such a hypothesis include a study that reported a more 
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T1DM-like phenotype in a German population with multiple autoantibodies and an inverse 

correlation between number of antibodies and markers of metabolic syndrome172. A similar finding 

was made in a population in China: where those with high levels of GADA had poorer β-cell function 

and fewer diabetic complications than those with low GADA levels, who were similar to T2DM 

patients, except that they were prone to develop ketosis more frequently173. In a Japanese population, 

an inverse correlation of metabolic syndrome with increasing GADA quartile was observed174. 

Standardization of definitions, implementation of a diagnostic decision tree, and other improvements 

in the diagnostic approach to subtypes of AOA diabetes should greatly improve classification among 

adult-onset subtypes of diabetes. Classification could be aided by utilizing both autoantibodies and 

C-peptide92. Autoantibodies with standardized assays include GADA, IA2-A, insulin autoantibody, 

and ZnT8A, with GADA being the most prevalent autoantibody among adults, even in China where 

GADA is less dominant175. High levels or the presence of more than one autoantibody increases the 

likelihood of autoimmunity15. These autoantibodies have all been well characterized for disease 

prediction in young-onset T1DM, but the relative role in diagnosis and prognostic value of ZnT8A 

and insulin autoantibody in AOA diabetes has not yet been thoroughly studied.  

In addition, different GADA and IA 2-A assays may skew towards different epitope reactivities which 

has implications in identifying affected individuals. False-positive results with autoantibody assays 

can occur and are reduced by using higher-specificity assays, such as N-terminally truncated GADA, 

using higher titer thresholds, or only testing in higher prevalence populations by restricting testing to 

those with clinical features suggestive of T1DM15. It remains unclear how best to screen for 

autoimmunity in adults diagnosed with diabetes and the clinical implications of identifying such 

individuals have not yet been elucidated either. 

A prediction model for diabetes classification that combines clinical features, islet autoantibody test 

results (GADA and IA2-A), and genetic risk score is under development 

(https://www.diabetesgenes.org/t1dt2d-prediction-model/)176. However, it is currently only 

applicable to patients aged 18-50 years at diagnosis and of white European origin. 

Most commonly, autoimmunity is identified in diabetes using autoantibodies, but T cell assays may 

provide information to further define individuals with adult-onset diabetes177,178. In patients 

diagnosed as having T2DM, measurable T cell responses are associated with lower stimulated177 and 

fasting178 C-peptide levels. However, T cell reactivity in autoantibody negative individuals is 

unexpectedly high177,178, indicating that further work is required to elucidate the underlying 

mechanisms of these associations. 

Compared with pediatric studies of T1DM, few large studies of AOA diabetes have been conducted. 

Most AOA diabetes studies have focused on North America, Europe and China. Thus, racial and 
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ethnic diversity in the study of AOA diabetes need to be increased. Large, well-defined cohorts are 

needed to better understand the subtypes, natural history, disease burden, and complications of this 

disease.  

Finally, specific studies of disease modifying therapies in AOA diabetes are required. As disease 

progression tends to be more rapid in young individuals with T1DM179, it is believed to be easier to 

show response to immune interventions in young individuals, as the effect of the change should be 

large compared with placebo, over a relatively short period of time. This has diminished interest in 

studying interventions in AOA diabetes and this population is often used to show safety before 

initiating pediatric diabetes studies, instead of performing the large and long studies in the adult 

population that would be required to clearly demonstrate benefit. Even in these studies, inclusion is 

often restricted to the subset of individuals treated with exogenous insulin. Similarly, non-insulin 

diabetes therapies have mostly been studied in the larger, more readily recruited, T2DM populations. 

Although autoantibody-positive subgroup analysis has occasionally been reported from these large 

T2DM trials, more randomized controlled comparative trials of therapeutic agents in AOA diabetes 

are still required. 
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BOXES 1 

 2 

BOX 1. Diabetic ketoacidosis.  3 

 4 

Diabetic ketoacidosis (DKA) is a preventable, acute and life-threatening complication of diabetes 5 

which occurs in case of absolute or relative insulin deficiency180. The heterogeneous rate of β cell 6 

loss in people with adult-onset autoimmune (AOA) diabetes translates into different risks of DKA 7 

between adults presenting with a classical T1DM onset (high DKA risk) and those affected by 8 

LADA181,182, who are in part protected from DKA by the retention of a certain amount of endogenous 9 

insulin secretion. Nonetheless, both patients and physicians should be aware about the higher risk of 10 

DKA occurrence in AOA diabetes than in T2DM, and should be ready to recognize and address DKA 11 

risk factors. Although less studied in adults than in young people, the risk factors include: barriers to 12 

healthcare, low socioeconomic status, female sex, ethnicity, poor metabolic control, low self-13 

management skills, omission of insulin therapy, psychiatric disorders, infections, alcohol and drug 14 

abuse111,181. In general, however, the risk of DKA decreases with older age at onset183.  15 

  16 
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Box 2. Chronic complications  17 

Chronic complications that may affect people with adult-onset autoimmune (AOA) diabetes resemble 18 

those with type 2 diabetes, even though the rates and timing of presentation may differ.   19 

Macrovascular complications  20 

Up to 2017, no difference in the prevalence of cardiovascular disease between people with LADA 21 

and those with T2DM was found in a systematic analysis77. A more recent study showed that a slightly 22 

better cardiometabolic profile observed in LADA compared to T2DM translates into a lower 23 

incidence of cardiovascular events123. This suggests that modifiable cardiovascular risk factors should 24 

be addressed in LADA as vigorously as in T2DM. 25 

Microvascular complications  26 

Data about the prevalence of microvascular complications, such as diabetic retinopathy and 27 

nephropathy, in LADA compared with T2DM77,170,2 suggest that these complications are rarer in 28 

autoimmune diabetes close to diabetes diagnosis, whereas an opposite pattern is seen later in the 29 

disease history. This is mainly explained by the usually worse metabolic control obtained during the 30 

first years after diabetes onset compared with T2DM170, which stresses the importance of promptly 31 

recognizing and treating the disease to intensively control blood glucose values as soon as possible. 32 

Of note, in the UKPDS study, the largest longitudinal study with the longest follow-up comparing 33 

microvascular complications between LADA and T2DM, only few microvascular events were kidney 34 

events170. Thus, no solid conclusions about the rate of nephropathy can be drawn. 35 

Very few data about diabetic neuropathies in AOA diabetes exist. Available data confirm that the risk 36 

of developing neuropathy varies according to metabolic control and disease duration184,185. The 37 

prevalence of cardiac autonomic neuropathy, a frequent, life-threatening and often overlooked 38 

complication of diabetes, is similar between people with young-onset diabetes and AOA diabetes, 39 

but lower than in those with T2DM186,187. No solid data comparing prevalence and features of diabetic 40 

foot between LADA and T2DM have been published so far.  41 
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Figure Legends 42 

 43 

Figure 1: The adult-onset diabetes spectrum 44 

In people with adult onset-autoimmune (AOA) diabetes clinical and pathogenetic features of classical 45 

insulin-dependent type 1 diabetes mellitus (T1DM) and of type 2 diabetes mellitus (T2DM) 46 

frequently overlap, making it difficult to distinguish between these two types of diabetes. In this 47 

regard, most people with AOA diabetes do not require insulin at diagnosis and are commonly defined 48 

as having latent autoimmune diabetes in adults (LADA). Several features of LADA are in between 49 

those for classic T1DM and T2DM, for example, age at onset, genetic predisposition for T1DM, level 50 

of β-cell function, diabetic ketoacidosis risk, risk of progression towards an insulin-dependent state, 51 

severity of insulin resistance and prevalence of associated comorbidities (such as obesity, 52 

dyslipidaemia and hypertension). Furthermore, LADA is clinically and pathogenetically 53 

heterogeneous; people presenting with high glutamic acid decarboxylase serum autoantibody 54 

(GADA) concentrations and/or multiple islet autoantibodies (AAb) are similar to those with classic 55 

T1DM, whereas those with low GADA concentrations and/or multiple islet AAb are similar to those 56 

with T2DM It should be noted that MODY, which also may be diagnosed during adulthood, was not 57 

included in the figure because it most frequently occurs during the first decades of life and because it 58 

encompasses several different types of diabetes with monogenic causes differing in clinical features, 59 

and being itself a heterogenous group of diabetes subtypes. 60 

 61 

Figure 2. Frequencies of islet-specific autoantibodies in adults with a clinical diagnosis type 2 62 

diabetes mellitus.  63 

 Cross-sectional studies have suggested geographical differences in the proportion of adults with a 64 

clinical diagnosis of type 2 diabetes mellitus (T2DM) testing positive for islet-specific autoantibodies, 65 

mainly glutamic acid decarboxylase serum autoantibody (GADA). Of note, these finding might be 66 

due to methodological differences between studies, such as disease duration at the time of 67 

autoantibody testing or the assays used for autoantibody measurement. Data from6,7,49,75,82-85,95,188-198 68 

aFrequencies reported in small studies with a sample size <500 participants. 69 

 70 

Figure 3. Model for staging of autoimmune diabetes.  71 

Genetic predisposition to autoimmune diabetes may interact with environmental factors to trigger 72 

pancreatic autoimmunity. This pancreatic autoimmunity causes a progressive loss of β-cell function, 73 

which occurs during a pre-symptomatic period characterized by detectable immune changes and 74 
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normoglycemia (stage 1). When the percentage of residual functional β-cell mass is too low to 75 

maintain blood glucose values within normal ranges  a period of asymptomatic dysglycemia (stage 76 

2) starts. As the loss of β-cell capacity continues, exogenous insulin becomes necessary for survival 77 

. This insulin-dependent state, if not adequately treated, may be characterized by symptoms of insulin 78 

deficiency, such as weight loss, presence of urinary and blood ketones or diabetic ketoacidosis . In 79 

adult-onset autoimmune diabetes, the rate of β- cell loss differs among individuals. In people with 80 

classical type 1 diabetes mellitus (T1DM), the progression from the presymptomatic stages (1 and 2) 81 

to stage 3 is so rapid that in most cases the asymptomatic dysglycemia is often undiagnosed, whereas 82 

latent autoimmune diabetes in adults (LADA) is characterized by longer presymptomatic stages, 83 

which enable diagnosis of dysglycemia in a non-insulin dependent state. Nonetheless, among people 84 

with LADA, some individuals will progress to an insulin dependent state earlier (LADA early insulin 85 

dependent), or later (LADA late insulin dependent), although some people will retain sufficient β-86 

cell function and will not need insulin treatment (LADA non-insulin dependent).  87 

Stages 1, 2 and 3 in the figure refer to classical T1DM. Adapted from Ref.36 88 

 89 

 90 

Figure 4. Model for pathogenesis of autoimmune diabetes.  91 

 92 

[1. Genetic factors can lead to defective central and peripheral tolerance. Defective central tolerance 93 

allows naïve islet-reactive CD4+ and CD8+ T cells to leave the thymus and migrate to pancreatic 94 

lymph nodes. Defective peripheral tolerance alters the function of regulatory T cells, which balance 95 

and control potentially pathogenic autoreactive T cells. 2 and 3. Environmental factors (such as viral 96 

infections or altered commensal bacteria) could activate local T cells and B cells. Activation of T 97 

cells and B cells may also occur in the gut This activation enables their trafficking to pancreatic lymph 98 

nodes, or, in the case of activated B cells, trafficking directly to Islets of Langerhans.    4. In the 99 

pancreas, several possible mechanisms could lead to the death of β cells including a natural process 100 

of tissue remodelling, viral infection and endoplasmic reticulum stress due to high metabolic demand 101 

for insulin. Moreover, cytokines produced by infiltrating cells that include macrophages (IL1b and 102 

TNF)can contribute to apoptosis. Furthermore, damage of β cells  may occur related to β cell 103 

production of IFNα priming them further for immune cell destruction.  These events can lead to 104 

apoptosis of β-cells which releases β cell antigens. 5. Antigens released from apoptotic β cells are 105 

uptaken by dendritic cells, which migrate to the pancreatic lymph node. 6. Dendritic cells present β 106 

cell antigens to naïve CD4+ T cells in the pancreatic lymph node leading to activation of several 107 

possible helper (Th) subsets including Th1, Th2, Th17 and Treg. Dendritic cells also cross-present 108 
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antigens to CD8+ T cells in the pancreatic lymph node. 7. CD4+ cells can help B cell production of 109 

autoantibodies targeting β cell proteins. CD4+ cells may also assist in activation of CD8+ T cells. 8. 110 

Activated T and B cells traffic to the islets of Langerhans. 9. CD8+ cytotoxic T cell infiltration can 111 

induce lysis of β cells presenting self-antigen, via secretion of perforin, the apoptotic Fas–FasL 112 

pathway and inflammatory cytokines. 10. CD4+ Th1 cells secrete pro-inflammatory cytokines IFNg 113 

and TNF   which could induce β cell death and stimulate macrophages to produce reactive oxygen 114 

species, TNF and IL1β. These may augment β cell death.  115 

 116 

Figure 5. Diagnostic and therapeutic algorithm for LADA  117 

After diabetes diagnosis, islet autoantibodies (AAb) may be measured in adults with clinical 118 

features suspicious of autoimmune diabetes. Measurement of random C-peptide concentration may 119 

then aid in the decision to start insulin in people with adult-onset autoimmune (AOA) diabetes.  120 

Insulin therapy is essential in all patients with C-peptide levels <0.3nmol/L, who often require 121 

multiple daily insulin injections. Conversely, the decision to start insulin therapy may be delayed in 122 

people with C-peptide levels >0.3 nmol/L, who should be periodically reassessed to reconsider 123 

insulin requirement. Specifically, in people with AOA diabetes and C-peptide levels >0.7 nmol/L 124 

therapeutic strategies may be chosen according to the proposed algorithms for the treatment of type 125 

2 diabetes mellitus (T2DM),  while a slightly different algorithm may be used in people with C-126 

peptide ≥0.3-≤0.7nmol/L, who might benefit from an early introduction of basal insulin, especially 127 

if HbA1c is >9%. In these patients, GLP1-RA or SGLT2i may be suggested in a second therapeutic 128 

step, especially in the presence of established atherosclerotic cardiovascular disease (ASCVD) or 129 

chronic kidney disease (CKD). In this regard, the use of SGLT2i should be considered with caution 130 

in people with latent autoimmune diabetes in adults (LADA) because of the increased risk of 131 

diabetic ketoacidosis found in studies of type 1 diabetes mellitus (T1DM)a. Of note, formal 132 

regulatory approval for non-insulin therapy in LADA is lacking for many treatments and varies 133 

depending on country. Several regimens of insulin therapy can be used when needed. Basal insulin 134 

is administered to control hepatic glucose output and ketone production when fasting, whereas 135 

insulin bolus doses may be necessary to cover meals and to correct hyperglycemic episodes.  136 

bIn alphabetical order; preference for one drug instead of another should be based on clinical 137 

judgment. Adapted from Ref 92.  138 

 139 

 140 
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Figure 6. Priorities to address gaps in understanding of adult-onset autoimmune diabetes  141 

Adult-onset autoimmune (AOA) diabetes is a heterogeneous disease. This heterogeneity is likely a 142 

result of different pathological mechanisms, which have implications for treatment. Several gaps 143 

remain in accurate diagnosis and treatments for AOA diabetes, and knowledge of the natural history 144 

and underlying pathophysiology of this disease  145 
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Tables 146 

Table 1: Broad clinical features of diabetes subtypes 147 

Features LADA Classic or true 
T2DM 

Classic 
young-onset 
T1DM 

Classic 
adult-onset 
T1DM 

Carriers of 
mono-genic 
variants 

Age at diagnosis >30 years# Adulthood <20 years >20 years Before age 25 
or adulthood 

