Hypoxia is the natural trigger for endogenous EPO production but recently the use of intermittent hyperoxia to stimulate EPO has been postulated and this phenomenon has been called the "normobaric oxygen paradox" (NOP). The "NOP" is a mechanism by which oxygen regulates the expression of the Hypoxia Inducible Factor 1 alpha (HIF-1α). The HIF-1α-depending gene regulation is responsible for many different genetic expressions including EPO and VEGF. It has been proposed that relative changes of oxygen availability rather than steady state hypoxic or hyperoxic conditions, play an important role in HIF transcriptional effects. According to this hypothesis, the cell interprets the return to normoxia after a hyperoxic event as an oxygen shortage, and induces HIF-1-regulated gene synthesis, including EPO. Being both a hormone and a cytokine, the actual actions of EPO are complex; its clinical utility has been postulated for neuroprotection and cardioprotection. The precise level of inspired oxygen and the exact timeframe for its iterative administration are not totally known. N-Acetyl-L-Cysteine (NAC) supplementation has been shown to help. All the reported data demonstrate how hyperoxic and hypoxic states can potentially be manipulated if oxygen is been considered as a multifaceted molecule more than just a gas.

The "Normobaric Oxygen Paradox". a new tool for the anaesthetist? / Rocco, Monica; L., D'Itri; D., De Bels; F., Corazza; C., Balestra. - In: MINERVA ANESTESIOLOGICA. - ISSN 1827-1596. - STAMPA. - 80:3(2014), pp. 1-14.

The "Normobaric Oxygen Paradox". a new tool for the anaesthetist?

ROCCO, Monica
Primo
;
2014

Abstract

Hypoxia is the natural trigger for endogenous EPO production but recently the use of intermittent hyperoxia to stimulate EPO has been postulated and this phenomenon has been called the "normobaric oxygen paradox" (NOP). The "NOP" is a mechanism by which oxygen regulates the expression of the Hypoxia Inducible Factor 1 alpha (HIF-1α). The HIF-1α-depending gene regulation is responsible for many different genetic expressions including EPO and VEGF. It has been proposed that relative changes of oxygen availability rather than steady state hypoxic or hyperoxic conditions, play an important role in HIF transcriptional effects. According to this hypothesis, the cell interprets the return to normoxia after a hyperoxic event as an oxygen shortage, and induces HIF-1-regulated gene synthesis, including EPO. Being both a hormone and a cytokine, the actual actions of EPO are complex; its clinical utility has been postulated for neuroprotection and cardioprotection. The precise level of inspired oxygen and the exact timeframe for its iterative administration are not totally known. N-Acetyl-L-Cysteine (NAC) supplementation has been shown to help. All the reported data demonstrate how hyperoxic and hypoxic states can potentially be manipulated if oxygen is been considered as a multifaceted molecule more than just a gas.
2014
oxygen; hyperoxia; erythropoietin
01 Pubblicazione su rivista::01a Articolo in rivista
The "Normobaric Oxygen Paradox". a new tool for the anaesthetist? / Rocco, Monica; L., D'Itri; D., De Bels; F., Corazza; C., Balestra. - In: MINERVA ANESTESIOLOGICA. - ISSN 1827-1596. - STAMPA. - 80:3(2014), pp. 1-14.
File allegati a questo prodotto
File Dimensione Formato  
Rocco_Normobaric_2014.pdf

solo gestori archivio

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 264.57 kB
Formato Adobe PDF
264.57 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/526330
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact