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Introduction

The first direct detection of a gravitational wave [1] has given further evidence for
Einstein’s theory of General Relativity and it has placed new perspectives on the
investigation of the Universe. The detection was made possible thanks to the up-
grades of the second generation detectors. The limit in sensitivity of gravitational
wave (GW) detectors is set by different noise sources. In particular, in the high fre-
quency band (above 200 Hz) it is dominated by shot noise. This noise is due to the
quantum phase fluctuation of the coherent vacuum field entering the interferometer
through its output port. As a solution to this limitation, the current generation of
gravitational wave detectors adopted a technique based on the injection of phase-
squeezed state, an idea initially proposed by Caves in 1981 [2]. A coherent state is
a minimum uncertainty state, which means it has minimum quantum fluctuations
on the two orthogonal quadratures. A squeezed state belongs to another class of
minimum uncertainty states, with non-classical distribution of noise, for which the
fluctuations on one quadrature are lower than those of a coherent state, whereas
the fluctuations on the orthogonal quadrature are higher. This class of states can
be produced by degenerate parametric down-conversion processes in second-order
nonlinear crystals and they were first observed in 1985 [3] in the radio-frequency
band. The first sensitivity enhancement of gravitational wave detectors by means of
injection of squeezed vacuum was first demonstrated by the British-German GEO
interferometer [4]. Later on, the effectiveness of this technique has been largely
demonstrated in gravitational wave interferometers thanks to which, in the last two
years, many new GW detections have been realized [5, 6]. During the last ob-
serving run O3, the injection of phase-squeezed vacuum from the dark port of the
GW interferometers (LIGO and Virgo) demonstrated the quantum noise reduction
(shot noise) in the high-frequency region of the detection band [7, 8]. Nevertheless,
frequency-independent squeezing with phase-squeezed vacuum has the counter-effect
of increasing radiation pressure noise at low frequency (below 100 Hz) [6]. Indeed,
the second generation of GW detectors, due to the sensitivity improvement,are fac-
ing the limit imposed by the quantum nature of light: the Standard Quantum Limit
(SQL) [2]. Hence, in order to enhance the detector sensitivity, also at low frequen-
cies, the injection of squeezed states with a frequency-dependent squeezing angle is
necessary, meaning that the ellipse representing the noise fluctuation is frequency
dependent and, at low frequency reduce the noise on amplitude, while at high fre-
quency on phase quadrature. This scientific reason lays below the realization of
table-top experiments for the production of frequency dependent squeezing (FDS)
in the audio frequency band of GW detectors. The FDS technique used in current
gravitational wave advanced detectors consists in the filtering of the Frequency Inde-
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pendent Squeezing (FIS) by means of suitable detuned cavity, so that the squeezing
ellipse will be rotated as a function of the frequency inside its linewidth [9, 10,
11]. One of the most interesting alternative techniques for FDS generation is the
ponderomotive technique. In this method, squeezing is generated by exploiting the
radiation pressure effect on suspended mirrors inside an optical cavity. The cou-
pling between the fluctuations of the optical field of the laser beam (coherent light)
and the mechanical motion of the mirrors, due to the radiation pressure from the
laser light, the so-called optical spring effect, creates a phase shift, in the light re-
flected from the mirrors, which depends on the intensity of the laser light incident
on the suspended mirror. This results in a quantum correlation between phase (shot
noise) and amplitude noise (radiation pressure noise), that is called ponderomotive
squeezing. We have designed a tabletop suspended interferometer with low dissi-
pation mechanical suspensions (monolithic suspensions) of the main optics, named
SIPS (Suspended Interferometer for Ponderomotive Squeezing), that will be sensi-
tive to radiation pressure noise in the audio frequency band of GW detectors.

The proposal of this thesis is to study and design a highly sophisticated mechanical
control for an optomechanical resonator such as SIPS, based on Pontryagin’s optimal
control theory. The optimal control problem is analysed considering opto-mechanical
interaction models developed from the model already described in literature for
acoustic waves reflection in a wave guide. Indeed, a crucial point for this type
of device is the mirror motion due to external mechanical disturbances, such as
vibration and acoustic noise, which can bring the interferometer out of its working
point. Moreover, the nonlinear optomechanical coupling is expected to generate the
emergence of spurious frequencies in the reflected light spectrum, with respect to the
monochromatic incoming laser spectrum. We consider how the control on suspended
mirror position could take into account such non-linear effects. To this aim, we will
apply Pontryagin’s approach to develop an integro-differential model that can be
used to build an adequate and optimized control system, which can be implemented
and tested in our small-scale suspended interferometer. As a first application, SIPS
interferometer will be used to test broadband quantum noise reduction through the
injection of entangled vacuum states, i.e. Einstein Podolsky Rosen (EPR) states,
generated by a non-degenerate Optical Parametric Oscillator (OPO), into a radiation
pressure noise limited interferometer [12]. The integration of these two experiments
is an important test bench for EPR squeezing technique applied to an interferometer
before any possible integration in the next future in large scale detectors. Moreover,
SIPS experiment will provide both a source of squeezed states by ponderomotive
effect, for a broadband quantum noise reduction, and a suitable test bench for the
optimal control algorithm we propose.

In Chapter 1 a brief introduction on the theory if General Relativity and on gravita-
tional wave interferometers which made possible the first GW detection is exposed.
Chapter 2 is focused on the description of quantum noise, which is one of tha ma-
jor noise sources limiting the sensitivity of GW interferometers, and on the current
method used to overcome this disturbance: the squeezing technique. In Chapter 3
SIPS (Suspended Interferometer for Ponderomotive Squeezing), a promising squeez-
ing experiment for quantum noise reduction in GW detectors and the main objective
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of this PhD thesis work, is described. The core of the work carried out during this
PhD and the major results and achievements are discussed in the final two chapters.
In particular, Chapter 4 retraces all the work done for the local control of the main
optics of SIPS, while Chapter 5 collects all the theoretical study and work performed
on the investigation for an optimised control of SIPS interferometer.





Chapter 1

Ground-based Gravitational Wave
detectors

Gravitational Waves (GWs) were predicted by the theory of General Relativity (GR)
formulated by Einstein in 1915. This theory states that a mass-energy distribution
determines the curvature of space-time, and the curvature itself induces the mo-
tion of masses. Therefore gravitational interaction is not simply a force acting on
space-time, but a property in the structure of space-time, due to the space-time cur-
vature. The motion of masses generates oscillation of space-time which propagates
at the speed of light. These propagating phenomena are known as Gravitational
Waves (GWs). To build an experiment for the detection of GWs it is necessary to
understand how this radiation interacts with the detector. In particular, the effect
of gravitational radiation is to change the distance between two free falling masses,
and the induced displacement is proportional to the gravitational wave amplitude
(very weak) and to the initial distance between them. Then, the GW detection
principle is based on the measurement of the variation of distance between two free
falling masses induced by a GW. The most suitable device for the detection of grav-
itational signal is an interferometer, that is very sensitive to the variation of the
distance between its mirrors (test masses). In particular a Michelson interferometer
with suspended mirrors is the most accurate instrument, since its optical configura-
tion is optimal to detect little differential displacements in its arms. The reason for
which the mirrors must be suspended is that a suspended mass, in a range of fre-
quency higher then its oscillation frequency, has a behavior similar to that of a free
falling mass. To measure GWs with frequencies of the order of a few hundreds Hz,
the optimal choice would be an arm length L of several hundred kms, that is why for
ground-based interferometers the solution (adopted in LIGO and VIRGO) is to use
Fabry-Perot arm cavities. To increase the detector sensitivity, other cavities (power
recycling, signal recycling, input and output mode-cleaner) are used. The detection
bandwidth, for a ground-based interferometer, ranges from roughly 10 Hz to 10 kHz.
The present most important interferometric detectors are Virgo, located in Cascina
(Pisa, Italy), LIGO in the US (one in Hanford, Washington and another in Liv-
ingston, Louisiana), GEO600 in Germany (Hannover) and one in Japan (KAGRA).
Another detector is under construction in India (LIGO-Indigo). Compared to the
original projects, work was carried out on the Virgo and LIGO sites to increase their
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6 CHAPTER 1. GROUND-BASED GRAVITATIONAL WAVE DETECTORS

sensitivity through various improvements, bringing the three interferometers to the
so-called Advanced state. The inauguration of Advanced Virgo (AdV) took place
on February 20, 2017. In this chapter, we will focus on the understanding of this
kind of devices: starting from the description of the interaction of GW signal with
ground-based interferometers, we will then describe their working principle and the
fundamental noises that limit their sensitivity.

1.1 Interaction of GW with free falling masses

In order to describe the interaction between GWs and a detector it is necessary to
recall some general relativity concepts, in particular two important tools are geodesic
equation and equation of geodesic deviation. Consider a curve parametrized by λ,
xµ(λ), we can write

ds2 = gµνdx
µdxν = gµν

dxµ

dλ

dxν

dλ
dλ2 (1.1)

For a time-like curve ds2 < 0,

c2dτ 2 = −ds2 = −gµνdxµdxν (1.2)

where τ is the proper time, that is the time measured by a clock carried along this
trajectory. Hence, we can replace λ with τ so that xµ = xµ(τ), and obtain

gµν
dxµ

dτ

dxν

dτ
= −c2. (1.3)

Among all possible time-like curves, fulfilling boundary conditions, xµ(τA) = xµA and
xµ(τB) = xµB, the classical trajectory of a point-like test mass is obtained minimizing
the action, that is

δS = −mδ
∫ τB

τA

dτ = 0. (1.4)

This gives
d2xµ

dτ 2
+ Γµνρ(x)

dxν

dτ

dxρ

dτ
= 0 (1.5)

that is the geodesic equation, the classic equation of motion of a test mass in the
curved background described by gµν , in absence of external non gravitational forces.
Now, let us consider two nearby geodesics, xµ(τ) and xµ(τ)+ξµ(τ), and their geodesic
equation. If |ξµ(τ)| is much smaller that the typical scale of variation of gravitational
field, taking the difference between the two geodesic equations, and expanding to
first order in ξ, we obtain the equation of the geodesic deviation

d2ξµ

dτ 2
+ 2Γµνρ(x)

dxν

dτ

dξρ

dτ
+ ξσ∂σΓ

µ
νρ(x)

dxν

dτ

dxρ

dτ
= 0 (1.6)

or, using the covariant derivative [13]

D2ξµ

Dτ 2
= −Rµ

νρσξ
ρdx

ν

dτ

dxρ

dτ
. (1.7)
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From this equation we can see that two near time-like geodesic are subjected to a
tidal gravitational force described by the Riemann tensor. Then, writing explicitly
the geodesic equation or the equation of geodesic deviation in the reference frame of
interest for us, we can understand the behaviour of test masses for the corresponding
observer. As detailed explaining in [13], GWs have an especially simple form in TT
gauge, then it is convenient to work in the TT reference frame and to understand
the physical meaning of it. To do this we start from the geodesic deviation. If test
mass is at rest at τ = 0, we find that

d2xi

dτ 2
|τ=0 = −

[
Γiνρ(x)

dxν

dτ

dxρ

dτ

]
τ=0

= −

[
Γi00(x)

(
dx0

dτ

)2
]
τ=0

= 0,

(1.8)

where the last equality follows from the fact that Γi00 = 0 for the condition imposed.
Therefore it is possible to see [13] that in this reference frame, particles that are at
rest before the arrival of a GW, stay at rest also after the wave has passed. The
TT frame coordinates stretch themselves at the passage of the wave, so that the
position of detector’s test masses, initially at rest remains unchanged. Obviously,
the fact that test masses position does not change to the passage of a wave does not
mean that a GW do not have a physical effect, but it is only due to the choice of the
coordinate system. The TT gauge illustrate the fact that, since GR is invariant under
coordinate transformation the physical effects are not expressed by what happens
to the coordinates. In fact, in this gauge the GWs have an evident physical effect
only on proper distance or proper time.
Consider two events at (t, x1, 0, 0) and at (t, x2, 0, 0) respectively. If a GW propagate
along the z axis, in TT gauge the coordinate distance x1−x2 = L remains constant,
while the proper distance is

s = (x2 − x1)[1 + h+ cosωt]
1
2

≃ L[1 +
1

2
h+ cosωt]

(1.9)

which means that proper distance is modulated by GWs. If we consider as the
two test masses the two mirrors of the detector, between which a light beam (laser
beam) travels back and forth, the time taken by the light to make a round trip
is determined by the proper distance. Then, the fact that GWs affect exactly the
proper distance means that measuring of the round trip time gives measure of the
passage of GWs. Although TT frame is the more suitable for GWs, it is convenient
to describe the interaction of GWs with the detector using a reference frame which
takes into account the features of the detector, that is proper detector frame. In
this frame, test masses are free to move and so to be sensitive to the passage of a
GW. Considering a small region of space, even in presence of GWs the metric can
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be treated as flat

ds2 ≃ −c2dt2
[
1 +

2

c2
a · x+

1

c4
(a · x)2 − 1

c2
(Ω× x)2 +R0i0jx

ixj
]

+ 2cdtdxi
[
1

c
ϵijkΩ

jxk − 2

3
R0jikx

jxk
]

+ dxidxj
[
δij −

1

3
Rikjlx

kxl
]
,

(1.10)

where a is the acceleration of laboratory with respect to a local free falling frame, Ωi

is the angular velocity of laboratory, the term 1
c4
(a · x)2 is a gravitational redshift,

the term 1
c2
(Ω×x)2 gives Lorentz time dilatation due to the angular velocity of the

laboratory, the term 1
c
ϵijkΩ

jxk is called "Sagnac effect", that is the Doppler effect
due to the rotation of the Earth, and finally, terms proportional to Riemann tensor
contain both the effect of the gravitational backgrounds and the effect of the GWs.
Choosing some particular situations (e.g., by suspending the test masses) it is pos-
sible to simplify the metric 1.10 and to reduce to the previous TT gauge case. The
effect of GWs is entirely in the term O(r2) and must compete with a number of other
effects of many order of magnitude. But GWs can have high frequencies compared
to all other effects, so that it is possible to have a frequency window where external
noise can be isolated from the signal, to obtain a significant sensitivity to the GWs.
If other effects are isolated, all terms in eq. 1.10 can be neglected, except the terms
proportional to Riemann tensor which represent the contribution of GWs. Applying
the geodesic deviation as in equation 1.7, we obtain

d2ξi

dτ 2
= −Ri

0j0ξ
j

(
dx0

dτ

)2

. (1.11)

If we consider only the linear order in h, we can write t = τ and equation 1.11 can
be rewritten as

ξ̈i = −c2Ri
0j0ξ

j, (1.12)

where time derivative is done with respect to the coordinate time of the proper
detector frame. Because of the Riemann tensor is invariant in the linearized theory,
it is possible to choose to compute it in the TT frame, where the GWs have the
simplest form [13]. Hence, the equation of the geodesic deviation in the proper
detector frame is

ξ̈i =
1

2
ḧTTij ξ

j. (1.13)

This equation states that in the proper detector frame, the effect of GWs on a
point-like mass m can be described in term of a Newtonian force

Fi =
m

2
ḧTTij ξ

j (1.14)

and therefore the effect of GWs on test masses of the detector can be described in
terms of Newtonian physics. It is important to remark that the expansions at the
first order in h in the computation of the equation of geodesic deviation is valid as
long as |ξi| is much smaller than the typical scale over which the gravitational field
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changes substantially. This length scale for a GW is given by λ
2π

. If a detector has a
characteristic linear size L, the equation of geodesic deviation can be used to study
its interaction with GWs if and only if

L≪ λ

2π
. (1.15)

In order to study the interaction of GWs with the detector, we use the language of
proper detector frame.

Figure 1.1: Deformation of a ring of free falling test masses due to GWs plus (+) and cross
(×) polarized. The effect of plus and cross polarization is illustrated on the top and on
the bottom, respectively.

We consider a ring of test masses initially at rest and we fix the origin of this reference
frame in the center of the ring (see figure 1.5). Then ξi represents the distance of a
test mass with respect to the origin itself. Let us consider a GW propagating along
the z axis with + polarization, and the ring of test masses located in the plane (x, y).
As mentioned before, GWs are transverse wave, then the component ḧTTij with i = 3
or j = 3 are zero and it is possible to see that the displacement is confined in the
(x, y) plane.
GWs are transverse not only from a mathematical point of view but for their physical
effect, so that test masses are physically displaced transversally with respect to their
direction of propagation. To study this motion we can write for the amplitude of
the GW

hTTab = h+ sinωt

(
1 0
0 −1

)
, (1.16)

where a, b = 1, 2 are the indices in the transverse plane. Defining (x0, y0) the unper-
turbed position and δx(t), δy(t) the displacement due to GW effect, we can write
ξa(t) = (x0 + δx(t), y0 + δy(t)), then equation 1.1 becomes

δẍ = −h+
2
(x0 + δx)ω2 sinωt, (1.17)

δÿ = +
h+
2
(y0 + δy)ω2 sinωt. (1.18)
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Since δx and δy are O(h+), to linear order in h it is possible to neglect those terms
with respect to the constant part x0 and y0. Then integrating:

δx(t) =
h+
2
x0 sinωt, (1.19)

δy(t) = −h+
2
y0 sinωt (1.20)

and similarly, for cross polarization

δx(t) =
h×
2
y0 sinωt, (1.21)

δy(t) =
h×
2
x0 sinωt. (1.22)

1.2 Detection principle of Michelson interferometer
The conceptual scheme of a Michelson ITF is shown in figure 1.2. In the plane of
the ITF arms, the two end mirrors can be considered in free falling condition (at
least in one direction and in a specific frequency range, if properly isolated from the
surrounding environment) and act as test masses. The monochromatic light beam
of a laser is sent to a beam splitter (BS) which splits the two beams in two equal
beams, propagating in the two orthogonal arms of the ITF and then reflected back
by two end mirrors located at Lx and Ly from the BS.

Figure 1.2: Layout of a simple Michelson ITF scheme.

After travelling back and forth through the arms, they recombine at the BS, and
part of the resulting beam goes to a photodetector placed at the output port of the
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ITF. Then, with this kind of device it is possible to measure the phase shift difference
acquired by the two beams recombining at the BS after their paths in the ITF arms,
caused by the difference in the optical path length between the two arms. If laser
light is considered as a plane wave, the effect of a GW (for example + polarized
and travelling perpendicularly to the ITF) can be explained as in the following [13].
If laser frequency is denoted by ωL, then the wavelength and wavenumber of laser
light are respectively λL = 2π

kλ
and kL = ωL

c
. The electromagnetic field coming from

the laser has the form
EL = E0e

−i(ωLt+kLx). (1.23)

Considering the phase changes due to the travel time of light in the two ITF arms
Lx and Ly, it is possible to find the total electric field that recombines at the BS as
[13]

Eout = −iE0e
−iωLt+ikL(Lx−Ly) sin kL(Lx − Ly) (1.24)

and write the power measured at the photodetector as:

Pout = |Eout|2 = E2
0 sin

2 [kL(Ly − Lx)], (1.25)

where E2
0 = Pin is the input power, which means that any variation in the length of

an arm results in a corresponding variation of the power at the photodetector. This
is the starting point to understand the GW’s detection principle of an interferometer,
as will be explained in the next subsection.

1.2.1 Interaction of GWs in TT gauge and in proper detector
frame

We recall from section 1.1 that, in the TT gauge description, a GW signal does not
affect mirrors and BS coordinates, while it affects the propagation of light between
the two fixed position of the mirrors. If we define the origin of the coordinate system
at the position of the BS, and the position of the two mirrors in the x and y arms,
respectively at the point with coordinate (Lx, 0) and (0, Ly), assuming that a photon
leaves the BS at a time t0, we can calculate the time of arrival of the photon after
a round trip in x and y arm. Consider a plus-polarized GW

h+ = h0 cosωgwt, (1.26)

after some math and neglecting terms O(h20) [13], we can write the time interval
spent by the photon for a round-trip in the x-arm, after it leaves the BS, as:

t− t0 =
2Lx
c

+
Lx
c
h(t0 + Lx/c)

sinωgwLx/c

ωgwLx/c
, (1.27)

where t0+Lx/c is the value of a time t1 at which the photon touches the end-mirror
in the x-arm. The analysis is similar for the y-arm, and gives

t− t0 =
2Ly
c

− Ly
c
h(t0 + Ly/c)

sinωgwLy/c

ωgwLy/c
. (1.28)
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This result can be physically understood if we use the proper detector frame [13], as
will be explained in the following. Starting from the observation time t, i.e. the time
at which the light recombines at the BS, we can use equations 1.42 1.28 to compute
the value of t0, that is the time at which light has started its round trip through x
and y arms that will be inserted in the phase term for the expression of the electric
field at the output. The electric fields of the light travelling in the x-arm and y-arm
can be written as:

E(x) = −1

2
E0e

−iωL(t−2L/c)+iϕ0+i∆ϕx(t), (1.29)

E(y) = +
1

2
E0e

−iωL(t−2L/c)−iϕ0+i∆ϕy(t) (1.30)

and the total electric field at the output is

Etot(t) = E(x)(t) + E(y)(t) = −iE0e
−iωL(t−2L/c) sin [ϕ0 +∆ϕx(t)], (1.31)

where, the phase
ϕ0 = kL(Lx − Ly), (1.32)

is a parameter that can be adjusted within the experiment by choosing the best
working point of the interferometer (as we will see later), while

∆ϕx(t) = h0kLL
sinωgwL/c

ωgwL/c
cos [ωgw(t− L/c)]

≡ |∆ϕx| cos [ωgw(t− L/c)] = −∆ϕy

(1.33)

and the total phase difference induced by a GW in a Michelson interferometer is
written as:

∆ϕMich(t) ≡ ∆ϕx −∆ϕy = 2∆ϕx. (1.34)

In these equations, ∆ϕx(t), is the quantity which contains the information on the
effect of the GW and, in the limit ωgwL/c≪ 1, eq. 1.33 reduces to

∆ϕx(t) ≃ h(t− L/c)kLL. (1.35)

If we compare this with eq. 1.32, we can see that the phase shift due to the GW is
formally equivalent to a change of Lx − Ly given by

∆(Lx − Ly)

L
≃ h(t− L/c) (1.36)

The total power observed at the detection photodiode is modulated by the incoming
GW signal as

Pout ∼ |Etot|2 = Pin sin
2 [ϕ0 +∆ϕx(t)] =

Pin
2

[1− cos (2ϕ0 +∆ϕMich)], (1.37)

where we recalled that ∆ϕMich = 2∆ϕx. Clearly, it is necessary to maximize
∆ϕMich(t). This translates into the fact that the response of the interferometer
is proportional to its arm-length, then to have a better sensitivity it is necessary to
build interferometers with long arms. In particular, the optimal length of the arms
is given by ωgwL/c = π/2 (where ωgw is the frequency of the incoming GW), i.e.
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L = λgw/4 [13]. Thus, in terms of fgw = ωgw/(2π), the optimal arm length depends
on the frequency of the gravitational wave as

L ≃ 750km

(
100Hz

fgw

)
. (1.38)

For such a value of L, the time shift induced by the GW on the light has the same
sign all along its round trip in an arm, so the effect adds up. For longer arms, the
GW amplitude inverts its sign during the round trip, so after this moment it starts
canceling the phase shift that the light already accumulated. Then, to measure
GWs with frequencies of the order of a few hundreds Hz, the optimal choice would
be an arm length L of several hundred kms, which are impossible to obtain in
a ground-based interferometer. That is why for this kind of interferometers the
solution adopted (as in LIGO and VIRGO) is to use Fabry-Perot arm cavities, as it
will be explained later in see section 1.2.3.
It is now useful, in order to better understand the physical meaning of the results
of equations 1.42 and 1.28, to describe the interaction in the proper detector frame.
This description is more intuitive because, in this frame, a GW does not affect
the light propagation between the mirrors, while its effect is in the displacement
of mirrors from their rest positions and the description is valid only in the limit of
L≪ λgw, that is

ωgwL

c
≪ 1. (1.39)

Then the mirrors displacement is determined by the equation of geodesic deviation
1.1, that is, in terms of more intuitive Newtonian forces. At the same time, if we
perform the computation to lowest order in ωgwL/c we can consider a flat space-time
metric to write the geodesic equation for mirror in both x and y arms, which can
be solved in a perturbative way in h0 and, to the zeroth order gives the equation of
motion of the mirror as [13]:

ξx(t) = Lx +
h0L

2
cosωgw(t). (1.40)

With these considerations, the round-trip time for a photon is

t− t0 =
2Lx
c

+
h0Lx
c

cos [ωgw(t0 + Lx/c)]. (1.41)

We can see that if we rewrite the eq. 1.42 in the TT gauge as

t− t0 =
2Lx
c

+
h0Lx
c

sinωgwLx/c

ωgwLx/c
cos [ωgw(t0 + Lx/c)], (1.42)

then the equation 1.41 in the proper frame coincides with results in TT gauge, except
for the function [sin (ωgwLx/c)]/[ωgwLx/c] replaced by 1, the lowest-order term of
its Taylor expansion, as it is expected since the proper frame computation is valid
only for the lowest order in ωgwLx/c. This discussion shows how the proper detector
frame picture is more intuitive than TT gauge description, since it allows to think
in terms of Newtonian forces acting on mirrors, with the light propagating in a
flat space-time. Nevertheless, this is an approximated results, while the TT gauge
description allows to obtain the exact closed form of the dependence on ωgwLx/c,
and for this reason is much more powerful [13].
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1.2.2 DC detection

We have shown that, in a Michelson interferometer, the mirrors represent the free
falling masses, while the interferometer’s arm-lengths are the segments located along
the polarization axis in TT gauge. Let us now describe, in a more practical way, how
this distance variation can be detected in such device. At the output port, where a
photodetector was placed, the amplitude field is

Eout = rBStBSEine
−ik(Lx+Ly)[r1e

−ik(Lx−Ly) + r2e
ik(Lx−Ly)], (1.43)

where r1 and r2 are the reflectivity of mirror on x-arm and on y-arm respectively,
while rBS and tBS are the reflectivity and transmissivity of the BS. Considering that
the power is the complex modulus of the field amplitude, and that |ri|2 = Ri and
|ti|2 = Ti, the output power can be written as

Pout = |Eout|2 = PinRBSTBS(R1 +R2 + 2r1r2 cosα), (1.44)

where α ≡ 2ϕ0 = 2kL(Lx −Ly) is the so-called static tuning [14] and it is the phase
difference at the BS between the two reflected beams. It is easy to see that output
power depends on the length difference of the two arms through the phase α, then,
as already mentioned in the previous section, we can experimentally adjust this
parameter. In particular, by changing this parameter we can obtain the maximum
and minimum power. Thus, for α = 0, which means that Lx = Ly, we obtain the
maximum power

Pmax = PinRBSTBS(R1 +R2 + 2r1r2), (1.45)

while α = π gives the minimum power

Pmin = PinRBSTBS(R1 +R2 − 2r1r2). (1.46)

These results are consistent with the equations 1.35, 1.36 and 1.37, derived in the
previous section using TT gauge, in the limit ωgwL/c≪ 1. By defining the contrast
of the interferometer as

C =
2r1r2

R1 +R2

=
Pmax − Pmin
Pmax + Pmin

(1.47)

we can write the power detected at the output, also called anti-symmetric port as

Pout = PinRBSTBS(R1 +R2)(1 + C cosα), (1.48)

which shows that Pout depends only on α, and then on the difference in lengths of the
two arms. If this difference is due to the passage of a gravitational wave, the beams
coming back from the two arms and recombining at the BS undergo an additional
different dephasing, given by the eq. 1.34. If we consider an almost perfectly 50:50
BS, which means RBS = TBS = 1/2, the power detected can be re-written taking
into account this effect. Since the expected amplitude of GWs is very small, we can
use the small angle approximation to obtain

Pout =
Pin
4

(R1 +R2)[1 + C cos (α +∆ϕMich)] =

=
Pin
4

(R1 +R2)[1 + C(cosα− sinα×∆ϕMich)]

(1.49)
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which means also a variation of the power detected at the output port, expressed at
first order in the gravitational wave amplitude as:

δPout =
Pin
4

(R1 +R2)C(sinα)∆ϕMich

=
Pin
4

(R1 +R2)C(sinα)(2kLh0L).

(1.50)

In this computation, we consider that the term [sin (ωgwLx/c)]/(ωgwLx/c) is close
to 1 for gravitational waves of frequency below few thousands of Hz [14]. Since the
difference in length is proportional to the GW amplitude, δPout directly contains the
information on the quantity we are interested in, i.e. we can detect a gravitational
signal using the power experimentally detected at the anti-symmetric port of the
ITF. If there were no sources of noise limiting the capability to detect the power fluc-
tuations, the best choice for the tuning of the ITF would be the one that maximizes
sinα in eq. 1.50. This corresponds to half of the maximum power detected at the
output port, a condition usually called gray fringe. The tuning that give maximum
and minimum powers, also given by equations 1.45 and 1.46, are called respectively
bright fringe and dark fringe. The dark fringe condition is the usual working point
for a GW detector (that is why the ITF output port is called dark port), and it is
achieved when the configuration is such that 2kL∆L = (1 + 2n)π with n ∈ Z. It
can be also better expressed as a relation between the optical path difference and
the wavelength of the circulating light:

∆L

λL
=

1 + 2n

4
. (1.51)

In the ideal case, where r1 = r2 = 1, the power in eq. 1.46 would be exactly zero. In
a real ITF there is a fundamental limitation to the accuracy of power measurements,
given by the shot noise, which is connected to the quantum nature of light and will
be better discussed in section 1.3.1. For the moment, it is enough to say that it is
possible to find the best tuning for a Michelson ITF by maximizing the signal-to-
noise ratio, written as [14]:

SNR(f) =
1

2

√
Pin
hpν

C sinα√
1 + cosα

kLSh(f), (1.52)

where Sh(f) is the spectral density of the gravitational wave signal, L is the average
length of the two arms, and Pin is the input power of the interferometer, and will
be better explained in section 1.3. We can write the maximum of the SNR with
respect to the static tuning α as

cosα =
−1 +

√
1− C2

C
. (1.53)

Since for highly reflective mirrors, which is usually the case of study, the contrast C
is close to 1, being cosα ≃ −1+

√
2(1−C), we can conclude that the best tuning for

a Michelson ITF is when it is very close to the dark fringe condition. This detection
technique is usually called DC detection [14].
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1.2.3 Fabry-Perot cavities

In the previous section we have seen that the response of the interferometer is
proportional to its arm-length, then to have a better sensitivity for measuring GWs
with frequencies of the order of a few hundreds Hz, it is necessary to build long arms
interferometers. Since this is technically impossible to obtain in a ground-based ITF,
the solution adopted for this kind of devices, such as Virgo and LIGO, is the use of
Fabry-Perot arm cavities, as shown in figure 1.3.

Figure 1.3: Scheme of a Michelson interferometer with Fabry-Perot cavities forming its
arms.