Symptoms of manifest 
hyperglycaemia 

Absent or 
subclinical  

Absent or 
subclinical 

Common Common Absent or 
subclinical 

Risk of acute 
complications at 
diagnosis 

Absent or low Absent or low Increased Increased Absent or low 

Presence of ketone-
bodies at diagnosis 

Absent Absent Present Present Absent 

Ketoacidosis Absent at 
diagnosis, risk 
in severely 
insulinopenic 
subjects during 
follow-up 

Absent at 
diagnosis, 
develops rarely 
in severely 
insulinopenic 
subjects during 
follow-up 

Rapid 
development 
unless patients 
receive insulin 
treatment 

Rapid 
development 
in subjects 
with no C-
peptide 
reserve 

Absent 

Family history of 
T1DM 

Negative or 
positive 

Absent Negative or 
positive 

Negative or 
positive 

Negative  

Family history of 
T2DM 

Negative or 
positive  

Common Negative or 
positive 

Negative or 
positive 

Positive 

BMI Normal, 
overweight, 
rarely obese  

Overweight or 
obese 

Underweight 
or normal 

Normal or 
overweight 

Normal 

Insulin resistance at 
diagnosis 

Increased, not 
as pronounced 
as T2DM 

Increased Absent Absent or 
increased 

Absent or 
increased 

HDL-cholesterol levels Normal Low Normal Normal Normal 

Islet cell antibodies Positive# Negative Positive Positive Negative 

GADA Positive Negative Positive Positive Negative 

Presence of multiple 
islet cell 
autoantibodies** 

Rarer than 
T1DM 

Negative Common Common Negative 

Insulin-requirement at 
disease onset 

None# None Yes Yes None 

Partial remission phase 
## 

No studies 
available 

Absent Common Common Absent 

Insulin requirement 
during follow-up 

Around twice 
as much as 
T2DM 

Lower rate than 
LADA 

Yes Yes Rare*** 

C-peptide at diagnosis Decreased but 
detectable 

Positive or 
highly positive 

Low or 
negative****  

Low or 
negative 

Positive 

Non-fasting C-peptide  ≤300 pmol/L 
or 300-600 
pmol/L, needs 
follow-up 
quantification 

≥600 pmol/L ≤300 pmol/L ≤300 pmol/L 300-600 pmol/L 

C-peptide decline at 
follow-up 

Quicker than 
T2DM, slower 
than T1DM 

Slow  Rapid Slower than 
young-onset 
T1DM 

Slow 

Thyroid autoimmunity Increased Rate of 
background 
population 

Increased Increased Rate of 
background 
population 
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Type A gastritis and 
Vit. B12 deficiency 

Increased Rate of 
background 
population 

Increased Increased Rate of 
background 
population 

Microvascular 
complications at 
diagnosis 

Lower rate 
than T2DM 

Can be already 
present 

Absent Absent Absent 

Risk of microvascular 
complications during 
follow-up 

Increased 
compared with 
T2DM 
(UKPDS data) 

Increased Increased Increased Variable, 
dependent on 
gene variant 

CVD risk at diagnosis Increased Increased Rate of 
background 
population 

Rate of 
background 
population 

Rate of 
background 
population 

CVD risk at follow-up Identical CVD 
risk to T2DM 

Increased Increased Increased Variable, 
dependent on 
gene variant 

#) predefined main IDS criterion/predefined component of LADA; clinical criteria presented are not categorial. BMI: 148 
wide-ranging level of indices can be seen in almost all DM subtypes, including LADA, T1DM and T2DM. 149 
##) Partial remission (PR), a period experienced by patients with autoimmune diabetes soon after diagnosis, characterized 150 
by transient recovery of islet β cell function resulting in low insulin requirements (less than 0.5 units/kg of body weight 151 
per day) and improved glycaemic control (HbA1c between 7% [53 mmol/mol] and 6% [42 mmol/mol])199,200 *) Compared 152 
with typical T2DM cases; **) Multiple islet-cell specific antibodies include ICA, IA-2A, ZnT8, tetraspanin 7 153 
autoantibodies and insulin-autoantibodies in particular in young-onset T1DM; ***) in cases with HNF1A - and HNF4A-154 
variants, progressive pancreatic β-cell dysfunction; ****) using standard C-peptide assays. 155 

 156 

 157 


