LiCoPO4 (LCP) is a challenging high voltage positive electrode material for next-generation secondary Liion cells. Doping the LCP olivine lattice with iron and annealing the material at high temperature result in improved and stable performances in lithium cells. Here we investigate the structural effects of iron doping and annealing at high temperature by advanced synchrotron X-ray techniques (X-ray diffraction and absorption) in close comparison with the corresponding performances in lithium cells (lithium deinsertion/ insertion) and the ionic diffusion coefficients evaluated by galvanostatic intermittent titration tests. The partial substitution of cobalt ions in the olivine lattice with iron ions, 2+ or 3+, strongly affects the long range crystal structure as well as the short range atomic coordination. These structural changes alter the concentration of anti-site defects, the natural concentration of lithium vacancies, and the size of the lithium diffusion channels along the [010] direction as well as their local distortion. The balancing between these competitive effects modulate the lithium transport properties in the lattice.

Interplay between local structure and transport properties in iron-doped LiCoPO4 olivines / Brutti, Sergio; Manzi, Jessica; Meggiolaro, Daniele; Vitucci, Francesco M.; Trequattrini, Francesco; Paolone, Annalisa; Palumbo, Oriele. - In: JOURNAL OF MATERIALS CHEMISTRY. A. - ISSN 2050-7488. - STAMPA. - (2017). [10.1039/C7TA03161K]

Interplay between local structure and transport properties in iron-doped LiCoPO4 olivines

Brutti, Sergio;TREQUATTRINI, Francesco;
2017

Abstract

LiCoPO4 (LCP) is a challenging high voltage positive electrode material for next-generation secondary Liion cells. Doping the LCP olivine lattice with iron and annealing the material at high temperature result in improved and stable performances in lithium cells. Here we investigate the structural effects of iron doping and annealing at high temperature by advanced synchrotron X-ray techniques (X-ray diffraction and absorption) in close comparison with the corresponding performances in lithium cells (lithium deinsertion/ insertion) and the ionic diffusion coefficients evaluated by galvanostatic intermittent titration tests. The partial substitution of cobalt ions in the olivine lattice with iron ions, 2+ or 3+, strongly affects the long range crystal structure as well as the short range atomic coordination. These structural changes alter the concentration of anti-site defects, the natural concentration of lithium vacancies, and the size of the lithium diffusion channels along the [010] direction as well as their local distortion. The balancing between these competitive effects modulate the lithium transport properties in the lattice.
2017
.
01 Pubblicazione su rivista::01a Articolo in rivista
Interplay between local structure and transport properties in iron-doped LiCoPO4 olivines / Brutti, Sergio; Manzi, Jessica; Meggiolaro, Daniele; Vitucci, Francesco M.; Trequattrini, Francesco; Paolone, Annalisa; Palumbo, Oriele. - In: JOURNAL OF MATERIALS CHEMISTRY. A. - ISSN 2050-7488. - STAMPA. - (2017). [10.1039/C7TA03161K]
File allegati a questo prodotto
File Dimensione Formato  
Brutti_Interplay_2017.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/981815
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 31
social impact