Here, the effective length of the arms is increased by substituting them with Fabry-
Perot cavities. A Fabry-Perot cavity is a linear optical resonator and when on
resonance, the light is reflected back and forth inside the cavity, increasing the
optical path travelled. This leads to a longer storage time for the light inside the
arms and, therefore, to an enhancing of the dephasing due to gravitational waves.
A detailed discussion on Fabry-Perot cavities as opto-mechanical resonators will be
done in chapter 5. The cavity is on resonance when its length is tuned in order to
have constructive interference between the field entering the cavity from the input
mirror and the one which has done a round trip inside the cavity. This leads to an
enhancement of the optical path, and then of the power stored inside the cavity, by
a large factor, which is related to a parameter called finesse of the cavity, defined
as the ratio of the free spectral range to the full width at half maximum [13]:

F ≡ ∆ωFSR
δωFWHM

=
π

2 arcsin
(

1−r1r2
2
√
r1r2

) ≃
π
√
r1r2

1− r1r2
, (1.54)
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where
∆ωFSR = πc/L (1.55)

is the Free Spectral Range, while

δωFWHM =
c

L

1− r1r2√
r1r2

(1.56)

is the Full Width at Half Maximum, or linewidth of the peak. Finesse is perhaps
the most important parameter of an optical cavity, because it gives the information
about how much the cavity is able to separate adjacent spectral orders, in relation
to the linewidth. So, it can be considered as a quality factor of the cavity. The
approximation in eq. 1.54 is valid for r1 ≃ r2 ≃ 1, that is the usual working condition.
Speaking in terms of the phase, it can change from 0, when the cavity is not resonant,
to π at resonance, and this extra phase accumulated due to a change on the length
of a Fabry-Perot cavity is given by [14]:

δϕFP =
2F
π
kLδL. (1.57)

If we compare this result with the change in phase for a simple Michelson which is

δϕ = kLδL, (1.58)

the effect of the resonant cavity is to amplify the optical response to a length change
δL. If we expand around the resonant point the cavity tuning, i.e. 2kLL = 2mπ+ ϵ
with ϵ≪ 1, then the slope is given by:

dϕ

dϵ
≃ 2F

π
. (1.59)

Then, when on resonance, the sensitivity of the FP cavity to a phase shift is enhanced
by a factor known as optical gain of the cavity, given by

GFP =
t21

(1− r1r2)2
≃ 1 + r1

1− r1
≃ 2F

π
, (1.60)

where we have considered the approximation for highly reflective mirrors, which
is however very well verified in many cases, including GW interferometers. With
this approximation, the circulating power inside the cavity is enhanced by a factor
that scales linearly with the finesse. Moreover, a higher finesse, with fixed cavity
length L, means narrower transmission lines, which will make the cavity locking
process harder. This is the case of the complex experiment presented in this thesis
and one of the main challenging goal of this work, as will be discussed in chapter 5.
Since we are interested in the behaviour of a Fabry-Perot cavity as a function of the
frequency, it is useful to define the storage time, which is the average time spent by
a photon inside the cavity, defined in terms of the finesse F as

τs =
2L

c

1

1− r21
≃ LF

cπ
, (1.61)
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where the last expression is obtained considering r1 ∼ 1. Equation 1.61 shows that
for a high finesse, light is trapped into the cavity for a long time. Therefore, for
a Fabry-Perot ITF the response to GWs can be described in the proper detector
frame, where we can obtain the result to lowest order in ωgwL/c. Indeed, in this
frame, even in the presence of a GW the light propagates along the geodesics of
flat space-time, while mirrors moves under the force exerted by GWs. This cause a
change in the length of the cavity, which induces a total phase shift for the reflected
field in a Fabry-Perot ITF, given by [13]:

∆ϕFP (t) = |∆ϕFP | cosωgwt, (1.62)

where
|∆ϕFP | =

4F
π
kLLh0 (1.63)

is the phase shift that would be induced in a Michelson ITF with arm length 2FL/π.
From this we can assure that the optical gain GFP ≃ 2F/π of a FP resonator repre-
sents not only the gain in stored power when on resonance, but also the dephasing
gain of the Michelson-Fabry-Perot configuration with respect to the Michelson alone,
with simply ϕ = ϵ an then a unitary slope in eq. 1.59. This simply means that the
effective interferometer length is amplified by a factor equal to G, and it represents
the advantage of using FP cavities as the arms of a GW ITF.
Nevertheless, it is possible to show that FP cavities behave like a low-pass filter. In-
deed, when the storage time is comparable to the period of the GW, as in eq. 1.52,
the effects of a GW are attenuated by the cavity, and the result above is the lowest
expansion in ωgwτs. To obtain the result for a generic ωgwτs, it is convenient to work
in the TT gauge, and after some computation, already done in [13], we can write
the phase shift of a Fabry-Perot Michelson ITF as

|∆ϕFP | ≃ h0
4F
π
kLL

1√
1 + (fgw/fp)2

, (1.64)

where, the frequency fp is the so-called pole frequency and can be written as

fp ≡
1

4πτs
≃ c

4FL
. (1.65)

This represents a cut-off frequency above which the effects start to be attenuated
by the cavity, since it is sensitive to variation of the mirrors positions only if they
happen with a frequency lower than the pole frequency fp of the resonator. For
Advanced Virgo, with Fabry-Perot cavities of F ∼ 450 and arm length of 3 km,
the cut-off frequency is around 50 Hz [15]. From equation 1.64 it is easy to see
that, for fgw ≪ fp we recover the result 1.63, found in the proper detector frame, as
we expected. It is useful to define the Transfer Function of an interferometer with
Fabry-Perot cavities, which better represents the frequency response of the device.
Then, writing equation 1.64 as |∆ϕFP | = h0TFP (f), the transfer function can be
defined as [13]:

TFP (f) ≃
4FL
π

kL
1√

1 + (1 + fgw/fp)2
. (1.66)

This discussion demonstrates that the use of an interferometer with high finesse FP
arm-cavities is the optimal choice to better amplify the GW strain signal.
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1.3 Detector sensitivity
GWs signal must compete with a number of other effects that are many order of
magnitudes larger. Due to the contribution of all these noises, the photodiode at the
output of the ITF will continuously record a phase shift δϕ. Thus, it is necessary
to achieve very high sensitivity in the frequency range of interest to reveal the GW
signal. It is fundamental to understand which is the sensitivity that can be reached
with a detector, defined by dominant noise sources in different frequency bands. The
GW amplitude that can be detected crucially depends on the kind of signal that we
are searching (burst, periodic, coalescence or stochastic signals). Since the typical
GW amplitude detected on Earth is of the order of (10−20− 10−22)[1/

√
Hz] and the

resulting displacement of the mirror of the ITF is ∆L = (1/2)h0L for (ωgwL/c≪ 1),
for L = 4 km, we have

∆L ∼ 2× 10−18m, (1.67)

which means that it must be possible to monitor length variation of the ITF arms
equal to 10−18m, that is less than the size of an atom, clearly too small. For an ITF
with Fabry-Perot cavities the corresponding measured phase shift would be

∆ϕFP ∼ 10−8rad. (1.68)

Nevertheless, the performance of GWs detectors are limited by several disturbances,
hence, it is essential to identify and suppress all noise sources which create spu-
rious displacements of the mirrors which are not due to a GW.Therefore, in the
next subsection, the dominant noise sources affecting the detector sensitivity will be
described.

1.3.1 Noise sources

Noise sources in a GW ITF can be distinguished in two categories: fundamen-
tal noises, which are fluctuations, coming from fundamental physics principle (i.e.
Heisenberg uncertainty principle), due to intrinsic properties of any physical sys-
tem and, in principle, impossible to be removed, and disturbance noises, which are
generated outside the detector and for this reason can be shielded. Noises show up
as random signals so it is useful to describe them in terms of statistical quantities.
Rather than the noise absolute value, is more important its size with respect to the
signal, the signal to noise ratio (SNR), defined as the ratio between the mean square
value of the signal s and that of the noise n

SNR =
⟨s2(t)⟩
⟨n2(t)⟩

. (1.69)

We can define
s(t) = n(t) + h(t) (1.70)

as the output signal of the detector, composed of a noise n(t) and a GW signal h(t),
so the detection problem is to distinguish h(t) from n(t). This has the advantage
that n(t) gives a measure of the minimum value of h(t) that can be detected, it is
therefore the quantity that we can compare directly to the effect of incoming GWs,
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expressed by h(t). In order to determine the sensitivity of the detectors it is worth
to define some useful quantities in the following:

• noise spectral density, Sn(f) (or noise spectral sensitivity) measured in unit of
1/Hz and linked to the noise as

⟨n2(t)⟩ =
∫ ∞

−∞
Sn(f)df (1.71)

• spectral strain sensitivity, or spectral amplitude, which is defined as
√
Sn(f)

and has dimension 1/
√
Hz. If the noise increases by a factor λ, n(t) → λn(t),

then Sn(f) → λ2Sn(f) and the strain sensitivity scales linearly.

This quantity is plotted in the sensitivity curve, obtained from the square sum of
the spectral densities of all the noises. It shows the minimum detectable amplitude
of a signal over the frequency range in which the detector is working. Then it repre-
sents the main reference in order to understand the limits and the performances of
the detector. The target is to maximize the signal caused by the passage of a GW,
that is δPout (see equation 1.50). In the absence of any noise, the interference condi-
tion that maximizes the sensitivity would be the grey fringe, meaning only half of the
power arrives to the detection port (for an ideal contrast) [15]. In practice there are
noises that limit the sensitivity and then the ITF working point will be different. As
shown in figure 1.4, the different noise sources are dominant in a different frequency
range. In particular, the lowest noise level that can be reached is the quantum noise.

Figure 1.4: Advanced Virgo expected sensitivity curve showing noise contributions from
different sources, for a full input power P=125 W [16].
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First, we will focus on the component of quantum noise, which limit the sensitivity
at high frequencies. Then we will present the different noises that contribute at low
frequency.

1.3.2 Quantum noise

Quantum noise represents the lowest noise level that can be reached by an interfer-
ometric gravitational wave detector and is one of the most important noise sources
limiting its sensitivity. For this reasons, many research and development activities
are currently devoted on the study of the technique called squeezing, that will
allow to improve the sensitivity beyond the quantum limit at high frequency and at
low frequencies. This is the important goal of the research work developed in this
thesis, which is important for an implementation of this technique in GW detectors
in the very near future. In particular, quantum noise can be distinguished in shot
noise, which arise from the statistical fluctuations in photons number, and radiation
pressure fluctuations acting on the suspend mirrors of the ITF. Both these noises
originate from the zero-point fluctuations (vacuum noise) of the electromagnetic
field entering from the interferometer dark port and are related to the uncertainties
of the two quadratures of the quantized electromagnetic vacuum field.
In the following, a semi-classical description of the quantum noise origin will be
given. Nevertheless, the deep understanding of this kind of noise needs a quantum-
mechanical explanation, that will be described in detail in the next chapter, together
with the technique used to reduce quantum noise, the squeezing technique.

Photon shot noise
The shot noise originates from the fact that laser light comes in discrete quanta, the
photons. In an interferometric detector we are interested in the measurement of the
output power, that can be expressed in terms of the number n of photons collected
at the photodetector, placed at the output port of the interferometer, during an
observation time τ :

Pout = ⟨N⟩ℏω
τ
. (1.72)

As will be explained in the next chapter, the formalization of laser light as a coherent
state leads to a Poisson’s statistic. So, if ⟨N⟩ is the mean number per counting
interval, then the probability distribution will be given by a Poisson distribution,

p(N) =
⟨N⟩Ne−⟨N⟩

N !
(1.73)

that, for ⟨N⟩ ≪ 1 can be approximated by a Gaussian distribution, with the stan-
dard deviation

σ =
√

⟨N⟩. (1.74)

Then the uncertainty on the output power measurement is

σP =
√

⟨N⟩ℏω
τ

=

√
τPout
hω

ℏω
τ

=

√
ℏωPout
τ

. (1.75)
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We now impose the condition for detecting a GW, δPout > σP , that can be written
as:

Pin
4

(R1 +R2)(sinα)(2kLh0L) >

√
ℏω
τ

Pin
4

(R1 +R2)(1 + C cosα)/2 (1.76)

So the smallest amplitude of the strain spectral density that we can detect due to
the shot noise is [15]:

hshot =
2

kLL

√
ℏω

τPin(R1 +R2)

√
1 + C cosα

C sinα
. (1.77)

As explained in section 1.2.2, our aim is to improve detector sensitivity by tuning
the free parameters. From eq. 1.77 it can be shown [14] that, in the presence of
shot noise, the optimal interference condition for an ideal interferometer is the dark
fringe, that means α = (2n + 1)π with n integer number. Considering also perfect
reflective mirrors, the ideal sensitivity is:

h̃shot =
2

kLL

√
ℏω
Pin

. (1.78)

Referring to eq. 1.52, we can find that the minimum detectable signal is defined as
the one having SNR = 1. For an ideal ITF, the best sensitivity is obtained with
C = 1, but this is not possible in practice, so the sensitivity for a real ITF is given
by [15]:

h̃shot =
2

kLL

√
ℏω

Pin(R1 +R2)

1√
1−

√
1− C2

, (1.79)

where we have considered the equation 1.53. For an ideal ITF with a continuous
wave laser with wavelength 1064 nm, 25 W of input power and Michelson arms of 1
m, the quantity h̃shot is of the order of 10−17 1/

√
Hz, which is clearly not enough to

detect GW signal and needs to be improved. From equation 1.78 we can see that, in
order to reduce shot noise, arms with a great length L are needed. If the two arms
of a Michelson interferometer are replaced by two resonant Fabry-Perot cavities,
recalling section 1.2.3, the sensitivity that can be obtained is frequency dependent
and the minimal strain that can be detected in this case is:

Sn(f) =
1

GFP

1

kLL

√
ℏω

Pin(R1 +R2)

1√
1−

√
1− C2

√
1 +

(
fgw
fc

)2

. (1.80)

Comparing it with the expression in equation 1.79, it can be seen that the sensi-
tivity is improved by a factor GFP , which in the case of the Advanced Virgo arm
cavities is ∼ 290 [15]. Moreover, it is shown that also a high input power laser Pin is
required, but this solution will cause thermal effects, because it will raise the power
absorbed by the mirrors, and will also increase the other component of the quantum
noise, the radiation pressure noise.
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Radiation pressure noise
Radiation pressure noise is due to the statistical fluctuations of the photons that,
impinging on the mirror, transfer momentum to the mirror itself, causing displace-
ment noise. This fluctuations generate a stochastic force acting on the mirror test
masses

Frad =
Pin
c

(1.81)

with power fluctuation

∆Pin = ℏω∆n =

√
2πcℏPinτ

λ
(1.82)

which in the frequency domain gives the force fluctuation

∆F̃rad(ω) =
∆P̃in(ω)

c
=

√
2πℏPinτ
cλ

. (1.83)

The frequency-dependence arises from the fluctuations of the position of the mirror.
Then, for a mirror of mass m and an input power Pin the displacement caused by
the radiation pressure is

∆L̃rad(ω) =
∆F̃rad
mω2

=
1

mω2

√
2πℏPinτ
cλ

(1.84)

and the corresponding strain noise is

h̃rad(ω) =
2∆L̃rad(ω)

L
=

1

mω2L

√
8πℏPinτ
cλ

. (1.85)

It can be noticed that the radiation pressure can be reduced again increasing L, but
also decreasing Pin, contrary to the shot noise case: a right compromise it is then
needed. The ITF mirrors respond to the force exerted by radiation pressure only at
low frequencies. Then in this frequency band radiation pressure noise is higher than
shot noise that, instead dominates in the high frequency band (above 300 Hz).

Standard Quantum Limit
The quadratic sum of the shot noise and the radiation pressure noise represents the
total quantum noise, or optical read-out noise, of an ITF

h̃total =

√
h̃2shot + h̃2rad. (1.86)

By minimizing the total quantum noise with respect to the light input power Pin,
the resulting minimal noise can be obtained and this is called the Standard Quantum
Limit (SQL), which is given by

h̃SQL(ω) =

√
4ℏ

mω2L2
. (1.87)
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Figure 1.5: Blue curve: behaviour of the two quantum noise components at a given input
power. Green curve: behaviour of these two components at a higher input power (increased
by a factor 100). Red curve: The Standard Quantum Limit. In this picture, the effect of
the FP cavities is not taken into account [17].

1.3.3 Thermal noise

The thermal noise is one of the most important limits to the interferometer sensi-
tivity in the frequency band 10-300 Hz. It induces vibrations both in the mirrors
and in the suspensions. The amplitude of the thermal noise in a macroscopic sys-
tem is directly related to the dissipative processes occurring in the system itself, so
its effect can be computed using the the fluctuation-dissipation theorem [18]. This
theorem gives the spectral density of the force responsible for thermal fluctuations
as

SF (ω) = 4kT ·Re[Z(ω)], (1.88)

where Z(ω) is the impedance of the system, that represents the resistance to the
motion of the system when subjected to a force. The thermal noise affecting GW
ITFs has two different origins:

• Suspension thermal noise
Vibrations induced in the suspensions of the mirrors produce a displacement
noise. In particular they are:

– pendulum thermal fluctuation, which consists in a horizontal displacement
of the mirrors. This is the dominant noise in 1-50 Hz frequency window;

– vertical thermal fluctuation, acting on the vertical motion of the sus-
pensions, and, although for GW interferometer it is interesting only the
horizontal motion, together with the curvature of the Earth this causes a
vertical-horizontal coupling order of the angle θ = L/2Rearth ≃ 2× 10−4;
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– violin modes, that is the noise due to the fluctuations of the normal modes
of the wire used for the suspension of the mirrors.

• Test-mass thermal noise
Thermal fluctuations within the mirror test masses themselves. They are:

– Brownian motion of the mirrors, due to the kinetic energy of the atoms
of the mirrors which are at a temperature T ;

– thermo-elastic fluctuations, which take place both in the bulk of the mir-
ror and in the mirror coating. They are due to the thermal expansion of
the material;

– thermo-refractive fluctuations, due to the variation of the material refrac-
tive index of the mirror coatings with the temperature.

1.3.4 Newtonian noise

Newtonian noise, also knows as Gravity gradient noise, is due to the Newtonian
forces of the local gravitational fields (quasi-static fields in the near region of their
sources), which results in a time-varying gravitational force. It is due to the seismic
waves in the ground, that produce the mass density fluctuation of the mirrors of
the ITF. The Newtonian noise cannot be eliminated, since the gravitational force
cannot be screened. This noise dominates in the frequency band below 5 Hz and acts
directly on the mirrors bypassing their isolation system, so a ground-based detector
is limited at frequency detection band below this frequency.

1.3.5 Seismic noise

The environmental disturbances such as ground vibrations induced by seismic or
volcanic activity, wind, ocean activity, human activity, induce seismic noise. It is
due to the coupling of the ground vibrations to the ITF mirrors by their suspension
system, and significantly limits the low frequency band of the detection window
(∼1-10 Hz). The strain sensitivity has the form

x(f) ≃ 10−7

(
1Hz

f 2

)
mHz−1/2. (1.89)

Seismic noise is the major disturbance noise at low frequency, so it has to be reduced
by a huge factor. In Virgo, to reduce the seismic noise, the mirrors are suspended
through a system of mechanical pendulums in cascade in order to make the transfer
function, that goes like ∼ 1/f 2n (with n number of pendulum in cascade), steeper,
as simplified in figure 1.6 for the case of three filters. This chain is further suspended
to an inverted pendulum. Thus giving an attenuation of the mirror motion of about
14 orders of magnitude (see figure 1.7). In Advanced Virgo this device is called
superattenuator and is a 10-meter height system, as shown if figure 1.10.
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Figure 1.6: Typical transfer function of a system made by one (blue) and three (red)
filtering stages.

Figure 1.7: Seismic noise level before (blue curve) and after (red curve) the superattenuator
filtering.

1.3.6 Homodyne detection vs frontal modulation

Even if seismic noise is attenuated in an efficient way, there is enough residual
motion of the suspended mirrors which brings the cavities out of resonance and the
interferometer out of the dark fringe condition. For this reason, the position of the
mirrors needs to be controlled to keep the desired working point. In this section,
the basic knowledge to understand the type of detection scheme used in Advanced
Virgo is described, which will be the starting point for the one to be used for SIPS
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experiment. Since this is one of the main topic of this thesis, it will be developed in
more detail in chapter 5. The main technique used for the locking and control of the
Fabry-Perot cavities in gravitational wave interferometers is the Pound-Drever-Hall
(PDH) technique [19]. In GW detectors it is used to control the cavity length with
respect to the wavelength of the laser which has been previously stabilized [20]. In
particular, PDH technique is used to obtain the error signal, which is the key element
to control a Fabry-Perot cavity since it contains the information about the length
of the cavity with respect to the resonance point. An Electro Optical Modulator
(EOM) is used to create the sidebands by modulating in phase the laser beam, then,
accordingly to PDH technique, sidebands are added around the carrier field with a
frequency shift that is chosen to be anti-resonant in the FP cavity while the carrier
is resonant. In this way, they act as phase reference for the carrier which enters into
the cavity, and carries information about the cavity length. The beating between
sidebands and carrier is the error signal we are interested in, since it is proportional
to ∆L (and thus to h) [15]. Although the PDH technique is quite simple when
applied to a single resonant cavity, since the Michelson interferometer is tuned in
order to be in the dark fringe condition, it is not possible to simply use the power read
by a photodiode to read the GW signal. Nevertheless, it is possible to extend PDH
technique to the control of a full ITF for GW detection, with the frontal modulation
approach. Here, the laser beam is modulated at a radio-frequency, which is chosen
as before in order to be anti-resonant inside the arm Fabry-Perot cavities. Since
the sidebands need to reach the detection photodiode in dark fringe, to provide a
phase reference, the so-called Schnupp asymmetry was implemented (both in Virgo
and SIPS setup). It consists in adding a macroscopic difference between the two
short Michelson arm, which means to make the two distances between BS and
input mirrors slightly different. When the sidebands recombine at the BS, the
phase difference accumulated, because of the Schnupp asymmetry, is related to the
power detected at the anti-symmetric port. The photodiode will detect a power
which contains a beat note coming from the interference of the carrier and the two
sideband fields, then, the amplitude of this beat note, proportional to the differential
displacement, can be extracted using a demodulation technique, as in the PDH
scheme. In this way, the optical gain of the system will be proportional to the
square root of the sideband power leaking to the antisymmetric port [21]. However,
this method depends strongly on the quality of the sidebands, then, if they are noisy
or largely unbalanced, there will be technical noises, such as phase and amplitude
noise, that will spoil the sensitivity of the ITF. For this reason, a different signal
read-out scheme has been chosen for all the Advanced GW detectors: the Homodyne
read-out, or DC read-out. It consists in adding a static offset to the differential length
of the arms by making one of the two cavities slightly longer than the other. This
results in a small difference in the static phase of the two beams recombining at the
BS and a small fraction of the carrier field leaks to the photodetector. In this way,
the perfect destructive interference is spoiled when detected at the antisymmetric
port. Nevertheless, this offset must be smaller than the arms resonance, in order to
keep the two cavities at their correct working point, i.e. well inside their resonance
width. With this scheme the static carrier field plays the role of the phase reference
against which the carrier GW signal beats to provide a read-out signal. In this
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configuration the power detected is proportional to the length difference between
the arms, and so to the amplitude h of the GW signal. It can be seen from figure

Figure 1.8: Variation of the power detected at the antisymmetric port as a function of
differential tuning of the ITF, i.e. the length difference between the arm cavities [21].

1.8 that, in dark fringe, the power is almost insensitive to a differential detuning,
while it is almost linear when an offset is added. It can be shown that the signal
to noise ratio is independent from the value of this offset [21]. However, in the
real case, any spurious field reaching the photodiode will increase the total power
(and the shot noise) without increasing the optical gain and thus the signal, spoiling
the sensitivity. Sidebands are one of these spurious field, but since they are still
needed to control all the other lengths of the ITF, we need to filter them out before
they reach the photodiode. The only way is to add an Output Mode Cleaner cavity
before the detection photodiode, where only the carrier field will be resonant, while
sidebands will be reflected out. Moreover, due to the detuning of the arm cavity
lengths, the effect of radiation pressure is stronger, so it will be necessary to take it
in account in the design of control system [15].

1.4 Advanced Virgo

The construction of the initial Virgo detector was completed in June 2003 and several
data taking periods followed between 2007 and 2012, when it has been turned off
in order to start the upgrade to the second generation detector: Advanced Virgo
(AdV). AdV started its commissioning in 2016. Advanced Virgo aimed at achieving
an improved sensitivity respect to the original Virgo by one order of magnitude,
which corresponds to an increase of the volume of universe explored and of the
detection rate by a factor of ∼ 1000. AdV joined the two advanced LIGO detectors
(aLIGO) for its first engineering and observing periods in May and August 2017.
On 14 August 2017, LIGO and Virgo detected a signal for the first time together,
GW170814, which was announced later on 27 September 2017. It was the first
binary black hole merger detected by both LIGO and Virgo. Nevertheless, the first
detection already occurred on the 14th September 2015 during the first observing
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run of Advanced LIGO [1]. Although the working principle is the same of a simple
Michelson ITF, a GW detector is a much more complicated instrument. In the
following a brief description of the main components is reported (for a deep view see
[22, 23]). Virgo is in principle a Michelson laser interferometer with two orthogonal

Figure 1.9: Simplified scheme of Advanced Virgo optical layout from [23]: it has a dual re-
cycled configuration, with recycling cavities formed by the Power Recycling Mirror (PRM),
the Signal Recycling Mirror (SRM), the two Input Mirrors (IM) and the two End Mirrors
(EM).

arms each 3 kilometers long. A beam splitter (BS) divides the incident laser beam
into two equal components sent into the two arms of the interferometer. In each
arm, a two mirrors Fabry-Perot resonant cavity is implemented to extends the beam
optical path from 3 to about several hundreds of kilometers. The two beams of laser
light coming from the two arms are recombined out of phase on a detector so that,
in principle, no light reaches the detector. The layout of the second generation of
Virgo experiment is shown in figure 1.9. In order to increase the power circulating
into the interferometer and then to improve the sensitivity of the detector, a Power
Recycling Mirror (PRM) is placed in front of the laser, so that light coming back
arrives in phase with the incident beam. In this way the mirrors forms another
cavity (recycling cavity), thus increasing the light power that can reach several tens of
kilowatts in the Fabry-Perot cavities. With these resonant cavities coupled together,
the interferometer can be seen as a giant light trap. In the optical scheme of Virgo
there are also two Mode Cleaner cavities: the Input Mode Cleaner is placed before to
inject the laser light into the interferometer making sure that a good TEM00 mode
enters the interferometer, and the Output Mode Cleaner is placed before the output
photodiode, and is used to filter the signal and so to improve the signal to noise ratio.
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If the optics are almost perfect and the mirror suspensions perfectly stable, no light
should normally reach the detector except when the interferometer plane is crossed
by a GW at the output port of the interferometer. To reach a very good stability,
as previously mentioned, the mirrors are suspended by a chain of seismic filters that
constitutes a very sophisticated isolation system called Superattenuator (SA)(see
figure 1.10). It allows to have a very good sensitivity also at low frequencies, above

Figure 1.10: The Advanced Virgo Superattenuator (SA).

0.6 Hz, and a total attenuation of the mirror displacement of more than 10 orders
of magnitude (see figure 1.6) [24, 23, 25].

1.4.1 Observational runs and main results

On September 14th, 2015, at 09:50:45 UTC, during the first Observing Run ’O1’ the
LIGO Hanford (WA) and Livingston (LA) observatories detected in coincidence the
signal GW150914 [1], shown in figure 1.11. Only the LIGO detectors were observing
at the time of GW150914 because of the Virgo detector was being upgraded, and
GEO 600 was operating but not in observational mode because though not suffi-
ciently sensitive to detect this event. This GW discovery provides the first robust
confirmation of several theoretical predictions. It is the first direct observation of
a binary Black-Hole (BH-BH) system merging to form a single BH and the first
direct observation of stellar mass BHs [1]. This event inaugurates a new era of ob-
servations: the GW Astronomy. The two black holes had a mass of M1 = 35.4M⊙
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Figure 1.11: GW150914 observed by the Hanford (left column) and Livingston (right
column) detectors. The top row shows the strain measured in each detector. The second
row shows the GW strain projected onto each detector in the 35–350 Hz band (cutting out
low and high frequencies) and a numerical relativity waveform (solid lines) for a system with
parameters consistent with GW150914, and the 90% credible regions for two independent
waveform reconstructions (gray). Third row shows residuals after subtracting the filtered
numerical relativity waveform from the filtered detector time series. In the bottom row,
a time-frequency representation of the strain data, showing the distinctive "chirp" of the
signal frequency increasing over time.

and M1 = 29.8M⊙ respectively, and merged in a single black hole with a final mass
of Mtot = 62.2M⊙ and with around 3 M⊙ radiated as GWs. During O1 other two
signals have been detected, GW151226 and GW151012, always resulting from a
BH-BH merger. After the end of the run, Advanced LIGO detectors started the
installation of new upgrades in order to further improve their sensitivity. Then the
second Advanced Detector Observing Run ‘O2’ started in November 30, 2016, first
with the two LIGO detectors, then with both LIGO and Virgo instruments operat-
ing together since August 1, 2017. A fourth gravitational-wave signal coming from
the merger of two stellar mass black holes located about 1.8 billion light-years away
was detected on the 14 th of August 2017, at 10:30:43 UTC. GW170814 is the first
event observed by the global 3-detector network, including not only the two twin
Advanced LIGO detectors but the Advanced Virgo detector as well and it demon-
strates the potential of a 3-detector network. During O2, a second important event
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was observed on August 17, 2017, GW170817 [26]. The importance of this detection
lies in the fact that it was a signal from the inspiral of two low-mass compact objects
consistent with a binary neutron star (BNS) merger. So, for the first time it was
possible to look at the electromagnetic counterpart of this NS-NS merger, and this
detection marked the birth of the so-called multi-messenger astronomy. On April
1st 2019, Virgo and LIGO twin detectors started the third Observing run, O3 [7,
8]. In particular Virgo improved the mechanism of suspension of the main mirrors
with respect to those used in O2, and therefore increased the sensitivity in the low-
medium frequency region, which had a deep impact in the capabilities to detect
mergers of compact binary systems. A second major upgrade was the installation
of a more powerful laser source, which improved the sensitivity at high frequencies.
Last but not least, phase-squeezed vacuum states have been injected into Advanced
Virgo, thanks to a collaboration with the Albert Einstein Institute in Hannover,
Germany. This technique allowed to inject 3.2 dB of squeezing in the detector, im-
proving the sensitivity at high frequencies (reducing shot noise). Results are shown
in figure 1.12, where the improvements in sensitivity due to the use of the frequency
independent squeezing (FIS) technique are highlighted.

Figure 1.12: Advanced Virgo sensitivity curve in O3: 3.2 dB of frequency independent
squeezing have been injected, improving the ITF sensitivity at high frequencies, while
degrading it in the low frequency region [6].



Chapter 2

Quantum noise reduction in GW
detectors

As introduced in the previous Chapter, quantum noise is one of the most impor-
tant noise sources that limits the sensitivity of an interferometric gravitational wave
detector. It is characterized by two contributions: shot noise, which arises from
the statistical fluctuations in photons number, and radiation pressure noise, due to
the statistical fluctuations of the photons that, impinging on the mirror, generate a
stochastic force acting on the mirror itself, and causing a displacement noise. Both
these noises originate from the zero-point fluctuations (vacuum noise) of the electro-
magnetic field entering the interferometer dark port and are manifestations of the
fluctuations of the two vacuum field quadratures.

Considering a perfectly balanced Michelson interferometer (same arm length L and
same mirror mass M), with an input power P0, the quantum noise, or optical read-
out noise, can be written in terms of strain power spectral density as [27]:

Shnhn(Ω) =
2ℏ

ML2Ω2

(
KMi

+
1

KMi

)
, (2.1)

where
KMi

=
4ω0P0

c2MΩ2
. (2.2)

Minimizing the total quantum noise with respect to the input light power P0 means
that KMi

= 1, so the resulting minimum noise is called the Standard Quantum Limit
(SQL), and it is given by [27]

SSQL
hnhn

(Ω) =
4ℏ

ML2Ω2
= h2SQL. (2.3)

In particular, the SQL can be described as the limit on the accuracy with which
any position sensing device can determine the position of a free mass in the absence
of correlations between shot noise (SN) and radiation pressure noise (RPN). Since
Advanced Virgo had the aim of a gain of a factor 10 in the sensitivity of the in-
strument, it is necessary to increase the power of the input laser (>100W) in the
Fabry- Perot cavities, this leads the detector to deal with the SQL (see figure 1.5).

33
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For this reason it is necessary to develop methods to overcome this limit, which is
one of the aim of the experiment presented in this PhD research work. Currently,
the main technique used for the reduction of quantum noise, and therefore for the
realization of a Quantum Non-Demolition (QND) interferometer, is the squeezing
technique, that consists in the injection of squeezed states of light, which modifies
the input field of the interferometer. Since vacuum fluctuations have not a classical
analogous, a quantum mechanical description of the fields is necessary. This chap-
ter briefly presents the essential theoretical models of quantum mechanics and the
mathematical tools needed to describe the experiment presented in this thesis. In
particular the radiation field in the context of the quantization of light and after this,
the basics of quantum states of light, and finally the balanced homodyne method
for the squeezed light detection will be described.

2.1 Quantum mechanical formalism
A treatment of the quantization of the electromagnetic field inside the interferometer
is approached by exploiting the analogies between the electromagnetic field and
the quantum mechanical harmonic oscillator. The starting point are the Maxwell
equations in vacuum

∇⃗ · E⃗ = 0 ∇⃗ × E⃗ +
∂B

∂t
= 0

∇⃗ · B⃗ = 0 ∇⃗ × B⃗ − µ0ϵ0
∂E

∂t
= 0 (2.4)

where E⃗ and B⃗ are respectively the magnetic and the electric field. From these
equations it is easy to obtain the wave equation satisfied by any electric field

∇2E⃗ − µ0ϵ0
∂2E

∂t2
= 0. (2.5)

If we consider a linear cavity of length L with perfectly reflective mirrors oriented
along the field propagation axis z, a class of solutions of equation 2.5 are standing
waves confined in the cavity. For simplicity, below, we will only deal with the
electric field, considering the corresponding operator in a single mode and assume it
as a monochromatic field to be polarized with a fixed linear polarization along the
x-direction. With these assumptions, the solution of the equation 2.5 is

E⃗(r, t) = êxEx(z, t) = êx

(
2ω2

V ϵ0

)1/2

q(t) sin kz (2.6)

where k is the wavenumber related to the frequency, ω, of the mode with k = ω/c,
V is the effective volume of the cavity, êx is the polarization vector and finally q(t)
is a time-dependent factor with the dimension of a length, acting as a canonical
position. The expression for the magnetic field B⃗, y-polarized, inside the cavity is
easily obtained using the second of the equations 2.4:

B⃗(r, t) = êyBy(z, t) = êy

(µ0ϵ0
k

)(2ω2

V ϵ0

)1/2

q̇(t) cos kz (2.7)
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where q̇(t) will play the role of a canonical momentum for a particle of unit mass,
i.e. p(t) = q̇(t). The total energy of the fields, stored in the cavity is described by
the Hamiltonian

H =
1

2

∫
V

(ϵ0E
2
x +

1

µ0

B2
y)dV (2.8)

which can be written in terms of the canonical variables q(t) and p(t) as

H(q, p) =
1

2
(p2 + ω2q2) (2.9)

and it has the same form of the Hamiltonian of an harmonic oscillator. In quantum
mechanics the Hamiltonian operator for a harmonic oscillator of mass m and angular
frequency ω is

Ĥ(q, p) =
p̂

2m
+

1

2
ω2q̂2, (2.10)

where q̂ and p̂ are the position and momentum quantum operator, respectively.
These operators correspond to the classical canonical coordinates but, whereas in
classical mechanics it is possible to measure q(t) and p(t) at the same time t with
an arbitrary precision, in quantum mechanics this is limited by the Heisenberg Un-
certainty Principle:

∆q̂∆p̂ ≥ iℏ
2
, (2.11)

being q̂ and p̂ two non-commutative variables, that is

[q̂, p̂] = iℏ. (2.12)

A quantum harmonic oscillator is, in general, described in terms of the annihilation
and creation operators, respectively

â =
1√

2mℏω
(mωq̂ + ip̂) and â† =

1√
2mℏω

(mωq̂ − ip̂). (2.13)

These two dimensionless operators are non-Hermitian and therefore not associated
with observable quantities, which means they do not have a physical meaning. Nev-
ertheless they have the advantage to simplify the calculations. Indeed, we can write
q̂ and p̂ as

q̂ =

√
ℏ

2mω
(â† + â) (2.14)

p̂ =

√
i
mℏω
2

(â† − â) (2.15)

Considering the commutation relation satisfied by â and â†

[â, â†] = ââ† − â†â = 1 (2.16)

we can write the Hamiltonian operator as

Ĥ = ℏω
(
â†â+

1

2

)
. (2.17)
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Now introducing the number operator n̂, defined as n̂ = â†â, it is possible to show
how the creation and annihilation operators allow to find easily the eigenstates |n⟩
of the harmonic oscillator with the energy eigenvalue En: they are the eigenstates
of the Hamiltonian of the system, such that

Ĥ|n⟩ = ℏω
(
â†â+

1

2

)
|n⟩ = En|n⟩. (2.18)

Then, multiplying the left side by â† and using the commutation relations [â, â†] = 1
it is easy to find that

Ĥâ†|n⟩ = (En + ℏω)â†|n⟩. (2.19)

In the same way, it is possible to show that

Ĥâ|n⟩ = (En − ℏω)â|n⟩. (2.20)

Equations 2.19 and 2.20 are the eigenvalue problems for the eigenstates â†|n⟩ with
energy En+ℏω and for the eigenstates â|n⟩ with energy En−ℏω, respectively. From
these equations one can understand why â† is called creation operator, while â is the
annihilation or destruction operator, in fact the first generates a quantum of energy
ℏω, and the second destroys it. If the annihilation operator is iteratively applied to
an eigenstate |n⟩ it lowers each time the energy of the system. But the energy of
the harmonic oscillator cannot be negative, therefore there has to be a lowest-energy
state, that is the ground state (or vacuum state) |0⟩, defined by

Ĥâ|0⟩ = (En − ℏω)â|0⟩ = 0 (2.21)

where the last equality is due to the fact that there are no eigenvalue with an energy
less than E0, so the equation 2.21 is satisfied only if â|0⟩ = 0. The ground state
eigenvalue can be found from its eigenvalues equation:

Ĥ|0⟩ = ℏω
(
â†â+

1

2

)
|0⟩ = 1

2
ℏω|0⟩ = E0|0⟩, (2.22)

where E0 =
1
2
ℏω is the lowest energy eigenvalue, and represents the energy associated

with the vacuum state, the so-called zero-point energy, which is not zero. Now, since
En+1 = En + ℏω, the energy eigenvalues can be rewritten in the same way of the
harmonic oscillator eigenvalues:

En = ℏω
(
n+

1

2

)
, n = 0, 1, 2, ... (2.23)

Thus, the role of â† and â is, respectively, to destroy or create a quantum ℏω in the
excitation energy of the oscillator. If one compares the last equation with eq. 2.18
the number operator n̂ = â†â can be defined as

n̂|n⟩ = n|n⟩ (2.24)

where |n⟩ are the eigenstates of n̂, defined as Fock states, and form an orthogonal
and complete set such that:

∞∑
n=0

|n⟩⟨n| = 1, ⟨m|n⟩ = δm,n. (2.25)
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Then, it is easy to show that for the state â|n⟩ and â†|n⟩ we have

â|n⟩ =
√
n|n− 1⟩ (2.26)

â†|n⟩ =
√
n+ 1|n+ 1⟩. (2.27)

Last results shows that by applying recoursively the creation operator to the ground
state, any state |n⟩ may be generated from the ground state as:

|n⟩ = (â†)n√
n!

|0⟩ (2.28)

where n is the number of photons contained in the state of the single mode field.

2.1.1 Quadrature Operators

Creation and annihilation operators are not associated with observable quantities
because they are not Hermitian. Thus, in order to handle observable quantities,
it is useful to work with dimensionless position and momentum operators, the so-
called quadrature operators, in terms of which it is possible to describe the quan-
tized electromagnetic field. These Hermitian operators are the amplitude and phase
quadrature operators, defined as:

X̂ =

√
mω

2ℏ
q̂ =

1

2
(â† + â) (2.29)

Ŷ =

√
1

2mωℏ
p̂ =

1

2
i(â† − â). (2.30)

The inverse relations gives

â = X̂ + iŶ (2.31)

â† = X̂ − iŶ (2.32)

and, from eq. 2.17, the Hamiltonian operator can be written as

Ĥ = ℏω
(
X̂2 + Ŷ 2

)
. (2.33)

Since quadrature operators satisfy the commutation relation

[X̂, Ŷ ] =
i

2
(2.34)

the dimensionless Heisenberg uncertainty relation can be easily derived

⟨(∆X̂)2⟩⟨(∆Ŷ )2⟩ ≥ 1

16
. (2.35)

Inded, the mean value of the quadrature operators on a Fock state |n⟩ are

⟨n|X̂|n⟩ = ⟨n|Ŷ |n⟩ = 0, (2.36)



38 CHAPTER 2. QUANTUM NOISE REDUCTION IN GW DETECTORS

then their fluctuations on a Fock state are

⟨n|X̂2|n⟩ = 1

4
⟨n|â2 + â†â† + â†â+ ââ†|n⟩

=
1

4
(2n+ 1)

(2.37)

and similarly for Ŷ

⟨n|Ŷ 2|n⟩ = −1

4
⟨n|â2 + â†â† − â†â− ââ†|n⟩

=
1

4
(2n+ 1) .

(2.38)

Therefore, the uncertainties in both quadrature are the same and the vacuum state
(n = 0), for which in equation 2.35 equality holds, are called minimum uncertainty
states, that is

⟨(∆X̂)2⟩vac = ⟨(∆Ŷ )2⟩vac =
1

4
. (2.39)

2.1.2 Electromagnetic field quantization

At this point, we are able write the quantized electric and magnetic field operators,
respectively Êx(z, t) and B̂y(z, t) in terms of the creation and annihilation operators
as

Êx(z, t) = E0[â(t) + â†(t)] sin kz (2.40)

B̂y(z, t) = B0[â(t)− â†(t)] cos kz, (2.41)

where â(t) and â†(t) are the time-depending creation and annihilation operators
defined as

â(t) = âe−iωt (2.42)

â†(t) = â†eiωt, (2.43)

while E0 and B0 are defined as

E0 =

√
ℏω
ϵ0V

and B0 =
µ0

k

√
ϵ0ℏω3

V
. (2.44)

From this considerations, it is possible to write the quantized electric field inside the
cavity in terms of quadrature operators:

Êx(z, t) = E0 sin kz
[
X̂ cosωt+ Ŷ sinωt

]
. (2.45)

In this equation, X̂ and Ŷ can be associated with field amplitudes oscillating out of
phase with each other of 90°: this is the reason why these two operators are called
quadrature operators. If we evaluate the average over a state |n⟩ of the electric field
we get:

⟨n|Êx(z, t)|n⟩ = E0 sin kz[⟨n|â|n⟩+ ⟨n|â†|n⟩] = 0 (2.46)



2.1. QUANTUM MECHANICAL FORMALISM 39

which means that the electric field oscillations have a null average value, but the
energy density (the square of this field) is not zero, but it is

⟨n|Ê2
x(z, t)|n⟩ = 2E2

0 sin kz
2

(
n+

1

2

)
. (2.47)

Then, the fluctuations in the electric field are characterized by the variance on the
state |n⟩

∆E2
x = ⟨(∆Êx(z, t))2⟩ = ⟨Ê2

x(z, t)⟩ − ⟨Êx(z, t)⟩2 (2.48)

and, for a number state |n⟩ we have

∆Ex =
√
2E0 sin kz

(
n+

1

2

)1/2

. (2.49)

Therefore for all the Fock states the fluctuations of the electromagnetic field are
greater than zero. This means that even when n = 0, the field has fluctuations, the
so-called vacuum fluctuations. Moreover, we have seen that the Heisenberg uncer-
tainty principle in eq. 2.35 states that it is not possible to measure simultaneously
the amplitude and phase quadrature, Ŷ and X̂, with arbitrary precision. This limit
represents the quantum noise of electromagnetic field, and the standard quantum
limit mentioned in the previous chapter is then a manifestation of the Heisenberg
uncertainty principle.

2.1.3 Coherent states

In a GW interferometric detector we deal with a real field generated by a laser.
Number states |n⟩ are not the best choice to describe quantum optic experiment
in which a laser beam with intensity of several Watts is used. In fact, when the
number of photons becomes very large (n ≫ 1) it is possible to approximate the
number operator as a continuous variable. Then, in this classical limit the mean of
the electric field over a generic state of the system, must be

⟨ψ|Êx(z, t)|ψ⟩ = E0 cos (ωt− ϕ), (2.50)

where ϕ is an arbitrary phase. But, as it is shown in 2.46, this means over a number
state is zero, not depending on the value of n. This property is not in agreement
with the classical description of light in which, chosen a fixed point in the space, the
electric field oscillates sinusoidally in time. This condition is not satisfied for the
expectation value of the field operator on a number state. Therefore, for a better
description of a real field, as the one generated by a laser, a new set of states must
be introduced. These states, called coherent states and denoted by |α⟩, are the
eigenstates of the annihilation operator:

â|α⟩ = α|α⟩ (2.51)

where the eigenvalues α are complex numbers, since operator |â⟩ is not Hermitian.
It is useful to expand this state in the basis of Fock states

|α⟩ =
∞∑
n=0

Cn|n⟩. (2.52)
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Then inserting this in equation 2.51, it is possible to find the coefficients Cn, and
with an iterative process [17] it follows that

Cn =
αn√
n!
C0 (2.53)

where the coefficient C0 can be found using the normalization ⟨α|α⟩ = 1, which
leads to

|α⟩ = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n⟩. (2.54)

This is the general form of a coherent state. It is possible to show that, in this basis
the expectation value of the electric field operator does not vanish, but looks like a
classical field with sinusoidal oscillation, such as:

⟨α|Êx(z, t)|α⟩ = 2|α|
√

ℏω
2ϵ0V

sin (ωt− h⃗ · r⃗ − θ) (2.55)

which resembles the classical description of a coherent monocromatic electromag-
netic wave. Then, coherent state not only yields the correct form for the field ex-
pectation values but contains also the noise of the vacuum. In fact, the fluctuations
are equal to that of the vacuum state

⟨α|(∆Êx(z, t))2|α⟩ =
ℏω
2ϵ0V

. (2.56)

This can be shown by using the quadrature operators for coherent states

⟨(∆X̂)2⟩α = ⟨(∆Ŷ )2⟩α =
1

4
. (2.57)

The above statement has an important implication: a coherent state is a state of
minimum uncertainty, like the ground state of a harmonic oscillator. It is evident
that |α| is related to the field amplitude and to the expectation value of the number
state operator as

n = ⟨α|n̂|α⟩ = |α|2 (2.58)

which represents the mean number of photons in a state |α⟩. Then, the expectation
value is

⟨α|n̂2|α⟩ = ⟨α|â†ââ†â|α⟩ = |α|4 + |α|2 = n2 + n (2.59)

which gives the fluctuation of the photon number

∆2n = ⟨n̂2⟩ − ⟨n̂⟩2 = ⟨n⟩. (2.60)

From this equation it follows that the probability to detect a number n of photons
in a coherent state is

Pn = |⟨n|α⟩|2 = e−|α|2 |α|2n

n!
= e−n

n̄n

n!
(2.61)

which is a Poisson distribution with a mean number of photons n. This shows the
link between the quantization of light and the uncertainty in the measurement of
power of a laser beam.
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So far we have considered the coherent states as eigenstates of the annihilation
operator, but if we consider equation 2.26, we can write

|n⟩ = (â†)n√
n!

|0⟩. (2.62)

It is possible to obtain the coherent state using the so called displacement operator,
D̂(α)

D̂(α) = eαâ
†−α∗â, (2.63)

which has the following properties

D̂†(α)D̂(α) = D̂(α)D̂†(α) = 1 (2.64)

D̂†(α)âD̂(α) = â+ α (2.65)

D̂†(α)â†D̂(α) = â† + α∗. (2.66)

Applying this to the vacuum state |0⟩, it gives

|α⟩ = D̂(α)|0⟩. (2.67)

This means that, with the application of the displacement operator D̂, it can be
obtained a coherent state by simply “displacing” the vacuum state, as

â|α⟩ = e−
1
2
|α|2

∞∑
n=0

(αâ†)n

n!
|0⟩. (2.68)

2.1.4 Squeezed states

It has been shown that a coherent state has equal uncertainties in both quadratures,
and the vacuum state (n = 0), a coherent state for which in equation (2.35) equality
holds, are called minimum uncertainty states having

⟨(∆X̂)2⟩vac = ⟨(∆Ŷ )2⟩vac =
1

4
. (2.69)

Then, for the Heisenberg uncertainty principle it is not possible to simultaneously
measure the two quadratures (amplitude and phase) with arbitrary precision. This
limit represents the quantum noise of the electromagnetic field. There is another
class of minimum uncertainty states, called squeezed states. They are states of
electromagnetic field with non-classic distribution of noise, for which one of the
quadrature fluctuations are lower than vacuum state fluctuations. Hence, a state is
said to be squeezed if either〈

(∆X̂)2
〉
<

1

4
or

〈
(∆Ŷ)2

〉
<

1

4
. (2.70)

Then, if one of the two quadratures is squeezed, the orthogonal one is said to be anti-
squeezed. A squeezed state is mathematically generated by applying the squeezing
operator on either a vacuum or a coherent state, which is written as

Ŝ(ζ) = e(
1
2
ζ∗ââ− 1

2
ζâ†â†) (2.71)
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where ζ = reiθ is the complex squeezing parameter, r is the modulus, called squeezing
factor (0 ≤ r ≤ ∞), and θ is the squeezing angle (0 ≤ θ ≤ 2π). This operator Ŝ(ζ)
is a kind of two-photon generalization of the displacement operator used to define
the usual coherent states of a single-mode field and, acting on the vacuum, it creates
some sort of two-photon coherent state. Indeed, it is clear that photons are created
and destroyed in pairs by the action of this operator [28]. It is possible to distinguish
two kind of squeezed states, the squeezed vacuum state and the coherent squeezed
state (or bright squeezed state). Consider first the action of this operator on a generic
state |ψ⟩

|ψsqz⟩ = Ŝ|ψ⟩. (2.72)

In order to compute the quadrature fluctuations of a squeezed state we need the
expectation values of the annihilation and creation operators over a squeezed state.

Ŝ†âŜ = â cosh r − â†eiθ sinh r,

Ŝ†â†Ŝ = â† cosh r − âe−iθ sinh r. (2.73)

From this, the variances of the two quadrature operators over a squeezed state are
easily computed. Considering first a squeezed vacuum state, given by

|ζ⟩ = Ŝ(ζ)|0⟩, (2.74)

then the variance of quadrature operator over this state is

⟨∆2X̂⟩ = 1

4
[cosh2 r + sinh2 r − 2 sinh r cosh r cos θ]

⟨∆2Ŷ ⟩ = 1

4
[cosh2 r + sinh2 r + 2 sinh r cosh r cos θ]. (2.75)

Substituting θ = 0 in equations 2.75, one obtain

⟨∆2X̂⟩ = 1

4
e−2r

⟨∆2Ŷ ⟩ = 1

4
e2r (2.76)

that is a minimum uncertainty state whose amplitude quadrature operator fluctua-
tions are "squeezed" by a factor e−r, with respect to the coherent state fluctuations
(while phase quadrature operator fluctuations "anti-squeezed" by a factor er, with
respect to the coherent state). For θ = π, the squeezing will appear in the Ŷ
quadrature. Squeezed or anti-squeezed noise not only appears along the amplitude
and phase quadrature but also in any other orthogonal quadratures. In fact this
result can be generalized for any value of the squeezing angle θ, by defining rotated
quadrature operator, X̂ ′ and Ŷ ′ , as:

X̂
′
+ iŶ

′
= (X̂ + iŶ )e−i

θ
2 (2.77)

and equation 2.76 can be rewritten as

⟨∆2X̂
′⟩ = 1

4
e−2r

⟨∆2Ŷ
′⟩ = 1

4
e2r. (2.78)
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A coherent squeezed state may be obtained by applying the displacement operator
and then the squeezing operator over a vacuum state |0⟩

|α, ζ⟩ = Ŝ(ζ)|α⟩ = Ŝ(ζ)D̂(α)|0⟩. (2.79)

Since the sequence of applying the squeezing and displacement operator can be
switched, as shown in [29], the mean value of the number operator over a bright
squeezed state can be evaluated and it is:

⟨α, ζ|n̂|α, ζ⟩ = |α|2 + sinh2 r, (2.80)

which is slightly increased compared to the photon number of a coherent state.
This means that a squeezed vacuum state has a mean number of photons ̸= 0 and

Figure 2.1: Representation of light states in quadratures space X,Y [30]. The uncertainty
area for a coherent state is a circle, in which ∆X = ∆Y (left). While a squeezed state is
represented by an ellipse with the axis ∆X,∆Y squeezed by a factor exp∓ζ [27].

has higher energy than the vacuum state, therefore during the squeezing process
photons are generated and the energy of the state is increased. Moreover, the
quantum noise characteristics are not affected by the coherent amplitude α. A
simple way to graphically represent squeezing in the two-dimensional space of the
quadrature operators is shown in figure 2.1. The expectation values of X̂ and Ŷ
on a coherent state are the real and the imaginary part of the complex number α
respectively. This means that the complex α-plane, up to scale factors, can be seen
as a phase-space where the coherent state |α⟩ can be represented as in the left side of
figure 2.1. In the case of a vacuum or coherent state, being the fluctuations equal in
all direction, the Heisenberg uncertainty is represented by a circle around the mean
value of X̂ and Ŷ operators, whose center is the complex number α, with modulus
|α| and phase θ, while for a squeezed state the uncertainty area is represented by
an ellipse, and then, the circle that represents the uncertainty area for a coherent
state is squeezed into an ellipse (right side of figure 2.1) [30]. The squeezing level is
usually expressed in dB with the following relationship:

V [dB] = 10 log

(
⟨∆X̂⟩2sqz
⟨∆X̂⟩2vac

)
= 20 log e−2r. (2.81)
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Figure 2.2: Quadrature noise variance as function of the quadrature angle θ. The violet
line represents a squeezed state of 14dB, the green line is a squeezed state of 7dB and the
blue line a squeezed state of 2dB [31].

Figure 2.2 shows the variance of the quadrature operator with respect to the variance
of the coherent vacuum as a function of the quadrature angle for different values of
the squeezing factor. The minimum and maximum value represent squeezing and
anti-squeezing level respectively.

2.2 Squeezing detection

To properly detect squeezed states of light we need to obtain information about the
quantum noise in different field quadratures. For this reason a single photodetector,
able to detect only amplitude-quadrature, is not sufficient. A suitable device is
a balanced homodyne detector [32], a device composed by two photodiodes (PDs)
and a 50:50 BS. A conceptual scheme of an optical homodyne detector is shown
in figure 2.3. The squeezed light beam, coming from the squeezing cavity, reaches
the 50:50 BS where it interferes with a strong Local Oscillator (LO) field at the
same frequency, same spatial mode and same polarization. Each output of the BS
is detected by a photodiode. This technique exploits the interference phenomenon
between the two input fields of the BS that are: the field under measurement,
represented in the figure 2.3 with the operator â and a reference field, called local
oscillator (LO), represented in the figure with the operator b̂. The two output of
the BS are respectively the reflected field, represented by the operator ĉ, and the
transmitted field, represented by the operator d̂. The BS input-output relation can
be written as [31] (

ĉ

d̂

)
=

(
r t
t −r

)(
â

b̂

)
(2.82)
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Figure 2.3: A balanced homodyne detector is essentially based on the interference between
the squeezed vacuum beam (SQZ beam) and a strong local oscillator (LO) on a 50:50 beam
splitter. The difference between the two generated photocurrents give us information about
the squeezing level of the SQZ beam.[33]

where r and t are respectively its reflectance and transmittance. Since the squeezing
detection is performed with the balance homodyne detector, the beam splitter has
a 50/50 splitting ratio and the expressions of the currents can be simplified by
inserting r = t = 1/

√
2. Moreover, if we assume that our system does not have

losses, the signal (squeezed) field â and the LO field b̂ can be linearized as

â = α + δâ (2.83)

and

b̂ = (β + δb̂)eiϕ (2.84)

where ϕ is an arbitrary phase between the local oscillator field and the field under
measurement, and can be controlled, for example, by a steering mirror mounted on
a piezo-electric element, whereas α and β are real coefficients. At the output of the
50:50 BS we have the two fields:

ĉ =
1√
2
(â+ b̂) (2.85)

d̂ =
1√
2
(â− b̂). (2.86)

The two BS outputs are detected by two different photodiodes, and the currents
produced by the two photodiodes are proportional to the intensity of light that
reaches the detectors, and then to the relative photon number. Considering that
the two number operators associated to the two output beams are ĉ†ĉ and d̂†d̂, we
can calculate the two photocurrents, îc and îd, detected at the two PDs. In particular
we have

îc ∝ ĉ†ĉ =
1

2
(â† + b̂†)(â+ b̂) =

1

2
(â†â+ â†b̂+ b̂†â+ b̂†b̂). (2.87)
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With some algebra [33] and neglecting the terms O(δ2) it is possible to obtain the
photocurrent generated by the the reflected field ĉ as

îc =
1

2

[
α2 + β2 + 2αβ cosϕ+ 2α(cosϕδX̂b − sinϕδŶb + δX̂a) (2.88)

+2β(cosϕδX̂a + sinϕδŶa + δX̂b)
]
+O(δ2), (2.89)

where

δX̂a =
δâ† + δâ

2
δŶa = i

δâ† − δâ

2
(2.90)

δX̂b =
δb̂† + δb̂

2
δŶb = i

δb̂† − δb̂

2
. (2.91)

In a similar way we obtain the photocurrent generated by the field d̂

îd ∝ d̂†d̂ =
1

2
(â† − b̂†)(â− b̂) =

1

2
(â†â− â†b̂− b̂†â+ b̂†b̂) (2.92)

=
1

2
[α2 + β2 − 2αβ cosϕ− 2α(cosϕδX̂b − sinϕδŶb − δX̂a) (2.93)

− 2β(cosϕδX̂a + sinϕδŶa − δX̂b)] +O(δ2). (2.94)

We have to consider that the two photodiodes are mounted on an electronic circuit
that computes the sum (̂i+) and the difference (̂i−) of their output currents. Then
if we consider that the LO is stronger than the squeezed beam

|β|2 ≫ |α|2 (2.95)

and we compute the difference î− between the two photocurrents generated by the
output fields ĉ and d̂, we obtain

î− ∝ îc − îd ∝ β(cosϕδX̂a + sinϕδŶa) = β

(
e−iϕâ+ eiϕâ†

2

)
≡ βδX̂ϕ

a . (2.96)

This means that, the LO noise is completely suppressed and the uncertainty on
the squeezed field quadrature X̂ϕ

a is amplified by the interference with the coher-
ent LO. In order to obtain the information on the rotated quadrature, the power
spectral density of the difference signal is acquired with a spectrum analyzer. The
power spectrum of a stationary process is equal to the Fourier transform of its
auto-correlation function (from Wiener Khinchin theorem [31]), so by measuring
the difference signal with a spectrum analyzer, the information about an arbitrary
quadrature uncertainty is extracted. The variance of the difference of the photocur-
rents, that can be measured, is proportional to the variance of the squeezed field
quadrature, these to quantities scale as the intensity of the LO

V (̂i−) ∝ V (X̂ϕ
sqz), (2.97)

the noise distribution can be measured by a spectrum analyzer. The degree of
squeezing is expressed as reduction in variance with respect to that of a coherent
vacuum state. The variance in dB is

V [dB] = −10 log10


〈
∆2X̂sqz

〉
〈
∆2X̂coh,vac

〉
 , (2.98)
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then, assuming
〈
∆2X̂coh,vac

〉
= 1 and considering that ∆2X̂ = e−2r and ∆2Ŷ = e−2r,

it gives
V [dB] = −10 log10(e

−2r), (2.99)

from which we can obtain the squeezing factor

r =
ln 10

V [dB]
10

2
. (2.100)

As said above, the homodyne detection is performed by overlapping the signal and
the local oscillator fields on a beam splitter. In a real experiment the interference
phenomenon is not perfect. To obtain the maximum interference the two beams
must have the same frequency, spatial modes, waist dimension, waist position and
polarization. A mismatch of this quantities, between the two beams, causes a degra-
dation of the interference phenomenon. The degradation of the interference between
these two fields is quantified via the fringe visibility, that is measured by scanning
the relative phase between them and measuring the intensity of the fringes with a
photodetector. In particular the visibility is defined as

V =
Vmax − Vmin
Vmax + Vmin

(2.101)

where Vmax and Vmin are respectively the minimum and the maximum of the voltage
on the two photodiodes. The mismatch is an optical loss in the squeezing measure-
ment and it contributes quadratically to the detection efficiency that is equal to

ηeff = ηpropηqV2, (2.102)

where ηq is the quantum efficiency of the photodiode and ηprop are the losses due to
propagation of the squeezing field from its generation to its detection.

2.3 Quantum noise in an interferometer
[31] In the present section, with the help of a quantum mechanical approach, it
will be described how the Heisenberg uncertainty principle, which is at the origin of
quantum noise, limits the sensitivity of advanced GW interferometric detectors (i.e
a Michelson interferometer with Fabry-Perot arm cavities). Using these tools, we
will describe how the standard quantum limit (SQL) can be overcome, and how the
injection of squeezed vacuum in the dark port of the ITF can reduce the quantum
noise. A simple scheme of a Michelson interferometer is shown in figure 2.4.

An ideal interferometer have identical arms, and it works locked on a dark fringe,
so that fields entering from each port will return exactly to that port with opposite
phase. The carrier light from the laser enters from the common (bright) port, goes
through the 50:50 beam splitter (BS), is reflected by the two end mirrors and finally
it recombines at the BS, while the differential port remains dark. The length of the
two arms is identified with l and the displacement of the two test masses respect
to their rest position is defined respectively with z1 and z2. The interference signal
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Figure 2.4: Scheme of the most simple configuration of a Michelson ITF, with a graphical
representation of the quantum input and output fields.[31]

between the beams in the two arms is measured with a photodetector placed in front
of the BS output dark port, and collects the information about the relative phase
of the light in the two arms. When a GW passes through the interferometer plane,
it induces a phase shift ∆ϕ = 2kz, where k is the wave vector. If we denote the
mass of the two mirrors with m and the mass of the BS with M , it can be assumed
that m ≪ M so that the BS is considered as at rest and the radiation pressure
contribution acts only on the end mirror.

We can use the quantum mechanical formalism described in this chapter, to show
how the precision of a measurement of z is limited by the Heisenberg uncertainity
principle. In particular we will show that the two quantum mechanical noise sources
are the fluctuations of the radiation pressure on the mirrors and the fluctuations of
the number of photons at the BS output port [2]. Even if for a complete analysis
they must be considered as a single contribution, they are separately analyzed in
the next two sections and then the total error is obtained as the quadrature sum of
these contributions.

2.3.1 Radiation pressure noise

In a Michelson interferometer, the contribution to the radiation pressure due to the
light emitted by the laser is zero, but it is also possible to observe that its sensitivity
at low frequency is limited by the radiation pressure noise. In 1980, Caves [2] first
demonstrated that this contribution is due to the vacuum fluctuations of the field
that enter in the interferometer from the unused BS port and interferes with the
laser light. Their contribution is to transfer the momentum to the test masses m,
that are assumed initially at rest. In order to find the perturbation of z due to
radiation pressure, the transferred momentum is computed starting from the BS
matrix defined in eq. 2.82. If the BS ratio is 50:50 the two output fields are defined
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as in equations 2.85 Each photon, that reaches one of the two end mirrors, transfers
to it a momentum equal to |p| = 2ℏω/c. The difference between the momenta
transferred to the end masses is proportional to the difference between the number
of photons in the field ĉ and d̂, then the total transferred momentum is equal to

P =
2ℏω
c

(d̂†d̂− ĉ†ĉ) (2.103)

which in term of the two input fields of the BS is

P =
2ℏω
c

(â†b̂− b̂†â). (2.104)

In this analysis we assume that the incoming modes â and is a coherent state, while
the mode b̂ is treated as a squeezed vacuum state (since this leads to a more general
result with respect to consider b̂ as a simple vacuum state) [31]. The light mode in
the interferometer is

|ψ⟩ = Ŝb(ζ)D̂a(α)|0⟩. (2.105)

From the properties of coherent and squeezed states it follows that

⟨ψ|P|ψ⟩ = 0. (2.106)

and, if the quadrature of the squeezed state with reduced noise is in phase with
respect to the coherent excitation of mode â, we can write

⟨(∆P)2⟩ψ =

(
2ℏω
c

)2

(α2e2r + sinh2 r). (2.107)

Therefore, in a measurement of duration τ , the fluctuation of the operator P due to
the radiation pressure noise on the relative position of the test masses, z = z1 − z2
is given by [31]:

∆z|rp =
√

⟨(∆P)2⟩ψ
2m

τ =
ℏωτ
mc

√
α2e2r + sinh2 r. (2.108)

This result describe the effect of the fluctuations of the vacuum field that enter the
BS from the interfermeter output port and show how to suppress these fluctuations
by replacing them with squeezed states [31]. By substituting r = 0 in eq. 2.108
the radiation pressure noise contribution is obtained. When r ̸= 0, the term α2e2r

represents the effect of the replacement of the vacuum state with a squeezed vacuum
state: when the amplitude quadrature is squeezed the radiation pressure noise is
canceled out, whereas if the phase quadrature is squeezed the radiation pressure
fluctuations increase.

2.3.2 Shot noise

The other contribution is related to the photon counting error, due to the fluctua-
tions of the number of photons that reach the photodetector, and is represented by
a fluctuation in the number operator of the mode detected by the photodiode. As
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for the radiation pressure, we have to express the output modes in terms of input
modes. For doing this, we have to consider the effect of the propagation along the
arms of the ITF, so that the two input fields are now the reflected beams by the
end mirrors, and the two output fields can be written in term of the beam fields in
its arms. Then, the relation between input and output operators is given by [34](

f̂
ê

)
= eiΦ

(
cos (∆ϕ/2) i sin (∆ϕ/2)
i sin (∆ϕ/2) cos (∆ϕ/2)

)(
ĥ
ĝ

)
(2.109)

where
∆ϕ = π + 2

ωz

c
(2.110)

is the phase difference between the light from the two arms, with z = z1 − z2, and

Φ = 2
ω

c
(z1 − z2) + const. (2.111)

is the average phase. When the two fields are detected with two different PDs, the
difference of their photons number can be expressed as:

n̂ = [ĥ†ĥ− ĝ†ĝ] = [f̂ †f̂ − ê†ê] cos (∆ϕ) + i[f̂ †f̂ − ê†ê] sin (∆ϕ) (2.112)

Then, given the field circulating inside the interferometer in eq. 2.105, the mean
value and the variance of number operator of the output mode, n̂, can be computed
as [2]

⟨n̂⟩ = [α2 − sinh2 r] cos∆Φ (2.113)

and

⟨(∆n̂)2⟩ = [α2 + 2 cosh2 r sinh2 r] cos2∆ϕ+ [α2e−2r + sinh2 r] sin2∆ϕ. (2.114)

Therefore, we can see that a small variation of the relative position of the two test
masses, δz, causes a small variation of the photon number, δn̂, which is given by:

δn̂ ≈ −2ω

c
sin (∆ϕ)δz, (2.115)

obtained considering that α2 ≫ sinh2 r for the squeezed vacuum state injected in
an GW interferometer. Thus, the effect of the photon number fluctuations can be
rewritten as a fluctuation of the two mirrors relative position z:

∆z|sn ≈ c

2ω

√
cot2 (∆ϕ)

α2
+

2 cot2 (∆ϕ) cosh2 r sinh 2r

α4
+
e−2r

α2
+

sinh2 r

α2
. (2.116)

Since ∆ϕ depends on the relative position between the two photodiodes, its value is
chosen such that cot∆ϕ = 0 and the previous equation becomes:

∆z|sn ≈ c

2ωα2

√
α2e−2r + sinh2 r. (2.117)

As in the radiation pressure case, if r = 0 is substituted in equation 2.114, it rep-
resents the effect of the fluctuations of a coherent vacuum state that enters in the
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dark port of the interferometer. Moreover, for r ̸= 0 the term α2e−2r express the
effect of the replacement of the vacuum state with a squeezed vacuum state. Then,
if the amplitude quadrature is squeezed, the shot noise is enhanced, whereas if the
phase quadrature is squeezed the shot noise is suppressed.

The total quantum noise on the measure of z is the quadrature sum of the two
contributions [2]. Then, from equations 2.108 and 2.117 we can write

∆z|tot =
√
∆z|2rp +∆z|2sn =

√(
ℏωτ
mc

αer
)2

+

(
c

2ω

1

αer

)2

(2.118)

where is assumed that α2 ≫ sinh2 r. With this quantum mechanical treatment it is
understood why it is useful the injection of squeezed states in a GW interferometer.
Indeed, the quantum noises, i.e. radiation pressure noise and shot noise, are induced
by electromagnetic vacuum fluctuations that enter in the detector from its dark port.
As we shown before, a first solution to limit shot noise is to increase the input power.
But, a higher input power increases the radiation pressure noise that can become
an important source of noise already for the advanced gravitational wave detectors.
If a squeezed vacuum is injected into the dark port of an ITF, the power needed
to reach the optimum sensitivity is reduced with respect to the case in which a
coherent vacuum enters the ITF. Viceversa, with the same power of the laser it is
possible to reduce one of the two contributions to the quantum noise by fixing the
phase of the squeezed vacuum to the laser and choosing the appropriate squeezing
angle. Then, the injection of squeezed vacuum allows GW interferometers to achieve
a better sensitivity, without changing its input power.

2.4 Squeezing injection
In a suspended interferometer, the two uncertainties on phase and amplitude quadra-
tures, ∆X and ∆Y respectively, are related to the shot noise and the radiation
pressure noise of the input vacuum field, as demonstrated in the previous sections.
Since shot noise and radiation pressure noise together enforce the standard quan-
tum limit (SQL) only if they are uncorrelated, in principle, by creating a correlation
between phase and amplitude fluctuation, the SQL can be overcome [35]. This can
be achieved in a Quantum Non Demolition (QND) interferometer, as proposed by
Braginsky [36], that prevents its own quantum properties from demolishing the state
of the system on which is performing the measurement. Since both types of quan-
tum noise can be attributed to vacuum field fluctuations entering the interferometer
from its antisymmetric port, injecting squeezed vacuum into this port can improve
the sensitivity of the detector [2]. However, for different kinds of interferometers,
the required squeezed vacuum may be very different [37]. As explained by Corbitt
and Mavalvala [35], the Quantum Non Demolition (QND) interferometers can be
realized in different ways

• the injection of squeezed vacuum states with the appropriate quadrature into
the dark port can reduce the dominant optical noise. The squeeze angle de-
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scribes the linear combination of input quadratures in which fluctuations are
reduced, that translates into modifying the interferometer input fields;

• the dynamical correlations, in which the interferometer mirrors dynamics is
modified. The radiation pressure force acts on the mirrors as a restoring
force with a frequency dependent optical spring constant (i.e. ponderomotive
rigidity), and the coupling between the optical field and the mechanical modes
of the mirrors generates the dynamical correlation;

• the direct measurement of a QND observable which satisfies the commutation
relations for the measurement probe;

• the variational or frequency-dependent homodyne readout technique applied
on the output fields.

The Michelson interferometer operates in dark fringe condition to minimize the cou-
pling of the technical laser noise to the antisymmetric (dark) port. Since most of
the light returns towards the laser, a partially transmitting power-recycling mir-
ror (PRM) is placed between the laser source and the beam splitter to recycle the
light back into the interferometer [35]. The GW signal at a given frequency, due
to asymmetric motion of the end mirrors, appears as a phase modulation on light.
After mixing with a local oscillator field at the beam splitter, this phase modula-
tion is converted into amplitude modulation that is detected by the photodetector,
and the GW signal appears only in a single quadrature. As well as for a simple
Michelson interferometer, in the power-recycled Michelson only the phase quadra-
ture is detected. Therefore, the radiation pressure noise and the shot noise in these
interferometers are uncorrelated. Vacuum fluctuations entering the antisymmetric
port travel into each arm and return to the antisymmetric port without any impor-
tant overall phase shift. Without injecting squeezing or a modified readout, there
is no quantum non demolition at any operating power. Consequently, this config-
uration, called conventional interferometer, is a power-recycled interferometer with
arm cavity half-linewidth of 100Hz and power input at the beam splitter that gives
the standard quantum limit performance at 100Hz. Furthermore, as demonstrated
by Corbitt [35], with a power-recycled interferometer, it is possible to create a dy-
namical correlation between the shot noise and radiation pressure noise, and the
additional input (squeezing) and output (readout) methods can be used to fully
exploit these correlations.

2.5 Squeezed light generation

Squeezed states of light can be generated in different ways. At present the most
successful way, already adopted in the Advanced detectors in their third observation
run (O3), is to use nonlinear crystals. It is interesting to note that for θ ∼ 3π/4 the
correlations induced by squeezed light allows to break down the standard quantum
limit by a factor exp(−2ξ) [38]. However, a constant value of θ cannot produce a
reduction of the quantum noise power spectral density over the whole observation
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band. In order to reduce simultaneously both quantum noise components, a fre-
quency dependent squeezing angle is required. This can be done by using a more
complex squeezing source, obtained by reflecting the squeezed vacuum off a detuned
Fabry-Perot cavity, known as filter cavity, as first demonstrated in 2020 in a sus-
pended 300 meter long filter cavity by [10], able to induce a rotation of the squeezing
ellipse below 100 Hz. This last approach for a frequency dependent squeezing (FDS)
requires an additional long base-line, low-loss filter cavity in a vacuum system at
the detector’s site. As an innovative solution, in [12] it is shown that such a fil-
ter cavity is not needed, if EPR-entangled signal and idler beams are exploited for
the generation of FDS. In the following, this different technique for both frequency
independent and frequency dependent squeezing are discussed with more detail.

2.5.1 Squeezing vacuum source: OPO process

The squeezing vacuum source is characterized by a squeezing ellipse rotation angle
θ constant over the whole frequency band. This method is based on the degenerate
parametric down-conversion process inside a nonlinear optical device. These pro-
cesses are nonlinear in the sense that the response of a system, such as nonlinear
crystals, subjected to an external optical field depends in a nonlinear way on the
amplitude of the applied field. Considering a nonlinear medium with no losses or
dispersion, we can write the polarization vector, P , which is the dipole moment per
unit volume, as a response to an incident electrical field E(t). In particular, for a
second order nonlinear process, we can write P as [39]

P = ϵ0χ
(2)E2(t), (2.119)

where ϵ0 is the permittivity of the vacuum and χ(2) is the second-order nonlinear
optic susceptibility, which is assumed to be independent from the frequency of input
field. Moreover, we can find the wave equation in a nonlinear optical medium as

∇2E − n2

c2
∂2E

∂t2
=

1

ϵ0c2
∂2PNL

∂t2
(2.120)

where n is the refractive index and is n =
√
ϵ(1). The term ∂2PNL/∂t2 is a measure

of the acceleration of the charges of the medium that, for the Larmor theorem, gen-
erates electromagnetic waves: it represents the non linear response of the medium.
This equation is important because it tells us that the nonlinear response of a crystal
to the radiation acts as a source term. In the linear case, the term PNL becomes
zero, and we have the classic equation of waves in a medium with refractive index
n. In case of a polarization P(2), instead, the answer of the non-linear crystal to a
laser beam with frequency ω is the radiation of a beam at frequency 2ω. In this way
it is possible to obtain an output laser beam. In particular, for an electric field with
two frequency components, written as

E(t) = E1e
−iω1t + E∗

1e
iω1t + E2e

−iω2t + E∗
2e
iω2t, (2.121)
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the second-order nonlinear polarization vector is given by

P(2) = 2ϵ0χ
(2)[E1E

∗
1 + E2E

∗
2 ]

+ ϵ0χ
(2)
[
E2

1e
−i2ω1t + E∗2

1 e
i2ω1t

]
+ ϵ0χ

(2)
[
E2

2e
−i2ω2t + E∗2

2 e
−i2ω2t

]
+ 2ϵ0χ

(2)[E1E2e
−i(ω1+ω2)t + E∗

1E
∗
2e
i(ω1+ω2)t]

+ 2ϵ0χ
(2)[E∗

1E2e
−i(ω1−ω2)t + E∗

1E2e
i(ω1−ω2)t].

(2.122)

The term in each line of this equation describes how the interaction of an electro-
magnetic field with a nonlinear crystal produces different physical process allowed by
the energy conservation law: the first one represent a zero-frequency contribution,
called optical rectification (OR), the second one is the second harmonic generation
(SHG) term, the third line is the sum frequency generation (SFG) term, and the
last term is the difference frequency generation (DFG). Therefore each second order
nonlinear process should generate four components at difference frequency. How-
ever, in order to have a non negligible intensity of the output beam, phase-matching
condition of the input and output beams must be ensured [39]. Furthermore, to
select desired frequency, the polarization of the input radiation and the orientation
of the nonlinear crystal must be suitably chosen. In particular, in an up-conversion
process, photons at higher frequency are obtained starting from photons at lower
frequency. This is the case of the SHG process, illustrated in figure 2.5, which is
a particular SFG process, where the two input fields oscillate at the same funda-
mental frequency ω and the generated field oscillates at frequency 2ω. Moreover,
the nonlinear crystal is placed in an optical resonator, resonant on the fundamental
beam, in order to improve the conversion efficiency. The SHG process is used in

Figure 2.5: Representation of the SHG (left) and relative energy-level diagram (right).
Photons at a fundamental frequency ω combine to produce photons at frequency 2ω.

the squeezing experiment in Virgo to obtain the green pump beam for the squeez-
ing cavity [33]. To have a deeper picture of how these frequency components are
generated let us refer to [39].
The reverse process is called down-conversion process and it is the method already
employed to produce the squeezed vacuum states used as an improvement of gravi-
tational wave detector sensitivity for the third observational run. In the parametric
down-conversion process, the incident photons at higher frequency interact with a
lossless nonlinear optical medium to produce an output wave at the difference fre-
quency ω3 = ω1 − ω2. The incoming beam is called pump. Hence, two beams, a
pump beam and a bright seed beam, hit on a nonlinear crystal, causing the field at
frequency ω2 to be amplified by this process that is also known as optical parametric
amplification (OPA). This process is illustrated in figure 2.6.
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Figure 2.6: Difference frequency generation (DFG): geometry of the interaction (left) and
relative energy-level diagram (right).

2.5.1.1 Optical Parametric Oscillator

An important point to remark is that the process of DFG leads to the amplification
of the lower-frequency input field, that is the OPA process, where the nonlinear crys-
tal is seeded by a bright beam and bright squeezed states are generated. Differently,
when the seed is constituted by the vacuum fluctuations, squeezed vacuum states
are produced. Now, the gain resulting from this process can be used to construct
a device known as an optical parametric oscillator (OPO) [33]. The fluctuations
which characterize the vacuum state consist into creation and annihilation of vir-
tual photon-pairs at all frequencies and all spatial modes. This means that the
frequency of the vacuum seed, that induces the down-conversion of the pump pho-
ton, constantly changes. Due to the random frequency separation between the pump
beam and the vacuum seed, the produced photon-pair has a frequency separation
from the carrier beam that also changes. This process leads to the coupling between
the quantum noise of the two field quadratures, thus it can be used to generates
squeezed states of light. The produced squeezed states have reduced noise in a cer-
tain quadrature, depending on the phase of the pump beam [40]. Figure 2.7 gives a
schematic picture of this process. In an optical parametric oscillator conventionally

Figure 2.7: Representation of OPA process with an optical parametric oscillator (OPO).

the ω1 = 2ω field is called pump ωp, the amplified field ω2 = ω is called signal
ωs and the difference frequency field ω3 = ω is called idler ωi. In generating the
difference frequency ωi = ωp − ωs, the lower-frequency input wave ωs is amplified.
The condition of energy conservation ωs + ωi = ωp allows any frequency ωs smaller
than ωp to be generated by an OPO. The output frequency ωs can be controlled
through the phase-matching condition ∆k = 0, which invariably can be satisfied for
at most one pair of frequencies ωs and ωi. The output frequency bandwidth can of-
ten be narrowed by placing wavelength-selective device (such as etalons) inside the
OPO cavity. Without going into detail, from the second quantization formalism,
considering the creation and annihilation of virtual photon-pairs at all frequencies
and spatial modes, it is possible to find the wave equations as in [33], which in the
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perfect phase matching condition can be written in term of quadrature operators

dX̂

dz
= −γX̂ ⇒ X̂(z) = X̂(0)e−γz (2.123)

dŶ

dz
= γŶ ⇒ Ŷ (z) = Ŷ (0)eγz (2.124)

with γ = gA0. Here, A0 is a real number which represents the amplitude of the pump
field, while g is the amplitude gain coefficient [33]. Equation 2.123 tells us that the
quadrature with θ = 0, X̂, is exponentially de-amplified, whereas the quadrature
with θ = π/2, Ŷ , undergoes an exponential amplification. This result shows that
the non linear process amplifies one of the two quadrature whereas the other is
suppressed by the same factor. This means that the photon-pairs, that populate all
frequencies, reduce quantum noise of the output field and then, they are source of
squeezing. In this way, a degenerate optical parametric oscillator can be used for
the squeezed light generation. In [6] the effects of squeezing vacuum field injection
during the third observation run showed a quantum noise reduction in the phase
quadrature of about 10 dB. As discussed in [40] the values of the squeezing and
anti-squeezing measured take into account the degradation due to the optical losses
and the residual quadrature fluctuations. Then, in the case of Advanced Virgo, the
consequent shot noise reduction was of about 3.2± 0.1 dB. Instead, if the phase of
the squeezed field is rotated by 90 degrees, the shot noise level increase of (8.5±0.1)
dB, that is the anti-squeezing level. The injection of frequency-independent squeezed
vacuum states in Advanced Virgo allowed to achieve an improvement of 16%− 28%
of detection rate for binary neutron stars [40].

2.5.2 Filter cavity

The phase-squeezed vacuum source used for the observation run O3 of advanced
detectors could not reduce simultaneously both quantum noise components. Nev-
ertheless, since radiation pressure noise is due to the amplitude fluctuations of the
coherent vacuum, it can be reduced using amplitude-squeezed vacuum states. In-
deed, a possible solution to reduce quantum noise in the whole detection band is
the injection of frequency-dependent squeezed vacuum, where starting from phase-
squeezed states, used for shot noise reduction, we can rotate the squeezing angle,
which means rotating the squeezing ellipse, as a function of the frequency [40]. This
technique has been demonstrated for the first time in [10], where it has been ob-
tained a rotation of the squeeze ellipse at a frequency of about 90Hz. A similar
experiment was carried out in the US for Advanced LIGO, where, using a 16 meters
filter cavity they observed a squeezed quadrature rotation at a frequency of 30 Hz
[11]. For this reasons, in the next observation run O4, this technique will be adopted
as a solution to reduce quantum noise for the improvement of sensitivity of advanced
GW detectors (both Virgo and LIGO). The experimental setup is composed by a
source of frequency-independent squeezed vacuum, (for Advanced Virgo is the same
OPO cavity used for O3) and a suspended detuned filter cavity, whose dispersion
properties allow to have a rotation of the squeezing angle at a characteristic fre-
quency, which corresponds to the minimum quantum noise achievable, depending
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on the interferometer configuration [40]. The FIS beam generated by the OPO
squeezer is injected inside the detuned filter cavity, which resonates at a frequency
ωfc = ω0+∆ωfc. Then, the reflected FIS field acquires a frequency dependent phase
shift and the filter cavity induces a rotation of the squeezing angle θfc, at frequency
Ω, given by [40]

θfc(Ω) = arctan
2γfc∆ωfc

γ2fc −∆ω2
fc − Ω2

(2.125)

where, γfc is the linewidth of the filter cavity, while ∆ωfc is the cavity detuning.
The vacuum fluctuations which enter the interferometer output port interact with
the suspended test masses. The input-output relation, obtained from a two-photons
quantum formalism [41, 42], describes this opto-mechanical coupling and gives the
condition to obtain the requirements for the detuning γfc for the filter cavity and
on the spectral characteristics of the filter cavity mirrors. In the case of Advanced
Virgo Plus (AdV+), the cavity linewidth must be of the order of few tens of Hertz
[40]. In order to have a squeezing angle rotation at these frequencies, the filter
cavity needs to be several hundred meters long. In particular, Virgo will use a 285
m long filter cavity, with a rotation angle at a frequency of ∼ 20 − 30 Hz, for the
next observational run O4. A description of the conceptual design can be found in
[40]. The goal in Advanced Virgo Plus is to obtain 7− 8 dB of shot noise reduction
without spoil the sensitivity at low frequency [40].

2.5.3 EPR squeezing

Squeezing based on the Einstein-Podolsky-Rosen (EPR) quantum entanglement [43],
or EPR squeezing, is a novel strategy to achieve frequency-dependent squeezing for
broadband quantum noise reduction, with the generation of EPR entangled squeezed
beams and the use of the GW interferometer itself as the filter cavity, avoiding the
need for external linear cavity.

In the Heisenberg approach of quantum mechanics, a sufficient criterion for oc-
curence of entanglement is that correlations between conjugate observables of two
sub-systems allow the statistical inference of either observable in one sub-system,
upon a measurement in the other, to be smaller than the standard quantum limit,
that is the presence of non-classical correlations [44]. This approach was originally
proposed by Einstein, Podolsky and Rosen in 1935 [43] and, since then, it has been
named the EPR paradox. Over the past years, entanglement has been studied in
both discrete and continuous variable regimes [45, 46]. In particular, the most stud-
ied and generated form of entanglement in continuous variable quantum optics is
indeed the Einstein-Podolsky-Rosen (EPR) entanglement [43]. A first experimental
demonstration of the EPR paradox for a system of dynamical variables with a con-
tinuous spectrum was first proposed in [46]. This work follows the demonstration of
the EPR paradox as quantified by Reid and Drummond [45]. The difference from
the previous work with discrete variables, is that the continuous optical amplitudes
of a signal beam are inferred in turn from those of a spatially separated but strongly
correlated idler beam generated by non-degenerate parametric amplification in an
optical parametric oscillator. The continuous variable EPR entanglement is thus
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characterised by quantum correlations between conjugate quadrature amplitudes of
two light beams, which can be the amplitude and the phase quadratures, thus called
quadrature entanglement [44].

Following the approach used so far for the entanglement experiments mentioned
before, Ma et al. [12] proposed for the first time in 2017 the realization of an optical
setup for quantum noise suppression in GW interferometer by exploiting the EPR
entanglement. The idea is to produce EPR entangled light beams by detuning an
Optical Parametric Amplificator (OPA) and inject these beams into the intererom-
eter through its dark port. The optical configuration is shown in figure 2.8. The

Figure 2.8: Optical configuration for noise suppression via EPR entanglement, for an ITF
configuration with a power recycling mirror (PRM), and signal recycling mirror (SRM)
[12].

strategy proposed here is explained in the following. The pumping frequency of an
OPO cavity is detuned as ωp = 2ω0 + ∆ (with ω0 being the carrier frequency of
the interferometer). For an OPA pumped at ωp, they studied the quadrature fields
around ωp/2, which are linear combinations of upper and lower sideband fields at
ωp/2 ± Ω. Then, the optical nonlinearity inside OPA generate the entanglement
between the upper and lower sidebands, ωp/2±Ω. In general, any pair of sideband
fields with frequencies ω1 and ω1 within the squeeze bandwidth (usually >MHz) from
ωp/2, and satisfying ω1 + ω2 = ωp, are entangled; in particular, for the proposed
OPA two entangled beams are created, the signal beam with a frequency around
the carrier, ω0, and the idler beam around ω0 +∆. This entanglement is equivalent
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to an EPR-type entanglement [47] between quadratures around ω0. Then, the two
produced beams are both injected into the ITF from its dark port and, since the
idler beam is detuned from the carrier, the ITF will act as a filter cavity for this
beam, causing a frequency-dependent quadrature rotation, which can be optimised
by adjusting ∆ with respect to the length of ITF cavities. Inside the ITF, the two
beams are then separated and, after beating with local oscillators at frequencies ω0

for the carrier and ω0 +∆ for the idler, are detected at two different homodyne de-
tectors (see section 2.2). In this way, a fixed quadrature of the out-going idler beam
is measured at the homodyne detector, and then the input signal beam will be con-
ditionally squeezed by this measurement, in a frequency dependent way. Moreover,
as suggested in [38], if we subtract the idler output, which contains only noise, from
the signal output, which contains the gravitational signal plus noise correlated to the
idler channel, we have a process in which the squeezing angle coincides with that of
the idler’s homodyne detector. This strategy allows to achieve the broadband reduc-
tion of quantum noise. In particular, with the strategy, proposed in [12], ∼ 11− 12
dB of sensitivity improvement are expected over the entire frequency band. This
technique has also some disadvantage: first, it requires two squeezed beam instead
of a single one (named as signal and idler) and, second, it is possible to demonstrate
that the use of this technique leads to an intrinsic loss of 3 dB in the squeezing
level [12], with respect to the filter cavity set up. Nevertheless, the advantages of
EPR squeezing are greater then its limits. Indeed, an EPR squeezing setup can be
hosted on smaller benches, thus avoiding the use of the long-scale filter cavity, which
instead requires a huge infrastructure for hosting its setup. Another advantage of
EPR setup concerns optical losses: while in a filter cavity the optical losses scales as
1 ppm/m, which means that the longer is the filter cavity, the higher are the losses,
an EPR more compact setup allows to avoids this optical losses. Moreover, EPR
setup requires a number of optical interfaces much smaller with respect to the filter
cavity system, i.e. OPO-ITF versus OPO-FC plus FC-ITF, thus allowing a lower
loss of mode mismatching. An R&D program is ongoing at the EGO laboratories
in Cascina to demonstrate this method. At present, this technique has never been
experimentally demonstrated into a Fabry-Perot ITF: such demonstration is one of
the important goal of the experiment SIPS, discussed in this thesis (see section 3.3
for the discussion on the integration between the two setups).

2.5.4 Ponderomotive squeezing

An alternative method for frequency-dependent squeezing production is the genera-
tion of squeezed vacuum states via the ponderomotive technique, which exploits the
effect of the radiation pressure on a suspended mirror. In fact, whenever a carrier
light with sidebands reflects off a suspended mirror, the reflection ponderomotive-
squeezes the light’s sidebands, creating correlations between their radiation pres-
sure noise in one quadrature and shot noise in the other [48]. These correlations
were firstly presented implicitly by Braginsky in his earlier identification of the phe-
nomenon of ponderomotive squeezing [49]. Then, with conceptually simple modifi-
cations of the interferometer input and/or output optics, it is possible to measure
this correlation and to realize in this way a QND device [35]. The generation of
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squeezed vacuum states via ponderomotive technique is one of the main goal of the
experiment described in this thesis, for this reason it will be described in more details
in the next chapter.



Chapter 3

SIPS experiment

The main goal of the work of this thesis is to study the realization of an opti-
mal control system and finalize a table-top setup able to generate ponderomotive
squeezed (PS) light in a radiation pressure noise-limited interferometer with sus-
pended mirrors, in order to have the proper pendulum resonance below the GW
detectors frequency band. With this squeezing technique, the effect of radiation
pressure in opto-mechanical cavities can be exploited to generate a quantum corre-
lation between phase and amplitude fluctuations which translates into a correlation
between shot noise and radiation pressure noise [50, 51]. The idea of a suspended
interferometer working in radiation pressure regime has been studied in [35] and [52].
In [52] it is demonstrated that such kind of interferometer design is, in principle,
able to observe the radiation pressure noise, if some fundamental requirements are
considered in the suspension design to keep the suspension thermal noise well below
the level of the radiation pressure noise of the system. Furthermore, the realization
of an opto-mechanical quantum-correlated system, such as the optical spring, has
been demonstrated in the past years with small membrane resonators in the MHz
region [53] and more recently (2020) [54] at lower frequencies.

In [37], Corbitt et al. proposed an experiment to extract ponderomotive squeezing
from an interferometer with high circulating power and low mass mirrors, suspended
as pendulums, in order to enhance the radiation pressure forces. Moreover, they
proposed the use of detuned Fabry-Perot arm cavities: the change in the optical
resonance induces an optomechanical rigidity, or optical spring, which suppresses
the displacement noise linked to radiation pressure. The optomechanical dynamics
induced by radiation pressure in a suspended Favry-Perot cavity has been measured
by Corbitt et al in 2006 [55]. Nevertheless, this effect has never been observed in
a Michelson ITF with Fabry-Perot cavities working in the same frequency range of
GW detectors. This effect has an important role in the realization of a quantum non
demolition (QND) ITF, for the reduction of quantum noise in the next generation
of GW detectors, and for this reason we are actively working in the realization
of a small scale interferometer which aims to exploit the optical spring effect to
generate ponderomotive squeezing. Even if this is an extremely promising idea, a
deep preliminary study and systematics R&D experimental work should be done
to overcome all the possible factors which can prevent from the observation of the
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ponderomotive effect.
The main limiting causes are listed in the following: (i) the weakness of the radiation
pressure force exerted on the suspended mirrors and, in particular, of its quantum
fluctuations with respect to the inertia of these macroscopic masses; (ii) the fluctua-
tions of the laser frequency; (iii) the several “technical” noise sources dominating in
the low frequency range, such as seismic noise, thermal fluctuation, Brownian noise,
photo-thermal and thermoelastic noises; (iv) the dynamic instabilities originating
in a highly non-linear system like an optical cavity, in presence of intense radiation
forces, which can be due to both radiation pressure itself and to photo-thermal ef-
fects.

Considering that the present technology ensures the possibility to efficiently filter
out seismic noise with the use of a superattenuator (see sec. 1.3.5 and fig. 1.10)
[56, 24], it has been possible to design a macroscopic opto-mechanical cavity, with
suspended mirror, dominated by the quantum radiation pressure noise. Based on
the statement discussed in [37, 55], a first detailed analysis done in [57] shows that
this can be achieved with a mirror suspension system tailored in such a way to
keep the thermal noise associated to the suspensions and coatings low enough to
observe radiation pressure fluctuations, by making an adequate choice of mirror
suspension and coating parameters. In order to observe the effect of a temporal
correlation between fluctuations of the radiation force and of the position of the
resonator, in the audio frequency band, we need a mass of a few grams scale weight
suspended as a pendulum in the two Fabry-Perot arms of a Michelson interferometer.
With this choice, it is possible to cancel out the frequency noises common to the
two FP cavities. The proposal to combine the two optical cavities modeled [57], to
obtain a table-top radiation pressure-limited ITF, is the starting point of the research
work discussed in this thesis, including both experimental work and theoretical
study. Here, the ponderomotive squeezing will be generated by exploiting the optical
spring effect in the Fabry-Perot cavities of the interferometer, which are properly
detuned, according to the requirements derived and described in the next sections.
In particular, SIPS experiment aims at generating tunable ponderomotive squeezing
in a frequency range below 2 kHz.

3.1 Optical spring effect in a detuned cavity
The proposal to take advantage of the optical spring effect to obtain ponderomotive
squeezed light from a detuned optical cavity was first made by [37]. Later, the use
of an optical cavity with suspended mirrors of different low-masses has been studied
in order to find the optimal configuration which allows to keep thermal noise low
enough to observe the radiation pressure effect in the frequency range between 10
Hz and 10 kHz [57]. In a Fabry-Perot cavity the optical spring effect occurs when
the optical restoring force (optical rigidity) on the cavity mirrors is comparable to,
or greater than, the mechanical restoring force (mechanical rigidity), thus producing
a phase shift of the cavity resonant frequency [55].
Let us consider a Fabry-Perot linear cavity composed by a suspended and perfectly
reflective end mirror with mass m and a fixed and high reflective input mirror with
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mass M [57]. The laser beam is characterized by a frequency ω0 and an input power
I0. Assuming that the cavity is tuned close to its resonant frequency ωr, the power
circulating inside the cavity is

W (I0, δγ) = I0G
1

1 + δ2γ
(3.1)

where
G =

2F
π
, (3.2)

is the gain of the optical cavity and

δγ ≡
δω

γ
=
ωr − ω0

γ
(3.3)

is the ratio between the frequency shift with respect to the resonance and the cavity
pole, or half width at half maximum, defined as

γ =
c

2L

(1− ρ1ρ2)

π
√
ρ1ρ2

, (3.4)

where L is the round-trip length, ρ1 and ρ2 are the reflection coefficient of input and
end mirror and [13].

F =
∆νFSR
γ

=
π
√
ρ1ρ2

1− ρ1ρ2
(3.5)

is the finesse of the Fabry-Pérot cavity. In the case we are analyzing, being ρ1 close
to one, we can write τ 21 = 1 − ρ21 = (1 − ρ1)(1 + ρ1) ≃ 2(1 − ρ1), where τ 21 is the
input mirror transmission coefficient. Moreover, since we are considering a perfectly
reflective end mirror, which means ρ2 = 1, the finesse can be rewritten as

F =
π

1− ρ1
=
π

2

τ 21
(1− ρ1)2

, (3.6)

and the gain of the cavity becomes

G =
τ 21

(1− ρ1)2
. (3.7)

The linewidth can be also written as [37]:

γ =
c

2L

(1− ρ1)

π
=
cTin
4πL

, (3.8)

being Tin = τ 21 . Then, the detuning parameter δγ becomes

δγ ≡
δω

γ
=

4πL(ωr − ω0)

cTin
. (3.9)

In this opto-mechanical system, the radiation pressure force, or ponderomotive force,
acting on the end mirror is proportional to the power circulating inside the cavity

Fp =
2W

c
. (3.10)
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For a defined detuning parameter δγ, the ponderomotive force is balanced by the
gravitational force acting as a restoring force on the end mirror and keeping the mir-
ror in a mechanical equilibrium, such as a classical pendulum [37]. If we consider a
displacement dx of the end mirror, the detuning parameter will also change, causing
an additional restoring force acting on the mirror. The total restoring force, due to
this displacement will be [37]

dFx = −mω2
pdx+

2

c

∂W

∂δγ

dδγ
dx

dx = −(mω2
p + kopt)dx, (3.11)

where ωp is the pendulum frequency, and kopt is the optical rigidity, or spring con-
stant, due to the radiation pressure force. Equation 3.11 is also valid in the quasi-
static regime, in which the cavity linewidth γ is much larger than the frequency ωr
[37]. Then, considering that ωr = πc/L [57], we can write

dδγ
dx

= − 4ω0

cTin
, (3.12)

and the optical spring constant can be derived

kopt =
2

c

∂W

∂δγ

dδγ
dx

= −4ω0W

γLc

δγ
1 + δ2γ

. (3.13)

Then, the equation of motion of the end mirror can be written in the form [57]

−mω2x = −(mω2
p + kopt)x+

2

c

∂W

∂I0
I0x+ Fext, (3.14)

where also the force due to the input power fluctuation, I0, and external force Fext

are considered. In the two-photon formalism, where the input and output field are
written in terms of quantum amplitude and phase fluctuations, aA,P , we define the
characteristic optical spring frequency as [37]:

Θ2 ≡ kopt
m

= −4ω0W

γmLc

δγ
1 + δ2γ

= −4ω0I0δγ
mc2

(
4

Tin

1

1 + δ2γ

)2

. (3.15)

Note that Θ can either be real, when δγ < 0, or purely imaginary when δγ > 0.
On the other hand, the power fluctuation of the light incident on the cavity induces
a fluctuating force on the mirror, as expressed in eq. 3.14 Then it is possible to
express equation 3.14 in the two-photon formalism, as [37]

m(Θ2 + ω2
p − ω2)x =

(
4

Tin

1

1 + δ2γ

)
2ℏω0A

c
aA + Fext, (3.16)

where A is the mean amplitude of the input field in the two photon formalism [37].
This equation shows that, if we are in the quasi-static regime, the mirror’s (complex)
mechanical resonant frequency is shifted from ±ωp to ±

√
ω2
p +Θ2. Supposing also

that ωp ≪ |Θ|, then ±|Θ| gives the mirror mechanical resonant frequencies, which
correspond to a resonance when Θ is real, or to a pure instability when it is purely
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imaginary. Assuming no external forces acting on the mirrors, we can define the the
frequency-domain input-output relation as(

bA
bP

)
=

(
1 0

−2K(ω) 1

)(
aA
aP

)
(3.17)

where a and b are the input and output fields, the indices A and P refer to the
amplitude and phase of the field and the term

K(ω) =

(
1

1− (ω2 − ω2
p)/Θ

2

)
1

δγ
(3.18)

is the coupling factor, which describes the correlation between the output amplitude
and phase quadrature and creates the squeezing in the output field.
In order to quantify squeezing, the quadrature field is measured by an homodyne
detector, and the spectral density of the fluctuation of the output quadrature can
be written as

Sζ(ω) = 1 + 2K2 − 2K(sin 2ζ +K cos 2ζ) ≡ ξ2ζ (ω), (3.19)

where ζ is the homodyne angle, with a convention in which ζ = 0 corresponds to
the simple amplitude detection of the output field. Taking the minimum over the
quadrature of ξζ(ω), the ponderomotive squeezing factor can be written as [37]

ξmin(ω) =
1

|K(ω)|+
√

1 +K2(ω)
, (3.20)

obtained at
ζmin(ω) =

1

2
arctan

1

K(ω)
. (3.21)

If Θ lies within the quasi-static regime, we can consider three regimes for the working
frequency ω:

1. when ω ≫ Θ, the coupling constant K tends to zero, then obtaining a vacuum
output state (not squeezed);

2. for ω ≪ |Θ|, we obtain a constant K = 1/δγ, which means to have a frequency
independent squeezed state;

3. when ω ∼ |Θ| the system experiences a resonance, if Θ is real, with a strong
squeezing and highly frequency-dependent squeeze angle, or smooth transition
occurs if Θ is purely imaginary.

Therefore, we can obtain a frequency-independent ponderomotive squeezing source
with squeezing factor which depends only on the detuning parameter δγ, and band-
width Θ. This squeezing factor ξmin can be lowered indefinitely by taking δγ → 0,
but according to eq. 3.15 the bandwidth Θ will also decrease in this process, unless
input power and/or cavity finesse are increased. Nevertheless, as discussed in [37],
such a squeezed state can be transformed into frequency-dependent squeezed states
by optical filters.



66 CHAPTER 3. SIPS EXPERIMENT

Therefore, once |Θ| has been fixed, it is possible to design the opto-mecanical system
in order to keep the system in a regime in which ωp is much lower than |Θ|, allowing
us to use the model described above. From the equation 3.14 it is possible to explain
the opto-mechanical coupling in a detuned cavity, as an optical spring which works
around a detuned point. Indeed, the radiation pressure force arises from the time
delay in the cavity response and is proportional to the velocity of the cavity mirrors,
with a linear dependence on the cavity length [55]. Then, if the detuning increases
(blueshift), this time delay leads to a force in the same direction as the instanta-
neous mirror velocity, the cavity becomes longer, and the power decreases causing a
restoring force, while if the detuning decreases (redshift), the cavity becomes shorter
and the decrease of the power results in an anti-restoring force [57].

3.1.1 Towards quantum non-demolition

As already mentioned in section 2.4, quantum non-demolition (QND) interferome-
ters are achieved by creating correlations between the radiation pressure and shot
noise. In [35] different ways in which this can be realized are described. In particu-
lar, both input squeezing and ponderomotive squeezing are considered as a way to
improve the sensitivity of the GW detectors. Therefore, we take inspiration from
[35] in order to exploit our optical-spring squeezer (SIPS) to achieve a broadband
reduction of quantum noise in Virgo intererometer.
We have seen that ponderomotive squeezing arises from the naturally occurring cor-
relation of light intensity fluctuations (radiation-pressure noise) to mirror position
fluctuations (shot noise) upon reflection of light from a mirror. This process can
be qualitatively describes as follows: when light (or vacuum) with fluctuations in
the amplitude (radiation pressure) quadrature ∆A, and with fluctuations in phase
quadrature ∆ϕ, is incident on a mirror, the back-action force of the light on the mir-
ror causes a displacement of the mirror proportional to ∆A. If the position signal is
measured in the phase quadrature, then the noise on that measurement is given by
∆ϕ−K(ω), where K(ω) is a measure of the backaction coupling and depends on the
frequency of oscillation of the mirror, ω. If a single quadrature is measured at the
output of the interferometer, the noise on that measurement will depend on K(ω) at
each frequency ω. If, however, one could measure an admixture of quadratures with
a frequency dependent homodyne angle, ζ(ω), which is a function of K(ω), it would
be possible to eliminate ∆A from the measurement, at all frequencies [48]. Since,
with this approach, the measured quadrature varies with frequency, this technique
is called variational or frequency-dependent homodyne readout.
Another way to realize QND in an interferometer is through the dinamical corre-
lation. It consists in modify the interferometer mirror dynamics by coupling to the
light. This coupling is generated by the fact that the radiation pressure force not
only imposes random fluctuations on the positions of the interferometer mirrors,
but also exerts a restoring force with a deterministic frequency-dependent spring
constant, i.e ponderomotive rigidity [58]. The resulting dynamical correlation of the
shot noise and radiation pressure noise [59] are manifestations of quantum nonde-
molition (QND), in which the correlations lead to below-SQL noise limits.
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The discussion described so far in this section, allows us to highlight the funda-
mental constraints on the parameters to choose for the opto-mechanical design of
the experiment. In [57], it is discussed and analysed that, given a suitable seis-
mic pre-isolation system (see sec. 1.3.5 and fig. 1.10), by tailoring the design of the
mirror suspension system (i.e. double pendulum with monolithic suspension), it is
possible to realise a table-top setup where a Fabry-Perot cavity, then doubled in an
interferometric configuration, employs suspended mirrors of inch-size-scale with the
end mirror lighter than the input one and dominated by radiation pressure noise.
This is the case of the experiment SIPS presented in this thesis work. The optical
and mechanical designs, together with the study for the choice of the fundamental
parameters of the experimental setup and the expected noise budget are discussed
in the following sections.

3.2 Experimental setup

The idea of a suspended interferometer working in radiation pressure regime for the
generation of ponderomotive squeezing, discussed in this thesis, has been preliminary
studied in the past years, starting from the study done in [52]. The preliminary R&D
work started around 2012 and involved many Italian research institutions, among
which we can list: the University of Naples Federico II and the INFN-Napoli branch
together with the University of Rome Tor Vergata and the INFN-Roma2 branch
for the work on general optical design; the University of Pisa and the INFN-Pisa
branch which designed and realised the main optical bench where the experiment
will be installed; the University of Urbino for the monolithic suspension production;
and, last but not least, the University of Rome La Sapienza and the INFN-Roma
branch, which has been and is still actively working on the opto-mechanical design
and realization of the experiment setup. Later, in 2017, the experiment also received
new funding for the R&D by INFN-CSN5, under the name of SIPS (Suspended In-
terferometer for Ponderomotive Squeezing) with also the collaboration of the INFN
Perugia branch for the design and realization of the monolithic suspensions. From
the study done in [52], the fundamental design requirements are chosen in order
to reduce the thermal noise well below the level of the radiation pressure noise of
the system, as will be discussed in more details in section 3.2.1. In this section
the optical and mechanical design of the experimental setup for the ponderomotive
squeezer is described. It is an interferometer similar to that used for GW detection:
a Michelson interferometer with Fabry-Perot cavities in each arm, with all the mir-
rors suspended as pendulums. While squeezed light could be produced with the use
of a single cavity and suspended mirror, the use of interferometry is necessary to
introduce common mode rejection of the laser noise, which would otherwise mask
the squeezed light [37]. For this purpose, the experimental design of SIPS has been
developed starting from the analysis already done in [57] for a single optical cavity,
where it is also proposed to combine the two optical cavities, to obtain a radiation
pressure limited interferometer.

In order to achieve the goal of measure squeezing levels, we set the most critical



68 CHAPTER 3. SIPS EXPERIMENT

features of the optical design, described in section 3.2.2, which includes:

- a powerful input laser beam;

- Fabry-Perot cavities with high finesse to have a large optical power incident
on the suspended mirror to have high sensitivity to radiation pressure,

- substantial detuning of the two cavities (comparable to the cavity linewidth)
which would allows to create the optical spring.

3.2.1 Noise budget of SIPS

In order to produce ponderomotive squeezing, the suspended interferometer SIPS
must be dominated by radiation pressure noise. Such kind of instruments are af-
fected by several noise sources. Nevertheless, in a Michelson interferometer, the
common mode rejection can be exploited to attenuate the effect of the many limit-
ing noise sources, such as laser frequency fluctuations, equal in the two arm-cavities.
The idea itself of working in the low frequency regime implies the need to consider
two important limiting noises of the interferometer sensitivity: the seismic noise and
the thermal noise. The long experience of work on the Virgo Superattenuators for
the attenuation of the seismic noise has been considered to control this source of
noise. Thus, beating the thermal noise at low frequency is the priority in an ex-
periment such as SIPS primarily devoted to demonstrate the ponderomotive effect.
The sensitivity curve of a ground based gravitational wave detector in the frequency
band between 10 and 200 Hz is dominated by the thermal noise of the mirror sus-
pension fibers (at lower frequencies) and by the thermal noise of the mirrors bulk
and coating layers, which are the most likely to hide the radiation pressure effect.
From the expected sensitivity curve of Advanced Virgo (see fig. 1.4), we can see
that the suspension thermal noise limits the sensitivity in the frequency band around
10 Hz. Therefore, the realization of an interferometer which is radiation pressure
dominated in the frequency range between 1 Hz and few kHz, strongly depends on
the capability to optimize the thermal noise linked to the suspension system of the
mirrors and to the coatings of the main optics. Finite element simulations have been
carried out in order to define the main characteristics of the mirror suspensions and
coatings, to reduce thermal noise and make the radiation pressure noise dominant in
the desired frequency range [57]. This detailed analysis led to the choice of a double
stage suspension system, which has the advantage to further attenuate the seismic
noise at the level of the mirror and to reduce, at the same time, the suspension
thermal noise [57].

This has been modelled using the fluctuation dissipation theorem [18], as

Xtherm(ω) =

√
4kBT

ω2
ℜ{[Z−1(ω)]22}, (3.22)

where kB is the Boltzmann constant, T the temperature, and [Z−1(ω)]22 the element
of the inverse of impedance matrix that corresponds to the suspended mirror. Note
that the impedance matrix takes into account all the dissipating processes that
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Figure 3.1: Expected noise budget for 1 inch diameter end mirror of 10 g of mass, in a dou-
ble suspension configuration. Blue curve is the total suspension thermal noise, computed
considering also noise related to violin modes of the wires. The blue-dashed curve repre-
sents total suspension thermal noise when considering the effect of residual gas damping
due to a pressure p=10−9 mbar of molecular hydrogen. Black curve represents the mirror
thermal noise estimated with finite element analysis [57].

contribute to the mechanical dissipation determining the suspension thermal noise.
A similar approach was used to estimate the transverse vibration modes of the
suspension wire, called violin modes, which also behaves as a vibrating string [57],
and can be modelled as [60]

Xvio(ω) =

√
4kBT

ω

2ρr2l

πm2

∑
n

1

n

ω2
nϕn

(ω2
n − ω2)2 + (ω2

nϕn)
2
, (3.23)

where r and l are the fiber radius and length and ωn, ϕn represent the frequency
and the total loss angle [57]. The overall pendulum loss angle ϕp includes all the
dissipation processes in the system, and thus is given by the sum of all these con-
tributions

ϕp(ω) = DilF (ϕSiO2 + ϕte(ω) + ϕe) , (3.24)
where DilF is the dilution factor, as defined in [57], and ϕSiO2, ϕte, ϕe are respectively
the structural, thermoelastic, and surface loss angles. Therefore, the total thermal
noise of the double suspension system is given by the square of the quadratic sum
of the two components 3.22 and 3.23 as

XThNS(ω) =
√
X2

therm(ω) +X2
vio(ω). (3.25)

The mirror thermal noise has been estimated via a Finite Element Analysis with
ANSYS® software [57], using Levin’s approach [61], and is given by

XThNM(ω) =

√
8kBT

ωF 2
0

Umirϕtot, (3.26)
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where Umir is the total strain energy of the suspended mirror under an impinging
Gaussian pressure, and ϕtot is the overall loss angle, given by the sum of all dissi-
pating contributions [57]

ϕtot = ϕB +
∑
lay

Ulay

Utot

ϕlay
mat = ϕB +

UHR
coat

Utot

ϕHRmat +
ULR
coat

Utot

ϕLRmat +
USB
Utot

ϕSB. (3.27)

In this equation, ϕB is the loss angle related to the bulk, and ϕlaymat is the loss angle
of the material composing the layer, while Ulay and Utot are the layer strain energy
and the total strain energy, respectively. As a result of this analysis, the geometry
of the suspensions and the dimensions of the suspended mirrors was chosen. As
shown in figure 3.1, the choice to use high reflective mirrors with Advanced Virgo-
like coatings and 10 g mass suspended with monolithic Virgo-like suspension system
optimises both mirror and suspension thermal noise below the radiation pressure
fluctuations, a fundamental condition to have the optical spring effect observable
and exploitable [62]. Another noise source to be considered is the one coming from
the seismic background, which causes fluctuations of the mirror position, represented
by a power spectral density proportional to ω−2. Among other noise sources, the
effect of the residual gas damping must be also considered, as detailed described in
[57], and as also considered in the figure 3.1.
All the noise sources, should be compared to the expected radiation pressure noise,
which, for a pendulum suspension in a Fabry-Perot cavity, can be modeled as [52]

XRP(ω) =
2F
πm

√
8hPin/(λc)

(ω2
p − ω2)2 + (ω2

pϕp(ω))
2
. (3.28)

This analysis leads to the estimation of a radiation pressure noise XRP at 10 Hz
of about 3 × 10−15 m/

√
Hz, which means that the radiation pressure noise will be

approximately 600 times higher than the thermal noise at 10 Hz (see figure 3.1)
[57, 62]. From this analysis, it was possible to choose the parameters for the design
of the main optics, which ensure a theoretical ponderomotive squeezing factor of
ξζ(ω)=18 dB. From the experimental point of view, all the possible losses in this
opto-mechanical system should be considered, allowing to obtain a more realistic
ponderomotive squeezing factor of about 7 dB.
SIPS will be first used as a table-top demonstrator of the EPR experiment and
for this reason placed in a vacuum tank in the R&D squeezing laboratory at EGO
(Virgo site) where the EPR setup is under construction [62, 12]. Indeed, for this
first phase of the experiment, the noise budget must take into account the seismic
noise level in that location and, if required, new seismic noise measurement must be
realised. From some preliminary measurements, it has been found that the seismic
noise at EGO site is lower than radiation pressure noise in a wide range of frequencies
above 40 Hz. Moreover, the preliminary analysis done in [62] show that a suitable
monolithic suspension of the main optics and high-quality coatings allow to keep
the thermal noise well below radiation pressure noise. Given these considerations,
it seems that no further modifications are required in the design of SIPS before its
integration with the EPR experiment. Then we can state that SIPS is exploitable
as demonstrator of the EPR squeezing in a frequency band between 40 Hz and 700
Hz.
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3.2.2 Optical bench design

The analysis illustrated in sections 3.1 and 3.2.1, explains the choice of the different
features of the experiment setup and is a guide for the choice of optical and me-
chanical parameters used to design and build the interferometer SIPS. The material
chosen for both mirrors and suspension fiber is the fused silica, SiO2, due to the fact
that it combines the characteristics of robustness, necessary to suspend the mass
of mirrors, to those of a loss angle extremely reduced [63]. The use of suspensions
of the same material of the mirrors allows the realization of a monolithic structure,
thus minimizing the losses which originate at the contact points between different
material [64]. The small-scale suspended interferometer (SIPS) design is shown in

Figure 3.2: Main mechanical design with suspended optics (left) and a simplified main
optical bench design (right) of the double suspended bench setup for SIPS.

figure 3.2. It is a Michelson interferometer, which includes two high finesse Fabry-
Perot (FP) cavities and a fused silica beamsplitter (BS) of 3 inches diameter. Each
FP cavity is composed by two concave fused silica mirrors: a 1 inch fused silica end
mirror (EM), 10 mm thick with a mass m = 10 g and a 3 inch fused silica input
mirror (IM), 30 mm thick with mass of 300 g. This is the best combination of param-
eters chosen for the main optics, which follows from the suspension thermal noise
analysis done in [62], and they are summarized in table 3.1. As explained in section
3.1, the optical spring is the predominant feature of the detuned arm cavity. In par-
ticular, when a cavity is detuned, the optical spring modifies the response function
of the differential mode from a free mass (ignoring the pendulum frequency) to a
harmonic oscillator with resonant frequency Θ (see eq. 3.15). Following the work
done by Corbitt et al [37], we can consider the frequency regime ω ≪ |Θ|, in which
the response of cavity lengths to external disturbances (due to seismic or thermal
noise) is suppressed by Θ2/ω2 and the ideal output state is a frequency independent
squeezed vacuum with squeeze factor as a function δγ = δ/γ. Based on this qualita-
tive consideration, in order to obtain a substantial squeeze factor, we need to choose
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an optical configuration such that δ is of the same order of magnitude as the cavity
linewidth γ. We have considered a target squeeze factor of 18 dB, which is the ideal
value obtained in absence of optical losses and technical noises (allowing to keep the
contribution of the vacuum fluctuations from the anti-symmetric port to the total
noise small enough). This determines the value of the detuning parameter, which
it has been chosen to be δγ = 0.3. The low mass values for the end mirrors has
been chosen to allow a high optical spring resonance. Moreover, the mirror coatings
are realised in order to have very high finesse Fabry-Perot cavities, thus increasing
the effect of radiation pressure noise, for the aim of generating of ponderomotive
squeezed light. Indeed, a large finesse values of the arm cavity is needed to have the
optical spring frequency, Θ, as high as possible, for a better noise suppression and
to reduce intra-cavity losses.
At present, the substrates and coatings of the main optics have been procured by
INFN-Roma group at the Physics department of La Sapienza University of Rome,
as shown in figure 3.3.

Figure 3.3: Main optical elements realized with a cylindrical bulk made of fused silica,
with a suprasil substrates: 1 inch end mirror (left); 3 inches input mirror and BS (right).

In particular, finite element analysis described in [62] gave the requirement on mir-
ror (and BS) coatings, (also shown in table 3.1). Moreover, given the very high laser

Main Optics Diameter Weight Thickness RoC T Coatings

IM 3” 300g 30mm 250mm 260ppm @0°
EM 1” 10g 10mm 250mm 1ppm @0°
BS 3” 300g 30mm 0 50%±0.05% @45°

Table 3.1: Parameters chosen from finite element analysis on mirror thermal noise [57]
for the main optical elements: they are all realized with a fused silica (SiO2) bulk and
Suprasil substrates. The required coating transmissivity, T, are computed at the main
laser frequency of 1064 nm.

intensity value, suited coatings are required: they must have a high reflectivity on
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intra-cavity surfaces, with a transmissivity, or a power loss of T = 1 ppm at 1064 nm,
in order to reach the suitable high value for the finesse of FP cavities. These coat-
ings have been realized by the Laboratoire des Matériaux Avancés (LMA), located
in Lyon, France, which is the same laboratory which manufactures the coatings of
Virgo and LIGO test mass mirrors [23, 25]. With this requirements the FP cavities
has a finesse of F = 23000. Although a high finesse value increases the effect of
radiation pressure noise, it also limits the optical spring stability. Then, to ensure
the stability condition for the optical cavity, this has been designed and realized to
have a length of L = 350 mm and mirrors with a radius of curvature (RoC) of 250
m, which gives a g factor of about 0.16. Moreover, the distance between BS and
the two input mirrors are slightly different in order to compensate for the optical
path inside the BS and for allowed space constraints: they are l1 = 73 mm and l2 =
105 mm respectively for the north and east arm, as shown in figure 3.2. The input
laser power required at the SIPS bright port is Pin = 2.5 W, which means that the
power received in each arm will be Pin/2 = 1.25 W, corresponding to Pst = 18.1
kW of circulating power inside each cavity. This has been chosen considering that a
larger value increases the optical spring frequency Θ, and with a stored power Pst >
0.2 MW thermal effects would appear, leading to the degradation of the cavity
behaviour [62].

3.2.3 Mechanical design

The mechanical design of the mirror oscillator, crucial to the performance of the in-
terferometer, is here described, starting from the model analysed in [57]. A scheme
of this system is shown in figure 3.4. All the principal optical elements will be mono-

Figure 3.4: Scheme of the suspended optical cavity modeled in [57]. Each mirror are
suspended from an intermediate stage called marionette, thus i can be described as a
double stage pendulum.

lithically suspended to an intermediate stage, called marionette, through thin fused
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silica fibers (SiO2). The monolithic suspensions are made by pulling bar of bigger
diameter of few mm of highly pure fused silica with a particular technique which uses
CO2 lasers machine, which is the technique developed and currently used by Virgo
and LIGO collaborations (see fig. 3.6). For the requirements of this experiments

Figure 3.5: Scheme of a SIPS mini-payload with a detailed view on the monolithic suspen-
sion of the main optics, designed with a Virgo-like technique for thermal noise reduction.

demonstrated in the study [57], it turned out that, in order to reduce the associated
thermal noise, silica fibers must have a diameter of 50 µm with a length L2 = 40
cm, as shown in figures 3.6 and 3.5. With this suspension system, the mirrors (and
BS) with the marionettes form the so-called mini-payloads, in analogy with those of
the main suspended optics of Virgo (see figure 3.5).

All the main optical and mechanical components (the main optical bench) are held
to an upper plate. Indeed the suspension of the main optical elements allow not only
the mirrors to behave as free masses in the experimental frequency band, but it also
have the advantage of isolation from seismic noise. To improve the seismic isolation,
the parameter for the design has been chosen to have a pendulum resonant frequency
of ∼0.8 Hz. Moreover, the entire interferometer will be in turn suspended through
a complex chain of mechanical filter inspired to that of Virgo Superattenuators
[56, 24]. Indeed, GW detectors such as Virgo and LIGO, demonstrated that it is
possible to filter out the natural seismic vibrations: in Advanced Virgo the mirrors
are suspended from a vibration isolator that filters this noise at frequencies larger
than those of the normal modes of the suspension itself [65]. In particular, in Virgo
the Superattenuator (SA) is capable of 180 dB of attenuation at 10Hz [66, 24]. Its
working principle is based on a multistage pendulum acting on seismic vibrations
as a chain of second order mechanical low-pass filters [67] and it is characterized by
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Figure 3.6: Picture of the 50µm diameter fused silica fibers produced with the same tech-
nique used for Virgo fibers (right), using the CO2 laser machine at EGO laboratories (left).
This is a first successful production test.

very low frequency normal modes, in the range of 0.04-3 Hz [65]. It is foreseen to
implement such a system to exploit the seismic attenuation for SIPS, for its use as
a ponderomotive squeezer. For this reason, SIPS has been initially designed to be
suspended from the last steering filter of the SA chain. Indeed, a full scale prototype
of a Superattenuator is currently available for test in the facility located at EGO
(Virgo site) and it is planned to use it for the SIPS experiment [62]. This original
idea to suspend SIPS bench through the Superattenuator Facility (SAFE, see fig.
3.7), gives the requirement for SIPS bench to be compliant with allowed size and
weight to be suspended with this system. In particular, the suspended bench has
been realized with a height of 800 mm, diameter of 960 mm and its weight is of
about 150 kg. Moreover, it is necessary to find a trade-off between the experimental
constraints given by the allowed space in SAFE and the suspension system. In figure
3.7 is shown a rough sketch of the original idea of suspending SIPS to the SAFE
facility.
Nevertheless, as already mentioned in section 3.2.1, in the first application of SIPS to
replace GW interferometer for test of EPR squeezing technique, the implementation
of the superattenuator SAFE is not required. Moreover, the SA research facility at
EGO cannot be ready before the planned integration with EPR setup. Hence, in
the noise budget of SIPS computed in [62] a conservative approach as been adopted
considering the seismic noise measured at Virgo site [68]. The plot in figure 3.8 (red
curve), show the noise for the double-stage suspended mirror. In particular, it is
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Figure 3.7: SuperAttenuator Facility (SAFE) at EGO-Virgo site, with a rough sketch of
the implementation of SIPS suspended bench.

found that seismic noise is lower than radiation pressure noise in a wide range of
frequencies above 40 Hz, assuring a quantum radiation pressure limited bandwidth
of (40-700)Hz [62]. This tells us that, even without the use of a superattenuator,
SIPS interferometer can be used as a test bench for the EPR experiment.
The main optical elements of the interferometer and their intermediate suspension
stage (marionette) are controlled with magnet-coil actuators on both mirror and
marionette, and it must be locked by a closed loop feedback control system. The
study of the opto-mechanical interaction inside SIPS FP cavities is one of the main
topics of this thesis and it represents a fundamental preliminary step to achieve the
important goal of the development of an optimal control system for the interferomer
(see Chapter 5). The mechanical prototype of SIPS is under development and test
for the suspension and control systems. In the near future, the fused silica (SiO2)
fibers for suspension of the main optics will be produced using the CO2 laser ma-
chine at Virgo site and the monolithic suspension system of the SIPS interferometer
main optics will be implemented. This kind of monolithic suspension is already
implemented in GEO600 and in the GW ITFs Virgo and LIGO, but its realization
at small scale implies a different design respect to that used for the bigger mirrors
of GW ITFs, and some R&D for the integration with the suspended interferometer.
A first production test have been succefully realized as shown in figure 3.6.
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Figure 3.8: Expected noise budget of SIPS compared with the seismic noise at Virgo site
(red dashed curve). For more detail see [62].

At present, dummy elements that reproduces the main optics of the interferome-
ter are used in a preliminary phase to develop, test and validate the local control
system. This activity represent the core of the experimental work I have done dur-
ing my PhD thesis and is discussed in detail in Chapter 4. In particular, the test
of local control are carried out on a prototype dummy end mirror, which has the
same dimensions of the fused silica end mirror designed for SIPS and is made of
aluminium in order to have a mass close to that of the fused silica one. This dummy
mirror is then suspended to the marionette through niobium wires having a diam-
eter of about 56 µm, similar to that of the final SiO2 monolithic suspension fibers,
and the marionette is in turn suspended to the upper plate through one steel wire
with a diameter of 300 µm, that is likely to be the same kind of wire (material and
geometry) that will be used in the final suspension design, as described in [57].

3.2.4 SIPS FP arm cavities

Some work was carried out on the design of SIPS laser injection line, as reported
in [69], with the goal to provide the proper beam shape and optical power of the
main laser, to be mode-matched to the arms of SIPS interferometer. This work
involved some optical simulations carried out on SIPS arm cavities, performed with
the software FINESSE, in order to compute the eigenmode of the interferometer arms
and to analyze their power budget and spectrum. In figure 3.9 is shown the optical
scheme of one Fabry-Perot arm cavity of SIPS and the main optical characteristics
are highlighted [69].

As reported in eq. 1.65 of section 1.2.3, the half of the FP cavity linewidth is the
cut-off pole frequency, fp. From the choice of parameters for SIPS optical bench
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Figure 3.9: Optical scheme and main optical characteristics of one Fabry-Perot arm cavity
of SIPS [69].

design, discussed in the previous section, SIPS FP cavities have a pole frequency
fp=9.31 kHz, which means that the FP response at input signals with f ≫ 9.31
kHz will be damped. SIPS FP arm eigenmode shape is computed by assuming a
pure Gaussian beam (the main laser) incoming into SIPS, thanks to the presence of
the so-called Input Mode Cleaner (IMC) cavity. The physical goal of a MC cavity is
filtering out the spurious transverse higher order modes (HOM) eventually present
in the incoming beam (in our case is SIPS main laser) in order to provide a (nearly)
purely Gaussian TEM00 beam in output. The design project of the IMC for SIPS
was carried out, as reported in [69], taking into account several requirements, among
which HOM filtering and the IMC transmitted power are the most relevant for our
discussion. The basic condition for which the produced transmission spectrum is not
contaminated with power coming from the HOMs, when the cavity is locked on the
TEM00 mode, has been first checked by simply observing at the distance between
lines in the transmitted spectrum, i.e. the Transverse Mode Spacing (TMS), com-
paring the TMS with the FWHM. The condition is satisfied when TMS≫FWHM.
Therefore, the distance between lines of adjacent orders should be greater than the
cavity linewidth, in order to avoid superposition between Gaussian and HOM modes.
Although every tested configuration satisfy this condition, this is not sufficient for
ensuring that no overlaps between lines occur. More accurate tests have been done,
searching for a too large contamination coming from the HOMs, by inspecting the
transmission spectrum in search of overlaps between generic TEMnm modes and the
TEM00 [69]. All the possible configurations have been simulated, by examining the
spectrum and the power budget, providing the ranges for the physical parameters
of the IMC resonator and leading to the choice of the best IMC candidate. Then,
thanks to the presence of the IMC cavity, we can have a nearly pure Gaussian beam
injected into SIPS bright port. Moreover, the requirements of an input power of 2.5
W for SIPS, gives the constraint on the IMC transmitted power, which clearly must
be higher than this value. On the 10th of January 2023, we received the mechanics
of the IMC, but we should wait the end of March for the optics with custom made
coatings. Then, we will be able to test the IMC performances and compare them
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to the design. Another analysis performed on SIPS is about the spectrum shown by

Figure 3.10: SIPS arm transmission spectrum simulated in [69], with the highest HOM
peak more than 100 times weaker than the main resonances.

each arm, considering a pure Gaussian beam injected into the interferometer. This
study was necessary to evaluate the possibility that some HOMs are created into
SIPS itself: this can happen in case of misalignment of the beam into the cavities,
and if there is a mismatch between the beam and the eigenmode of the cavities. It
has been found that, due to the high finesse of the arms the suppression factor
is greater than 65 dB, which is high enough to suppress very efficiently the non-
Gaussian modes eventually created inside SIPS arms [69]. Moreover, the injection
line from the IMC cavity into SIPS is not direct. This is due to a difference between
the height of the main EPR optical bench and the viewport of the vacuum chamber
that will host SIPS alone (without SAFE) centered on the main optics of SIPS. This
height difference between the beams on the EPR optical bench and SIPS main optics
is about 60 cm. This requires the design of a periscope and of an auxiliary bench,
in order to first ensure that the beam coming from the IMC will reach the central
beam-splitter of SIPS and, most important, to be mode matched with SIPS cavities.
Considering the input power of 2.5 W given by design for SIPS, the mode-matching
of IMC beam to a SIPS cavity eigenmode has been calculated and the results give
an amounts for both SIPS arms of ∼ 99.9%. Figure 3.10 shows how the quite low
degree of asymmetry in the small-scale ITF layout, determines a little power lost
into HOMs. Indeed, even if the beam entering the interferometer is a nearly pure
Gaussian beam and perfectly aligned, some HOMs can be created in the cavity for
mismatches. Nevertheless, it was found that they are very well suppressed, with a
suppression factor ≳ 65 dB [69]. Then, thanks to a large power gain due to the
high finesse of SIPS FP cavities, which is found to be G = 2F/π = 1.5 · 104, we
can assure a circulating power of 18.1 kW inside SIPS arms, when they are put in
resonance: the results of this analysis is shown in figure 3.11.
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Figure 3.11: SIPS cavity transmitted and stored power obtained from simulation done in
[69], considering an input power Pin = 1.25 W.

This is an important point for the research presented in this thesis, since this level
of power assures that the beam exiting from the end mirrors still carries a power
Pend = TEM ·Pst = 18.1 mW, which is high enough to be detected with a photodiode.
This is necessary to acquire information about the status of the cavities, in order
to control the cavities and acquire the look to keep them in resonance. Indeed,
given the high input power and gain, the circulating power must be monitored. In
Table 3.2 are listed the main features of the SIPS Fabry-Perot cavity resonators,
some of which also resulting from the analysis done in [69]. As shown in table 3.2,

Parameter Value

L [mm] 350
TIM 270 ·10−6

TEM 1 ·10−6

AIM 1 ·10−6

AEM 1 ·10−6

F 23010
FSR [MHz] 428.3
FWHM [kHz] 18.61
fp 9.31 kHz

Parameter Value

TMS [MHz] 270.2
g1g2 0.16
Pst [kW] 18.1
Pend [mW] 18.1
w0 [µm] 197
Imax [kW/cm2] 29720
wIM ;EM [µm] 359.6
Imax,IM ;EM [kW/cm2] 8915

Table 3.2: List of some important parameters chosen from design requirements and optical
simulations of SIPS FP cavities [69].

the waist of the eigenmode has been founded to fall at the center of the cavity (as
expected) with a value of w0 = 197.0µm, which corresponds to a beam width of
wIM ;EM = 359.6µm on both the input and end mirrors. With the optical set up of
the IMC designed by [69], it is not only possible to tune the input power in order to
increase the radiation pressure experienced by SIPS arm cavities end mirrors, but
also to have a clean Gaussian intensity profile of the beam injected into SIPS, which,
thanks to the IMC action, presents a high level of mode-matching with the arms of
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the small-scale interferometer.

3.2.5 Summarized consideration on SIPS design

Some main milestones achieved for the realization of the experiment are summarized
and listed here:

- realization of the suspension mechanics for the main optics (mirrors and BS);

- simulation of thermal noise and radiation pressure for the interferometer mir-
rors, for the choice of suitable opto-mechanical parameters [57, 62];

- production of the main optics substrates and coatings;

- production of test fused silica fibers (SiO2) with diameter ϕ = 50µm in col-
laboration with the INFN of Perugia;

- simulation of SIPS arm cavities spectrum and power budget [69];

- realization and tests of a local control system for a mini-payload suspension
of the main optics;

- design and realization of a new suspension mechanics tailored to optimize the
actuation system for alignment and control (implementation in progress in all
the mini-payloads of SIPS) [30];

- assembly of the new produced marionette of one end mini-payloads of SIPS,
for the implementation of the local control system.

Starting from the initial tests done on LabView code for local control already imple-
mented for old mechanics, some results from test of the control on the new suspension
system will be presented in chapter 4.

The choice of high finesse cavities makes the control of such kind of opto-mechanical
resonator a more challenging work with respect to the development of a control
system already successfully used in GW interferometers, such as Virgo. Moreover,
the logic of the global control must be designed also with particular regards to
the compatibility with the EPR squeezing experiment setup, which is also under
development at the R&D squeezing laboratory at 1500W of EGO, Virgo site, as
better explained in section 3.3. As a ponderomotive squeezer, with this choice of
optical and mechanical parameters for the design of SIPS setup, we can set the
cavity detuning at δ = 0.3 to obtain an optical spring frequency of Θ = 2π kHz and
an ideal squeezing factor ξ = 18 dB (a real squeezing factor as been estimated as
ξ ∼ 7dB if optical losses are considered for described the setup design).
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3.3 SIPS integration with EPR experiment

Currently, INFN is working on a table-top experiment for the generation of fre-
quency dependent squeezed state based on EPR (Einstein Podolosky Rosen’s para-
dox) quantum entanglement [12], until now only theoretically demonstrated and
never experimentally observed in the range of frequencies of interest for GW detec-
tors. EPR squeezing functioning has been already demonstrated with linear optical
cavities [70, 71], but its functioning has not yet been tested when injected into a
Michelson interferometer with suspended Fabry-Perot cavities. For this reason, as
anticipated in Chapter 2, a promising short-term application of the SIPS interfer-
ometer, which is characterized by optical cavities sensitive to the quantum effect of
radiation pressure, is its integration with the setup for testing the EPR squeezing
technique [12, 62]. This makes very innovative and challenging the integration of the
EPR squeezing in SIPS interferometer. The preliminary EPR table-top experiment
is under construction in the squeezing R&D laboratory at the EGO-Virgo site, being
carried out by many INFN Italian research groups and Universities, together with
some members from the French CNRS. Moreover, a collaboration with a research
group from the Korea Astronomy and Space Science Institute (KASI) started in
2019. At present, the KASI team is actively involved in the design of the IR Mode
Cleaner cavities for the EPR setup and for the mode-matching reflective telescopes
needed for optimising the coupling of the squeezed light with a Test Cavity and SIPS
interferometer. According to the original scheme proposed for the EPR experiment,
the squeezed light fields (signal and idler) generated by a degenerate OPO cavity
are injected into a linear test cavity, which will convert it into FDS light. The test
cavity is designed to be resonant at the signal frequency ω0 while it is detuned with
respect to the idler beam.

Although SIPS was designed for exploiting the ponderomotive effect for genera-
tion of FDS, since 2019 it has been chosen for the ambitious goal to be used as a
test bench for the detection of EPR FDS light, thus for the first demonstration of the
advanced EPR squeezing technique inside a Michelson interferometer with Fabry-
Perot cavities, before the integration in a real GW interferometer, such as Virgo.
The computation of the expected noise budget of SIPS, shown in [62], was carried
out adopting a conservative approach, by considering the seismic noise at the R&D
squeezing facility at Virgo site as seen by the double-stage suspended mirror and it
suggests that even without the use of a superattenuator, SIPS interferometer can
be successfully used as a test bench for the EPR experiment. Indeed, in the current
year SIPS will be moved to the EGO squeezing laboratory in order to integrate it
with the EPR optical set up, which is under development. This plan foreseen a
modification of the EPR setup, in order to include a mode matching telescope to
inject the EPR squeezing beams into the dark port of SIPS interferometer, while it is
operating in dark fringe condition. Moreover, the design of the integration must be
optimized to reduce the losses between the OPO that generates the EPR squeezed
beams and SIPS. A simplified scheme of the possible implementation of this project
is shown in figure 3.12.
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Figure 3.12: Conceptual design of integration of the optical bench of the EPR squeezing
table-top experiment with the SIPS interferometer. The entire setup is under construction
in the R&D squeezing laboratory at the EGO-Virgo site. See [69] for a more detailed
description of the optical elements in the set up.

In the configuration proposed for the integrated design, the EPR signal field has
the same frequency of the laser light injected in the interferometer SIPS (coming
from a MOPA laser), therefore it is resonant in the Fabry-Perot arm cavities, while
the EPR idler beam is slightly detuned and sees the interferometer as a filter cavity
which rotates the squeezing ellipse. The two beams are then separated by an Etalon
cavity before being detected by two balanced homodyne detectors, providing two
signals that are finally electronically recombined to perform a conditional FDS on
the EPR signal beam. This mechanism allows to obtain a squeezing factor just
below that obtainable by injecting a field of squeezed light in pure phase (frequency
independent), but it has the great advantage of extending the gain in sensitivity in
all the frequency range of interest of GW interferometers.

SIPS and EPR setups are growing up in parallel and their integration is expected in
2023. The work required to exploit SIPS as a test interferometer for EPR squeezing
technique, thus for the integration of the two experimental setup, can be divided
into the following steps:

• preparation of the R&D EPR squeezing laboratory at EGO to host SIPS
experiment and installation of SIPS vacuum chamber, including assembly and
integration of all optical components of EPR setup.

• assembly of the new marionettes for the mini-payloads of SIPS, realized af-
ter the study on optimization of the design for suspension system done and
described in this thesis
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• implementation of an improved local control system on all mini-payloads:
starting from the initial tests done on LabView code for local control already
implemented, an auto-alignment system will be designed to improve these re-
sults [30]

• finalization of the mechanical design to host the optics needed for the interface
between SIPS and EPR optical bench

• transportation of SIPS setup from Rome to R&D squeezing laboratory at EGO

• SIPS integration to EPR setup with the assembly of the new monolithic sus-
pensions

• EPR squeezing production, measurements and injection into SIPS for valida-
tion of this technique.

A fundamental stage will be also the realization of global control based on the
analytical model developed in Chapter 5 and its implementation on SIPS, taking
into account the optical and mechanical properties of the system. In this way, it
will be possible to realize the locking of all the Fabry-Perot cavities, which means
keeping in place all the mirrors of the cavities to ensure the laser resonance condition
inside them, and to reach the optimal working point. For this application, SIPS
working point can be considered as in dark fringe condition, which is the case of
GW interferometers. When integrated with the EPR setup, SIPS interferometer
can assure a quantum radiation pressure limited bandwidth of (40 - 700) Hz, thus
allowing to observe the frequency-dependent squeezing in a wide range of frequency,
coincident with those of GW interferometers. Therefore, this integration would be
an important test for the functioning of both SIPS experiment and EPR principle for
the reduction of quantum noise in audio frequency band, before a future integration
in GW detectors [30]. Furthermore, this technique greatly reduces the optical losses
associated with the EPR optical cavity (i.e. the interferometer itself) compared to
those typically found in a conventional filter cavity for the production of frequency-
dependent squeezing [40].



Chapter 4

Local control of suspended elements

To carry out the SIPS experiment and achieve its scientific goal, it is essential to
realize the control of all the main suspended optics, as well as define the strategy
for the global control of the entire suspended interferometer. The local control
has been developed and tested on a single mini-payload with a dummy mirror,
corresponding to the 1 inch diameter end-mirror. In a preliminary stage, the mirror
has been suspended using a configuration with two wires, according to the analysis
already done in [57]. As will be explained in section 4.2, the preliminary test of
local control on the dummy end mirror, gave results that show the need for an
improvement of the mechanical design of the suspension system for the mini-payload.
The new design foresees to suspend the mirrors with four SiO2 fibers (2 for each
side of the mirror) rather than only two fibers as previously established from [57].
This new design is one of the main results of this PhD thesis work. The detailed
study carried out to find the new optimized suspension configuration started in
July 2021 and took several months, and the production of the new mechanical
elements took one year, mostly due to Covid-19 pandemic, which affected both the
production company on the availability of manpower and on the procurement of
the raw materials to be machined. Therefore, we only received the new mechanics
in November 2022. The new mechanical component for one end mini-payload has
been assembled in December and it is currently under test (see section 4.2). Once
improved and tested, local control will be implemented also on the mini-payload
with the 3 inches diameter dummy mirror, and then on each mini-payload of SIPS
interferometer. A LabView-based feedback loop has been designed to damp and
control the position of each suspended elements, by means of optical lever read-
out system and coil-magnet actuators. In parallel, the global control system of the
entire SIPS interferometer must be developed and carefully designed first from the
theoretical point of view. Then, in the next development it is foreseen to validated
this system, using a prototype with test suspensions, before being integrated into
SIPS with the high-finesse and monolithically suspended optics.

4.1 Local control digital system

The optical local control system based upon optical levers has been designed in
Virgo, with the aim to damp the angular and longitudinal modes of the suspended

85
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mirrors and to drive their pre-alignment towards the operation setpoint . For the
design, inspiration has been taken from the solution adopted for the Virgo last-
stage-suspension control system [72]. This active control system allows to perform
the alignment and damping of mirror suspension resonance peaks by using the error
signals acquired from ground-based sensors and the actuation force applied on the
mirror suspension (i.e. internal-force action), with the aim of setting and recovering
the reference angular position of each mirror, keeping the interferometer aligned
within the accuracy range required to lock the operation point. The mirror angular
and longitudinal motions are controlled both acting at the mirror and the marionette
levels, with a system based on Virgo local control solution [72]. In the following,
we describe the features of the experimental setup used to perform the tests on the
local control for the end mini-payload of SIPS. A simplified scheme of this setup is
shown in figure 4.1.

Figure 4.1: Logic scheme of the experimental setup for local control tests: the mechanical
system is the end mini-payload of SIPS ITF and is monitored by three position-sensitive
detectors (PSD1,2,3). Signals from the sensors pass through an ADC and are processed
by a PCI-based express embedded controller (PXI-express), allowing the construction of
the desired feedback signals which are sent to the actuators through a DAC. The PXIe
provides also the excitation signals (white noise) in the transfer function measurements.

It can be divided into four logical block:

• mechanical system: SIPS end mini-payload, with a double pendulum con-
figuration;
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• readout system/sensors: 3 displacement sensors to monitor both mirror
and marionette motion;

• actuators: four coil-magnet actuators placed on both mirror and marionette
for positioning and active control;

• electronics: it includes the sensors readout, the ADC and DAC boards, and
a PXI-express controller.

4.1.1 Mechanical system

As already explained, SIPS has been designed to be dominated by the radiation pres-
sure noise (RPN), thus being in the RPN-limited regime all over the whole frequency
band of GW detectors. The sensitivity of an interferometer, such as SIPS is limited,
among other noise sources, by the seismic background, which causes fluctuations of
the mirror position, as already mentioned in section 3.2.1. The solution of suspend-
ing the optical components is a simple way to limit the unwanted displacements of
the mirror, thus filtering the ground vibrations. In this way, for frequencies above the
resonant frequency of the pendulum formed by the suspended mass, the mirror can
be considered as "free falling". For the specific purpose of testing local control, one
end mini-payload has been chosen. As introduced in section 3.2.3, this is composed
by the Marionette, the suspension wires, and the mirror. The marionette is the last
stage of suspension, supporting the mirror. It has been designed for steering and
alignment of the optical components, mirrors, and BS, in order to ensure the desired
working point, thus allowing the final step of interferometer locking. It is essentially
a rectangular structure suspended to the upper plate of SIPS through a steel (C85)
wire 30 cm long, and it has a weight of about 1.150 kg. The original marionette
mechanical drawing, with some information on dimensions, is shown in figure 4.2.
On the marionette, four magnets are attached, through which forces applied by the
coils allow fine control of the mirror on the three relevant degrees of freedom: the
mirror rotations around its horizontal and vertical axis and the translation along
the beam direction. The mirror is the main optical component of the interferometer
that must be controlled. For the preliminary tests, the prototype "dummy" end
mirror used is a cylinder made of aluminum having the same dimension of the real
end mirror (1 inch diameter and 10 mm thickness) where a small cylindrical groove
has been done to host a smaller mirror (diam ∼ 5mm) used for the optical lever. In
addition, a 60 µm groove has been realised in the middle of the circumference for
ease the gluing of the suspension wire. This solution has been adopted to operate the
local control in a mechanical configuration similar to the final design, providing the
overall weight and dimensions (1 inch) of SIPS end mirror. Small corrections may
be applied directly on the mirror from four coils mounted on a mechanical holder,
shown in figure 4.3, which has been designed also to support the mirror during the
assembly of the suspension.
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Figure 4.2: Mechanical drawings of SIPS end payload marionette: on the left the mari-
onette top view is represented, while a side view is shown on the right, with the mechanical
support which holds the reflector needed for the optical lever system for the readout of
local control.

4.1.2 Readout system

The error signals for the local control are obtained using a ground-based readout
system. It provides information about longitudinal and angular local position of
the suspended mirror and also the angular one of the marionette, making use of
two optical levers setup, at both mirror and marionette level [73]. The scheme of
position measurement is designed to provide the error signals and takes inspiration
from the one used for tests on Virgo local control system [65], this is shown in
figure 4.5. The beam is generated by a Superluminescent diode (SLED) with a
wavelength λSLED = 633 nm and it travels through an optical fiber and a collimator,
providing ∼ 3 mW of output power. This beam is attenuated by passing through
an optical filter which gives a final power of about 0.3 mW and then it is sent to
center of the suspended mirror. The position of the beam, reflected by the mirror
surface, is read by two Position Sensing Detectors (PSD), one placed in the focal
plane (PSD1) and the other in the image plane (PSD2). These are two-dimensional
PSDs (Hamamatsu Photonics S2044), which are opto-electronic position sensors
using photodiode surface resistance: continuous output signals, the X/Y coordinate
signals, can be obtained for the movement of the light spot, with an excellent position
resolution and high spectral response range (340nm < λ < 1060nm). The PSD
photosensitive area is represented by a square with Lx = Ly = 5.7 mm and it is
illustrated in figure 4.4. Then, given the four photo-currents IX1, IX2, IY 1, IY 2, the
position conversion formulas for PSD are written as

(IX2 + IY 1)− (IX1 + IY 2)

IX1 + IX2 + IY 1 + IY 2

=
2x

LX
(4.1)
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Figure 4.3: Mechanical system used to hold the mirror for assembly operation of the mini-
payload suspension, provided with four coils in a cross configuration, for the actuation on
the suspended mirror.

(IX2 + IY 2)− (IX1 + IY 1)

IX1 + IX2 + IY 1 + IY 2

=
2y

LY
(4.2)

where x and y gives the position of the light spot on PSD sensitive area and
I(X1,X2,X). The full optical path of the optical levers is 42.25 cm for PSD1 line
and 46.25 cm for PSD2 line: they are the sum of the distance between the SLED
and mirror surface, which is 21.25 cm, plus the distances from mirror surface to
PSD1 and PSD2 respectively.
A second optical lever is used to measure the angular position of the marionette

using a small mirror (equal to the one used for the dummy mirror), attached to a
dedicated support mounted on the marionette body, called periscope, as shown on
the right side of figure 4.7, which reflects the laser light towards PSD3 placed in the
marionette’s mirror focal plane. In this way, the light spots on the PSDs are used to
reconstruct both the mirror and marionette position: the suitable error signals are
reconstructed in a left-handed reference frame with its origin in the mirror center
of mass and the z-axis oriented outward as the impinging laser beam, and the same
is done for the marionette. This optical levers system allows to control the mirror
position along the direction of the laser beam, z, and along the angular degree of
freedom.
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Figure 4.4: Details of the photosensitive area of Hamamatsu two-dimensional PSD S2044.
X1, X2, Y1 and Y2 are the anodes which delimit the photosensitive area where impinging
photons are converted in the photocurrent, IX1, IX2, IY 1, IY 2.

The following convention is adopted to refer to the three angular degrees of freedom
of a mirror [14] (shown in figure 4.6):

• θx is the rotation around the horizontal axis in the mirror plane (pitch);

• θy is the rotation around the vertical axis in the mirror plane (yaw);

• θz is the rotation around the axis perpendicular to the mirror, (roll), which
corresponds with the beam axis, conventionally assumed to be z.

Sensing system for the longitudinal and angular degrees of freedom is described in
table 4.1. A similar scheme is already successfully used in the context of Virgo [65].

Optical element Sensor Controlled DOF

Mirror PSD1 θx, θy
PSD2 z

Marionette PSD3 θy, θz

Table 4.1: Specific degrees of freedom (DOF) that can be controlled after the reconstruction
of the error signals acquired by PSD1 and PSD2 from the mirror reflection and by PSD3

from the marionette optical lever.

For this preliminary test phase on SIPS, the overall local control position sensing
system is located in air (such as the entire SIPS bench) as illustrated in figure 4.7:
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Figure 4.5: Simplified scheme of the readout and actuation systems for one SIPS mini-
payload. Four magnets for actuation are placed on both mirror and marionette. Coils are
not represented in this scheme for simplicity, but they are located on a mechanical support,
behind the mirror, and on the marionette mechanical support. The optical, mechanical
and electronic elements are not in scale [30].

PSD1 and PSD2, for the position measurements of the mirror, are hosted on the
main optical bench, thus rigidly fixed at the base of the vacuum chamber; PSD3,
which senses the position of marionette is instead located on a customized small
optical bench, rigidly fixed at the upper auxiliary bench. In this setup for the local
control test the vibration from the outside environment, i.e. seismic noise, can
be considered negligible, according to the analysis done in [62], already presented
in section 3.2.3. Therefore, this test setup can be exploited for the first use of
SIPS as EPR squeezing tester, while, for the final aim of SIPS to be exploited as
ponderomotive squeezer, some modification must be done to filter seismic noise.
Indeed, as discussed in section 3.2.3, the entire bench setup will be suspended to
the superattenuator, (SAFE), allowing the entire setup, including optical levers for
sensing, to be properly isolated by seismic vibration.

4.1.3 Actuators

For the actuation system, the end mirror is provided with a set of four small cylin-
drical magnets (1.5 mm diameter × 1.5 mm thick), glued to the back face of the
mirror in a cross configuration, as visible in the pictures of figure 4.8, and placed in
correspondence to the four coils mounted on the mechanical holder shown in figure
4.3. By controlling the current flowing through these coils (better explained in the
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Figure 4.6: Picture of SIPS end mirror used for preliminary tests, with the identification of
the three axes and the three angular degrees of freedom of the suspended mirror, according
to the convention adopted also in Virgo [14]

Figure 4.7: Optical levers setup for SIPS end mini-payload: the pictures show the two
setups installed on both mirror (left) and marionette (right).

next two subsections) it is possible to apply longitudinal and torsional forces to the
mirror: forces applied on suspended masses are related to the current flowing in the
coil. As shown in figure 4.9 for the coils placed behind the end mirror, the maximum
distance between the center of the coil and the center of the magnet, at which the
actuation force of the coils has a linear trend, is about 3 mm. The marionette is
provided with other four magnets, glued to marionette body in the configuration
shown in figure 4.5, to be in correspondence to four coils that are mounted on the
lower plate of a mechanical "cage" rigidly connected to the upper auxiliary bench.
Any current applied to these coils results in a force on the marionette, which is thus
transmitted by the last pendulum stage to the suspended mirror. This coil-magnet
system then provides the control actuation for both marionette and mirror. Coils
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Figure 4.8: Left: front side of the aluminium body where a small mirror is permanently
attached, forming the "dummy" mirror used for tests on local control. Right: back side
view of the dummy end mirror with four magnet glued for coil-magnet actuation system.

Figure 4.9: Force actuated on the magnet of the end mirror, related to the current flowing
in the coil, as a function of the distance between them.

resistance required for the initial design and the related cut-off frequency are shown
in table 4.2, while the measured coils resistance and computed cut-off frequency,
obtained from the actual experimental setup are shown in table 4.3.
The cut-off frequency, for end mirror and input ones, has been computed using the
following formula

fcut−off =
R(end,input)

2πLend,input
. (4.3)

Here, the inductance L, expressed in µH, is obtained using the approximated for-
mula:

L =
0, 135r2N2

6r + 9l + 10d
, (4.4)

where N is coil winding number, l is coil length, r is coil radius and d is the winding
depth. These parameters are known for both end mirror and marionette (coils
implemented for input mirrors are the same of the marionette ones), thus giving
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Coils acting on R (Ohm) fcutoff (kHz)

input mirror/marionette 6.34 2
end mirror 3.17 2

Table 4.2: Resistance and cut-off frequency required for the actuation in the initial design.

Coils acting on R (Ohm) fcutoff (kHz)

input mirror/marionette 4.5 1.1
end mirror 2.7 3.2

Table 4.3: Resistance and cut-off frequency computed for input and end mirrors of a mini-
payload, considering that input mirror and marionette coils have twice as many winding
as the end mirror coils.

Lend=133.90 µH for the end mirror, and Lmario=634.13 µH for the marionette.
With these values of inductance, considering the measured values for resistance,
Rend=2.7 Ω and Rmarionette = 4.5 Ω, the coils cut-off frequencies are found to be
fcut−end = 1.1 kHz and fcut−mario = 3.2 kHz for the end mirror and the marionette,
respectively. Even if the actual coils cut-off frequencies are different from the ones
estimated in the initial design, direct measurement showed that the amplitude gain
drops significantly for f >50 kHz, far from our range of interest, which means that
these values are still compatible with the initial design and suitable for both local
and global controls [30].

4.1.4 Hardware

All the analog signals extracted from the suspension sensors are first amplified, using
customized amplifiers provided by INFN-Napoli, and then acquired by an Analog
to Digital Conversion (ADC) board (NI BNC-2111 on the left in figure 4.10), with
12 analog input (AI) channels:

• 4 channels, AI0,1,2,3, from PSD1 on mirror focal plane;

• 4 channels, AI4,5,6,7, from PSD2 on mirror image plane;

• 4 channels, AI8,9,10,11, from PSD3 on marionette focal plane.

The ADC board is connected to a National Instrument Real-Time device (NI PXIe-
1082), in particular to PXIe-6363 placed in the slot 2 of PXIe Chassis (see fig. 4.10).
Signals are processed in LabView environment: the digital corrections computed
by the code are converted by a National Instrument Digital to Analog Conversion
(DAC) board, NI SCB68-A (green square in figure 4.10), into a voltage signal suit-
ably amplified and translated into a current flowing in the coil. Even if the ADC
board used has a total of 32 AO channels available, the cabling has been done only
on 8 analog output channels, used to send analog signals to the actuators on both
mirror and marionette: 4 AO channels, AO31,29,27,25, for actuation on mirror coils
and other 4 AO channels, AO23,21,19,17 for marionette’s coils. The NI hardware setup,
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Figure 4.10: National Instrument devices used for real-time acquisition of signal from
sensors, signal processing and generation of correction signal for actuation. The Analog to
Digital (ADC) board NI-BNC-2111 (orange square on the left) has 16 available channels,
12 of which used for acquisition of signals from PSD1,2,3. It is connected to the NI real-
time device NI PXIe-1081 (black square), where on the first slot is located the embedded
controller NI PXIe-8821, dedicated to processing signals and generating digital correction
signals. These digital signals are then sent to the DAC board NI SCB-68A (green square),
with 32 AO channels available, 8 of which used for sending actuation signals for the mini-
payload.

was chosen to replace a previous one and to be integrated and used for the local
control tests, due to the need of higher performances and, in particular, to the need
of a higher number of both acquisition and actuation channels. For this technical
reason, some preliminary experimental work was carried out for mapping, cabling
and testing the electronic connections on the actuation line. The DAC panel SCB-
68A has been connected to coils actuator on marionette and mirror by two different
cabled 8-pin connectors (the cabling on DAC board is partially shown in the orange
square of figure 4.10).

4.1.5 Software: LabView Real-Time system

Signals are processed with the LabView software, dedicated to monitoring tasks and
real-time operations for analysis of PSDs data and feedback cancellation, thus pro-
viding error and actuation signals. The used real-time system consists of software
and hardware components. The software components include LabView, the Real
Time (RT) Engine, and the LabView projects and VIs we created. The hardware
components of a real-time system include a host computer and an RT target (see
section 4.1.4). The host computer is provided with LabView software and the Lab-
View Real-Time Module installed on it. We develop and run the VIs (the code) for
the real-time system on the host computer, which communicate with a networked
RT Series device through an Ethernet connection, thus providing a user interface:



96 CHAPTER 4. LOCAL CONTROL OF SUSPENDED ELEMENTS

the Real-Time Module extends the capabilities of LabView with additional tools for
creating, debugging, and deploying the VIs. We used an RT target of a networked
RT Series hardware, which is a networked hardware platform with an embedded
processor and a real-time operating system (RTOS) designed to run only the VIs
and device drivers necessary for RT applications. The one we used, and already
mentioned in the previous section, is a PXI Controller (PXIe-8821), a networked de-
vice installed in an NI PXI chassis (PXIe-1082DC) that communicates with NI PXI
modules installed in the chassis, i.e. the two modules installed in slot 2 (PXIe-6363)
and slot 4 (PXIe-6738) on the chassis in figure 4.10. The controller is provided with
RT Engine, which is a version of LabView that runs on a RTOS, also supporting
features of the RT Series PXI controller. This allows to write LabView codes using
all the input/output (I/O) capabilities of the PXI modules, providing deterministic
real-time performance. LabView software allows to implement the digital control
loops, which includes the logic and the control filters. It also allows to inject noise
for measuring the frequency response of the suspended mirror. The code written
in a LabView VI has a readout part, which makes the computation of error signals
of mirror and marionette DOFs, Θx, Θy, Θz and z: the signals from sensors are
acquired using the NI DAQmx acquisition system, which manage the reading of
analog signals from the 12 AI Channels, as already explained in section 4.1.4. These
signals are then processed to compute the error signals, obtained by implementing
a simple computation of horizontal and vertical displacements of the light spot on
the photosensitive are of the three PSDs. The variations along the two coordinates
of the PSD are given by:

(UR +DR)− (DL+ UL)

UL+ UR +DL+DR
= Ax (4.5)

for the horizontal displacement, Ax, and

(UL+ UR)− (DL+DR)

UL+ UR +DL+DR
= Ay (4.6)

for the vertical displacement, Ay. Here, UL, UR, DL and DR are the four vectors (4
voltage signals) representing the up-left, up-right, down-left and down-right sectors
of the photodiode surface respectively. The voltage signals given in UL, UR, DL,
DR vectors are the result of the impinging of the light spot on the pothosensitive
area of the PSD, which corresponds to an area of ∼ 5, 5 mm2. We acquire 3 sets of
this four signals, for the three different PSDs of the read-out system, as shown in
table 4.4. This allows to compute the error signal related to mirror and marionette
DOFs. The correction filters implemented in the LabView code, filter these signals
and then, two driving matrix, for both mirror and marionette, allow to generate the
digital correction signals for the actuation: signals from 8 AO channels are first sent
to the DAC board (NI SCB68-A) and finally sent to the coil for actuation.
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Sensor Signal AI channel output

PSD1

UL AI0
UR AI1 Ax = θy (mirror)
DL AI2
DR AI3 Ay = θx(mirror)

PSD2

UL AI4
UR AI5
DL AI6 z
DR AI7

PSD3

UL AI8
UR AI9 Ax = θy (marionette)
DL AI10
DR AI11 Ay = θz (marionette)

Table 4.4: List of AI channels and associated signals from which output error signals,
representing mirror and marionette longitudinal motion and angular tilt, are computed.
Ax and Ay are the horizontal and vertical displacement given in equations 4.5 and 4.6.

4.1.6 Mirror mechanical Transfer Functions

Since the main duty of the designed local control system is to perform alignments of
suspended optics, in order to be effective, the system has to control the DC position
of the mirrors and damp its modes in the two angular DOF: θx (pitch) and θy (yaw)
(see fig. 4.6). In order to study the frequency response of the double pendulum
system used for tests, the transfer functions of dummy end mirror DOFs have been
measured. Taking inspiration from the scheme of control used for Virgo (multistage
suspension system [21]), the angular corrections should be applied, in our case,
on two actuation point: at the level of the mirror and at the level of the mass
from which the mirror is suspended, that is the marionette. One advantage of this
solution is that the local control actuator noise at mirror level is filtered by another
stage of suspension, represented by the marionette, also at the cost of a narrower
control bandwidth [65]. Our first step was to characterize the frequency response
of the double pendulum system, in order to optimize the design of the corrector
filter. The measurement of the mechanical transfer functions of the system are
illustrated in figures 4.11,4.12 and 4.13. This measurements has been obtained by
sending an external disturbance only at the mirror level, by means of a LabView
code developed on purpose for the generation of white noise: this has been set on 60
mV, with a sampling frequency of 1 kHz. Then, the motion is sensed at the mirror
level, using PSD1 to obtain yaw and pitch modes, and PSD2 to extract information
about the pendulum frequencies (from the displacement along z axis). LabView
code allows to compute both magnitude and phase for pitch, yaw and z-pendulum
modes. Moreover, the analysis of the transfer functions allows to extract information
from their structures: the number of modes present in the TF is relevant for the
optimization of the design of the digital filters for the generation of the actuation
signals [65].
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Figure 4.11: Magnitude and phase of torque-to-angle transfer function of the pitch mode
for the SIPS dummy end mirror.

Figure 4.12: Torque-to-angle transfer function (magnitude and phase) of the yaw mode for
SIPS dummy end mirror.
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The yaw DOF in figure 4.12 is characterized by one relevant resonance at a frequency

Figure 4.13: Magnitude and phase relative to transfer function of the z pendulum mode
for the dummy end mirror.

of about 1.5 Hz: this can be related to internal mode of the payload, explained by a
torsional motion of the mirror, in opposition of phase with the marionette motion.
Moreover, in figure 4.11, the pitch DOF presents a visible resonance at about 2 Hz.
By comparing this with the yaw mode, it seems that the pitch DOF is more excited
with respect the yaw mode (for the same excitation noise level). This can bring
some unexpected instability and it can be linked to a basic structural problem of
the suspension system. Indeed, in the configuration used for this measurements,
the mirror was suspended to the marionette by means of only two suspension wires.
This is one of the reasons that led us to improve the mechanical design of the
suspension system, as will be better explained in section 4.2. The frequencies of the
double pendulum system of SIPS mini payload can be computed using the analytical
model of sequential pendulums [57]. The analytical coupled pendulum-modes peaks
are expected to be at frequencies f1 = 0.79 Hz and f2 = 0.91 Hz. Moreover, from
the power spectrum computed with LabView, it has been possible to extract the
coupled pendulum frequencies, which has been found to be 0.775 Hz and 0.925 Hz.
In particular, from figure 4.13, two resonance can be identified at about 0.85 Hz
and 1.55 Hz, when the system is excited by the already defined external disturbance
(white noise). The last characteristic shown in this plot is that all the mechanical
transfer functions measured show the typical asymptotic behavior, with a slope f−4

after the resonances, as it is expected for a double pendulum system.
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4.1.7 Pre-alignment performance

The local control system described here, is designed essentially to perform alignments
of suspended optics, without exciting the mechanical modes of the mirror suspension
last stage (the marionette), in order to finally set the detector in the interference
condition. The mirror position can be controlled either by acting directly on it or
by acting on the marionette. Acting on marionette allows to re-allocate part of the
control force to higher stage of suspensions, thus reducing control noise at mirror
level. As already explained, tests have been carried out on one end mini-payload,
before its implementation in all SIPS suspended elements. As a first step, the optical
levers system designed, and here described, demonstrates that it is possible to control
angular and linear motion of the 1 inch mirror within an accuracy of 10 nrad and
0.1 µm RMS. This constitutes only an initial achievement since we foresee to design
an auto-alignment system which will improve this result. Figure 4.14 shows the
functioning of the local control for a pre-alignment recovery of the end mirror of one
mini-payload. This allows the attenuation of Θx, Θy and z, while to control the Θz

degree of freedom, it will be necessary to act also on the marionette, improving in
this way the position recovery of the entire mini-payload (see section 4.2). Since the

Figure 4.14: Attenuation of the amplitude relative to Θx (blue), Θy (red) and z (black)
oscillations in function of time. The position recovery is done using a low gain control.
The control is applied only at mirror stage [30].

local control system has a ground-based readout system, it can not be used when
the interferometer is in its working condition, i.e. in dark fringe. For this reason
a global control for the locking of the entire interferometer is needed: this is an
important topic of this thesis and it has been studied, as discussed in Chapter 5.
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4.2 New suspension system

According to the analysis done in [57], a suitable suspension system, composed of
a double pendulum with a monolithic suspension was adopted for the SIPS Fabry-
Perot cavities, assuring a suspension thermal noise lower than the radiation pressure
noise. The mechanical prototype of SIPS has been developed with a double stage
suspension configuration, taking into account the experimental feasibility for the
fiber production, and assuring a significant clearance between RPN and ThN. The
tests on the local control for suspended optics, described in 4.1, allows to obtain
the preliminary results for the attenuation on the dummy end mirror, as shown in
figure 4.14. Although this results shows an accuracy of 10 nrad and 0.1 µm RMS,
the aim is to implement the local control on the entire mini-payload, including the
marionette suspension stage. In the attempt to improve the control, acting also on
marionette’s coils, some problems have been encountered. The first is the instability
of the mirror itself, which shows a rotation around the θx degree of freedom, probably
due to the current suspension system of the mirror with only two suspension wires.
Therefore, accordingly to these tests done on the mechanical system, already present
at the Physic Department of La Sapienza, we decided that a first step toward the
optimization of the control strategy, was to improve the mechanical design of the
suspension system. Then it was necessary to investigate a new suspension strategy
aiming at an optimized design for the mirror monolithic fibers and suspensions, and
for a new shape of marionette allowing the control of all DOFs. This study started in
July 2021 and lasted several months, until in the end of the same year an optimized
design was achieved. The CAD drawings for the design of the new marionettes have
been finalized in October 2021 and, as already mentioned, the manufacturing of new
mechanics took more than one year, being finalised only in November 2022. This
long delay was due to unavoidable problems related to COVID-19 pandemic, which
impacted both on the available manpower of the manufacturing company and on
the difficulties in supplying the raw materials to be machined. Finally in December,
we could only assemble the new mechanical component for one end mini-payload
which is now ready for testing local control.

4.2.1 Monolithic suspension

In order to introduce the new suspension system, it is useful to better describe the
previous configuration design, chosen after the analysis previously done on thermal
noise [57].

For the monolithic suspension of the optical elements (mirrors and beam splitter)
through fused silica fibers, a suitable ear-anchor system and anchor-flat mirror sur-
face silica bonding was developed. The method used was the same developed for the
monolithic suspension of the heavy mirrors of Advanced Virgo, adapting this concept
to our case. The main differences are first, the mirrors weight, 42 kg in AdVirgo,
while 10 g and 300 g for end mirror and input mirror/beam splitter respectively,
and the number of fibers used to suspend SIPS optics, which in the original design
should be suspended with only two silica fiber instead of the four silica fibers used
for Virgo. This is a choice that comes from results of the analysis for the thermal
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Figure 4.15: Expected noise budget for 1 inch diameter end mirror of 10 g of mass, in
the new double suspension configuration with four fibers. Blue curve represents the total
suspension thermal noise, the blue-dashed curve represents the total suspension thermal
noise and the black curve represents the mirror thermal noise estimated with finite element
analysis (the same method used in [57]).

noise dissipation due to the suspensions, shown in figure 3.1. For the new suspen-
sion system we decide to adopt four fibers (two for each flat part of the mirrors), as
used for Virgo, and also a new geometry for the bonding between mirror and fibers.
The geometrical design was finalized in 2021, while the work for the production of
the new fibers and the silicate bonding with the mirror is almost finalized. The
tests for the production of final fibers are in progress, and some preliminary finite
element analysis and simulation (of the same kind done in [57]) was performed to
estimate the effect on the mirror thermal noise due to different geometry of the
fibers and bonding layers and the presence of two additional wires. The results of
this simulation are shown in figure 4.15. The results are very promising, because
great effort has been done in improving the geometry of the fused silica suspensions
elements in order to reduce the bonding area. Indeed, in the new design with two
additional wires, we have decided to remove the presence of additional ears on the
mirror, which is possible by silicate-bonding the flat realised at the extremities of
the fiber seed directly to the mirror flat sides. This plot (fig. 4.15) demonstrates
that, with this new monolithic suspension geometry, we can keep both mirror and
suspension thermal noise enough below the radiation pressure fluctuations, which
is the fundamental condition to have the radiation pressure noise dominant in the
desired frequency range.
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4.2.2 New Marionette design

The new configuration, with four suspension fibers led to the need of a new design of
the marionettes for the suspension of the main optical elements of SIPS. Figure 4.16
shows the conceptual design of the new end marionette, compared to the original one.

Figure 4.16: Left side: top view of the old design of the marionette for the end mirror mini-
payload, with four coil-magnet pairs for the actuation (two vertical and two horizontal).
Right side: Top view of the conceptual drawing of new marionette design with six coil-
magnet actuators (three vertical and three horizontal) and the SiO2 C-shape block located
at the center of marionette body. The three horizontal coil-magnet pairs are positioned
at 120◦ to ensure the stability to control θy; red circles represent the vertical coils (all
pointing downwards), while red arrows show the direction and points of application of the
forces on the horizontal plane.

The main difference, with respect to the old design is in the shape required by
the need to implement two more coil-magnet pairs for the actuation, in order to
improve the control of θx and θy degrees of freedom. In particular, in the top views
of figure 4.16, the red circles represent the vertical coils (all pointing downwards),
while red arrows show the direction and points of application of the forces on the
horizontal plane of the marionette. In the new design, the three horizontal coil-
magnet pairs have been chosen to be positioned at 120◦ with respect to each other,
ensuring the stability to control θy. The same concept is used for the three vertical
coil-magnet pairs, for acting on θx degree of freedom. Another important difference
is the presence of a SiO2 C-shape block, which is a component of the new monolithic
suspension system (as represented in figure 4.16). This small C-shaped fused silica
element is required to attach the flats machined at the extremities of the cylinder
seed of the SiO2 fibers. Two fibers are silicate-bonded on each side of this element,
which in turn needs to be bonded to the marionette.
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Figure 4.17: Left side: top view of the new design of the marionette for the end mirror
mini-payload. Right side: Perspective view from the bottom. Here is visible the periscope
element to attach the mirror used for the optical lever of the marionette.

4.2.3 First suspension tests with the new mechanics

In this section, some pictures related to the assembly of the new marionette for the
end mirror are depicted. Figure 4.18 shows the new end mirror marionette com-

Figure 4.18: The picture shows the new end mirror marionette compared to a ruler, before
assembling the suspension.

pared to a ruler, before assembling the suspension of the dummy end mirror. After
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Figure 4.19: This picture shows the new end mirror marionette during the suspension
operation.

suspending the marionette to the upper plate, we had to attach the dummy mirror
to the marionette with four niobium wires (the same kind of wired used in the first
control tests). The marionette has been suspended to the upper plate using only
one steel wire, as by design. Some elements, having a T-shape, and taken from the
former mechanical design, have been necessary to fix the upper part of the mirror
niobium wires to the upper part of the marionette, as visible in figure 4.19. This op-
eration was quite challenging, but in the end we succeeded in suspending the dummy
end mirror, as shown in the picture of figure 4.20. Once finalised the delicate phase
of suspending the dummy mirror, and having restored all the electronic connections
for the coils, the system is ready for testing the performance of the local control
with the new upgraded mechanics.
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Figure 4.20: The picture shows the new end mirror suspended in December 2022.



Chapter 5

SIPS cavity length control

As mentioned in the previous chapter, the final goal of this research work is the
optimization of the control system for a complex physical experiment, such as SIPS.
Indeed, even with the local control engaged, the optics would experience a residual
motion that brings the interferometer out of its working point. For this reason an
active control is needed to act on the optics and keep them on the desired posi-
tion. Moreover, as already explained, since local control system uses ground as a
reference, it can not be used when the ITF is in its working condition (dark fringe),
even if it plays a crucial role in damping the mirror oscillations in order to allow the
engagement of the longitudinal and angular control. Interferometer active control
and feedback loop needs an error signal, coming from photo-detectors to provide
permanent information about the position of the optics with respect to the work-
ing point, thus to compute the forces that must be applied to the main optics to
maintain the correct resonance conditions of Fabry-Perot (FP) cavities. The system
devoted to this task is called the Global control. According to the system already
successfully used in Advanced Virgo, it is first designed considering the FP cavities
as a linear optical resonator.

In general, this kind of control operates with the following steps:

i it collects suitable error signals from sensors (the sensing);

ii the computed error signal is sent to a controller or digital filter, which performs
all the needed computation and generate the output correction signal needed
to bring the mirrors to their working point;

iii the correction is sent to the appropriate actuators, which are the coils acting
on the magnets glued on mirrors and marionettes.

The design of the control filters and the choice of actuators for driving, taking inspi-
ration from the system used for Virgo, is as well a task of the PhD work presented
in this thesis.

The design of a global control system for SIPS is a challenging goal, due mostly to
the high power circulating inside high finesse (F=23000) Fabry-Perot cavities de-
signed for this experiment. Therefore this control system must be carefully designed,
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starting from a theoretical point of view, by initially developing the analytical model
for the opto-mechnical interaction inside the FP cavities, which is part of the work
done for this thesis and will be described in section 5.3.2. Then, the designed system
should be tested on the new prototype with test suspensions before being integrated
in SIPS with high finesse optics, monolithically suspended with SiO2 fibres. For this
reason, in parallel, we worked on the design and fabrication of the new mechanics of
monolithic suspension (see section 4.2), which has been finalized in November 2022,
together with the installation of the new marionette and test suspension system on
the end mini-payload for the tests on the designed local control. Some work on
both simulation and implementation of the longitudinal and angular loops in the
entire SIPS interferometer must be also carried out, in the near future, to finalize
the SIPS experiment and test its functioning, before its integration with EPR setup
(see section 3.3).

5.1 Fabry-Perot optical resonator

In this section, some basic concepts and general properties of a Fabry-Perot cavity
will be discussed, with the aim to present the specific problem of the SIPS Fabry-
Perot arm cavities, linked to their opto-mechanical characteristics (see figure 3.9).
This will also motivate the choice of the experimental techniques, described in section
5.2 and which can be used as a first solution to bring them to their optimal working
point.

5.1.1 Fabry-Perot basic concepts

As already mentioned in Chapter 1, a Fabry-Perot cavity is an optical resonator,
consisting of two reflecting mirrors facing each other at a distance L. In the plane
wave approximation, the beam entering in an optical system can be described by its
complex amplitude and its frequency as:

E(t) = E0e
iωt, (5.1)

where ω is the frequency of the mail laser (in general expressed ad f = ω/2π). If we
first consider the beam impinging on a single semi-reflecting mirror [14], its effect
can be described by the complex amplitude of the transmitted and reflected fields,
written as:

ET = tE0

ER = irE0

where t and r are real amplitude transmission and reflection coefficients. Assuming
that the mirror is moving along the x axis, this motion can be defined by the
displacement from a fixed reference point (rest position) as x(t). If the variation of
the displacement is small in the time the light needs to cover it, which means that
the mirror velocity must be much lower than the speed of light, the effect on the
reflected field of a moving mirror is a time-varying dephasing and, since this is the
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case, we can write the reflected field as:

ER(t) = ire2ikx(t)E0 (5.2)

with k = ω/c. Then, if |x(t)|/λL ≪ 1, which means that the displacement of
the mirror is smaller than the laser wavelength, we can approximate the previous
equation to the first order, i.e. the linear order, as

ER(t) ∼ ir[1 + 2ikx(t)]E0. (5.3)

The transfer function of the mirror mechanical motion due to the interaction with
the laser field can be computed considering mirror motions, given as

x(t) = x0 cos (2πωxt) =
x0
2
(e2iπωxt + e−2iπωxt). (5.4)

Moreover, an optical system can be completely characterized at the linear order,
considering an input field simply composed by two components: one oscillating at
the main laser frequency ω and one at a frequency shifted as ω + ωx. Then, we
can compute the transmission coefficients of both components at the output port,
taking into account the effect of the perturbation added inside the system (noise).
The equation of motion of this system can be expressed using the matrix notation,
as an input-output relation, with input and output fields written as bi-dimensional
vectors, that is (

E0

Ex

)
out

= M

(
E0

Ex

)
in

, (5.5)

where M is a 2×2 matrix, which for a moving mirror can be written as

M = ir

[
1 +

(
0 0

2ikx0 0

)]
. (5.6)

It is also possible to find the propagation over a distance L which, according to the
previous consideration, can be defined as

P(L) =

(
eikL 0
0 ei(k+kx)L

)
. (5.7)

For a Fabry-Perot cavity with two mirrors having masses m1 for input one and m2

for the end one, with reflection coefficients r1, r2, transmission coefficients t1 and t2,
placed at a relative distance L (see Figure 5.1), we can compute the field inside the
cavity Ecav, together with the reflected and transmitted fields, ER and ET . The
first can be expressed in matrix form as [14]

ECav = t1[1 + r1r2P(L)(1 +R2)P(L)]−1E0, (5.8)

where R2 is a matrix operator related to the end mirror, generally defined as

Ri = 2ikxi

(
0 0
1 0

)
. (5.9)
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Figure 5.1: Scheme of the Fabry-Perot cavity, with input, reflected, and transmitted fields.

Then, the reflected and transmitted fields are derived:

ER = i[r1 + r2t
2
1P(L)(1 +R2)P(L)×

(1 + r1r2P(L)(1 +R2)P(L))−1]E0 (5.10)

ET = t1t2P(L)[1 + r1r2P(L)(1 +R2)P(L)]−1E0. (5.11)

The (1,1) component of the matrix in eq. 5.8 is:

t1
1 + r1r2e2ikL

(5.12)

from which, the intracavity field can be written as [15]

ECav =
t1

1 + r1r2e2ikL
E0. (5.13)

The intracavity reflected and transmitted fields are expressed as complex amplitudes
of the respective fields, therefore they are not measurable quantities. As already
explained in Chapter 1, in practice the measurable quantity is the power. Starting
from the equation for the transmitted field, written as

ET =
t1t2e

ikL

1− r1r2e2ikL
, (5.14)

the power transmitted by a Fabry-Perot cavity can be written as:

PT = ET · E∗
T = Pin

t21t
2
2

1 + r21r
2
2 − 2r1r2

cos (2kL). (5.15)

This expression of the transmitted power, also known as the Airy function, shows
its dependence on the phase accumulated during one round-trip, that is 2kL. This
function contains all the important information that can be extracted from a Fabry-
Perot cavity. First of all, the resonance condition, which occurs when the phase
shift ∆ϕ = 2kL = 2nπ. This phase shift corresponds to a maximum of the trans-
mitted power, and it also corresponds to a maximum of the intra-cavity power and a
minimum of the reflected power [15]. The other important parameter of a resonant
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Fabry-Perot cavity has been already defined in Chapter 1. It is useful to have a brief
reminder: they are the free spectral range (FSR) in eq. 1.55, which is the frequency
difference between two consecutive resonances; the linewidth (eq. 1.56) which is the
full width at half maximum (FWHM) and it is related to the pole frequency of the
cavity, expressed in eq. 1.65, such that fp = FWHM/2. The linewidth depends
on the reflectivities of the mirrors, then for cavities with high reflectivities r1, r2
(which is our case) it becomes very small, which means that the light makes more
roundtrips inside the cavity. The most important parameter of a Fabry-Perot cavity
is the finesse, already defined in eq. 1.54, which gives information about how much
the cavity is able to separate adjacent spectral orders, in relation to the linewidth.
Last, the storage time, defined in eq. 1.61, a parameter representing the mean stor-
age time of a photon inside a cavity before it escapes through one of the mirrors,
and it is related to the finesse of the cavity.
It is possible to distinguish three types of cavities, depending on the field reflected
by the cavity. In particular, a cavity can be:

• Undercoupled: when r1 − r2(1− l1) > 0;

• Critically coupled: when r1 − r2(1− l1) = 0;

• Overcoupled: when r1 − r2(1− l1) < 0,

where l1 are the losses at the input mirror, expressed in the equation r21+ t21+ l1 = 1.

5.1.2 Dynamical effects

From the preliminary tests of local control for the alignment of SIPS 1 inch end
mirror, it has been demonstrated that is possible to control its angular and linear
motion within an accuracy of 10 nrad and 0.1 µm RMS (figure 4.14). Nevertheless,
seismic noise at the suspension point of the pendulum can cause some residual
motion of the suspended mirror (as better discussed in section 5.3.1), which affects
the relative displacement between the two mirrors in the cavity. Therefore, it is
interesting to study which are the dynamical effects derived from seismic or other
vibrational noise. In particular, in this section, the evolution of the electromagnetic
fields of the cavity when a mirror is moving will be presented. If we suppose that one
of the mirrors of the cavity is moving, we can define its position with the function
X(t), as shown in figure 5.2. Therefore, the light travels for a path defined by the
position of the mirror when its surface is hit by the light, given by X(t

′
). Thus, the

additional optical path can be written as

∆X = X(t
′
)− x = c(t− t

′
). (5.16)

This translates into an additional phase of the electromagnetic field reflected by the
mirror, given as

ϕ(t) = ω0t− 2kX(t
′
), (5.17)

where ω0 is the nominal frequency of the laser and k is the wavenumber. This can
be seen as a frequency shift due to a transfer of energy from the mirror to the wave,
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Figure 5.2: Scheme of the reflected light from a moving mirror [74]

and the new frequency can be calculated by deriving the phase in eq. 5.18:

ϕ
′
(t) = ω0 − 2k

dX

dt′
dt

′

dt
=
c− vm(t

′
)

c+ vm(t
′)
ω0 = ωnew, (5.18)

where vm is the relative velocity of both mirrors, that is the cavity velocity. This
expression shows that the movement of a mirror of the Fabry-Perot cavity causes a
Doppler effect on the circulating wave. For low velocity motions, i.e. c ≫ vm, the
reflection can be considered as instantaneous, t′ = t, and the previous expression
can be simplified as:

ωnew =

[
1− 2

vm(t)

c

]
ω0 (5.19)

If we consider a single mirror velocity such as the ones expected for SIPS in free
motion, vm ∼ 0.1µm/s, the induced Doppler effect is very small (around 0.1 Hz).
Nevertheless, for high finesse cavities (23000 for SIPS) this effect will accumulate
on each round-trip of the beam inside the cavity and it can be of the same order
of magnitude of the cavity linewidth, generating dynamical effects. Considering the
effective number of round-trips made by a photon Neff , related to the storage time
τ by the relation τ = 2LNeff/c, we can write the total frequency shift induced by
the Doppler effect as:

δω =
1

Neff

|vm(t)|ω0τ

L
. (5.20)

From this, we can write the expression for the mirror velocity that makes the total
Doppler shift equal to the linewidth, i.e. the FWHM of the resonance peak of the
cavity, also called critical velocity :

vcr =
λ

2Fτ
=

cλπ

4F2L
(5.21)

For mirrors velocity vm ≥ vcr, dynamical effects of the cavity start to be relevant.
From this consideration, we can describe the behaviour of the intra-cavity field
considering the mirror movement and so accounting for dynamical effects. Referring
to figure 5.3, we can define the total distance traveled by a photon, at any time,
inside the cavity as:

d(t) = L+ x2(t− T ) = L+ ξ(t) (5.22)
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where T = L/c is the time needed for a photon to travel from one mirror to the
other. Taking into account the variable optical path due to the mirror movement,

Figure 5.3: Fabry-Perot cavity with mirrors moving around a reference point [74]

we can write the intra-cavity field ECav: the total optical path will be determined
by the number of round-trips made by the light field, so we can write the expression
for ECav after N round-trips, can be simplified if we are in the large-N limit. For a
number of round-trips N ≫ Neff (the large-N limit [15]), the intra-cavity field is:

Ecav(t) = t1Ein

∞∑
n=0

(r1r2)
ne−2ikSn(t) (5.23)

where Sn is a partial sum, which represents the total optical path after n round
trips. Equation 5.23 can be re-written in terms of the finesse of an optical cavity F
and of the storage time τ , as

Ecav(t) = t1Ein

∞∑
n=0

e[i(2kvmTn
2−2kvmtn)− 2Ln

cτ
] (5.24)

This equation gives information about the behaviour of the intra-cavity field, for
velocities of the mirrors vm. When this velocity is ≥ vcr, some oscillations can
appear once the resonance is passed: this effect is known as ringing. Even if the
mirror movement is very slow the shape of the resonance peak changes and the
power inside the cavity is smaller than the stored power expected for the cavity.
Moreover, the mirror motion affects also the reflected and transmitted fields.

5.2 Longitudinal control

In the previous sections, we have shown how the seismic noise causes the suspended
mirrors to move, thus generating a variation in the cavity length, which would change
permanently if not controlled. This leads to the need for a longitudinal control, to
actively correct the cavity length in order to keep it on resonance. The process which
allows to measure the output of a system and feed it back to its input, with the aim
to keep the system at the desired working point, is called a feedback control loop.
Taking inspiration from Virgo experience, as a first approach, we decided to consider
SIPS arm cavities as a linear optical resonator, or a Linear Time Invariant (LTI)
system. When applied to LTI systems, such as the ones we find in interferometric
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detectors, we can understand and predict the behaviour of our complex system by
applying frequency domain techniques. A more detailed description of the basics of
linear feed-back systems can be found in [75].

5.2.1 Linear systems

Most of the systems involved in interferometric detectors are well described by linear
time-invariant system (LTI). A linear system is the simplest model of a physical
system, characterized by a linear input-output relation. If the response of the system
is the same independently of the time, it is called a time-invariant system. The most
general expression of an LTI system is written as

x(t) =

∫ 0

−∞
h(τ)y(t− τ)dτ (5.25)

where y(t) represents the input of the system, also called the forcing function, x(t)
is the output or response function, and h(τ) is the integral kernel. The damped har-
monic oscillator is an example of a second order LTI system. The Laplace transform
is a frequency-domain technique widely used in the theory of control systems, since
it allows to find the time response of complex systems, by solving the differential
equation on the s-domain. Given a signal y(t) = 0 when t < 0, its Laplace transform
is defined as

ỹ(s) =

∫ ∞

0

y(t)e−stdt (5.26)

where s = σ + iω is a variable varying in a defined domain of the complex plane.
This is a single-sided integral, which makes it perfect to analyse physical systems
starting at t=0, because it can take into account initial conditions. Applying the
Laplace transform to eq. 5.25 we obtains

x̃(s) = h̃(s)ỹ(s), (5.27)

where h̃(s) is called the (Laplace) Transfer Function (TF) of the linear system, and
it characterizes the behaviour of an LTI system on the s-domain. The TF of LTI
systems can be described by rational functions, characterized by their poles and can
therefore be written as [21, 15]:

G(s) =
∑
i

Ki

(s− pi)ni

= k · (s− z1) · (s− z2) · · · (s− zi)

(s− p1)(s− p2) · · · (s− pi)
.

(5.28)

In the first line of 5.28, ni are the pole multiplicities and Ki are the corresponding
residuals; in the second line, k represents the gain, all the zi’s are called the zeros of
the TF, since they cancel its numerator, and all the pi’s that cancel the denominator
of the TF are called poles. All the information needed to reconstruct the TF will
be given by its zeros, poles, and gain. The analysis of the response of a system
to an input function (such as an impulse), expressed by its TF, gives important
information on system stability. Indeed, eq. 5.27 tells that the response of a
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system to an impulse signal can be found by simply making the anti-transform of
the transfer function, being the Laplace transform constant at t = 0. Thus, it will
contain oscillating terms at frequencies given by the imaginary part of each pole.
Different situations can occur:

• if Re(pi) < 0, that is the pole has negative real part, the oscillation is damped;

• if Re(pi) = 0, means that the pole is purely imaginary and the oscillation has
constant amplitude;

• if Re(pi) > 0, which means the pole has positive real part, the oscillation grows
up exponentially.

Therefore a system is stable when, given an arbitrary function as input, such as an
impulse, its response decrease asymptotically with time, which means that its TF
has only poles with negative real part, Re(pi) < 0. On the contrary, a system is
unstable if for an arbitrary input, the system response is an oscillation that increases
with time, never returning to a quiescent state: this happens when TF→ ∞, which
means the denominator of the TF goes to zero. In order to describe the properties
of mechanical and optical systems, and develop a feed-back control system, transfer
functions are described in terms of pole and zero frequencies and quality factors. A
real first order zero, or simple zero, is usually called differentiator since it derives
the input value in the time domain, while a simple pole is also known as integrator,
because in the time domain it integrates the input value: at a given frequency f0,
they can be written respectively as [14]

Z1(s) = s− 2πf0

P1(s) =
1

s− 2πf0
.

(5.29)

Complex, or double, zero and pole, at frequency f0 are given by [14]

Z2(s) = s2 +
2πf0
Q

+ (2πf0)

P2(s) =
1

s2 + 2πf0
Q

+ (2πf0)
,

(5.30)

where Q is the quality factor : in particular if Q = 0, the system has a simple zero
or pole given in eq. 5.29. The last equation describes a system with an impulse re-
sponse which is represented as a damped oscillation at frequency f = f0

√
1− 1/4Q2.

Moreover, the time constant is related to the quality factor Q by the expression
τ = Q/(πf0). This tells us that the higher the Q, the longer the oscillation will last.
To better understand the behaviour of such a system, consider as an example the
damped harmonic oscillator with friction, described by a second order pole. The
general solution for a free vibration of a damped second order system can be written
as

x(t) = e−ζωnt[A1e
√
ζ2−1ωnt + A2e

−
√
ζ2−1ωnt], (5.31)
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Figure 5.4: Impulse response of a damped harmonic oscillator for different values of the
viscous damping factor ζ, in time domain.

where ζ is the viscous damping factor and is related to the quality factor by the
expression

ζ =
1

2Q
. (5.32)

Thus, in eq. 5.31, the nature of the roots depends on the value of ζ, which means
also that the behaviour of this system is determined by the value that the quality
factor can assume. In particular, three cases can occur:

• Q > 1/2 (ζ < 1): the system is Underdamped (complex and conjugate roots
represent a damped harmonic motion);

• Q < 1/2 (ζ > 1): the system is Overdamped (real roots, with a not periodic
damped motion);

• Q = 1/2 (ζ = 1): the system is Critically damped (real and coincident
roots).

The response of the damped harmonic oscillator to an impulse of velocity as input
is illustrated in figure 5.4, for the three values of ζ. At the same time, the global
behaviour of this system in frequency domain is described by poles and zeroes of
the TF, as shown in figure 5.5 for different values of the quality factor.

5.2.2 Feed-back control system

The most common control systems, which is suitable for the longitudinal control of
a Fabry-Perot cavity of an interferometer device such as SIPS, are those working
in feed-back configuration. In the following, some useful basics concepts of control
system theory are described focusing on linear control systems.
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Figure 5.5: Frequency response of a second order system for different values of Q [15].
Left: Transfer function of a second order system with a zero. Right: Transfer function of
a second order system with a pole.

In order to implement a feedback loop to control the length of the cavity, we must
define the elements in the control problem, as in figure 5.6, where the simplest
situation in a problem of control is shown. They are:

• Plant: the physical object that must be controlled, which in our case is a
Fabry-Perot cavity and its length and it can be described as a linear system
with one single input and one single output (SISO).

• Error Signal: it provides information on the parameters to be controlled.
In our case, it is the length of Fabry-Perot cavity and its distance from the
resonance condition. It will be a PDH signal, as will be better explained in
the next section.

• Corrector or feedback filter: the error signal passes through this element
which computes the correction signal to be sent to the plant.

• Actuator: it acts on the plant by feeding the correction signal, calculated
by the filter, in order to recover the working point. In the case of SIPS the
actuators will be the same used for local control, the coils-magnets pairs al-
ready described in chapter 4, for which the TF is a simple pole given by its
particular RLC circuit.

The response of the plant is described in general by a linear transfer function G(s),
depending on the Laplace variable s. The error signal can be affected by noise
coming from the sensors itself, the sensing noise n(s) (grey square in figure 5.6), or
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Figure 5.6: Scheme of a simple feedback loop for the control of the length of Fabry-Perot
cavities, the Plant G(s) [14]: the filter C(s) calculates the correction needed to bring
the cavity on resonance, taking information from the error signal x(s), then correction
c(s) is sent to the coils, the Actuator A(s), that act on magnets attached to the mirror.
Disturbance noises are eventually also considered (grey square).

can be injected on purpose to measure the features of the system. Indeed, the input
function, y(s) in figure 5.6, is a perturbation that brings the plant out of its working
point. Moreover, the output function, x(s), can be considered as the error signal.
Since the goal of a control system is to keep the input degree of freedom as close as
possible to a reference value and considering that we deal with a linear system, the
reference value can be taken as equal to 0 [14]. In our case, error signal x(s) can be
used as a reference value, which means that controlling the input degree of freedom
is equivalent to keep the error (output) signal close to zero. This also explains why
we refer to this scheme of control system as feedback control loop: the output of
the system is also used as part of the input. In particular, when the feed-back signal
is disconnected from the input signal, the system is in the open loop configuration,
and the open loop transfer function TFOL(s), also called open loop gain [14], is given
by:

TFOL(s) = G(s)C(s)A(s), (5.33)

which is the product of the individual TF of the elements composing the loop.
It is useful to measure the open-loop transfer function of the feed-back systems.
Indeed by adding a disturbance signal n(s) to the controlled DOF, through the
actuators, the output signal x(s) will give the residual motion of the physical systems
(already done for a single mini-payload, as discussed in chapter 4). In particular,
the frequency at which the gain equals to one, that is TFOL(s) = 1, is called unity
gain frequency (UGF) or band-width of the loop. When TFOL(s) > 1 at a given
frequency s, the error signal gives a good estimate of the residual motion of the
free system. When the feedback loop is closed, which means the feedback signal is
connected to the input, the control system is in a closed loop configuration, and we
can define the closed loop transfer function TFCL(s), or closed loop gain as

TFCL(s) =
1

1 +G(s)C(s)A(s)
, (5.34)
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which represents a suppression factor that tells us how much signals are reduced
with respect to the free motion of the system. The performance of a linear feedback
system, described by TFCL(s), can be studied by analyzing the response of such
a system to an input step function, which in the Laplace domain is expressed as
y(s) = 1/s. Thus, the system output is

x(s) = TFCL(s)y(s) =
TFCL(s)

s
. (5.35)

Computing the anti-transform of this expression for large times, by using the final
value theorem [14], the response of the linear system to the input step goes to zero
only if its transfer function includes a zero at s = 0, i.e. the output x(s) → 0 when
TFCL(0) = 0. Therefore the transfer function of the system, given in eq. 5.34, has
a zero at the origin only if TFOL(s), has a simple pole for s = 0, also called a pure
integrator. For this reason, real poles at s = 0 are usually added to the correction
filter [14]. With this considerations, the behavior of the full linear system, in closed
loop configuration can be easily computed and the transfer function of such system
can be written as [15]:

TFFP (s) =
x(s)

y(s)
=

G(s)

1 +G(s)C(s)A(s)
. (5.36)

which means that the signals of the system will be reduced, with respect to the
uncontrolled state, by an amount given by the suppression factor in eq. 5.34.

5.2.2.1 Loop Stability

In section 5.2.1, the response of second order linear system, the damped harmonic
oscillator, to an impulse of velocity as input is has been introduced, together with
the subject of stability of a system. As already explained, the stability of the feed-
back system of figure 5.6, requires that the poles of the closed-loop system must
have negative real parts and lie in the left half plane. The behaviour of a feed-back
system, which is also linear, will be then completely characterized by the impulse
response, whatever the input. In particular, it will be stable when the response to
an input impulse is a limited output signal, or better it will be asymptotically stable
when the output goes to zero at t → ∞ [14]. The link between the behavior of the
system transfer function and the requirements of stability for the closed-loop feed-
back system can be derived using the Nyquist stability criterion [75]. The Nyquist
diagram provides some graphical information on how the poles of the closed-loop
control system move, by changing the gain of the controller in the complex plane.
Moreover, the stability of a feed-back control system can be determined from its
open loop TF, TFOL(s). Indeed, the feedback system is asymptotically stable if and
only if its closed loop transfer function TFCL(s) has no pole for Re(s) ≤ 0. This
means that the closed-loop system is stable if and only if the function 1+ TFOL(s),
i.e the denominator of TFCL(s) in eq. 5.34, has also no zeros in the right half
plane. If this condition does not occur, any external disturbance will result in the
amplification of the input signal, which will soon diverge exponentially and the sys-
tem becomes unstable. Therefore, the Nyquist stability criterion for the stability of



120 CHAPTER 5. SIPS CAVITY LENGTH CONTROL

closed-loop feed-back system is determined: given a system with stable open-loop
transfer function, it will also be stable in the closed-loop configuration if and only
if its Nyquist plot does not encircle the critical point TFOL(s) = −1 in clock-wise
sense [14].

Another common way used to represent the open loop transfer function of a sys-
tem is through the Bode plot: it is composed of two different plots representing
the absolute value of the TF (the magnitude in dB) and the phase of this TF as a
function of frequency. This plot is useful to determine the phase and the gain of the
open loop TF, knowing where the UGF is located in the plot. Moreover, the range
of stability of the system can be defined by two parameters, that are the phase
margin and the gain margin. They can be determined knowing two particular
frequency values: i) the UGF, already defined, and ii), the 180◦ crossover, which
is the frequency, closest to the UGF, at which the phase becomes 180 [15]:

• the phase margin is the phase computed at the UGF−(±180◦): when the
crossover frequency is positive (+180◦) the system will be stable, when it is
negative (−180◦), the system will be unstable, while its absolute value gives
the information about the amount of margin you can have on the phase, before
the system become unstable;

• the gain margin is given by the values of the amplitude at both ±180◦ and
gives as well information of system stability range.

In figure 5.7, the Bode diagram for the open loop TF of the Advanced Virgo arm
cavities is shown: the red bar represents the UGF, that is 65 Hz, while the blue bars
define the 180◦ crossover points, which is at frequencies of 2.8 Hz and 215 Hz [15].
Nevertheless, the Bode diagram is not useful to have information on the stability of
the closed-loop system.

An alternative representation of the system’s frequency response is the Nichols
chart [76]: it is obtained by plotting the magnitude of the open loop transfer func-
tion TFOL(s), expressed in dB, versus its phase, when the frequency varies from 0 to
+∞. Assuming that no unstable pole/zero cancellation takes place in TFOL(s), the
stability criterion is obtained by mapping the critical point (−1, 0), the ray R(−∞,−1)

and the Nyquist plot of TFOL(s) into the Nichols chart. Moreover, the relationship
between the Nyquist and Nichols stability criteria is fully described by using the
180◦ crossing concept [77]. The request of Nyquist criterion that the critical point
−1 is not encircled translates into the request that the Nichols plot crosses the unity
gain axis between the two points corresponding to −180◦ and 0 phases [14]. An ex-
ample of the Nichols chart is illustrated in figure 5.8. This plot is particularly useful
for easily obtaining information on the behavior of the closed-loop transfer function
TFCL near the UGF, giving information about the amplification of the system for
each frequency. Indeed, even if your system is stable, if the open loop transfer func-
tion passes close to the critical point, the motion of the system can be enhanced
instead of reduced at that frequency, since TFCL can be much greater than 1. This
enhancement is called overshoot and a limit on it can be imposed, only knowing the
behavior around the UGF [14].
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Figure 5.7: Example of Bode plot: the magnitude of the transfer function and its phase
are shown in two different panels as a function of frequency. See [15] for more detail.

Figure 5.8: Example of Nichols chart of a stable system: the magnitude (in dB) of the
open loop transfer function and its phase are plotted for frequency varying from 0 to +∞.
The curves around the critical point show the minimum margin allowed with an overshoot
varying from 1 to larger values, in steps of one unity [14].
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Moreover, Nichols chart allows to extract the stability margins. The phase mar-
gin is represented by the horizontal line going from the critical point to the Nichols
plot, and it is an important information since it gives an indication of the robustness
of the control, also if there are changes in the system transfer function. The gain
margins, which is the maximum possible changes in the overall gain of TFOL(s)
that leave the system stable, is represented by the vertical translation of the critical
point from the Nichols plot. If it is large enough to make the curve cross the critical
point, the system becomes unstable, thus instability oscillations occur with typical
frequencies given by the two points of the Nichols plot that intersect the 180◦ degrees
vertical line.

5.2.3 Pound Drever Hall locking technique

In a control scheme, the error signal is an important element, since it contains
information about the length of the cavity with respect to the resonance point. An
ideal error signal has to satisfy the following conditions:

• it must be bipolar, that means that it changes sign depending on which side
of the working point we are;

• it is linear, meaning it is proportional to the parameter we want to measure

• it crosses the zero at the desired working point.
to obtain an error signal with all these requirements, the method used in a GW
interferometer is the Pound-Drever-Hall technique (PDH) [19]. We have shown that
the resonance condition for a Fabr-Perot cavity is satisfied when the length of the
cavity is L = nλ, which, in terms of frequency is satisfied when the laser frequency
is an integer number of the cavity the FSR (2L/c). For this reason a little change
in the distance between the two cavity mirrors leads the cavity out of the resonance
condition. To solve this problem, this distance must be actively adapted to the beam
wavelength. To obtain this, a suitable voltage signal must be sent to the actuator.
In particular, the PDH technique was first developed with the aim of stabilizing the
laser frequency on reference cavities, but it is used in GW interferometer to lock a
resonator to the laser cavity, making possible to compute the error signal and thus to
understand what is the suitable signal to send to the actuator. In general, assuming
that the laser frequency is stable, this technique is applied in a configuration as
the one shown in figure 5.9. In this scheme, an Electro Optic Modulator (EOM)
is placed to modulate the incident light (usually it is the Pockel Cells). In our
experiment, at this purpose an EOM will be placed in the SIPS main laser injection
line. For a better understanding, it is useful to first introduce the light modulation
concept. If we consider first the no-modulated light, being the cavity input and
reflected electromagnetic fields, respectively written as

Ein = E0e
iωt Eref = E1e

iωt (5.37)

it is possible to define the reflection coefficient as

F (ω) =
Eref
Ein

=
r exp

(
i ω
FSR

)
− 1

1− r2 exp
(
i ω
FSR

) , (5.38)



5.2. LONGITUDINAL CONTROL 123

Figure 5.9: Scheme of the Pound-Drever-Hall technique for measurements of a Fabry-Perot
cavity length. [14]

where FSR is the free spectral range of the cavity. If the input beam is phase-
modulated, its electromagnetic field can be written as

Einc = E0e
i(ωt+β sinΩt) (5.39)

where β is the amplitude of the phase modulation called modulation depth, while
Ω is the radio frequency modulation. Expanding the exponential in terms of the
Bessel functions, we can write:

Einc ≃ [J0(β) + 2iJ1(β) sinΩt]e
iωt (5.40)

= E0[J0(β)e
iωt + J1(β)e

i(ω+Ω)t − J1(β)e
i(ω−Ω)t] (5.41)

where the first term is the carrier beam at a frequency ω and the other two terms
are the lower and the upper sidebands, respectively at frequencies ω−Ω and ω+Ω.
The total reflected beam can be written as

Erefl = E0[F (ω)J0(β)e
iωt+F (ω+Ω)J1(β)e

i(ω+Ω)t−F (ω−Ω)J1(β)e
i(ω−Ω)t]. (5.42)

Usually, high order sidebands have a much smaller amplitude and they are often
neglected. Thus, for a modulation depth β < 1 we can approximation of the Jacobi
functions as [21]

J0(β) ∼ 1− β2

4
(5.43)

(5.44)

J1(β) ∼
β

2
, (5.45)

and the total power is the sum of the carrier power Pc and of the power of the two
sidebands 2Ps:

P0 ∼ Pc + 2Ps. (5.46)

If we choose properly the modulation frequency we can ensure that the sidebands
are not resonant inside the cavity when the carrier is. When a field is resonant inside
the cavity, the phase of its reflection changes very fast as a function of the cavity
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length, while when a field is not resonant, its phase is roughly constant even when
the cavity length varies a bit around the working point. We can therefore use the
sidebands as static phase references for the measurement of the carrier phase. The
beating between sidebands and carrier is the error signal we are interested in because
it gives the phase difference between them. Thus, we want to extracting the beat
note at the modulation frequency [21], which is the basic idea of PDH technique.
The power of the reflected modulated beam, that arrives to the photodetector is

Pref = Pc|F (ω)|2 + Ps{|F (ω + Ω)|2 + |F (ω − Ω)|2}
+ 2

√
PcPs{Re[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] cosΩt (5.47)

+ Im[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] sinΩt]} (5.48)
+ (2Ω terms). (5.49)

For a low modulation frequency

Ω ≪ FSR

F
⇔ Ω ≪ FWHM (5.50)

where FWHM is the cavity linewidth, the dominating interference term is

P c−SBs
ref = 2

√
PcPsRe[F (ω)F

∗(ω + Ω)− F ∗(ω)F (ω − Ω)] cosΩt; (5.51)

while, for a high modulation frequency

Ω ≫ FSR

F
⇔ Ω ≫ FWHM (5.52)

P c−SBs
ref = 2

√
PcPsIm[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] cosΩt. (5.53)

In order to isolate the term which contains the relevant information, the photo-
diode output power is multiplied by a local oscillator signal (LO). This process is
also known as demodulation of the error signal. The result will contains several
components, each one oscillating at different frequencies: low frequency DC term,
which is the one containing the beating note, Ω and 2Ω. However, since we are
interested only in the low frequency, i.e the DC component we can neglect the
higher frequency terms by applying a low pass filter to the result [21]. Therefore,
this signal will be sent to a mixer (see figure 5.9), together with a local oscillator
signal sinΩLO. The mixer output will be

sin(Ωt) sin(ΩLOt) =
1

2
{cos[(Ω− ΩLO)t]− cos[(Ω + ΩLO)t]} (5.54)

and, if ΩLO = Ω, the first term provides us a DC signal. If the local oscillator signal
is cosΩLOt, the output of the mixer will be

sin(Ωt) cos(ΩLOt) =
1

2
{sin[(Ω− ΩLO)t]− sin[(Ω + ΩLO)t]} (5.55)

this means that, when ΩLO = Ω, the DC signal vanishes. For this reason, after the
local oscillator and before the mixer a phase shifter is placed [33]. The signal in low
modulation frequency regime (Ω ≪ FWHM) will be

ϵ = P0
d|F |2

dω
Ωβ ≈ 2

√
PcPs

d|F |2

dω
Ω (5.56)



5.2. LONGITUDINAL CONTROL 125

Figure 5.10: Pound Drever Hall signal in low modulation frequency regime. [19]

Figure 5.11: Pound-Drever-Hall signal in reflection of a Fabry-Perot cavity with Advanced
Virgo parameters and an input power of 1 W. [15]

and this represents the error signal which is sent to the servo controller. The shape
of this signal is shown in figure 5.10. Since we deal with measurable quantity, we can
consider only the real part of the result. There are only two independent signal that
can be used to reconstruct all possible values of the demodulation phase. Indeed,
depending on the phase of the demodulation signal, the information obtained will
be different. Thus, the signal is multiply by a sine or a cosine, obtaining two signals
which are respectively called in-phase signal, when ϕ = 0, and quadrature signal,
when ϕ = π/2. In this way, we can obtain information on the behavior of the in-
phase signal as a function of the cavity displacement from resonance. An example
of PDH signal for an Advanced Virgo cavity is shown in figure 5.11: it is interesting
to note that the signal shows a linear dependence on the cavity displacement when
close enough to the resonance, and the width of the linear region is proportional
to the cavity line-width [21]. Without going into detailed computation (see [21]
for a deeper analysis), it is possible to compute the slope of the linear region, by
making the derivative of the in-phase signal P with respect to the mirror longitudinal
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displacement, evaluated at the origin. If we assume a high cavity finesse we obtain:

dP

dz
= J0(β)J1(β)Pin

8F
λ
. (5.57)

This expression tells us that the slope of the error signal depends on the finesse
of the cavity. This means that, the larger the finesse is, the more our signal will
be sensitive to the cavity length variation. Nevertheless, this would also imply a
smaller linewidth and so a narrower linear region. Then, to design a good control of
the cavity length, we must find a compromise between both parameters. The signal
is also proportional to the input power, while the shot noise increases only with the
square root of the power. We can therefore have a gain in the signal to noise ratio
which is proportional to the square root of the power we are injecting into the cavity.
Finally, since the error signal can only be used within its linear region, we want to
increase the width of this region. This can be done with a linearization process of
the error signal (as better described in [14]). It can be shown (see [15]) that, if
we write the PDH signal in terms of the transmitted cavity power, we can use it
to remove the limitation on the linear region of the reflected power, normalizing it
by this transmitted one. In the case of SIPS, for the locking of its optical cavity
and of the entire interferometer, a system of auto-alignment is foreseen to be used.
Thus, the transmission signals from each Fabry-Perot cavity must be acquired and
processed to compute the error signal applying the Pound-Drever-Hall technique
[19], in order to keep the interferometer in its working condition. A preliminary
optical bench design, including two photodiodes in trasmission from Fabry-Perot
cavities, is shown in figure 5.12.

5.3 Optimization of SIPS control system
In order to design an efficient optical control system for SIPS, we need first to study
the analytical model of the system to be controlled, thus to design a controller based
on the proposed model, which means to have equations describing the different
part of the control scheme: plant, sensors, correction filters and actuators. From
the preliminary results of the tests of local control for SIPS mini-payload, it has
been decided to work on optimization of control system by first introducing some
modification of the physical system, that is the "plant" of this system. This is the
work on new design of SIPS mechanics and the suspension system already described
in Chapter 4. Nevertheless, an important part of the realization of an optimal control
design is the study and development of the mathematical model of the system which
has to be controlled (the plant), which is part of this PhD work discussed in sec.
5.3.2.

5.3.1 Locking requirements

The requirements about force and bandwidth needed for the lock acquisition of the
SIPS high finesse Fabry-Perot cavities has been computed, according to the design:
they are preliminary computations and a more precise result can be obtained by
performing time domain simulations. Moreover, a very important parameter is the
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Figure 5.12: Preliminary optical bench design of SIPS: two photodiodes will be placed
in transmission from each Fabry-Perot cavities for locking and angular control, taking
inspiration from the system used in Virgo [15]

relative displacement (and relative speed) between the two mirrors of each Fabry-
Perot cavity. Although it is difficult to estimate, it can be computed analytically
from the model developed and described in section 5.3.2 and, when SIPS interfer-
ometer setup will be finalized according to the final design, it can be measured and
compared with the analytical equations, also for the validation of the theoretical
model. The first requirement to be considered is on the relative seismic displace-
ment between the two mirrors of the cavity. Considering that both end and input
mirrors are independently suspended with two single pendulums at the same auxil-
iary bench, and assuming that the seismic common mode rejection between the two
mirrors is negligible, the seismic noise at the suspension point of the two pendulum
has been computed to be ∼ 0.2µ, dominated by a 0.1 Hz displacement, thus giving
the corresponding speed of vm ∼ 0.1 · 2π · 0.2 = 0.1µm/s (refer to eq. 5.18). The
second important requirement is the minimum force needed to acquire the lock, i.e.
the force needed to put the relative mirror velocity vm to zero, which can be simply
defined as:

F∆t = mvm, (5.58)

where ∆t is the time interval in which the error signal has a linear trend, λ = 1064
nm is the main laser frequency, while m and v are the mirror mass and speed,
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respectively. The crossing time of the resonance, defined by the time needed to
cross the half width at half maximum (HWHM), is:

∆t =
λ

4Fv
, (5.59)

where F is the cavity finesse. Considering SIPS finesse of F = 23000, and combining
the previous two equations, we obtain the lower limit of the forces that must be
applied to both cavity mirrors, in order to be in a stable condition which allows the
locking of the cavity, that is:

F =
4mFv2

λ
= 3.6× 10−4(

v

0.1µm/s
)2N, (5.60)

for the end mirror with 10 g of mass, while for the input mirror with a mass of 300
g this formula gives

F =
4mFv2

λ
= 1.2× 10−5(

v

0.1µm/s
)2N. (5.61)

The effective time during which the loop is acting can be increased by linearizing
the Pound-Drever-Hall error signal and the efficiency of the linearization technique
depends on the noise of the photodiodes and by the presence of high-order modes,
as already explained in section 5.2.3. Another important parameter, in particular
for the design of a control loop, is the bandwidth B, which determines the reaction
time of a control loop. Indeed, we have seen in section 4, when SIPS local control is
active mirror displacement is approximately 0, 1µm RMS. In order to acquire lock,
the loop needs to react faster than the time to cross a resonance, which means:

vmax,B <
λ

2F
2πB (5.62)

Then, the minimum bandwidth needed to acquire the lock has been computed for
SIPS and it is given by:

B ∼ 1

∆t
= 4.6 kHz. (5.63)

Finally, as anticipated in section 5.1.2, the ringing effect is present when the time
to cross a resonance is smaller than the time needed to fill the cavity with the light.
In this case the quasi-static approximation can not be used anymore, and the errors
signals for the cavity control become oscillating during the crossing of the resonance
(ref. a PDH). The condition for ringing for SIPS arm cavities is given by

v≥
cλπ

4F2L
(5.64)

where the last terms is the critical velocity expressed in eq. 5.21, which for SIPS
arm cavities has been computed to be vcr ∼ 1.35µm/s. Therefore, with the expected
speed, vm ∼ 0.1µm/s, the condition v < vcr can be satisfied, meaning that we expect
no ringing effect.
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5.3.2 Analytical model for opto-mechanical coupling

In this section the analytical model for the opto-mechanical interaction inside the
FP cavities, is developed, with the aim of build an optimal control algorithm for the
implementation of the control system for the cavities length control. In particular,
the equation of motion of the wave field coupled with the resonator by boundary
condition are derived, using the Hamilton variational principle approach. The
results obtained from this analysis will be used to develop an integro-differential
model using Pontryagin’s maximum principle, which will allow to find efficient con-
trol equations to be implemented in a complex systems like SIPS, in order have a
complete control of all the optical elements, simultaneously, thus to optimize SIPS
performance. The case of the opto-mechanical resonators requires also considera-
tions on additional effects related to quantum mechanics, which can be considered
as the same of the elastic waves if very low energy and small scales are taken into
account [78]. We first develop a nonlinear theory of the scattering phenomenon
describing the expression for the radiation pressure acting on a body moving in
the wave field by using Hamilton’s variational principle. The Hamilton’s principle
permits to determine a general procedure to study the scattering of acoustic and
electromagnetic waves on a moving surface. This will lead us to determine the fi-
nal expressions of the wave field and the resonator motion. The approach used is
placed in the context of classical acoustics and electrodynamics. The mathematical
method used for describing the coupling is conceptually the same of the wave-body
interaction problem in acoustic or electromagnetic waves. As explained in [78], the
one-dimensional problem has been treated for both acoustic and electromagnetic
waves, deriving the wave-body interaction for both cases, in order to compare them
to understand differences and commonalities for the two kinds of propagation phe-
nomena. In the case of acoustic waves, some non-linearities appears both in the
boundary conditions and also in the equation of motion of the wave. However, parts
of the boundary terms are common to acoustic and electromagnetic waves, in par-
ticular the Lagrangian pressure.

We analyse the one dimensional problem of a light beam impinging and reflect-
ing on a dielectric mirror with surface S, and mass m, connected to a spring of
stiffness k (shown in figure 5.13). Lets introduce the scalar and vector potentials, ϕ
and A for the electric and magnetic field, E and B respectively:

E = −∇ϕ−At (5.65)
B = ∇×A (5.66)

In order to apply the variational principle approach, we define the generalized
Lagrangian L for the opto-mechanical system, as the difference between the total
kinetic energy and the total potential energy of this system. For the electromagnetic
field, kinetic energy is represented by the magnetic energy, while the energy of
the electrical field replaces the gas elastic potential energy storage [78], thus the
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Figure 5.13: Schematic view of the interaction between laser field and a Fabry-Perot cavity
mirror.

Lagrangian density can be written as:

Le.m. =
1

µ0

|B|2 − ϵ0|E|2

=
1

µ0

|∇ ×A|2 − ϵ0|∇ϕ−At|2
(5.67)

On the other hand, the mirror has its own kinetic and potential energies of pure
mechanical nature due of its stiffness k and mass m, which gives the Lagrangian

Lmech =
1

2
mu̇2 − 1

2
ku2. (5.68)

, where, u is the mirror axial displacement. Thus, assuming that the only non-zero
derivatives are those with respect to the x propagation axis, the Hamilton’s principle
gives the total Action of system, which can be written as:

Atot = Amech(u.u̇) +Aem(ϕx,At,Ax)

= S

∫ t2

t1

[
1

2
mu̇2(t)− 1

2
ku2(t) +

(∫ l

u

Le.m.dx
)]

dt
(5.69)

where ϕx is the first derivative with respect x of the scalar potential, while At =
(Ax,t, Ay,t, Az,t) is the time derivative of the vector potential, and Ax, Ay, Az repre-
sents the three components (here derived with respect to time). Then, the electric
and magnetic fields for the one-dimensional case simplifies as:

|E|2 = (ϕx + Ax,t)
2 + (Ay,t)

2 + (Az,t)
2

|B|2 = (Ay,x)
2 + (Az,x)

2 (5.70)

According to variational principle, we must minimize the total action of the system,
that is

δAtot = 0. (5.71)

Thus, we must compute the variation for all the Lagrangian variable, which are δu,
δϕ, δAx, δAy, δAz. After some mathematics and using integration by parts, we
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obtain the variation of the action as:

δAtot = −
∫ t2

t1

(mü(t) + ku(t) + S [Le.m.]u) δudt

+ S

∫ t2

t1

∫ l

u

[2ϵ0(ϕxx + Ax,xt)δϕ+ 2ϵ0(ϕx,t + Ax,tt)δAx

+ (2ϵ0Ay,tt −
2

µ0

Ay,xx)δAy + (2ϵ0Az,tt −
2

µ0

Az,xx)δAz]

+ S

∫ t2

t1

2

µ0

[Ay,xδAy]
l
u +

2

µ0

[Az,xδAz]
l
u − 2ϵ0[ϕx + Ax,tδϕ]

l
udt

(5.72)

where with the notation ϕii and Aj,ik, with i, j, k = x, y, z, t we refer to the second
derivatives of the electromagnetic potentials. Here, the last integral represents the
boundary terms. Thus, Hamilton’s principle produces the coupled potential field
equations:

ϕxx + Ax,xt = 0

ϕxt + Ax,tt = 0,
(5.73)

that can be combined together, eliminating Ax, obtaining:
1

c2
ϕtt − ϕxx = 0

1

c2
Ay,tt − Ay,xx = 0

1

c2
Az,tt − Az,xx = 0.

(5.74)

This tells us that the potential fields propagate along x axis as a D’Alembert wave
(without non-linearities). Then, the boundary conditions associated to equations
5.74 are determined by integration by parts in the Hamilton’s principle, giving:

(ϕx + Ax,t)δϕ|u = 0

Ay,xδAy|u = 0

Az,xδAz|u = 0

(5.75)

The additional boundary conditions for the mirror is:

mü+ ku = L|u

= S
{ 1

µ0

[
A2
x,y + A2

z,x

]
− ϵ0

[
(ϕx + Ax,t)

2 + (Ay,t)
2 + (Az,t)

2
]}∣∣∣∣∣

u

.
(5.76)

In the equations 5.73, the integration of the first of equation with respect to x
produces ϕx + Ax,t = F (t), while the integration of the second one with respect to
time is ϕx + A(x, t) = G(x), then it is possible to state that F (t) = G(x) = const..
Therefore, we can eliminate the static component and write the mirror equation of
motion as:

mü+ ku = L|u

= S
{ 1

µ0

[
A2
x,y + A2

z,x

]
− ϵ0

[
(Ay,t)

2 + (Az,t)
2
]}∣∣∣∣∣

u

,
(5.77)
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and the boundary conditions can be re-written as

{ ϕ|u = 0

Ay,xδAy|u = 0

Az,xδAz|u = 0

(5.78)

From equation 5.74, we can write the potential fields at the mirror boundary as

ϕ(x, t) = ϕi(x+ ct) + ϕr(x− ct)

Ay(x, t) = Ay;i(x+ ct) + Ay;r(x− ct)

Az(x, t) = Az;i(x+ ct) + Az;r(x− ct)

(5.79)

where ϕi, Ax,i, Az,i are known, while ϕr, Ax,r, Az,r are unknown. This allows to
solve the reflection problem in terms of the four unknowns, in order to find the wave
solution in the general propagation D’Alembert form, for the local non-resonant
coupling model, by solving the system of equations:

mü+ ku = S
{ 1

µ0

[
A2
x,y + A2

z,x

]
− ϵ0

[
(Ay,t)

2 + (Az,t)
2
]}∣∣∣∣∣

u

ϕ|u = 0

Ay,xδAy|u = 0

Az,xδAz|u = 0.

(5.80)

From analytical model developed with the same technique, but for the case of acous-
tic waves, it has been observed that the nonlinear opto-mechanical coupling leads
to generate some spurious frequencies in the rensponse of the mirror, thus in the re-
flected light spectrum [78]. This can be manipulated to both permits the theoretical
analysis of the opto-mechanical coupling and to be useful for numerical simulations,
with the final goal to tune an optimal control technique, suitable for the design of
SIPS global control.

5.3.3 Pontryagin control equations

From this preliminary results, we foresee to apply a mathematical approach based
on Pontryagin’s maximum principle, in order to solve the main problem of control
coupled dynamical systems. If the system is supposed to be linear (as has been con-
sidered in section 5.1), then the used standard methods are the Linear Quadratic
Regulator (LQR) or the Linear Quadratic Gaussian (LQG) control. When the sys-
tem is nonlinear, then the Pontryagin’s method can be a suitable approach. This
is clearly a more complicated approach, with respect to the techniques which make
direct use of the transfer function (like the one used for Virgo and initially meant to
be applied also for SIPS). Indeed, it presents some difficulties in producing the feed-
back control. Nevertheless, this method gives much more accurate results from the
point of view of the system response to control actuation, allowing to find efficient
control equation for complex systems like SIPS experiment. The prototype of the
control problem is represented by the equations 5.80, of the previous section. The



5.3. OPTIMIZATION OF SIPS CONTROL SYSTEM 133

control force must be considered in the equation of motion of mirror: in particular,
the control vector has a single component fc, which represents the control force ap-
plied to the mirror, operated by actuators (coil-magnet pairs in our case). Our first
step will be to transform a partial derivative system (PDE) into an ordinal differen-
tial equation system (ODE), which is the simpler form for the study of a dynamical
system. After, the equations for the evolution of the system can be written in the
form

ẋ = Ax+Bfc(s), (5.81)

where the second term is related to the part of the system to be controlled with
the actuation, and it is associated with a control matrix. Since we aim to realize
a feedback control loop, it is important to define a criterion for the choice of the
function fc(s), where s is the vector which represent signals from the sensors, and it
will be associated to a sensing matrix. The idea is then to build a suitable Objective
Function, J , which is a functional of the state of the system and of the control
and gives information about the performance of the system. We can write J in a
quadratic form as

J =

∫ T

0

(Qu2 +Rf 2
c )dt (5.82)

Then, we introduce a modified functional J̃ , adding a constrain, as

J̃(x, fc, λ) =

∫ T

0

[
L+ λT (·x− Ax−Bfc)]dt, (5.83)

with λ = λ(t). Then, using the method of Lagrange multipliers, we must find
the possible control vector fc which satisfies the condition for which δJ → 0. The
advantage of this model is that, even if now we have a more complicated system
with three variable, (x, fc, λ), they are independent variables, then they can be easily
obtained analytically. fc must be in a range of value that will define the actuation
ability of the system. In this way, it is possible to simultaneously obtain all the
components of u, then all the control actuation, which in our case means being
able to control mirrors motion in every direction and simultaneously, This results
in the ability to build a simultaneous integrated feedback control, leading to an
optimization of the performance of the system analysed in this thesis.





Conclusions

Quantum noise is one of the most important noises limiting the sensitivity of inter-
ferometric gravitational wave (GW) detectors. As a first solution to this limit, the
frequency independent squeezing (FIS) technique was adopted by the current gener-
ation of GW detectors [79]. The main principle at the basis of this technique consists
in injecting squeezed vacuum states from the detection port of the interferometer,
which produces reduced fluctuation on one quadrature, due to the Heisenberg un-
certainty principle, at the expense of increased fluctuation on the other quadrature.
In such conditions, quantum shot noise at high frequency (above 200 Hz) can be
reduced, an effect that can be also achieved by increasing the power stored in the
arm-cavities. However, this choice implies the drawback of increasing quantum ra-
diation pressure noise at low frequencies (typically below 100 Hz). The upgrades of
the 2nd generation of GW detectors lead these instruments to face the limit due to
the quantum nature of light, and it has been necessary to introduce FIS to observe
quantum shot noise reduction above 200 Hz. At the same time, a small, but not
negligible, quantum noise increase was observed at low frequency, due to amplitude
noise [79]. These observations are consistent with the Heinseberg principle and the
standard quantum limit (SQL). However, within such a framework, suitably manip-
ulated squeezed vacuum states with a frequency-dependent squeezing angle (FDS)
can be produced and injected into the asymmetric detection port, thus achieving a
broadband quantum noise reduction. Very recent developments of Advanced Virgo
foresee the use of FDS reached manipulating the squeezed vacuum state ellipse
through an external 285 m long optical cavity [40].

In the meantime, we are developing a table-top experiment, called SIPS (Suspended
Interferometer for Ponderomotive Squeezing), as a promising challenging alternative
to filter cavity-based FDS. SIPS’s final aim is to operate on squeezed vacuum states
via the ponderomotive technique [57, 30]. This technique exploits the effect of ra-
diation pressure in opto-mechanical cavities with suspended mirrors to generate a
quantum correlation between phase and amplitude quadrature fluctuations, respec-
tively related to shot noise and radiation pressure noise. In particular, the analysis of
the opto-mechanical coupling in a detuned cavity allowed us to set the requirements
for the choice of the parameters for the design of the experimental setup [57]. They
must ensure a large squeezing factor and a suitable squeezing band. For this reason,
the suspended mirrors should have the proper pendulum resonance below the fre-
quency band of GW detectors, and the suspension system must be tailored in such a
way that the thermal noise will be lower than the radiation pressure noise. Although
originally designed with the main goal of generating ponderomotive squeezing, since
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2018, SIPS has been chosen as the demonstrator of another frequency-dependent
squeezing experiment that aims to reduce quantum noise through the injection of
entangled vacuum states, i.e. Einstein Podolsky Rosen (EPR) states [62]. Hence,
SIPS is planned to be used as a demonstrator for the EPR squeezing in a frequency
band between 40 Hz and 700 Hz.

In this thesis, I performed both experimental work and theoretical studies devoted
to the final goal of designing an optimized control system, for the control of the
entire SIPS interferometer. An important part of the work carried out during these
years of PhD, was devoted to the finalization of the experiment setup. Starting
from the analysis done in [57], and from simulation on the noise budget for SIPS
end mirror, it has been demonstrated that it is possible to obtain a table-top ra-
diation pressure-limited ITF. Indeed, it has been found that the use of two optical
cavities, with suspended mirrors of different low masses, is the optimal configuration
allowing to keep the thermal noise low enough below the radiation pressure effect in
the frequency range between 10 Hz and 10 kHz [57]. According to the requirements
derived and described in this thesis, we expect to use SIPS experiment to generate
tunable ponderomotive squeezing in a frequency range below 10 kHz. The mechan-
ical and optical bench design has been described in detail in this work, together
with the problematic linked to the mechanical feasibility of the experiment. With
the optical and mechanical parameters chosen for the design of SIPS setup, we have
seen that it is possible to obtain a squeezing factor ζ = 18 dB, with an optical spring
frequency of Θ = 2π kHz. Some experimental milestones have been also achieved.
In a preliminary phase, the local control system has been studied, developed, and
tested on dummy elements that reproduce the main optics of the interferometer.
The experimental work was slowed down because of some technical issues related
to the real-time hardware used for local control operations that have been encoun-
tered during the test of the local control code. Moreover, the experimental work
was retarded due to Covid-19 pandemic, which seriously impacted the production
of the new mechanics. Nevertheless, some important results have been obtained, as
already shown in figure 4.14: we are able to perform a pre-alignment of the 1 inch
dummy end mirror, controlling its angular and linear motion, within an accuracy
of 10 nrad and 0.1 µm RMS [30]. However, we learned that some improvements
are needed both for local control itself and in view of the transition to the final
design of SIPS experiment. This led to another aspect related to this issue, which
is the design and realization of a new suspension system and mechanics tailored to
optimize the actuation system for alignment and control. I designed a new mari-
onette that allows the control of the pitch of the mirror without direct actuation
on SIPS mirrors. Then, I took care of the design of the new monolithic suspension
system for all the five mini-payloads. Recently, one end mini-payload of SIPS has
been assembled and is ready for the new tests for the local control system, while the
implementation on all the mini-payloads of SIPS should be realised in the following
months.

As already mentioned, the manufacturing of new mechanics has being finalised only
in November 2022, with a long delay due to unavoidable problems related to Covid-
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19 pandemic, and only in December 2022 I was able to re-assemble the new me-
chanical components for one mini-payload placed at the end of one arm of SIPS.
The mini-payload, at present, has been assembled adopting a suspended dummy
mirror in order to check the mechanical behaviour. The readout electronics and
the actuators to control the mini-payload, the electronics cabling for the sensing,
and the actuation system to control it are now restored and ready for testing the
performance of the local control improved with the new mechanics.

Another part of this thesis work, was devoted to the study for the optimization
of SIPS global control. The high power circulating inside high finesse (F=23000)
SIPS Fabry-Perot cavities makes the design of an optimized control system a very
challenging goal. The problem of the control of coupled dynamical systems has
been studied, and an analytical model for the optomechanical interaction between
mirrors and the wave field of the laser has been developed. The model presented in
this thesis uses the equations of the wave field coupled with the resonator (end mir-
ror) by the boundary conditions, with a variational approach. The final expressions
of the wave field and the resonator motion u(t) are determined, together with the
boundary condition. The results can be manipulated to both permit the theoretical
analysis of the opto-mechanical coupling and to be useful for numerical simulations,
thus to tune an optimal control technique. From the analytical model, we will be
able to apply Pontryagin’s maximum principle, which allows finding efficient control
equations for complex systems like the SIPS case, based on wave models close to
boundaries (mirrors). This is proposed as an alternative approach on the control
problem, with respect to those techniques that make direct use of the transfer func-
tion, which are the ones used for Virgo and also meant to be used in SIPS in its
preliminary stage. Pontryagin’s approach is a more complicated approach, but it
gives more accurate results from the point of view of the system response to control
actuation.

As mentioned in Chapter 2, a frequency dependent squeezing technique has been
demonstrated in 2020 by [10]: this allowed to induce a rotation of the squeezing
ellipse below 100 Hz using a suspended 300 meter long filter cavity. Nevertheless,
this technique requires the use of long-scale filter cavity, which means a huge infras-
tructure for hosting its setup, and therefore high construction costs.

In the next future, FDS techniques will be applied to reduce the quantum noise
in the second and third generation of interferometric gravitational waves detectors,
like Advanced Virgo+ or Einstein Telescope (ET). Advanced Virgo+ adopted the
filter cavity-based FDS technique. ET, which is still under design, in the case of
FDS with filter cavities, will require 9 filter cavities on km scale (see figure 5.14).
Thus, the development of a more compact FDS setup, such as the one proposed
with SIPS and EPR experiments, will be of great advantage in view of the third
generation detectors.
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Figure 5.14: Frequency Dependent Squeezing prevision for filter cavity integration in ET
design.

The work presented in this thesis still requires further investigation before being
adopted for GW detectors, but it represents an important step toward the real-
ization of an optimal control system for a complex system like SIPS. Moreover, as
already mentioned, it seems a very promising alternative to current FDS techniques,
especially in view of the construction of the third generation GW detectors.
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