Cystic fibrosis (CF) is caused by mutations of the CF transmembrane conductance regulator (CFTR) gene, which encodes a cAMP dependent chloride channel whose expression is finely tuned in space and time. Gene therapy ap- proaches to CF lung disease have demonstrated partial efficacy and short-lived CFTR expression in the airways. Draw- backs in the use of classical gene transfer vectors include immune response to viral proteins or to unmethylated CpG mo- tifs contained in bacterially-derived vector DNA, and shut-off of viral promoters. These limitations could be overcome by providing stable maintenance and expression of the CFTR gene inside the defec- tive cells. This strategy makes use of large fragments of DNA of various sizes containing the CFTR transgene and its relevant regulatory regions, (genomic context vectors [GCVs], reaching ultimate complexity in the form of an artificial chromosome [AC]) as vector for the transgene. Appropriate regulation in space and time would be achieved by the pres- ence of the endogenous promoter and other control elements, while retention in daughter cells could be ensured by the presence of sequences which guarantee episomal replication. In this review, we describe recent advances in GCVs and ACs and the technology underlying their construction. These vectors have been shown to be suitable for delivery and expression of therapeutically relevant genes, including CFTR. The major issue which now limits their routine use is delivery inefficiency. Once this issue is resolved, we will be closer to achieving the goal of regulated gene therapy for CF.

Genomic context vectors and artificial chromosomes for cystic fibrosis gene therapy / Massimo, Conese; A. C., Boyd; Sante Di, Gioia; Cristina, Auriche; Ascenzioni, Fiorentina. - In: CURRENT GENE THERAPY. - ISSN 1566-5232. - 7:3(2007), pp. 175-187. [10.2174/156652307780859026]

Genomic context vectors and artificial chromosomes for cystic fibrosis gene therapy

ASCENZIONI, Fiorentina
2007

Abstract

Cystic fibrosis (CF) is caused by mutations of the CF transmembrane conductance regulator (CFTR) gene, which encodes a cAMP dependent chloride channel whose expression is finely tuned in space and time. Gene therapy ap- proaches to CF lung disease have demonstrated partial efficacy and short-lived CFTR expression in the airways. Draw- backs in the use of classical gene transfer vectors include immune response to viral proteins or to unmethylated CpG mo- tifs contained in bacterially-derived vector DNA, and shut-off of viral promoters. These limitations could be overcome by providing stable maintenance and expression of the CFTR gene inside the defec- tive cells. This strategy makes use of large fragments of DNA of various sizes containing the CFTR transgene and its relevant regulatory regions, (genomic context vectors [GCVs], reaching ultimate complexity in the form of an artificial chromosome [AC]) as vector for the transgene. Appropriate regulation in space and time would be achieved by the pres- ence of the endogenous promoter and other control elements, while retention in daughter cells could be ensured by the presence of sequences which guarantee episomal replication. In this review, we describe recent advances in GCVs and ACs and the technology underlying their construction. These vectors have been shown to be suitable for delivery and expression of therapeutically relevant genes, including CFTR. The major issue which now limits their routine use is delivery inefficiency. Once this issue is resolved, we will be closer to achieving the goal of regulated gene therapy for CF.
2007
adeno-associated virus; airway epithelium; artificial chromosome; genomic context vectors; host defences; host defences.; lentivirus; pulmonary disease
01 Pubblicazione su rivista::01a Articolo in rivista
Genomic context vectors and artificial chromosomes for cystic fibrosis gene therapy / Massimo, Conese; A. C., Boyd; Sante Di, Gioia; Cristina, Auriche; Ascenzioni, Fiorentina. - In: CURRENT GENE THERAPY. - ISSN 1566-5232. - 7:3(2007), pp. 175-187. [10.2174/156652307780859026]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/48719
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact