Carbon nanotubes were dispersed in a sodium dodecylsulfate/decanol/water nematic fluid. The long-term stability of the dispersions is ensured by the small density gradients existing between nanotubes and the nematic fluid, and by its viscosity, as well. Presumably, surfactant or nematic micelles adsorb onto nanotubes and concur to stabilize them. A Rheo 2H NMR characterization was performed. It was supported by classical 2H quadrupole splitting and pulsed field gradient spin-echo NMR, allowing to ascertain the diffusive trends therein. The nematic fluid shows uniaxial spectral profiles and marked diffusion anisotropy. No such effects were observed in nanotube-containing nematic dispersions. In addition, the measured water self-diffusion values are substantially lower than the pure nematic fluid. In the absence of shear, dispersed nanotubes do not modify the quadrupole splitting amplitude, but affect the spectral profiles. The reasons for the observed behavior are briefly outlined. In the presence of shear, the spectral modifications are substantial and lead to the onset of isotropic dispersions, after long-time shearing. © 2013 American Chemical Society.

Shear orientation in nematic carbon nanotube dispersions: A combined NMR investigation / Tardani, Franco; Luigi, Gentile; Giuseppe A., Ranieri; LA MESA, Camillo. - In: JOURNAL OF PHYSICAL CHEMISTRY. C. - ISSN 1932-7447. - STAMPA. - 117:16(2013), pp. 8556-8562. [10.1021/jp4015349]

Shear orientation in nematic carbon nanotube dispersions: A combined NMR investigation

TARDANI, FRANCO;LA MESA, Camillo
2013

Abstract

Carbon nanotubes were dispersed in a sodium dodecylsulfate/decanol/water nematic fluid. The long-term stability of the dispersions is ensured by the small density gradients existing between nanotubes and the nematic fluid, and by its viscosity, as well. Presumably, surfactant or nematic micelles adsorb onto nanotubes and concur to stabilize them. A Rheo 2H NMR characterization was performed. It was supported by classical 2H quadrupole splitting and pulsed field gradient spin-echo NMR, allowing to ascertain the diffusive trends therein. The nematic fluid shows uniaxial spectral profiles and marked diffusion anisotropy. No such effects were observed in nanotube-containing nematic dispersions. In addition, the measured water self-diffusion values are substantially lower than the pure nematic fluid. In the absence of shear, dispersed nanotubes do not modify the quadrupole splitting amplitude, but affect the spectral profiles. The reasons for the observed behavior are briefly outlined. In the presence of shear, the spectral modifications are substantial and lead to the onset of isotropic dispersions, after long-time shearing. © 2013 American Chemical Society.
2013
01 Pubblicazione su rivista::01a Articolo in rivista
Shear orientation in nematic carbon nanotube dispersions: A combined NMR investigation / Tardani, Franco; Luigi, Gentile; Giuseppe A., Ranieri; LA MESA, Camillo. - In: JOURNAL OF PHYSICAL CHEMISTRY. C. - ISSN 1932-7447. - STAMPA. - 117:16(2013), pp. 8556-8562. [10.1021/jp4015349]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/513572
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact